A TIME AND MAGNITUDE PREDICTABLE MODEL FOR STRONG EARTHQUAKES AND ITS APPLICATION FOR LONG TERM EARTHQUAKE PREDICTION IN THE AEGEAN AREA

Papazachos, B.C. and Papaioannou, Ch.A.

Geophysical Laboratory, University of Thessaloniki, GR-54006 Thessaloniki, Macedonia, GREECE.

ABSTRACT

Instrumental and historical data on strong mainshocks in 76 seismogenic sources of the Aegean and surrounding area have been used to show that the interevent time, T_t (in years), between two strong earthquakes and the magnitude, M_f , of the following mainshock are given by the relations:

 $logT_t = 0.24M_{min} + 0.25M_p - 0.36 \log \dot{M_o} + 7.36$

$$M_f = 1.04 M_{min} - 0.31 M_p + 0.28 \log M_o - 4.85$$

where M_{min} is the surface wave magnitude of the smallest mainshock considered, M_{p} the magnitude of the preceding mainshock and M_{p} the moment rate per year in each source. On the basis of these relations, the probability for the occurrence of a mainshock during the decade 1993-2002 as well the magnitude of this expected mainshock in each seismogenic source of this region have been calculated.

ΕΝΑ ΕΞΑΡΤΟΜΕΝΟ ΧΡΟΝΙΚΑ ΜΟΝΤΕΛΟ ΓΙΑ ΤΗ ΓΕΝΕΣΗ ΤΩΝ ΙΣΧΥΡΩΝ ΣΕΙΣΜΩΝ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΣΤΗ ΜΑΚΡΟΠΡΟΘΕΣΜΗ ΠΡΟΓΝΩΣΗ ΣΕΙΣΜΩΝ ΣΤΟ ΧΩΡΟ ΤΟΥ ΑΙΓΑΙΟΥ

Παπαζάχος, Β.Κ. και Παπαϊωάννου, Χρ.Α.

ΠΕΡΙΛΗΨΗ

Ενόργανα και ιστορικά δεδομένα ισχυρών σεισμών σε 76 σεισμογόνες πηγές του Αιγαίου και των γύρω περιοχών χρησιμοποιήθηκαν για να δειχθεί ότι ο χρόνος, Τ_t, (σε έτη), μεταξύ δύο ισχυρών σεισμών και το μέγεθος, M_f, του σεισμού που ακολουθεί δίνονται από τις σχέσεις:

$$logT_t = 0.24 M_{min} + 0.25 M_p - 0.36 \log M_p + 7.36$$

$$M_{f} = 1.04 M_{min} - 0.31 M_{p} + 0.28 \log M_{o} - 4.85$$

όπου M_{pin} είναι το επιφανειακό μέγεθος του μικρότερου κυρίου σεισμού που θεωρούμε, M_o το μέγεθος του κυρίου σεισμού που

προηγήθηκε και Μ΄ η ετήσια έκλυση της σεισμικής ροπής για κάθε σεισμική πηγή. Με βάση τις σχέσεις αυτές, υπολογίστηκαν η πιθανότητα γένεσης ενός κυρίου σεισμού κατά τη δεκαετία 1993-2002 καθώς και το μέγεθος αυτού του αναμενόμενου σεισμού σε κάθε σεισμογόνα πηγή αυτής της περιοχής.

INTRODUCTION

Although most of the earthquake generation models currently used for seismic hazard evaluation assume a Poisson or other memoryless distributions, recent work has shown that large earthquakes in several regions are temporally dependent (Bufe et al., 1977; Shimazaki and Nakata, 1980; Sykes and Quittmeyer, 1981; Papazachos, 1989). Two kinds of time dependent models have been proposed: the slip-predictable model, according to which the size (coseismic slip, magnitude) of a future earthquake in a seismic source depends on the time elapsed since the last earthquake, and the time predictable model, according to which the time of occurrence of a future earthquake depends on the size and on the time of occurrence of the last earthquake in the seismic source. Almost all of the aforementioned investigations as well as other independent data (Mogi, 1981; Karakaisis et al., 1991) favor the time predictable model.

During the last five years, an investigation to identify time dependent relations between strong shallow earthquakes which occurred in seismogenic sources in Greece has been carried out (Papazachos, 1988a, 1988b, 1989). This research was recently expanded to cover a broader area and a time and mangitude predictable model was proposed for the generation of shallow earthquakes in this area (Papazachos, 1992). In this model, the interevent time, T_t , and the magnitude, M_f , of the following mainshock is quantitatively expressed in relation to the magnitude, M_{min} , of the smallest considered mainshock and to the magnitude, M_p , of the preceding mainshock in each seismogenic source. In the same model, the magnitude, M_f , of the following mainshock is also expressed in relation to M_{min} and M_p . In the present paper, a further step is attempted by

In the present paper, a further step is attempted by including a new term in the relations both for the return period and the magnitude of the expecting mainshock. This term depends on the yearly moment rate in each seismogenic source. Furthermore, this model is applied to estimate the probability of occurrence of the next mainshock during the next Δt (=10 years) and the magnitude of this expected mainshock in each seismogenic source of the Aegean area. This is an area which includes the well known Hellenic arc, the Aegean, which is also a well known marginal sea, and the surrounding areas (Greece, Albania, southern Yugoslavia, southern Bulgaria, western Turkey).

SEISMOGENIC SOURCES AND DATA

The method applied in the present paper is based on the separation of the whole area under investigation in several seismogenic sources as well as on determining the mainshocks in each source and their interevent (repeat) times. Therefore, the

first step for this work is to define the seismogenic sources of the shallow as well as of the intermediate depth earthquakes in the Aegean and surrounding area.

The Aegean area has been separated in several seismic zones (Papazachos, 1990) and each zone is separated in seismogenic sources (Papazachos, 1992) on the basis of several seismological, geological and geomorphological criteria, such as spatial clustering of the epicenters of strong earthquakes, seismicity maximum earthquake observed, faulting, level, type of geomorphological features, etc. The fit of the data of each seismogenic source to the time predictable model has been used as a supplementary criterion for this separation. Each seismogenic source includes a main seismic fault, where the maximum (characteristic) earthquake occurs, but it can also include other smaller faults where smaller mainshocks may also occur.

Fig.1. The 69 seismogenic sources of shallow earthquakes in the Aegean and surrounding area.

In this way, the whole Aegean area has been separated in 69 seismogenic sources of shallow earthquakes, which are shown in figure (1) together with the epicenters of the complete data used the present study. Black circles show epicenters in of mainshocks. Open circles show epicenters of foreshocks and aftershocks in the broad sense, that is, earthquakes within the complete sample of data, which may occur up to several years before or after the mainshock, respectively. We use the term "aftershock" and "foreshock" in their broad sense because in the present paper we want a model which can predict the mainshocks in each seismogenic source, that is, the strong earthquakes which occur at the beginning and the end of each seismic cycle and not smaller earthquakes which occur during the preseismic and postseismic activations. In particular, we consider as foreshocks or aftershocks the earthquakes which precede or follow mainshocks with magnitudes 5.5-5.7, 5.8-6.0, 6.1-7.0, and larger than 7.0 up to 6, 7, 9 and 12.5yrs, respectively (Papazachos, 1992). The seperation of seismic sources shown in figure (1) is very similar to that made by Papazachos (1992) with some minor changes. For two of the shallow sources (7e,9b) only one strong mainshock is known, that is, for 67 seismogenic sources at least one interevent time is available.

Fig.2. The seismogenic sources of intermediate depth earthquakes in the southern Aegean area.

Figure (2) shows the seismogenic sources of the intermediate depth ($60 \text{km} < h \le 180 \text{km}$) earthquakes in the Aegean area which have been defined in the same way with the sources of shallow earthquakes. This separation is very similar to that proposed by Papazachos (1993). The sources (20a, 20b, 20c, 20d) concern earthquakes with focal depths between 60Km and 100km and the sources (21a, 21b, 21c) concern earthquakes with focal depths between 100Km and 180km. Black triangles show mainshocks, open triangles show "aftershocks" or "foreshocks" in the broader sense. For each of these 7 intermediate depth sources there is

at least one repeat time available. Therefore, for 74 seismogenic sources (shallow and intentermediate depth) there is one or more interevent times available.

Information on the surface wave magnitudes and on the epicenters of the earthquakes plotted in figures (1), (2) were received from the catalogue of Comninakis and Papazachos (1986) for the period 1901-1985 and from the monthly bulletins of the National Observatory of Athens and of the Geophysical Laboratory of the University of Thessaloniki for the period 1986-1992. For historical earthquakes such information was derived from the book of Papazachos and Papazachou (1989).

Information on the data used in the present study is given in Table (1). In the first column of this table a code number, corresponding to the same area numbers of Figure 1, and a name are written for each seismogenic source.

The second column of Table 1 shows the time (year) during which the data are complete for each magnitude range and the minimum magnitude of this range, respectively. For the first source, for example, the complete samples are: all earthquakes with $M_{s} \ge 6.5$ which occurred in the period 1855-1992 and all earthquakes with $M_{s} \ge 5.5$ which occurred in the period 1905-1992. This completeness has been determined for each source on the basis of information given in the catalogues, which have been used as data sources, and of plots of the frequency-magnitude relation for each magnitude range.

Table 1.	Information	on	the	basic	data	used	for	each	seismogenic
	source.								

Source	Completr	less	Date	Epicenter	Ms	M
la M.Negro	1855, 6 1905, 5	5.5 5.5	03:07:1855 01:06:1905 27:08:1948 20:08:1966 15:04:1979	41.9,19.6 42.0,19.5 42.0,19.5 42.2,18.6 42.0,19.0	6.5 6.6 5.6 5.7 7.1	6.5 6.6 5.6 5.7 7.1
lb Dirrachio	1869, 6 1920, 5	5.2 5.5	28:09:1870 17:12:1926 01:09:1959 09:01:1988	41.1,19.6 41.3,19.5 40.9,19.8 41.2,19.7	6.4 6.1 6.4 5.6	6.5 6.2 6.5 5.6
lc Avlona	1893, 6 1917, 5	5.2 5.7	14:07:1893 21:11:1930 18:03:1962 16:11:1982	40.1,19.8 40.2,19.6 40.7,19.6 40.8,19.6	6.4 6.3 6.0 5.7	6.5 6.3 6.0 5.7
ld Igumenitsa	1823 (1917 5	5.2	19:06:1823 20:09:1858 11:02:1872 14:07:1893 21:10:1920 09:02:1967 10:03:1981 16:06:1990	39.5,20.3 40.0,20.0 39.7,20.2 40.1,19.8 39.6,20.3 39.9,20.3 39.4,20.8 39.2,20.5	6.4 6.2 6.4 5.8 5.8 5.6 6.1	6.4 6.6 6.7 6.1 6.0 5.9 6.1

le Preveza	1891,	5.5	27:06:1891 13:09:1921 29:10:1966	39.0,20.7 38.9,21.2 38.9,21.1	6.0 6.0 6.0	6.0 6.2 6.2
2a Leukada	1825, 1911,	6.3 5.5	19:01:1825 28:12:1869 27:11:1914 13:03:1938 22:04:1948 04:11:1973	38.7,20.6 38.8,20.7 38.8,20.6 38.8,20.6 38.7,20.5 38.9,20.5	6.7 6.6 5.8 6.5 5.8	6.7 6.6 6.4 5.9 6.8 5.9
2b Cephalonia	1767, 1862, 1912,	7.2 6.3 5.7	22:07:1767 04:02:1867 24:01:1912 12:08:1953 17:09:1972 17:01:1983	38.2,20.3 38.2,20.4 38.1,20.8 38.2,20.6 38.3,20.3 38.1,20.2	7.2 7.2 6.8 7.2 6.3 7.0	7.2 7.2 7.2 7.4 6.3 7.0
2c Zakynthos	1840, 1911,	6.0 5.8	30:10:1840 25:10:1873 17:04:1893 20:09:1939 15:11:1959 16:10:1988	37.9,20.9 37.9,21.0 37.9,20.9 38.0,20.9 37.8,20.5 37.9,21.0	6.7 6.1 6.4 6.3 6.8 6.0	6.7 6.1 6.4 6.3 6.9 6.0
2A Ionian Sea l	1938,	5.5	14:02:1943 27:08:1958 11:05:1976	38.0,20.0 37.4,20.7 37.4,20.4	5.8 6.4 6.5	6.0 6.6 6.6
3a Pylos	1885, 1911,	6.1 5.9	27:08:1886 06:10:1947 20:08:1989	37.0,21.5 36.9,21.8 37.2,21.2	7.5 7.0 5.9	7.5 7.0 5.9
3b Mani	1867, 1925,	6.8 5.5	20:09:1867 01:07:1927 02:01:1958	36.5,22.3 36.6,22.0 36.2,22.3	7.1 7.1 5.7	7.1 7.1 5.7
3c Off NW Crete	1866, 1932,	6.5 5.5	06:02:1866 11:08:1903 30:09:1932 31:08:1951	35.9,22.9 36.0,22.8 36.0,22.7 35.5,22.8	6.8 7.4 5.6 5.6	6.8 7.4 5.6 5.6
3A Ionian Sea 2	1919,	5.5	24:02:1919 01:06:1947 16:12:1963	36.74,21.0 36.6,21.5 37.0,21.0	6.3 5.8 5.9	6.4 6.0 6.0
3B Ionian Sea 3	1922,	5.7	19:09:1926 26:01:1962	36.0,22.0 35.2,22.7	6.3 6.2	6.4 6.3
4a SW Crete	1805, 1916,	7.2 5.6	03:07:1805 30:08:1947 14:05:1959 04:05:1972 21:06:1984	35.1,24.0 35.1,23.4 35.1,24.6 35.1,23.6 35.4,23.3	7.2 6.3 6.5 6.2	7.2 6.4 6.3 6.6 6.2

4b SE Crete	1815, 1927,	6.7 5.6	00:12:1815 24:03:1927 10:02:1938 29:01:1978 19:03:1991	34.9,25.6 35.0,26.0 34.8,26.2 34.9,25.7 34.8,26.3	6.7 5.6 5.7 5.8	6.7 5.6 5.8 5.9 5.8
4A Lybic Sea l	1930,	5.6	06:03:1930 17:12:1952 11:09:1977	34.7,24.5 34.4,24.5 34.9,23.0	5.8 7.0 6.3	5.8 7.0 6.3
4B Lybic Sea 2	1918,	5.6	06:03:1930 12:06:1969	34.5,26.0 34.4,25.0	5.6 6.1	5.6 6.2
5a Karpathos	1932,	5.5	09:02:1948	35.5,27.4	7.1	7.1
5b Rhodos	1919,	5.6	27:01:1921 05:01:1987	36.0,28.0 36.3,28.5	5.6 5.6	5.6 5.6
5c Marmaris	1851, 1926,	6.8 5.6	28:02:1851 18:03:1926 25:04:1957	36.4,28.6 35.8,29.5 36.5,28.6	7.2 6.9 7.2	7.2 6.9 7.3
5A Stravo l	1957,	5.5	30:10:1957 09:05:1966 27:09:1985	35.1,27.2 34.4,26.4 34.5,26.6	5.6 5.8 5.5	5.6 5.8 5.5
5B Stravo 2	1922,	5.5	11:08:1922 30:10:1957 30:05:1968	35.4,27.7 35.2,27.7 35.4,27.9	6.3 5.5 5.9	6.3 5.5 6.0
6a Elbasan	1843, 1920,	6.2 5.5	05:09:1843 16:08:1907 18:12:1920 31:03:1935 27:08:1942 30:11:1967	41.2,20.1 41.1,20.1 41.1,20.1 41.3,20.3 41.6,20.4 41.4,20.4	6.2 5.8 5.7 5.9 6.3	6.2 6.0 5.7 6.0 6.3
6b Tepeleni	1860, 1920,	6.2 5.5	10:04:1860 26:11:1920 03:04:1969	40.2,20.3 40.3,20.0 40.7,20.0	6.4 6.3 5.8	6.5 6.3 5.8
6c Maliq	1922,	5.5	07:12:1922 07:01:1953 12:03:1960	41.8,20.6 41.3,20.6 41.9,20.9	6.1 5.6 5.7	6.1 5.6 5.7
6b Ochrida	1896,	6.0	28:09:1896 18:02:1911 26.05:1960	41.1,20.7 40.9,20.8 40.6,20.7	6.1 6.7 6.5	6.1 6.8 6.5
бе Jannena	1919,	5.5	22:12:1919 01:05:1967	40.1,20.7 39.5,21.2	6.3 6.4	6.3 6.4
6f Karpenisi	1915,	5.5	04:06:1915 05:02:1966	39.1,21.5 39.1,21.7	5.8 6.2	5.8 6.2

7A Megalopolis	1911,	5.5	24:12:1901 05:04:1965	37.2,22.2 37.7,22.0	5.8 6.1	5.9 6.3
7a Kalamata	1846, 1901,	6.1 5.5	11:06:1846 13:04:1955 13:09:1986	37.1,22.0 37.2,22.3 37.1,22.1	6.4 5.9 6.0	6.4 5.9 6.0
7b Sparti	1842, 1911,	6.0 5.0	18:04:1842 30:07:1944	36.7,22.3 36.7,22.5	6.4 6.0	6.4 6.0
7c Kythera	1798, 1913,	6.4 5.5	00:06:1798 06:07:1913 27:04:1965	36.0,23.0 35.9,23.2 35.6,23.5	6.4 5.7 5.7	6.4 5.7 5.7
7b Sitia	1918,	5.5	29:02:1940 30:07:1956 22:09:1975 05:09:1988	35.7,25.9 35.8,26.0 35.2 26.3 35.2,26.3	6.0 6.0 5.5 5.5	6.2 6.1 5.7 5.5
7e Karpathos Sea	1956,	5.5	28:04:1962	36.1,26.8	5.8	5.9
7f Symi	1896, 1918,	6.7 5.6	27:10:1896 01:09:1942 28:08:1990	36.6,27.9 36.4,27.4 36.4,27.2	6.7 5.8 5.6	6.7 5.9 5.6
8a Patra	1804, 1914,	6.0 5.7	08:06:1804 24:12:1917 30:06:1975	38.2,21.7 38.4,21.8 38.5,21.7	6.6 6.0 5.7	6.7 6.0 5.9
8b W.Corinthiakos	1748, 1909,	6.3 5.6	25:05:1748 23:08:1817 01:08:1870 30:05:1909 06:07:1965 18:11:1992	38.2,22.2 38.2,22.1 38.5,22.5 38.4,22.2 38.4,22.4 38.3,22.4	6.8 6.5 6.8 6.2 6.3 5.9	6.8 6.5 7.0 6.2 6.5 5.9
8c E.Corinthiakos	1858, 1916,	6.7 5.5	21:02:1858 22:04:1928 05:09:1953 24:02:1981	37.9,22.9 37.9,23.0 37.9,23.1 38.2,23.0	6.7 6.3 5.8 6.7	6.7 6.4 5.9 6.8
9a Methana	1873 ,	5.5	25:07:1873 08:08:1922 04:07:1968	37.7,23.2 37.5,23.2 37.8,23.2	6.0 5.6 5.5	6.0 5.6 5.5
9b Milos	1733, 1918,	6.4 5.5	20:07:1738	36.8,24.5	6.5	6.7
9c Santorini	1866, 1919,	6.1 5.5	31:01:1866 25:10:1919 09:07:1956	36.4,25.4 36.7,25.6 36.7,25.8	6.2 6.1 7.5	6.2 6.1 7.6
9d Kos	1920,	5.6	23:04:1933 23:02:1961 05:12:1968	36.8,27.3 36.7,27.1 36.6,26.9	6.6 5.6 6.0	6.6 5.6 6.1

9e Alicarnasos	1869, 1920,	6.2 5.5	01:12:1869 13:12:1941 25:04:1959 28:04:1989	37.0,28.1 37.2,28.3 37.0,28.5 37.0,27.9	6.8 6.8 6.2 6.4 6.2 6.2 5.5 5.5
9f Denisli	1703, 1920,	6.8 5.5	00:00:1703 01:03:1926 30:01:1964	37.3,29.2 37.0,29.4 37.4,29.9	6.8 6.8 6.2 6.2 5.5 5.5
10 Thessalia	1905,	5.5	20:01:1905 31:03:1930 01:03:1941 30:04:1954 09:07:1980	39.6,23.0 39.5,23.0 39.6,22.5 39.3,22.2 39.2,23.1	6.3 6.4 6.1 6.3 6.3 6.3 7.0 7.2 6.5 6.6
lla N.Evoikos	1758, 1894,	6.8 5.5	00:05:1758 18:03:1874 27:04:1894 27:09:1916	38.9,22.7 38.6,23.5 38.7,23.0 38.9,23.0	6.8 6.8 6.0 6.0 7.0 7.1 5.9 6.0
llb S.Evoikos	1853, 1912,	6.0 5.5	18:08:1853 23:05:1893 17:10:1914 20:07:1938 04:03:1981	38.3,23.3 38.3,23.4 38.3,23.4 38.3,23.4 38.3,23.8 38.2,23.1	$\begin{array}{cccc} 6.8 & 6.8 \\ 6.2 & 6.2 \\ 6.0 & 6.1 \\ 6.0 & 6.0 \\ 6.4 & 6.4 \end{array}$
12a Samos	1865, 1904,	6.0 5.8	31:01:1873 12:03:1893 11:08:1904 16:07:1955 06:11:1992	37.8,27.1 37.9,26.9 37.7,26.9 37.6,27.2 38.1,27.0	6.6 6.8 6.6 6.6 6.9 6.9 6.9 6.9 6.2 6.2
12b Aidin	1899, 1961,	6.2 5.5	20:09:1899 12:05:1971 11:10:1986	37.9,28.8 37.6,29.7 38.0,29.0	7.0 7.0 6.2 6.3 6.0 6.0
13a Psara	1890, 1921,	6.0 5.5	26:05:1890 14:03:1933 29:03:1986	38.5,25.5 38.4,25.3 38.4,25.2	6.2 6.2 5.5 5.5 5.8 6.0
13b Chios	1856, 1931,	6.4 5.5	13:11:1856 15:10:1883 23:07:1949 06:04:1969	38.4,26.1 38.3,26.4 38.6,26.3 38.5,26.4	6.6 6.6 6.5 6.7 6.7 6.7 5.9 5.9
13c Ismir	1880, 1904,	6.5 5.5	29:07:1880 10:10:1904 31:03:1928 01:02:1974	38.6,27.1 38.4,27.2 38.2,27.4 38.5,27.2	6.7 6.7 5.8 5.9 6.5 6.6 5.5 5.7
13d Alasehir	1918,	5.5	16:01:1918 29:07:1933 28:03:1969	38.3,29.5 38.2,29.8 38.5,28.5	5.7 5.7 5.9 5.9 6.6 6.6
14a Skopelos	1916,	5.5	05:12:1923 04:06:1947	39.8,23.5 40.0,24.0	6.4 6.5 6.1 6.1

47

			09: 18:	03 01	:1 :1	965 982	39 39).(з, в,	23 24	.8 .4	6 6	.1 .9	6.2 6.9
14b Ag.Eustratios	1947,	5.5	12: 19:	04 02	:1 :1	947 968	39 39).'	7, 4,	25 24	.2 .9	5 7	.7 .1	5.7 7.2
14c Lesbos	1845, 1919,	6.5 5.6	11: 07: 25: 06: 19:	10 03 10 10 12	:1 :1 :1 :1	845 867 889 944 981	39 39 39 39		2, 2, 4, 2,	26 26 25 26 25	.2 .4 .8 .7 .2	6 6 6 7	•8 •8 •7 •9 •2	6.8 7.0 6.7 7.1 7.3
14d Demirci	1919,	5.5	18: 15: 23:	11 11 03	:1 :1 :1	919 942 969	39 39 39		3, 4, 1,	26 28 28	.7 .1 .5	7 6 6	.0 .2 .1	7.0 6.4 6.3
14e Gediz	1928,	5.5	02: 25: 28:	05 06 03	:1 :1 :1	928 944 970	39).().(5, 0, 2,	29 29 29	.1 .3 .5	6 6 7	.2 .1 .1	6.2 6.3 7.1
15a Hellispondos	1766, 1912,	7.4 6.0	05: 09: 04: 18: 05:	08 08 01 03 07	1 1 1 1 1	766 912 935 953 983	4 1 4 0 4 0 4 0 4 0	L.().().().(D, 5, 4, 0, 3,	27 27 27 27 27 27	.5 .2 .5 .4 .2	7 7 6 7 6	.7 .6 .4 .4 .1	7.7 7.6 6.6 7.4 6.1
15b Prusa	1855, 1905,	6.9 5.7	28: 15: 19: 06:	02 09 03 10	:1 :1 :1	855 939 952 964	4 (3 9 3 9 4 ().:).:).:	2, 3, 3,	29 29 28 28	.1 .6 .7 .2	7 5 5 6	.2 .7 .8 .9	7.3 5.7 6.0 6.9
l6a Athos	1905,	5.5	08: 03: 20: 06:	11 08 12 08	:1 :1 :1	905 954 965 983	4 (4 (4 (4 ().;	3, 1, 2,	24 24 24 24	.4 .5 .8 .7	7 5 5 6	.5 .9 .6 .8	7.5 6.0 5.8 6.8
16b Samothraki	1893, 1955,	6.5 5.5	09: 02: 23: 27:	02 06 08 03	:1 :1 :1	893 955 965 975	4 0 4 0 4 0 4 0).4).4).5	1, 1, 5, 1,	25 25 26 26	.5 .8 .2 .1	6 5 5 6	.5 .5 .6	6.5 5.5 5.6 6.6
17a Volvi	1902,	5.7	05: 26: 20:	07 09 06	:1 :1 :1	902 932 978	4 0 4 0 4 0).{	3, 3,	23 23 23	.1 .9 .2	6 7 6	.5 .0 .5	6.5 7.1 6.5
17b Doirani	1905,	5.5	18: 08: 21:	11 03 12	:1 :1 :1	905 931 990	4 1 4 1 4 1), 3,),	23 22 22	.0 .5 .4	5 6 5	.6 .7 .9	5.6 6.7 5.9
17A Skopje	1921,	5.5	10: 26:	08 07	:1 :1	921 963	42 42	2.(3,),	21 21	.4 .4	5 6	.8 .1	5.8 6.1
18 Drama	1829, 1901,	6.5 5.5	05: 23: 09:	05 10 11	:1 :1 :1	829 905 985	41 41 41		1, 3, 2,	24 23 23	.3 .0 .9	7 5 5	.3 .5 .5	7.4 5.5 5.5

19a Kresna	1866, 1904,	6.5 5.5	06:12:1866 04:04:1904 03:11:1977	42.0,23.0 41.8,23.1 42.1,24.0	7.0 7.5 5.5	7.0 7.6 5.5
19b Philippoupoli	1750, 1924,	6.8 5.5	00:10:1750 18:04:1928	42.1,24.8 42.2,25.0	6.8 7.0	6.8 7.2
20a Peloponesse	1897,	6.3	28:05:1897 06:07:1925 18:09:1938 11:09:1948 31:07:1962 17:09:1972	37.5,22.5 37.8,22.1 38.0,22.5 37.2,23.2 37.8,22.9 38.0,22.4	7.5 6.6 6.4 6.8 6.3	7.5 6.6 6.4 6.4 7.0 6.3
20b Kythera Isl.	1897,	6.3	30:08:1926 21:11:1992	36.8,23.3 35.9,22.5	7.2 6.5	7.2 6.5
20c Creta Isl.	1810, 1908,	7.0 6.6	16:02:1810 12:10:1856 17:07:1887 18:02:1910 01:08:1923 25:02:1935 24:07:1948	35.5,25.6 35.6,26.0 35.7,26.0 35.7,24.0 35.0,25.0 36.0,25.0 35.2,24.4	7.8 8.2 7.5 6.9 6.8 7.0 6.6	7.8 8.2 7.5 6.9 6.8 7.0 6.6
20d Rhodes Isl.	1863, 1911,	7.8 6.4	22:04:1863 26:06:1926 23:05:1961	36.4,27.7 36.5,27.5 36.7,28.5	7.8 8.0 6.4	7.8 8.0 6.4
21a Methana area	1862,	6.0	21:06:1862 17:07:1964	36.9,24.4 38.0,23.6	7.0 6.0	7.0 6.0
21b Thera area	1911,	6.6	04:04:1911 14:02:1930	36.5,25.5 36.5,24.5	7.1 6.7	7.1 6.7
21c Nisyros	1926,	5.6	05:07:1926 28:04:1936 30:06:1958 27:09:1983	36.5,27.0 36.7,26.7 36.4,27.3 36.7,26.9	5.6 5.7 6.0 5.6	5.6 5.7 6.0 5.6

The third, fourth and fifth columns of Table 1 give the date, epicenter (North latitude, East longitude) and the surface wave magnitude for the mainshocks which satisfy the completeness condition defined in the second column.

The sixth column gives the cumulative magnitude, M, of each sequence, that is, the magnitude which corresponds to the total moment released by the major shocks (main shock and large foreshocks and aftershocks) of each sequence according to a relation between surface wave magnitude and seismic moment which holds for earthquakes in this area (Papazachos and Kiratzi, 1993). These cumulative magnitudes were used in this study instead of the magnitudes of the mainshocks, although the differences are small.

The data used in the present study are almost the same with those already published (Papazachos, 1992, 1993). Also, the way of the elaboration of the data in the present paper is similar

to that already described in those published papers.

THE TIME AND MAGNITUDE PREDICTABLE MODEL

The time and magnitude predictable model proposed in the present paper is expressed by the relations:

$$\log T_t = bM_{\min} + cM_p + d\log \dot{M}_o + t \tag{1}$$

$$M_f = BM_{\min} + CM_p + Dlog\dot{M}_o + m \tag{2}$$

where T_t is the interevent time, M_{min} the surface wave magnitude of the smallest mainshock considered, M_p the magnitude of the preceding mainshock, M_f the magnitude of the following mainshock, M_o the moment rate in each seismogenic source per year, and b, c, d, t, B, C, D, m parameters the same for all sources, to be determined by the available data.

To determine these parameters we need data which include the (T, M_{min}, M_p) values, which can be derived from table (1), and a value of the moment rate M_p for each seismogenic source. These values of the moment rate are listed on table (2) and have been determined by a method suggested by Molnar (1979). This method makes use of the maximum magnitude, M_{max} , and of the parameters b, a of the Gutenberg and Richter (1944) relation:

$$logN=a-bM$$
 (3)

normalized for one year, which are also listed on table (2), as well as of the parameters r,k of the moment-magnitude relation:

$$logM_o = rM + k$$
 (4)

which for the Aegean area are r=1.5 and k=15.89 for shallow earthquakes (Papazachos and Kiratzi, 1993) and k=16.00 for intermediate depth earthquakes (Kiratzi and Papazachos, 1993).

Table 2. Information on the basic parameters used for every source. The first two columns give the code number and the name of every source. The constants for the Gutenberg-Richter relation are given in the next two columns. In the last two columns, the maximum magnitude and the logarithm of the moment rate are given.

Code No	Source Name	а	b	M _{max}	log M _o
1a.	Montenegro	4.77	1.00	7.0	24.64
1b.	Dirrachio	4.57	1.00	6.4	24.14
lc.	Avlona	4.49	1.00	6.4	24.06
1d.	Igoumenitsa	4.45	1.00	6.4	24.40
le.	Preveza	4.45	1.00	6.1	23.87
2a.	Lefkada	4.68	1.00	6.8	24.45

2b.	Cephalonia	5.15	1.00	7.2	25.12
2c.	Zakinthos	4.77	1.00	6.8	24.54
2A.	Ionian Sea l	4.99	1.00	6.6	24,66
3a.	Pylos	4.13	0.90	7.2	24.74
3b.	Mani	3.69	0.90	7.2	24.30
3c.	NW of Crete	3.93	0.90	7.2	24.54
3A.	Ionian Sea 2	3.89	0.90	6.4	24.02
3B.	Ionian Sea 3	4.16	0.90	6.4	24.29
4a.	SW of Crete	4.76	1.00	7.0	24.63
4b.	SE of Crete	4.50	1.00	7.0	24.37
4A.	Sea of Libya l	4.78	1.00	6.7	24.50
4B.	Sea of Libya 2	4.56	1.00	6.6	24.23
5a.	Karpathos	4.57	1.00	<u>7</u> .1	24.49
5b.	Rhodos	3.83	1.00	7.0	23.70
5c.	Marmaris	4.66	1.00	7.2	24.63
5A.	Stravo l	4.66	1.00	6.5	24.08
5B.	Stravo 2	4.67	1.00	6.6	24.34
6a.	Elbasan	4.53	1.00	6.2	24.00
6b.	Tepeleni	4.29	1.00	6.4	23.86
6c	Maliq	3.61	0.90	6.1	23.56
6d.	Ochrida	3.96	0.90	6.6	24.21
6e.	Jannena	3.81	0.90	6.4	23.94
_6f.	Karpenissi	3.62	0.90	6.2	23.63
7A.	Magalopolis	3.73	0.90	6.1	23.68
7 <u>a</u> .	Kalamata	3.66	0.90	6.2	23.67
7b.	Sparti	3.44	0.90	6.4	23.57
_7c.	Kythera	3.47	0.90	6.4	23.60
7d.	Sitia	3.96	0.90	6.2	23.97
7e.	Sea of Karpathos	3.69	0.90	6.1	22.84
7f.	Simi	3.80	0.90	6.7	24.11
8a.	Patra	4.43	1.00	6.6	24.10
86.	W.Corinthiakos	4.53	1.00	6.8	24.30
8c.	E.Corinthiakos	4.68	1.00	6.7	24.40

9a.	Methana	4.03	1.00	6.1	23.45
9b.	Milos	3.96	1.00	6.5	22.56
9c.	Santorini	4.58	1.00	7.4	24.65
9d.	Kos	4.53	1.00	7.0	24.40
9e.	Alicarnassos	4.51	1.00	6.6	24.18
9f.	Denisli	4.28	1.00	6.5	23.90
10.	Thessalia	3.85	0.80	7.0	24.97
lla.	N.Evoikos	3.17	0.80	7.0	24.29
llb.	S.Evoikos	3.31	0.80	6.6	24.15
12a.	Samos	4.05	0.90	6.8	24.42
12b.	Aidin	4.15	0.90	6.8	24.52
13a.	Psara	3.19	0.80	6.1	23.68
13b.	Chios	3.43	0.80	6.7	24.34
13c.	Ismir	3.33	0.80	6.7	24.24
13d.	Alasehir	3.16	0.80	6.6	24.00
14a.	Skopelos	3.62	0.80	6.8	24.60
14b.	Ag. Efstratios	3.59	0.80	7.0	24.71
14c.	Lesbos	3.71	0.80	7.0	24.83
14d.	Demirci	3.50	0.80	7.0	24.62
14e.	Gediz	3.82	0.80	7.0	24.94
15a.	Hellispontos	3.07	0.70	7.4	25.15
15b.	Prusa	3.00	0.70	7.4	25.08
16a.	Athos	2.94	0.70	7.4	25.02
16b.	Samothraki	2.82	0.70	7.0	24.58
17a.	Volvi	2.97	0.70	6.8	24.57
17b.	Doirani	2.00	0.60	6.7	24.14
17A.	Skopje	2.33	0.70	6.1	23.37
18.	Drama	2.00	0.60	7.2	24.59
19a.	Kresna	2.32	0.60	7.4	25.09
19b.	Philippoupolis	2.12	0.60	7.0	24.53
20a.	Peloponese	1.90	0.50	7.5	25.58
20b.	Kythera	1.54	0.50	7.5	25.32
20c.	Crete isl.	2.00	0.50	7.8	25.98

20d.	Rhodes isl.	1.94	0.50	7.8	25.92
21a.	Methana area	2.48	0.70	7.0	24.35
21b.	Thera	2.79	0.70	7.0	24.66
21c.	Nisyros	2.72	0.70	6.2	23.95

By the use of the above mentioned data (T, M_{min} , M_p , M_o) and the application of a well known technique (Draper and Smith, 1966; Weisberg, 1980), the following values were calculated for the parameters of the relation (1):

b=0.24, c=0.25, d=-0.36, t=7.36 (5)

with a multiple correlation coefficient equal to 0.75 and a standard deviation equal to 0.18. In a similar way, the following values were calculated for the parameters of the relation (2):

B=1.04, C=-0.31, D=0.28, m=-4.85 (6)

with a multiple correlation coefficient equal to 0.91 and a standard deviation equal to 0.22.

EXPECTED SHALLOW MAINSHOCKS

The quantity $\log(T/T_t)$, where T is the observed and T_t the calculated by the relation (1) repeat times, follows a normal distribution with $\mu=0$ and $\sigma=0.18$. This leads to the conclusion that we can calculate the probability of occurrence of a strong earthquake (e.g. M \geq 6.0) during the next Δt years (e.g. $\Delta t=10$ yrs) (Wesnousky et al., 1984), since the time, t, from the previous mainshock, the magnitude, M_p , of this mainshock and the interevent time, T_t , are known for each seismogenic source. Also, the magnitude of the expected earthquake in each seismogenic source source can be calculated by the relation (2).

Table 3. Information on the expected shallow mainshocks. Epicenter coordinates, φ_N , λ_E and the corresponding uncertainties, 2σ , magnitudes, M_f , and corresponding probabilities, P, for the occurrence of strong ($M_{min} \ge 6.0$) and large ($M_{min} \ge 6.7$) shallow earthquakes during the period 1993-2002.

Code No	φ _N	2σ	λ _E	2σ	M _{min} ≥6.0		M _{min} ≥6.7	
		±	577.00	±	Mf	P	Mf	P
1a.	42.07	0.33	19.24	0.72	6.1	0.15	6.8	0.03
1b.	41.14	0.34	19.65	0.27	6.0	0.41	*	*
1c.	40.38	0.61	19.68	0.20	6.2	0.49	*	*
1d.	39.72	0.50	20.29	0.64	6.5	0.43	*	*

1e.	39.04 0.24	20.84 0.44	6.1	0.28	*	*
2a.	38.81 0.16	20.56 0.15	6.4	0.62	6.8	0.29
2b.	38.33 0.32	20.58 0.42	6.2	0.37	7.0	0.11
2c.	37.86 0.27	20.90 0.31	6.4	0.35	6.8	0.23
2A.	37.61 0.42	20.31 0.54	6.2	0.43	*	*
3a.	37.07 0.26	21.60 0.48	6.3	0.49	6.9	0.36
3b.	36.45 0.37	22.27 0.09	6.0	0.40	6.7	0.24
3c.	35.85 0.41	22.80 0.14	6.0	0.40	6.7	0.29
3A.	36.89 0.42	20.94 0.74	6.2	0.46	*	*
3B.	35.60 1.02	22.20 0.86	6.2	0.50	*	*
4a.	35.11 0.24	23.84 0.80	6.3	0.35	7.0	0.31
4b.	34.89 0.16	25.91 0.71	6.5	0.47	6.8	0.34
4A.	34.66 0.32	24.12 1.16	6.3	0.43	6.8	0.23
4B.	34.43 0.17	25.33 0.79	6.2	0.44	*	*
5a.	35.44 0.29	27.26 0.56	6.4	0.31	6.8	0.23
5b.	36.15 0.29	28.23 0.46	6.3	0.04	*	*
5c.	36.13 0.54	29.05 0.75	6.0	0.37	6.7	0.17
5A.	34.67 0.62	26.73 0.68	6.3	0.54	*	*
5B.	35.41 0.22	27.83 0.23	6.3	0.58	*	*
6a.	41.33 0.39	20.28 0.28	6.1	0.30	*	*
6b.	40.57 0.38	20.00 0.00	6.2	0.41	*	*
6c.	41.67 0.52	20.70 0.28	6.1	0.38	*	*
6d.	40.88 0.32	20.70 0.13	6.2	0.38	*	*
6e.	39.80 0.60	20.95 0.50	6.1	0.24	*	*
6f.	39.10 0.00	21.60 0.20	6.1	0.18	*	*
7A.	37.60 0.32	22.08 0.17	6.0	0.18	*	*
7a.	37.10 0.14	22.12 0.26	6.1	0.01	*	*
7b.	36.70 0.00	22.45 0.10	6.1	0.36	*	*
7c.	35.87 0.41	23.23 0.41	6.0	0.32	*	*
7d.	35.54 0.37	26.14 0.53	6.2	0.45	*	*
7e.	36.10 0.00	26.85 0.10	6.0	0.05	*	*
7f.	36.44 0.19	27.48 0.52	6.3	0.58	6.8	0.31
8a.	38.38 0.23	21.74 0.20	6.2	0.43	*	*

8b.	38.29 0.24	22.31 0.34	6.4	0.35	6.8	0.30
8c.	38.02 0.28	22.91 0.39	6.1	0.10	6.8	0.02
9a.	37.67 0.25	23.20 0.00	6.1	0.37	*	*
9b.	36.95 0.30	24.65 0.30	6.0	0.10	*	*
9c.	36.66 0.24	25.74 0.48	6.0	0.27	6.6	0.12
9d.	36.67 0.17	27.08 0.30	6.3	0.57	6.9	0.38
9e.	37.07 0.23	28.30 0.53	6.2	0.50	*	*
9f.	37.23 0.34	29.50 0.59	6.1	0.46	*	*
10.	39.33 0.25	22.67 0.65	6.3	0.53	7.0	0.23
lla.	38.73 0.25	23.05 0.43	6.3	0.59	6.7	0.28
11b.	38.28 0.07	23.40 0.42	6.1	0.11	*	*
12a.	37.82 0.31	26.99 0.47	6.6	0.27	6.8	0.21
12b.	37.83 0.36	29.26 0.95	6.6	0.43	6.8	0.36
13a.	38.41 0.10	25.28 0.29	6.1	0.01	*	*
13b.	38.39 0.36	26.29 0.26	6.4	0.61	6.8	0.27
13c.	38.42 0.28	27.43 0.78	6.1	0.48	6.8	0.33
13d.	38.33 0.25	29.97 1.11	6.0	0.18	*	*
14a.	39.43 0.64	23.81 0.59	6.1	0.14	6.8	0.02
14b.	39.37 0.39	24.87 0.78	6.1	0.35	6.8	0.13
14c.	39.11 0.40	26.06 1.26	6.1	0.12	6.8	0.02
14d.	39.27 0.42	28.00 0.74	6.3	0.61	6.8	0.38
14e.	39.16 0.39	29.44 0.70	6.1	0.49	6.9	0.24
15a.	40.39 0.55	27.17 0.77	6.5	0.77	6.8	0.39
15b.	40.32 0.66	29.00 0.79	6.2	0.66	7.0	0.45
16a.	40.17 0.24	24.70 0.53	6.3	0.37	7.2	0.33
16b.	40.44 0.10	25.94 0.52	6.2	0.40	6.9	0.15
17a.	40.63 0.31	23.50 0.62	6.2	0.37	6.9	0.29
17b.	41.15 0.31	22.58 0.50	6.3	0.38	6.8	0.27
17A.	42.15 0.30	21.40 0.00	6.0	0.13	*	*
18.	41.18 0.15	24.24 0.63	6.0	0.38	6.7	0.31
19a.	41.97 0.24	23.19 0.59	6.0	0.51	6.8	0.40
19b.	42.16 0.10	25.22 0.75	6.0	0.44	6.7	0.29

Table (2) gives information on the expected strong (M \geq 6.0),

and large (M \geq 6.7) shallow earthquakes based on the model expressed by the relations (1), (2). The first column gives the code numbers of the seismogenic sources shown in figure (1). The second and third columns give the mean geographic latitudes and longitudes (± two standard deviations) of all strong (M \geq 5.5) shallow shocks which fulfil the completeness criterion for each seismogenic source. The last four columns of this table give the highest probabilities, P, for the occurrence of strong (M_{min}=6.0-6.6) and large (M_{min} \geq 6.7) shallow earthquakes during the next decade (1993-2002) and the corresponding magnitudes, M_f, of the expected earthquakes, as these magnitudes were calculated by the relation (2). As error in the expected magnitude we can consider the 2σ of the relation (2), which is 0.4.

Figure (3) shows a map of the centers of the seismogenic sources with proper symbols in order to indicate the range of probabilities for the occurrence of strong (M \geq 6.0) shallow earthquakes during the decade 1993-2002. White, half white and half black, and black circles indicate probabilities in the range 0.00-0.39, 0.40-0.49 and 0.50-0.99, respectivelly, for the occurrence of strong (M \geq 6.0) shallow mainshocks. The number of the seismogenic sources with the highest probabilities (P \geq 50%) in figure (3) is 14. This is almost equal to the expected (average) number of mainshocks with M \geq 6.0 per decade in the Aegean area (Comninakis and Papazachos, 1986).

Fig.3. Centers of seismogenic sources and probabilities of occurrence of strong (M≥6.0) shallow earthquakes in the Aegean and surrounding area.

EXPECTED EARTHQUAKES OF INTERMEDIATE FOCAL DEPTH

Table (3) gives information on the expected strong $(M \ge 6.0)$, and large $(M \ge 6.7)$ intermediate depth earthquakes in the southern Aegean area on the basis of the model expressed by the relations (1), (2). The first column gives the code numbers of the seismogenic sources shown in figure (2). The second and third columns give the mean geographic latitudes and longitudes (± two standard deviations) of all intermediate depth shocks with M>5.6 which fulfil the completeness criterion for each seismogenic source. The fourth column of this table gives the focal depth, h (in Km), of the expected earthquake. The last four columns of this table give the highest propabilies, P, for the occurrence of strong $(M_{min}=6.0-6.6)$ and large $(M_{min}\geq6.7)$ intermediate depth earthquakes during the next decade (1993-2002) and the corresponding magnitudes, M,, of the expected earhtquakes, as these magnitudes were calculated by the relation (2).

Fig.4. Centers of the seismogenic sources and probabilities of occurrence of large (M≥6.7) intermediate depth earthquakes in the southern Aegean area.

It results from table (3) that the probabilities for the occurrence of large (M \geq 6.7) earthquakes are high (\geq 0.50) for the

four external zones (20a, 20b, 20c, 20d) of the intermediate focal depth earthquakes (h=80±20Km) in the southern Aegean area. The large intermediate depth earthquakes and particularly the very large ones (M \geq 7.5) constitute a major threat, during the next decades, for the whole southern Aegean area and even for areas in other countries of the eastern Mediterranean (Egypt, Middle East, Cyprus, southwestern Turkey) etc. This is due to the fact that the seismic waves of these earthquakes are transmitted without considerable attenuation in large distances along the Hellenic arc (Dodecanese, Crete, Peloponese) as well as to the areas (eastern Mediteranean countries) which are in the convex side of the Hellenic arc (Papazachos et al., 1985).

Table 3. Information on the expected intermediate depth mainshocks. Epicenter coordinates, $\varphi_{\rm N}$, $\lambda_{\rm E}$ and the corresponding uncertainties, 2 σ , focal depth, h, magnitude, M_f, and corresponding probabilities, P, for the occurrence of strong (M_{min} \geq 6.0) and large (M_{min} \geq 6.7) intermediate depth mainshocks during the period 1993-2002.

Code	φ ⁰ _N 2σ	λ ⁰ E 2σ	h	Mmin	≥6.0	M _{min}	≥6.7
No	<u>±</u>	±	(Km)	Mf	P	ME	P
20a.	36.37 0.87	22.87 0.86	80±20	6.6	0.90	7.1	0.65
20b.	37.81 0.78	22.56 0.63	80±20	6.4	0.20	7.1	0.52
20c.	35.56 0.57	25.00 1.45	80±20	6.6	0.88	7.3	0.81
20d.	36.50 0.16	27.90 0.86	80±20	6.6	0.92	7.0	0.54
21a.	37.45 1.10	24.00 0.80	140±40	6.3	0.61	6.7	0.32
21b.	36.57 0.19	25.27 1.11	140±40	6.2	0.58	6.9	0.44
21c.	36.58 0.26	26.98 0.43	140±40	6.2	0.46	*	*

In the map of figure (4), the triangles show the centers of the seismogenic sources of the intermediate focal depth shocks. White, half white and half black, and black triangles indicate probabilities in the range 0.00-0.49, 0.50-0.59 and 0.60-0.99, respectively, for the occurrence of large (M \geq 6.7) intermediate focal depth mainshocks.

The results presented on tables (3), (4) and on figures (3), (4) are of practical interest for several reasons. One such reason is that these results can be used to focus the preparandness measures in special areas (e.g. of high probability, in combination with the existence of important structures), instead of spreading these measures all over the country. Another one is that special scientific experement can be more effective if are made or prepared (installation of strong motion instruments, monitoring for precursors of earthquakes, etc) in areas for which the probability for the occurrence of strong earthquakes is high.

ACKNOWLEDGMENTS

A computer program for determination of the parameters of the relations (1), (2), written by C.Papazachos, and another one for distinghuishing foreshocks and aftershock, written by M.Scordilis, were used. We express our sincere appreciation for their help. The authors express their sincere gratitude to Earthquake Planning and Protection Organisation of Greece for financial support (Project 8113/93).

REFERENCES

- Bufe,C.G., Harsh,P.W., and Burford,R.D., (1977). Steady-state seismic slip: A Precise recurrence model, Geophys. Res. Lett., 4, 91-94.
- Comninakis, P.E., and Papazachos, B.C., (1986), A catalogue of earthquakes in Greece and surrounding area for the period 1901-1985, Publ. Geophys. Lab. Univ. Thessaloniki 1, 167pp.
- Draper,N.R. and Smith,H., (1966), Applied regression analysis, Wiley, New York, 407pp.
- Gutenberg, B. and Richter, C.F., (1944). Frequency of earthquakes in California, Bull. Seismol. Soc. Am. 34, 185-188.
- Karakaisis, G.F., Kourouzidis, M.C. and Papazachos, B.C., (1991). Behaviour of seismic activity during a single seismic cycle, Int. Conf. Earthq. Pred., Strasbourg FRSNLE 15-18, October 1991, 1, 47-54.
- Kiratzi,A.A. and Papazachos,C.B., (1993). Active seismic deformation in the southern Aegean Benioff zone, Publ. Geophys. Lab., Univ. of Thessaloniki, 1, 17pp.
- Mogi,K., (1981). Seismicity in western Japan and long-term earthquake forecasting. In: Earthquake Prediction, An International Review Maurice Ewing Ser. Vol. 4, (eds Simpson D.W. and P.G. Richards), AGU, Washington, D.C., 43-52.
- Molnar, P., (1979). Earthquake recurrence intervals and plate tectonics, Bull. Seismol. Soc. Am., 69, 115-133.
- Papazachos, B.C., (1988a). Seismic hazard and long-term earthquake prediction in Greece, European School of Earthquake Sciences, Course on Earthquake Hazard Assessment, Athens GREECE, 9-16 May, 1988, pp. 1-10.
- Papazachos, B.C., (1988b). Long-term prediction of earthquakes in seismogenic sources of Greece, UN Sem. on: Prediction of Earthquakes, Lisbon-PORTUGAL, 14-18 November 1988, pp. 1-10.
- Papazachos, B.C., (1989). A time-predictable model for earthquake generation in Greece, Bull. Seismol. Soc. Am. 79, 77-84.
- Papazachos, B.C., (1990). Seismicity of the Aegean and surrounding area, Tectonophysies. 178, 287-308.
- Papazachos, B.C., (1992). A time and magnitude predictable model for generation of shallow earthquakes in the Aegean area, Pageoph, 138, 287-308.
- Papazachos, B.C., (1993). Long term prediction of intermediate depth earthquakes in southern Aegean region based on a time predictable model, Natural Hazards (in press).

Papazachos, C.B. and Kiratzi, A.A., (1993). A formulation for reliable estimation of active crustal deformation and its application in Greece, Geophys. Journ. Intern. 111, 424-432.

Papazachos,B.C. and Papazachou,C.B., (1989). The earthquakes of Greece, Ziti publishing Co, Thessaloniki-GREECE, pp.365, (in Greek).

Papazachos, B.C., Papadimitriou, E.E., Karacostas, B.G. and Karakaisis, G.F., (1985). Long term prediction of great intermediate depth earthquakes in Greece, Proc. 12th Reg. Sem. on: Earthq. Engin., EAEE-EPPO, Halkidiki-Greece, September 1985, 1-12.

Shimazaki,K. and Nakata,T., (1980). Time-predictable recurrence of large earthquakes, Geophs. Res. Lett., 7, 279-282.

Sykes, L.R. and Quittmeyer, R.C., (1981). Repeat times of great earthquakes along simple plate boundaries. In: Earthquake Prediction, An International Review (eds. Simpson, D.W., and Richards, P.G.) Maurice Ewing-Series, AGU, Washington D.C., 4, 297-332.

Weisberg,S., (1980). Applied linear regression, Wiley New York, 283pp.

Wesnousky, S.G., Scholz, C.H., Shimazaki, K. and Matsuda, T., (1984), Integration of geological and seismological data for the analysis of seismic hazard: a case study of Japan. Bull. Seism. Soc. Am. 74, 687-708.