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AnayopeUetal n avtypadr, anmobnkeuaon kat dltavopur TG mapoloag epyaciag, € oAokArpou
N TUAMOTOG QUTAG, Ylo EUMOPLKO OKOMO. Emitpémetal n avatunwon, amobrnkeuon kot
Slavoun yla okomod Hn KEPOOOKOTIKO, EKMALSEUTIKAG N €PeuvNnTIKAG ¢UONG, UMO TNV
npolnoBeon va avadEpetal n mnyn MPogAeuong Kal va Slatnpeital To mapov URVUUA.
Epwtiuoata mou adopolv tn Xpnon tng epyaciag yla KepSOOKOMIKO OKOMO TPEMEL VO
aneuBuvovTal TPog Tov ouyypadEéa.

OL anmoYPEeLg KoL TA CUUIMEPACLOTA TIOU TIEPLEXOVTIAL OE AUTO To €yypado ekdpdlouv Tov
ouyypadéa kot Sev MPEMEL va. epUnVeUTEL OTL ekdpalouv TIG enionueg B€oelg Tou A.M.O.
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ABSTRACT

Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in the
western world. Many patients who suffer from CLL, will be in need at some point to
receive treatment. Despite the existence of several effective therapies for CLL, like
the FCR regimen, many patients initially responding to the treatment eventually
relapse, underscoring a characteristic resistance of the disease to the existing
therapeutic options. In this thesis, we studied the temporal patterns of DNA
methylation of 40 patients with CLL. Sampling was performed before and after the
relapse of patients. Due to the remarkable clinical heterogeneity of CLL, the patients
were initially divided into two groups with two different ways: a) based on the time to
relapse, which is calculated from the start of treatment until the relapse time, and b)
based on the diversification of their epigenetic patterns in recurrence compared with
treatment initiation. The aim of this study is to find the most important CpG sites of
DNA methylation that could be used to efficiently classify the patients. Due to the
high dimensionality of our real data (40x463442), we chose to work with machine
learning and variable selection algorithms. The analysis of this study is mainly based
on the random forest algorithm. The latter is suitable for microarray data because it
shows good predictive accuracy even when most of the predictive variables are
noise, and can be used in problems where the number of variables is much larger
than the number of samples/observations. Furthermore, the variable selection
algorithm was applied, to detect the most informative DNA methylation sites that
achieve good predictive accuracy as well. Our experimental analysis has shown that
the derived DNA methylation sites can efficiently classify the patients with high
success rates. Moreover, these DNA methylation sites were used to evaluate
standard methods, such as hierarchical clustering (HC) and principal component
analysis (PCA). It turned out that when the derived sites were used as inputs in HC
and PCA, the patients were clustered satisfactorily according to their original classes.

Key Words

Analysis of epigenetic data, classification, hierarchical clustering, prediction, random
forest.

12/22/2016 WYnoiakA BiBAIoBAKN OgdppaoTog - TuAua MewAoyiag - A.M.0.



12/22/2016 WYnoiakA BiBAIoBAKN OgdppaoTog - TuAua MewAoyiag - A.M.0.



NEPIAHWYH

H Xpoévia Agp@okuttapikf Acuxaipia (XAA) gival n Mo ouxvr) Jop@r] Aeuxaiyiag oTo
OUTIKO KOOMO. Z& TTOAAEG aTTO TIG TTEPITITWOEIS aoBevov he XAA Ba xpelaoTei va
xopnynOei BepaTtreia. MoAovoTl uTtdpyouv dIAPOPES ATTOTEAECUATIKEG BepaTTeies yia
™ XAA, 6Tmwg n aywyr) FCR, mToAAoi aoBeveig, av kal apyiké avTatrokpivovtal oTn
Bepatreia TEAIKA UTTOTPOTTIACOUV, KATI TTOU TOVICEl TN XAPAKTNPIOTIKY AvTioTaon TNG
voéoou OTIG uTtdpyxouoeg OepaTreieg. XTnv TTapoUoa epyacia HEAETABNKav Ta
diaxpovikd TpoTutTa ueBUAiwong Tou DNA oe 40 trepimmwoelg aoBevwv pe XAA. H
OclyaToANYia TTPAYUATOTIOINONKE TTPIV TNV UTTOTPOTIA KAl KATA TNV UTTOTPOTIA TWV
aoBevwy. E¢aitiag NG afloonueiwtng KAIVIKAG €Tepoyéveiag NG XAA, ol acBeveig
Xwpiotnkav £§apxng o€ dU0 oudadeg pe dUO dIAPOPETIKOUG TPOTTOUG: O) PE BAon TO
XPOVo TTou PecOAdBNnoe atmd Tnv €vapén Tng Bepartreiag Péxpl TNV UTTOTPOTTA, Kai B)
ME Bdon TN dIa@OPOTTOINCN TWV ETTIVEVETIKWY TTPOTUTTWY TOUG KATA TNV UTTOTPOTIH O€
oxéon Me TNV €vapén Tng Bepatreiag. ZT1OX0¢ TNG TTapolcdag epyaciag eival n
aveUpEDT TWV TTIO ONUAVTIKWYV Béoewv PeBUAiwong Tou DNA TToU Ba uTTopoucav va
XpnoigotroinBouv yia Tnv TPORAswn NG ouddag oTnv oTroia avrkel 0 acBevhg. Adyw
Tou peydAou Oykou Twv Oedopévwy (40x463442), emIAECaUE va DOUAEWOUUE HE
aAyopIBuoug emmAoynG Kal padnong. H kupla avdAuon Tng TTapoucag epyaciog
BaoiCetal otov aAyépiBuo Twv TuXaiwv dacwv. O aAyopIBuog Twy Tuxaiwv daocwv
gival KOTAAANAOG yia dedopEVA UIKPOOUOTOIXIWY ETTEION OEiXVEI KOAA TTPOYVWOTIKNA
OKPIBEIa aKOUN Kal OTav O1 TTEPIoCOOTEPES PETARANTEG TTapouaiddouy BopuBo. MTropei
€TTiong va xpnoiyotroinBei oe TpoBAfuaTa 6TTou 0 ApIBUOG Twv PETARANTWY Eival
TTOAU peyoAUTEPOG aTmd Tov apIBud Twv OdelyudTwv/mTaparnpriocwy. EidikoTepQ,
EQAPUOOTNKE O AAYOPIOUOG €TTIAOYAG HWE OKOTIO TNV €UPECN TWV TTIO ONUAVTIKWY
Béoewv peBUAiwong Tou DNA, o1 otroieg €xouv KaAf TTPORAETITIKA onuacia. Ta
aTTOTEAETUATA TNG €QAPUOYNG Tou aAyopiBuou €mmAoyng odAynocav o€ ONUAVTIKEG
Béoeigc peBuAiwong Tou DNA, pe Bdon TI¢ otroieg civalr duvartr n TTPORAewn NG
ouadag otnv otroia avAkel 0 acBevAg e TTOAU peydAa TTooooTd etmituxiag. EmmimTA¢oy,
ol B€0€IC auTEG XpnoIdoTToIenKav yia Tnv €@apuoyr PHEBOdwyY KATnyopIloTroinong,
OTTWG N 1EpapXIK KaTtnyopiotroinan (hierarchical clustering) kal n avdAuon Kupiwv
ouvioTwowv (principal component analysis) kai TTapatnEABONKe TTOAU IKAVOTTOINTIKA

KOTNYOPIOTToiNOoN TwV a0BEVWV OTIG KAGTEIG TOUG.

AE=EIZ KAEIAIA

AvAAuon  eTTyeveTIKwv  Oedopévwy, IEPAPXIKA  KaTtnyoplotroinon, TTPORAswn,
Tagivéunon, Tuxaio 64cog.
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2YNOWH

H XAA gival n 1Mo yvwoTr popery Asuxaiyiaog oto duTikO kbéopo. Epgavifetal pe
ouxvotnta 1:7500, kai repitrou 5000 avBpwTrol TTEBaivouv Adyw TNG CUYKEKPIUEVNG
aobévelag kaBe xpovo. H XAA mapoucidletal Kupiwg OTOUG €VAAIKEG YIOTi Ol
TTEPIOTOTEPOI TTOU £XOUV DIAYVWOTEI TTPOCPATA WE TN CUYKEKPIUEVN acBEévela givail
Tavw atrd TNV nAikia Twv 50 eTwv Kal Kupiwg avdpeg. Mepikoi aoBeveig, TTou gixav
olayvwoTei pe XAA, empiwvouv TTOANG Xpdvia xwpic Bepartreia, kal meBaivouv atmo
GAAeg aitieg. QoTdo0, AANoI aoBeveig éxouv €mMOETIKA vOCO Kal TTeBaivouv oUvToua.
2¢ oUYKPION KE T QUOIOAOYIKA KUTTaPA, 0Tn XAA éxouv Bpedei aAAoiwpéva TTpoTUTTA
MEBUAiwong Tou DNA. H pebuAiwon tou DNA TrepIAaUBAVETAI OTA ETTIVEVETIKA
QaIvoueva Kal gival pia xnuik Tpotrotroinon oto divoukAeoTidlo CG (CpG) 1Tou €xel
oav atroTéAeoa TNV aAhayn NG diaudpewaong Tou DNA. H uttopgBuliwon tou DNA
OXETICETOI PE EvEPYR WETAYPOPIKO YOVidIO, evw n UuTTEPUEBUNIWON OXETICETAI UE

METAYPAPIKI ATTOCIWTTNON.

O 6pog emiyeveTik) 806nke atd Tov Conrad Hal Waddington 1o 1942 kai
TEPIYPAPEl ETTIVEVETIKEG TPOTTOTIOINCEIG, O OTTOIEG WTTOPOUV VA ETTNPEACOUV TNV
éK@paon Tou yovidiou xwpig va TTrapoucidletal TapdAAnAa k&tmoia aAAayr otnv
aAAnAouyia Twv voukAeoTidiwv Tou DNA. O opioudg yia TNV ETTIVEVETIKI TTOPANEVEI
aKOPN Sipopouluevog. MapdAa autd, XPNOIKOTTOIEITAI YIO TNV TTEPIYPAPL YEYOVOTWY
Ta otroia puBuiCouv digpyacieg TTou emmnpedlouv 1o DNA. H KaAUTEpPN ETTIVEVETIKN
MEAETN oTnv XAA gival n peBuAiwon Tou DNA. H diaxpoviki avaAuon Tng peBuAiwong
Tou DNA otnv XAA cival avTiKeipevo HEAETNG Ta TEAEUTAia XPOVIA, CUYKPIVOVTOG
mPoTUTTa PEBUAiwong Tou DNA katd tnv didyvwaon Kai EEAIEN TNG vOoou OGO Kal
META TNV xopriynon Oepatreiag (Cahill, Bergh et al. 2013, Landau, Clement et al.
2014, Oakes, Claus et al. 2014).

Ta dedouéva Tapdnkav atrd tnv TAateopua Infinium HumanMethylation450
BeadChip array, n omoia mrepihauBaver 463442 Béocic CpG. ZTnv TTapouca PeAETN,
Ta dedopéva atroteAolvral 40 aoBeveic pe XAA, pye dUo oTIyHIOTUTTAG ava acBevh

(TTpIv TNV xopriynon Tng Bepatreiag kal PeTd Tnv UuTToTPOTIh). KdBe aocBevig €xel
8]
U+M+100

463442 6éocig CpG, pe dlakupavon Twv TINWV HeBUAiwong (BATA TIHWV= ) TOU

atd 0-1. MaAaidtepa n Awn 1600 ueydAou apiBuol Bécewy fTav aduvarn. MALov, ue
TNV paydaia €¢ENIEN TNG TeExvoAoyiag ol BIoAdyol gival oe BEon va €xouv oTnv KaTtoxn
TOouG TIOAAEG Béoeic CpG péow TNG OUYKEKPIPEVNG TTAATQPOPUAG. AUTO €XEl WG

oTTOTEAECPO TNV TTpowbnon  TNG  OXETIKAG  €PEUVNTIKAG  dpacTnpIdTNTAG,
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onuIoupywvTag TTapdAANAa véeg BUOKOAiEG Adyw Tou PeYAAoU OyKoU Twv BEDOUEVIIV

TTou KaAoUvTal va SIaXEIPIOTOUV Ol EPEUVNTEG.

2KOTTO¢ TnGg TTapoUoag epyaciag, €ival n avelpeon TwV TTIO ONUAVTIKWY
Béoewv peBuAiwong Tou DNA TOU Ba pTTOpOoUCaV va XPNoIPoTroinBouv yia Tnv
TTPORAewn TNG ouddag oTnv oToia avAkel 0 aoBevis. Ouwg, o PeydAog GyKog Twv
0edopévwy  KaBIoTd BUOKOAN TNV eUpeECn TWV TTIO onPavTIKwy Béoewv CpG Kal Tov
OIaXWPICUO TwV acBeVWV O OPABEG PE BAON TA KAIVIKO-BIOAOYIKA XAPOAKTNPIOTIKA

TOUG.

ApxIikG xpnolgotroifjoape dlepeuvnTIKA O1d@opeg peBddoug. Mia atmo TIg
MEBOBOUG TTOU XpNOIPOTTOINBNKE €TTEId €ixape OUO BIAPOPETIKA CTIYMIOTUTTA avd
aoBevA kal Ta dedopéva pag dev akoAouBouoav kavoviki katavopr (ava CpG) nrav
TO PN TTapapeTpikd Te0T Wilcoxon yia kdBe 6éon CpG. H pndevikr) utméBeon TTOU
ecetdotnke ATav Ho: Ta OUO deiypaTa TTpoépyxovTal atrd Tov idI0 TTANBUCHOG Kal
eVOAAQKTIKN) uTTéBeon 6T €vag TTANBUCUOG Teivel va €xel JEYaAUTEPES TIMES aTTd ToV
GANo. ZTn ouvéxela kpathoape TIg Béoeig CpG tou eixav p.value<0.05 oTIg oTToiEg
€QapPUOOTNKE N HEBODOG Tou «TToo00TOU £0@aAuévng atrodoxnc» (false discovery
rate-FDR), ouykekpipéva Twv Benjamini-Hochberg (1995) pe katweA 0.1. H emiAoyn
auTh a@evog odnyouoe o€ PeyaAo aplBud Béoewv CpG Kal aQeTEPOU 01 BECEIG AUTEG
dev opadoTroioucay IKavoTroiNTIKA Toug acBeveig oTig KAdoeig Toug. E@apuooape Tnv
MEBOdO TOou FDR efautiag Tou peydAou apiBuol Twv TeOT TTou €yivav (463442) 1o
oTToi0 TTPOKOAEi Kal Tnv auénon Twv false positives. ETITTAOV,eQaPUOCTNKE N
MEBOBOG Twv Benjamini-Hochberg (Benjamini and Hochberg 1995) avti Tng pebdédou
Twv Benjamini-Yekutieli (Benjamini and Yekutieli 2001) 81611 n deutepn péBodOG eivai
MO CUVTNPENTIKA Kal JETA aTTO TNV €QAPPOYNA TNG, JE TO iDI0 KATW@AI KATAARYauE o€

MNOEVIKO aplBusd Béoewv CpG.

O1 Trapatravw péBodol TTou xpnoigoTroindnkav dev odAynoav o€ emOuunTd
atroreAéoparta. MNa autd Tov Adyo emmAEEaue va epapudooupe aAyopiBuoug pdénong
kal emAoyAc. O aAyopiBuog pébnaong TTou €QAapPOCTNKE €ival TO Tuxaio 6Acog dIOTI
gival KatadAAnAog yia dedopéva PIKPOCUOTOIXIWY ETTEION OEiXVEI KAAR TTPOYVWOTIKA
akpiBeia akéun kal 6Tav ol TTEPIcoOTEPEG PETABANTEC TTapouaialouv B6pufo, Kai
MTTOPEl va xpnoiuotroinBei o€ TTpoBAAuaTa 6TTOU O apPIBUOG Twy HETABANTWY €ival
TTOAU peyaAUTEPOG aTmd TOov QpIBUO Twv OelyudTwy (aoBevWwV/TTapaTNPACEWY).
2UPOWvVA PE TOV OAYOPIOUO auTd, KATOOKEUAZOVTAl TTOAAG BEVTPA aTTOQACEWY Kal
KABe QEvipo wnoiCel Tnv eTmKpatéoTepn KAGon. ZTn ouvéxela TO Tuxaio &Acog

atmro@acilel/yneiCel ye Baon OAa Ta dévipa Trola gival n emmKpatéotepn KAdon. O
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OAYOPIBPOG.auTOG TTAPEXEl TTOAAG XpAOIMa PETPA, MEPIKA OTTO TA OTTOIO €ival TO EKTOG
ociypatog o@aipa (out of bag error rate) kai éva PETPO TNG CNPAVTIKOTATAG TNG KAOE
MeTaBANTAG (variable importance). Me Tnv BoABcia autwy Twv PETPWY O XPHOTNS
MTTOpEl va TTapatnerioel oo cival To oQAApa TTPORAewng Tou aAyopiBuou, va
avakaAUyel TroleG €ival o1 peETABANTEG TTou Traidouv onuavtikd pdAo yia Tnv
KOTAOKeUr Tou OACOUG Kal TTwG auTég Kabopifouv Tnv KAdon otnv otroia Ba

TagivounOei o aoBevnc.

O aAy6piBuog Tou Tuxaiou dAacoug dlakpiveTal o€ dUO KATnyopieg avaloya Je
Ta dedopéva Ta otroia BEAEl va eTTeCepyaocTei 0 xpriotng. H TTpwTn KaTtnyopia
avagépetal oe  TpoBAAuaTa  Tagivounong (classification) kar n  deltepn o€
TTaAivopounon (regression). MapdAAnAa, o aAyopiBuog Tou Tuxaiou dACOUG UTTOPEI
va yivel ye emBAeTTOpEVN A N €MRAETTOPEVN NABNON. ZTnV emBAETOMEVN PABNON, O
XPNoTnNG TTapéxel oav dedouéva TIG KAAOEIG YE TIG 0TToieG Ba doUAEWEl 0 aAyopIBuoG.
AvTIBETWG, 0T PN emBAeTTOMEVN HABNoN 0 XpAoTNng Ogv divel Kapia TTAnpoopia yia
TIG KAAOEIG WG TTPOG TIG OTToieg Ba TTPETTEl va opadoTroinBouv Ta dedopéva Tou Kal
TTEPIYEVEIL aTTO TOV AAYOPIBUO va TagIVOUNaEl TIC TTApATNPACEIS PATEI KATTOIWY KOIVWV

XOPOKTNPIOTIKWY TOUG.

ApxIkd, epapuocape 1o TuXaio ddoog (random forest) oe 6Aa Ta dedouéva
TIpIV TO QIATPApPIGHA. MapdAn Tnv uttoAoyioTikr) dUvaun TTou gixape oTn didBeon pag
(server INEB/EKETA) Atav adlvato va £@apuocoupe Tov aAyopiOuo Tou Tuxaiou
0dooug o€ 0Aa Ta dedopéva, Adyw UTTEPBOAIKWYV aTTAITACEWY PJVAUNG TToU XpeialoTtav
0 aAyopiBuog e€aitiag Tou Oykou Twv dedopévwy. MNa Tov AOyo autd, Eyive éva
QIATpdpIcpa OoTa OeOOMEVA KAl EQAPPOCTNKE OTN CUVEXEIQ Wia MEBOOOG ETTIAOYAG TTOU

BaoiCetal oTov aAyopiBuo Tou Tuxaiou dAcOoUG.

H péBodog emAoyng ToU e€@apudoTnke Pacifetal oT0 WETPO  TNG
onpavTIKOTNTAG TNG KABe Béong CpG, To oTToio TTPOKUTITEI aTTd TNV EQAPHOYN TNG
MEBOBOU Tou Tuxaiou ddooug (random forest). To PHETPO TNG ONUAVTIKOTNTAG OEiYVEl
TO0O0 OnPavTikKOS eival 0 poAog Tng k&Be Béong CpG katd tnv dladikagia Tng
opadotroinong (classification). OAeg o1 Tapatmmdvw péBodol TTou avagépbnkav dev
odnynoav o€ éva PeaAIOTIKA WIKPO aplBud Béoewv CpG, ol otToieg TauTdxpova va
£Xouv Tnv duvaTtéTNTA VO OPAdOTTOINCOUV TOUuG aoBeveic oTnv KATAAANAN KAdon Toug

Baoel Twv KAIVIKO-BIOAOYIKWV XOPAKTNPICTIKWY TOUG.

O o16xog ATav va KataAnéoupe o€ Aiyeg Kal onuavTikég Béoeig CpG, dIoTI
QuUTO Ba ETTETPETTE TN WETETTEITA TTEIPAMATIKY avaAuon o€ BioAoyikd epyaoThpia. H

avaAuon auth €xel uPnAd KOOTOG Kal OToXEUEl oTn digpelivnon TwV yovidiwyv TTou
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ouvdéovtal pe TIG TEAIKEG Béoeig CpG . O aAydpiBuog eTmAOYAG gival o KATGAANAog
ylaTi ouvduddlel TapdAAnAa péow Tou Tuxaiou ddooug (random forest) Tnv elpeon
€VOG MIKPOU aplBuol Béoewv CpG Ta OTToia OPWS OPAdOTTOIoUV IKAVOTTOINTIKA TOUG
000eveig pag. Autd gival KATI TTOAU onPavTIKO TToU 01 GAAEG PéBodoI dev pTTdpecav va
Mag dWoouV WG aTToTéAeoa. 'Eva GAAO onuavTIKO TTAEOVEKTNHA QUTAG TNG HEBOBOU
TTOU €QAPUOOCTNKE €ival OTI pegiwve Tov aplBud Twv onuavtikwy Béccwv CpG Kal
KpatoUo€e AuTA TA OTTOI0 ATAV TTIO ONUAVTIKA KOTA Tnv OlodIKaoia £QapuUoyAg Tou

Tuyaiou dAcoug.

AtiCel va onueiwBei, TTwg Baocel Tng PueBddou o1 acBeveic opadotroiOnkav
IKAVOTTOINTIKOTEPA aTTd oTToIadATTOTE AAAN eQappoyn HeBGdou. Baoel BiBAloypagiag
0 aplBuog Twv Bécewv CpG oTta otroia KaTEANEE O aAyopIBuog €mmAoynG cival
IKAVOTTOINTIKOG OUYKPITIKA UE AAAEG DOKIPEG TTOU TTPAYUATOTTOINONKAV O€ TTAPOPOIa
oedopéva (datasets), péoa oe éva e€Upog TiHWV aTtd 2 €wg 230 Béoeig CpG.
EmimrAéov, o1 Mo onuavtikég B€oeig CpG 1Tou Bpédnkav PETA TNV €Qapuoyr Twv
oAyopiBuwy €TTIAOYNAG Kal udBnong XpnoIYoTToINONKav yia TNV €QAPUOYH YVWOTWV
pMEBGOWYV KaTnyoplotroinong, OTTWG N 1EPAPXIKN KaTtnyoplotroinon (hierarchical
clustering) kai n avdAluon Kupiwv ouvioTwowv (principal component analysis).
E@apudoaue autég Tig nEBOSOUC yia Adyoug oUYKPIONG Kal yia va DIEPEUVIITOUME Qv
OvTwG 0 apiBuég Twyv Bécewv CpG TTou Bprikape opadoTToloUoE IKAVOTTOINTIKA TOUG
00Beveic kKal pe autég TIGC peEBGdoucg. O1 péBodol auToi XpnoliyoTroindnkav Kal o€
TePIoooTEPEG Béoelg CpG Kal €yive OUYKPION WETALU QUTWV KAl TWV ETTIAEYUEVWV
Béoewv Kal TTapaTnpEiTal TTwg N PEBodOG Pag KaTéAnée o€ TTOAU KAAG atToTEAéOUATO
ME KOAAR TTPORAETITIK onuacia. Me Tnv €@aApuoyry TOU OCUYKEKPIUEVOU HOVTEAOU
000eveiG PE MPIKPO XPOVO HEXPI TNV UTTOTPOTTA 1 HE Aiyeg aAAayég oTa TTPOIA
MEBUAiwonNg Tou DNA Ba £TTpeTre evOEXOUEVWG VA ATTOQPUYOUV Tn Xopriynon Tng

OUYKEKPIPEVNG BepaTTeiag.
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INTRODUCTION

Chronic lymphocytic leukemia (CLL) is the type of leukemia which most affects adults
in the western world. It appears with frequency 1:7500, and 5000 people approximate
die every year. CLL is a disease of adults because most people newly diagnosed are
over the age of 50 and the majority is men. Some patients, diagnosed with CLL,
survive many years without a cure, and die from other reasons. However, other
patients have aggressive disease and die shortly. The ontogeny of CLL and the
origination cell remain undiscovered. CLL results in the spleen, liver and eventually

anemia. Early CLL is not treated and late is treated with chemotherapy.

The term epigenetics defined by Conrad Hal Waddington in 1942 describes
changes in genome function that occur without a change in nucleotide sequence
within the DNA. The term epigenetics remains controversial. However, it's used to
describe events, which adjust processes and these processes affect DNA. The best
epigenetic study in CLL is methylation of DNA, which is a chemical modification in
dinucleotide cytosine and guanine (CpG) which modifies the DNA. Longitudinal
analysis of DNA methylation in CLL has been performed, only recently, in many
cases, comparing the DNA methylation patterns in the diagnosis and progression of
disease after the administration of treatment (Cahill, Bergh et al. 2013, Landau,
Clement et al. 2014, Oakes, Claus et al. 2014). Hypermethylation, and
hypomethylation are both aberrant DNA methylation patterns, and they associated
with a large number of human malignancies. Hypermethylation is associated with
gene inactivation and transcriptional silence. Hypomethylation is associated with

active gene transcription.

Recently these problems caught the attention of the worldwide life science
community. The technical challenges and the high dimensionality problems are
resolved with statistical analysis, data visualization, interpretation, and storage. The
problems of high dimensionality are solved with data mining and machine learning
algorithms because they aim to excavate knowledge and find patterns from big

datasets.

Our real data retrieved from the Infinium HumanMethylation450 BeadChip
array and include 463442 CpG sites. In the past few years, biologists were able to
take so many CpG sites, due to the rapid technology boom. The evolution of
technology assisted the researchers and promoted research in this field. In our study,

we have 40 patients with CLL. Each patient has two states, one state before the
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relapse and one after the relapse. Moreover, each patient has 463442 CpG sites with

range-of their values (beta values= L) from O to 1.
U+M+100

The aim of our study is to find the most important CpG sites which have the
ability to separate patients to their pre-defined classes based on their clinic-biological
data before the relapse. Howbeit, the big heterogeneity and the high dimensionality
of our real data (40x463442) cause memory computational/processing problems to
the server. In order to overcome these problems, we have chosen to work with

machine learning and variable selection algorithms.

Before the evaluation of the machine learning and variable selection
algorithms, we applied several statistical methods to our real data. However, none of
these methods could achieved to detect a small number of CpG sites who achieved
good predictive accuracy. We applied a Wilcoxon rank sum test to our data. Wilcoxon
rank sum test was selected because our data didn't follow the normal distribution (per
Cpg). The null hypothesis of Wilcoxon rank sum test is Ho: two samples come from
the same population against the alternative hypothesis that a particular population
tends to have larger values than the other. After the evaluation of the Wilcoxon rank

sum test we kept only the CpG sites with p-value<0.05.

In addition, we applied an FDR method to account for the multiple
comparisons. Specifically we used the method proposed by Benjamini-Hocheberg
(Benjamini and Hochberg 1995) with threshold 0.1 because it is less conservative
and more appropriate than the method of Benjamini-Yekutieli (Benjamini and
Yekutieli 2001). In addition, the evaluation of Benjamini-Yekutieli method arrived at
zero CpG sites with the same threshold and seems to be more restrictive and

conservative.

The results of the above methods weren't satisfying. In our study we
evaluated the random forest algorithm because it can handle noisy variables and it is
used when the number of variables is larger than the number of the samples
(observations/patients) in the dataset. Random Forests are an ensemble of tree
predictors such that each tree votes the best class, and the forest takes as class the
majority of trees classes. The random forest algorithm provides useful measures
such as the out-of-bag error (OOB) rate and the variable importance. The OOB error
rate, represents the classification error of the entire random forest procedure. The
variable importance shows the importance of a variable during the classification

procedure on all trees.
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The. random forest algorithm can be applied both for regression and
classification problems. In addition, the random forest algorithm can be evaluated
both for supervised and unsupervised learning problems. In supervised learning
problems the user provides the actual classes of observations, and the algorithm
tries to learn a general rule that matches inputs to outputs via a function. On the
other hand, in unsupervised learning problems the user doesn'’t provide any class of
observations, and the algorithm tries to find structure in his input and discover

patterns from data on its own.

We applied the random forest algorithm to the entire dataset, but the
algorithm crashes due to large memory requirements and lack of memory capacity.
For this reason, we reduced the data, in order to apply the variable selection

algorithm, which is based on the random forest algorithm.

Furthermore, we applied the variable selection algorithm, which reduces the
CpG sites based on their variable importance provided by random forest algorithm.
At each step the algorithm keeps the most important CpG sites according to the
random forest classification procedure. After the algorithm evaluation we found a
small number of CpG sites who achieves good predictive accuracy. The small
number of CpG sites is very important, because biologists can easier check them
and find their impact. This is very important because from 463442 we conclude only
to a few CpG sites with good predictive accuracy. We managed to find the relevant
CpG sites who classify the patients correctly to their pre-defined classes and remove

the irrelevant CpG sites.

Moreover, these CpG sites are used to compare the results with well-known
methods, such as hierarchical clustering and principal component analysis. We
evaluated these methods based on bibliography. The CpG sites which are selected
from the variable selection algorithm tend to group the patients better to their pre-
defined classes than more CpG sites. To conclude, these CpG sites except from the
good predictive accuracy, tend to group the patients better than other CpG sites in
more than one method. In addition these CpG sites are connected with some genes
and this might be show the importance of our results. The application of this model
could prevent the administration of this treatment (FCR), in patients with little time to

relapse or with few changes in their DNA methylation profiles.
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1. Knowledge Discovery Techniques

1.1 Data Mining

Data Mining is a subfield of computer science. With data mining, we can discover
patterns in large datasets, and involve methods of artificial intelligence, machine
learning, and statistics. Data mining aims to extract knowledge and information from
a large data set and transform it for further use. It tries to discover unknown and
interesting patterns like groups (cluster analysis) from big data sets and use these

patterns for further analysis in machine learning and predictive analytics.

As data mining can only uncover patterns presented in the data, the data
must be large enough for these patterns to be uncovered. Moreover, the procedure
must give results in finite time. Data cleaning removes the noisy observations and

those with missing data.

According to (Fayyad, Piatetsky-Shapiro et al. 1996), data mining involves the

following common tasks:

e Association rule learning — Searches for relationships and correlations
between variables. For example in supermarkets, they keep track of

consumer’s habits and give purposeful offers in various consumer goods.

e Clustering — Is the procedure of discovering groups and structures in the data,

without knowing the classes of data.

o Classification — In classification, the model knows the class of the samples it

wants to predict.

e Regression — Attempts to find a function which models the data with the least

error.
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1.2 Machine Learning

Machine learning is part of computer science, in which computers have the ability to
learn without being programmed, and is related to computational statistics, pattern
recognition, and artificial intelligence. Machine learning uses algorithms that can
learn and make predictions of a dataset. In the field of data analytics, machine
learning is a method which is used to analyze complex models and algorithms to
make predictions. These analytical models allow researchers, data scientists and
analysts to take reliable results and uncover patterns and relationships in high
dimensional data. Machine learning use is very important these days, e.g. the
application of machine learning is typical in problems such as fraud detection, web

search results, predictions and pattern/image recognition

Machine learning tasks are classified into four different categories, depending on
the available information that the user gives to the learning system. These four

categories are:

1. Supervised learning: The user provides the actual classes of observations,
and the algorithm tries to learn a general rule that matches inputs to outputs
via a function.

2. Semi-supervised learning: The user provides incomplete information about
the class of observations.

3. Unsupervised learning: The user doesn't provide any class of observations,
and the algorithm tries to find structure in his input and discover patterns from
data on its own.

4. Reinforcement learning: It is used for robotics, gaming and navigation. With
reinforcement learning, the algorithm discovers the actions which vyield the

greatest results.

Another categorization of machine learning depends on the desired output that

user wants from a machine-learned system:

e In classification, each input is divided into two or more classes, and the
model assigns the inputs to their classes based on decision learning. This
categorization is often been used for supervised learning techniques.

e Inregression, the outputs, and inputs are continuous variables. Regression

procedure is part of supervised learning methods.
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e _Inclustering, inputs divided into groups. The classes of samples are
unknown, and this is an unsupervised learning method.
¢ Dimensionality reduction simplifies inputs by keeping only the most

informative variables.

Common machine learning algorithms are: 1) Neural networks, 2) Decision
trees, 3) Random forests, 4) Associations and sequence discovery, 5) Gradient
boosting and bagging, 6) Support vector machines, 7) Nearest-neighbor mapping, 8)
K-Means clustering, 9) Self-organizing maps, and 10) Principal component analysis,

among others.

Data mining and machine learning often confuse the user because they apply the

same methods. They can be distinguished as follows:

1. Machine learning focuses on prediction, based on pre-defined classes which
the user gives for data.
2. Data mining focuses on the discovery of unknown patterns and knowledge

from the data.

In our work, we use the random forest algorithm. Random forests are an
ensemble of learning trees for classification and regression problems. It belongs to
both fields of machine learning and data mining. In random forests the user decides
to work with supervised or unsupervised learning forests by providing or not the
classes of observations. In chapter 2 we will discuss in more depth how random
forests work. In addition, we will introduce in chapter 3 the variable selection method,
which is used to our main research. The variable selection method is based on the
random forest algorithm and achieves to detect the most informative CpG sites which
have good predictive accuracy as well. Finally, in chapter 4, we will present our real

data application and the methods which have been used in this study.
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2. Random Forests

2.1 Introduction

Random Forests are an ensemble of tree predictors such that each tree votes the
best class, and the forest takes as class the majority of trees classes. Each tree in
the forest is constructed by bootstrap sampling from the original dataset. Random
Forests, developed by Leo Breiman (Breiman 2001), are shown to both build models
with high accuracy when tested on high dimensional data and handle noisy variables.
Besides, random forests are able to excavate knowledge referring to correlation
between variables and interactions among them. In this chapter, we will describe how
the random forests algorithm works, and present the two different methods of it.
Random forests provide important metrics, which we will present and explain further
down in the text. Random forests are suitable for microarray data because we have a
large number of predictors and a small number of samples. On the other hand,
classical statistical techniques cannot be applied directly to microarray datasets
because of their high dimensionality. The dimensions of our dataset in a matrix form
are 40x463442. Our motivation is to discover the most important DNA methylation
sites, which have the ability to predict the actual class the patient belongs. The
problem with the high dimensionality of our data is confronted with random forests
algorithm. Random forests have advantages in microarray data mining problems for

several reasons:

1. The classification trees are non-parametric and do not make assumptions

about the underlying distribution.
2. It performs excellently with noisy variables.

3. It used commonly when the number of variables is larger than the number

of the samples in the dataset.

4. It returns important measures such as variable importance, which can be

used for variable selection methods.

5. Achieves excellent predictive accuracy for high dimensional genomic

data.

6. Can be used for two-class and multi-class classification problems.
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According to Leo Breiman (Breiman 2001), the definition regarding

classification random forests is:

A random forest is a classifier consisting of a collection of structured tree classifiers
{h(x, ®),k =1, ...} where the {O} are independent identically distributed random

vectors and each tree votes for the most popular class at input x .

According to Leo Breiman (Breiman 2001), regression random forests are
formed by growing trees depending on equally distributed random vectors © such
that the tree predictor h(x,0) takes as inputs numerical values. The output values are
numerical, and we assume that the training set is independently drawn from the
distribution of the random vector Y, X. The mean-squared generalization error for any

numerical predictor h(x) is

Eyy (Y -h(x))".

The random forest predictor is formed by averaging k trees{h(X,@k )} .

In problems such as regression, we attempt to predict the values of a
continuous variable from one or more continuous variables and understand the
relationship between them, e.g. we may want to predict the time when a patient gets
sick again. This is a continuous variable, and we want to predict when the patient

gets sick again based on some variables which have been tested.

In problems such as classification, we attempt to predict values of a
categorical dependent variable (class, group membership) from one or more
continuous variables and understand the relationship between them, e.g. we may
want to predict if a patient is in high risk to get sick or not based on his age and

weight.
To predict the value of y for a new value of x, we have to build a model based on:

¢ Expected mean squared error (for regression).

e Expected out of bag error estimate (for classification).
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To sum up, if we want to make a prediction for a continuous variable, then we will
use regression random forests. If we want to make a prediction for a categorical
variable, then we will use classification random forests. This is one of their
differences. The other difference that these two methods have is the splitting

criterions.

o Regression: residual sum of squares

RSS = leeft(yi B y'-* )2 + Zright(yi N yR* )2

where yL* = mean y-value for left node

*

Y = mean y-value for right node

e Classification: Gini criterion
o K K
Gini=n_ Z P (1_ pkL)+nR Z Pir (1_ ka)
k=1 k=1

where P, = proportion of class k in left node

P = proportion of class k in right node

2.2 Random Forests algorithm definition

In this section the algorithm of random forest will be introduced and an illustration of it

in Figure 1.

e Let the number of samples be N, and the number of variables in the classifier
be M.

¢ The number of input variables, m, is used to determine the decision at a node
of a tree; m should be much less than M.

e Choose a training set for this tree by choosing N times with replacement
(bootstrap sample) from all N available cases. Use the remaining cases to
estimate the error of the tree, by predicting their classes.

e For each node of the tree, randomly choose m variables from M on which to
base the decision at that node. Calculate the best split based on these m

variables in the training set.
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o Each tree is fully grown and not pruned.

The choice of bootstrap sampling is made because the entire process has to be
random. In this way each tree is produced by a random sampling with replacement
which is of equal size to and independent of the input vectors. The samples that are
not included in the construction of a tree are approximately 1/3 of the total amount of

samples.

The algorithm of random forests is the same for both regression and classification
problems. The difference is that in classification we combine trees by voting and in

regression by averaging.

We will explain how random forests work for both classification and regression

problems.

¢ Understand how out-of-bag (OOB) error been estimated.

e Analyze the splitting criterions for classification and regression.

¢ Determine the best value for number of trees (ntree) in the forest.

e Which is the best value for m predictor variables (mtry) in each split.

e Understand the role of variable importance.
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2.3 Measured Errors

2.3.1 Out of bag error for classification forests

When the procedure begins, the N samples are separated in training and testing set.
In random forests, the user isn’'t obligated to determine from the beginning which is
the training and the test set. As we mentioned before, the bootstrap sampling method
with replacement, every time creates an input vector for each tree. From the N
samples, approximately the 2/3 are used for inputs in each tree, and approximately
the other 1/3 of samples are not selected as input. The samples that are not included
in the construction of each tree represent the testing set, and the other samples
represent the training set. Hence, random forest algorithm creates from the beginning

the training and the test sets.

This 1/3 of samples that are not used for the construction of the tree are used
for the calculation of out of bag (OOB) error. For the error calculation we follow three

steps:

e The algorithm takes a sample and searches the trees that this sample is out
of bag. Then the algorithm fits in these trees the sample and these trees
classify it to a class. This procedure is made for each sample.

e Let | be the class with the most votes for a sample from the classification and
tc the true class of the sample.

e The percentage of times that j#tc represents the out of bag error estimate.

The out of bag error estimate is important for a random forest because the
user can understand how accurate the model is, e.g. if the OOB error is 12% it
means that when the resulting model is applied on new observations, then these
observations will be classified with error 12%. This means that our model is 88%
accurate, which is a reasonably good model. Lower OOB error rate means that our
model is more accurate to classify an observation to the right class. We have to
mention that OOB error estimate depends on the value of the number of trees and
the value of the m predictors. The default value of ntree=500 and mtry=+/variables .
Moreover, the OOB error estimate is dependent of the strength and the correlation
between the trees of a forest. If two trees are correlated, then the OOB error estimate
of the forest is increased. But this is very difficult to happen because with bootstrap

sampling the input vector of each tree is different from the other. This leads to a

12/22/2016 WYnoiakA BiBAIoBAKN OgdppaoTog - TuAua MewAoyiag - A.M.0.



forest with non-correlated trees and a small OOB error rate. The strength of a tree
means -how good a classifier is the exact tree. A tree is a good classifier when the
OOB error rate is small. So when we have a forest which is a good classifier then the
OOB error rate should be small. In Figure 7, we present the random forest procedure

and how the training and testing sets are defined.
2.3.2 Mean Squared Error (MSE) for regression forests
In regression forests the accuracy of a random forest’'s prediction can be obtained

from the OOB data but not with the same way as classification. In regression forests
OOB calculated by:

n
1
OOBMSE = HZ(Yi — $iooB)?
i=1

where §;00p denotes the average prediction from ith observation from all trees where

observation i was out of bag.

Analogously to linear regression the overall sum of squares is calculated by
n
SST = > (v = 9%,
i=1

and O0OBR? can be obtained by

1 — (OOBMSE)

OOBR? =
SST
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2.4 Splitting Criterion
2.4.1 Classification

There are three different measures chosen for classification splitting criterions, the
misclassification error, information gain and the Gini Index. In random forests the Gini
Index of node impurity chosen most for classification problems in contrast with
measures of misclassification error and information gain. We will explain how Gini

Index works and give an example of it.

Gini Index shows each variable’s contribution to the homogeneity of the
nodes and leaves in the resulting random forest. Homogeneity is represented with O
and heterogeneity with 1. Higher decrease in Gini means that a particular predictor

variable plays a greater role in partitioning the data into the defined classes.

If a dataset X contains examples from n classes, Gini (X) is defined as:
. . 4 2
Gini(X)=1->"(p;) @
j=1

where pP; is the relative frequency of class j in X.

If a dataset X is split into two subsets X; and X, with sizes N1 and N respectively,
then this matrix contains a number of records of each class. The Gini Index X defined

as.
L N, .. N, ..
G|n|spI|t(X):nglnl(xl)JrWzglnl(Xz) , (2)

the value that achieves the smallest split Gini (X) is chosen to split the node.
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Example:

In.this.example, we will explain how Gini Index procedure works to determine the

best split.

Table 1: Positions and classes of each patient.

Patients Positionl Position2 Class
Patient1 13 10 1
Patient2 8 4 0
Patient3 29 1 0
Patient4 18 38 1
Patient5 35 44 0

From Table 1 begin by choosing the first attribute to be split which is Positionl
attribute. The possible splits of the Position1 attribute in the dataset are Position1< 8,
Position1=< 13, Position1<18, Position1=< 29 and Position1< 35. Take the first split and

calculate the Gini Index as follows:
The partitions after the binary split of Position1 < 8 are given in Table 2.

Table 2: Number of records.

Attributes Number of Records
Zero (0) One(1) N=5
Position1 <8 1 0 n;=1
Positionl > 8 2 2 n;=4
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Then the calculations of equations (1) and (2) yields the following results.

Gini(Position1<8) =1—(1*+0?) =0.

Gini(Position1> 8) :1—((gj +(gj jz 0.5.
4 4

Ginisplit =1.0+£-0.5:0.4.
5 5

In the next step, the partitions of Position1< 13 after the binary split are given in
Table 3.

Table 3: Number of records.

Attributes Number of Records
Zero (0) One (1) N=5
Position1< 13 1 1 ni=2
Position1> 13 2 1 nx=3

With the same way, the calculations of equations (1) and (2) yields to the following

Gini(Position <13) :1—((1j2 +(1j2] =0.5.
2 2

Gini (Position >13) :1—[(§j2 + (%T] =0.444.

Ginisplit :§-0.5+§-0.444 =0.466.

results.

This procedure continues until we calculate the Gini from the remaining splits. The

Table 4 has all the records of Gini Index for each split.
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Table 4: Gini Index records.

Gini Split Value
Ginisplit(Position1<8) 0.4
Ginisplit(Position1<13) 0.466
Ginisplit(Position1<18) 0.266
Ginisplit(Position1<29) 0.4
Ginisplit(Position1<35) 0.48

The lowest value for Gini Split is 0.266. So we choose as split point the
Position1<18. Because the values of Position1 attribute are continuous the best way
to decide the split point is to take the midpoint of every pair of consecutive values. So
the split point is

18+ 29
Position1 = % _ 4—27 _235.

The decision tree after the selection of the first split point is shown in Figure 2:

Positionl
<235 / \ >23.5
Class Class
1 0

Figure 2: Decision tree after the first split.

This procedure is repeated for each attribute. The next step is to calculate the
Gini Index of the attribute Position2. The procedure that we perform is the same as
before. We select the lowest Gini Index as the best split for the attribute Position2

and after calculations, the value of Position2 split point is 7.
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The final decision tree is shown below in figure 3:

Positionl
<23.5 \ >23.5
Class
Position2 0
<7 / \ >7
Class Class
0 1

Figure 3: Final decision tree.

This is a single tree construction with the Gini Index method for classification.

Random forest algorithm uses this method to find the best splits and constructs many

trees using different sets of attributes for each tree. The procedure that random

forests follows is random because the samples are sampled with bootstrap sampling

(sampling with replacement) and the variables which are chosen to find the best split

are chosen randomly from the entire set of variables.

2.4.2 Regression

The trees that the random forest algorithm produce are constructed in the same way

as the classification and regression trees (CART). For the regression procedure, the

split is based on the reduction of the residual sum of squares. The steps that the

algorithm is following are:

¢ Beginning with the root node, CART finds the best variable to split the node

into two child nodes. The splits of the predictor variables are binary with X; <

s and X;>s.
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e__In order to find the best variable, all variables and all values of them been
checked. The selected variable has to minimize the impurity measure in the
nodes, the residual sum of squares.

e Recursively continue with step one and two on the descendant nodes until the

homogeneity of the nodes cannot be improved any more.

For regression problems, the terminal nodes are calculated by averaging the

response variables.
Example:

In this example, we will explain how residual sum of squares works to determine the

best split for a variable in Tabe 5.

Table 5: Positions and time to relapse of patients.

Patients Positionl Position2 Time to relapse
Patientl 2 8 11
Patient2 4 9 3
Patient3 5 6 5
Patient4 7 5 9

At first, we begin with the variable Position1, and try to find the best value which

minimizes the residual sum of squares.

10

Time

Position1

Figure 4: A plot of Position1 and Time to relapse values.
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We start with Position1=2 then the residual sum of squares is:

RSS= ) (i =92+ ) (i =97

X<2 X>2
RSS=(11-11)2+(3—-5.6)>+ (5 —-5.6)> + (9 — 5.6)%2 = 18.68.

For Position1=4 the residual sum of squares is:

RSS = Z(Yi -9*+ Z(Yi -9)?

Xs4 X>4
RSS=(11-7)?+ (B -7*+(5-7)*+(9-7)* = 40.

For Position1=5 the residual sum of squares is:

RSS= ) (i =92+ ) (i =97

X<5 X>5
RSS=(3—-6.3)24+ (5—-6.3)24 (11 — 6.3)2 4+ (9 — 9)2 = 34.67.

For Position1=7 the residual sum of squares is:

RSS = Z(Yi - 9%+ Z(Yi -9)?

X<7 xX>7
RSS=(11-7)2+ B =72+ (5—-7)2+ (9 — 7)? = 40.

Table 6: Residual Sum of Squares for each variable.

RSS Split RSS
Position1=2 18.68
Position1=4 40
Position1=5 34.67
Position1=7 40

Therefore, we conclude from Table 6 that the variable Position1=2 achieves the best
split because it minimizes the residual sum of squares. The decision tree after the

selection of the first split is shown in Figure 5:
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Positionl

)T

Time Time
11 17

Figure 5: Decision tree after the first split.

This procedure is repeated for each attribute. The next step is to calculate the
Residual Sum of Squares of the attribute Position2. The procedure that we perform is
the same as before. We select the lowest Residual Sum of Squares as the best split
for the attribute Position2 and after calculations, the value of Position2 split point is 5.
The final decision tree is shown in the Figure 6:

Positionl
2/ >2
Time ”
11 Position2
55/ \>5
Time Time
9 4

Figure 6: Final decision tree.
This procedure stops when the nodes become leafs. One node is terminal when:

o All the training data in the node are of the same class. This class becomes

the class of this node and the node named pure node.

o During the tree construction, in some depth of the tree, the training instances

which we test can't be split further because all available splits have already
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be used up on the path from the root to the final node. Then the node’s class
is the majority of the classes of the variables belong to it.

e A given threshold for the minimum number of observations left in a node is
reached. For classification, the threshold of samples in a node is 1 and in

regression is 5.

2.5 Variable Importance

2.5.1 Classification

The variable importance indicates the importance of a variable in the classification or
regression procedure on all trees. Leo Breiman (Breiman 2001) proposes two
different measures for variable importance, the mean decrease in accuracy and the
Gini Index (impurity) for the classification procedure. The original random forest
variable importance proposed by Breiman (Breiman 2001) is the mean decrease in
accuracy on the OOB samples when the predictor’s values are randomly permuted.

The rationale is the following:

By randomly permuting the values of the predictor variable X;, then any
association with the response variable Y is lost. The permuted predictor variable,
together with the non-permuted predictor variables are used to predict the class of
the OOB samples. The prediction accuracy is expected to decrease if the permuted
predictor variable X; is associated with the response variable Y. Breiman (Breiman
2001) defines the variable importance as the difference in prediction accuracy before

and after permuting X;, averaged over all trees.

Let B(t) be the out-of-bag sample for a tree t with te{1, ..., ntree}. Then the

variable importance of the permuted predictor variable X; in tree tis:

VIO (xj) = Ziem1(7=90) _ Ziepo 10151 )
V= Bl Bl ’

where | is the indicator function, 3?,“) is the predicted class for observation i before
and ?i,ﬂj(t) is the predicted class for observation i after permuting the values of the

predictor variable X;.

If the permuting predictor variable X;is not in tree t then:
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VIO X)) = 0.

The overall importance of the permuted variable X;jis then computed as the average

importance over all trees:

Zntree VI ®) (X])

Vi (X]) - ntree

From this importance score, a standardized importance score can be computed. If

each variable importance VI® has standard deviation (s.d.) o, then the average

. The standardized

importance from ntree replications has standard error °
p p Vntree

importance score or scaled importance is:

VI (X ) vntree

2(X;) =

However, the results of studies (Diaz-Uriarte 2007, Strobl and Zeileis 2008) , indicate

that unscaled importance has better statistical properties than scaled importance.

On the other hand, Gini Index uses the decrease of Gini Index (impurity) after
a node split. As we mentioned earlier when a node splits, the split is made by the
variable with the smallest Gini Index. A variable is most informative when it has the
larger decrease of impurity after a split. The overall Gini importance is calculated by

averaging the Gini Index of each variable over all trees in a random forest.

2.5.2 Regression

For regression forests, there are two methods to measure the variable importance.
The first is the reduction of mean squared error and the second is the decrease in
node impurities. Impurity in regression is measured by the residual sum of squares.
Impurity is calculated only at the node at which that variable is used for that split.
Breiman (Breiman 2001) suggested the reduction in mean squared error (MSE) when

permuting a variable. For tree t, the OOB mean squared error is calculated as:

n
1 N2
- Z (vi —9ir) "

iEO0B

OOBMSE,

where 00B; = {observation i is out of bag in tree t} and
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Ngop,t = number of 00B observations in tree t.

If the variable X; does not have association with the response variable Y, then after
permuting the predictor variable X; the difference should be small. Then the type for

the permuted predictor variable X; is the following:

n

2
Z (yi —}”Ii_t(Xj permuted)) ,

i=1
i€00By

OOBMSE,(X; permuted) = -
0O0B,t

should not be larger than OOBMSE, if the variable X;isn't associated with the
continuous response variable Y.

The MSE reduction over all trees in the forest is:

n
1
OOBMSE = HZ(OOBMSEt) — (0OBMSE,(X; permuted)),
t=1

where n=number of trees in the forest.

. Relapse patient
. . . . . . Mon - Relapse patient

Entire Patient set

All Genes of patients
(potential splitters)

(A [0ee e_o
) | @ @g O
e‘o Bootstrap sampling Out of Bag (00B) samples

(2/3 of the original data): (1/3 of the original data)
used for tree construction

e° Best Splitter

_— ° " ° Classifier accuracy based on
° 00B samples
oo Best Splitter

Figure 7: Random forest procedure.
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2.6 Tuning critical parameters in random forest

Two critical parameters that the user should appropriately define before running the
random forest algorithm are the number of trees and the number of variables
randomly chosen as candidates at each split. Leo Breiman (Breiman 2001) suggests

that default parametrization of ntree and mtry values leads to excellent results. The

default parameters are for ntree=500 and for mtry=yv/M. Mtry can take several values
with range from 1 to M. In high dimensional data like microarrays, the default
parameter choice isn't always good because the algorithm crashes. This happens
because the memory, that the random forest algorithm needs to work, exceeds the
existing memory capacity. In order to limit the random forest working memory, the
user has to reduce the number of trees to be used for the construction of the forest.
Zhang and Wang (Chen, Wang et al. 2011) demonstrated that it is not necessary to
use the default parameters for satisfying prediction performance. In their study
Genuer, Poggi et al. (Genuer, Poggi et al. 2008) suggest that the mtry value has to
be large enough in order to have high probability to capture important variables in
high dimensional problems. Liaw and Wiener (Liaw and Wiener 2002) suggest that if
the number of genes is large and the truly informative genes are few, choosing large
number of mtry gives better performance. Nicoletta Dessi, et al. (Dessi, Milia et al.

2012) in their study come to the following conclusions:

o When a forest with a small number of trees is selected, then a higher value to
mtry is chosen, in order to increase the probability of randomly selecting
informative variables.

e The random forest method which is applied to the most informative variables
has prediction performance better than the random forest in the whole

dataset.

Oshiro, et al. (Oshiro, Perez et al. 2012) show in their study that sometimes a
large number of ntree in random forests only increases its computational cost and
has no significant performance gain. After experiments, they conclude that for a
number of trees in a range from 64 to 128, it is possible to obtain good balance

between performance, processing time and memory usage.

In high dimensional data, we have to reduce the number of variables and take
the most informative and important. Moreover, the number of ntree and mtry depends
on the dimensionalities of our dataset. In biological datasets like gene expression,

which have thousands of genes, a random forest will use the most of the genes, even
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if not all are important. We conclude that with the default values of the parameters
the computational cost and the memory usage would be larger. On the other hand, if

we set a small number of trees then the computational cost would be less.

We believe a good way to work with high dimensional data specifically
microarrays, is to select the most informative or important variables by filtering the
entire dataset. Then apply the random forest algorithm without computational

difficulties due to memory usage and processing.

2.7 Algorithm Output

One of the most important outputs that random forest for classification provides is the
OOB error estimate. This measure is followed by a confusion matrix that records the
disagreement between the final model’s prediction and the actual outcomes of the
observations. The actual observations are the rows of the matrix, and the columns
that represent the models predictions for the samples, e.g. if we want to predict the

presence of a disease we have the following confusion matrix.

Table 7: Confusion matrix.

N=150 Predicted

Actual No Yes
No 86 11
Yes 4 49

In Table 7, there are two possible predicted classes: “yes” and “no”. If we
were predicting the presence of a disease, "yes" means that patient have the
disease, and "no" means that patient don't have the disease. The classifier made 150
predictions. Out of those 150 cases, predicted “yes” 49 times and “no” 86 times. In

reality, 53 patients in the sample have the disease and 97 patients do not.

From the confusion matrix in Table 8, we can take important common

performance metrics calculated from it.
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Table 8: Performance metrics.

N=150 Predicted
Actual No (PN) Yes(PY) Row totals
No (AN) TN=86 FP=11 97
Yes (AY) FN=4 TP=49 53
Column totals 90 60 N=150

The most commonly rates that are computed by a confusion matrix are the following:

Accuracy: How often the classifier is correct.

TP+TN
acC =——.

¢ Misclassification Rate: How often the classifier is wrong.
FP+FN
error =————,

e True Positive Rate: When it's actually yes, how often it predicts yes.

TP
tp=——.
TP +FN
o False Positive Rate: The actuall class is no, how often the model predicts
yes.
FP
fp=——.
FP+TN

e Specificity: When it's actually no, how often it predicts no.
I TN
specificity = —
N
e Precision: The model predicts yes, how often is correct.

presicion = ——
TP+ FP
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2.8 Receiver operating characteristics (ROC) curves

A receiver operating characteristics (ROC) graph is a technique which allows
researchers to understand how good the performance of their model is. Recently,
many researchers apply ROC graphs, to measure the performance of their machine
learning algorithms. In this way, they can compare their algorithms based on their
performance measure. ROC graphs also can be applied to algorithms which involve
decision making between two classes, i.e., a Yes or No on each observation. Some
classifiers like neural networks or random forests produce a probability score of each
instance which represents the probability that each instance will be classified in a
class. A classification model is always followed by a confusion matrix. The confusion
matrix of a model is a mapping of instances between the actual and predicted

classes of them.

In Table 8 we have a confusion matrix with the predicted and actual outcomes
of a model. In Table 8, we have four possible outcomes. A true negative is the
instance which actually belongs in class no and the model predicts that it belongs to
class no. A false positive is the instance which actually belongs in class no and the
model predicts that it belongs to class yes. A false negative is the instance which
actually belongs in class yes and the model predicts that it belongs to class no then
this is a false negative. A true positive is the instance which actually belongs in class
yes and the model predicts that it belongs to class yes this is a true positive. From
this confusion matrix, we can take several performance metrics as false positive and
true positive rate. ROC graphs are two-dimensional graphs which have in y axis the
true positive rates and in x axis the false positive rates.

ROC Space

\ ----- Random guess,
" dicot ——

Pefect Classification #

08 ’

Figure 8: A ROC graph showing four discrete classifiers.
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In_Figure 8 the point (0, 0) means that a classifier commits no false positive
errors but also no true positive gains. On the other hand, the point (1, 1) is exactly
the opposite of the point (0, 0) in which we have positive classifications. The point (O,
1) which is shown by the arrow in the figure 8 represents perfect classification, and
the point (1, 0) represents a flawed classification. Classifiers which belong to the
upper triangle separated by the dashed line are better than the others. Also the
diagonal line y=x represents the random guessing. The classifier B (0.78, 0.78)
represents the strategy in which the classifier guesses the positive class 78% of the
time but also make false negative errors 78% of the time. Classifier C is the worst of
the four classifiers because it makes more false positives than true positives.
Therefore, classifier C is worse than random guessing, in this case if we want to

predict the class of an instance, it is better to flip a coin than to rely on classifier C.

In our study, we work with the random forest algorithm. The random forest
provides a matrix which gives the number of OOB votes of each sample. Hence, we
have for each sample the probability to be classified in each of the two classes. This
ranking classifier is used to produce the thresholds. In the beginning, we start with
threshold+c. In ROCR package in R, each threshold consists of the predicted
scores, from the vote’s matrix, produced by random forest algorithm. If the samples
above the threshold are classified in the correct class, these are true positives. On
the other hand, if a sample above the threshold is misclassified in respect with actual
class it belongs, then this is a false positive. Each threshold produces a point in the
ROC graph. After the ROC graph calculation, we find the area under the curve (AUC)
which represents our model performance. The AUC is a numerical summary that
represents the probability that the classifier will classify correctly a sample to the
actual class that it belongs. Classifiers that have higher AUC scores represent
perfect classifiers and perfect classifiers give models with better prediction accuracy.
Models with AUC scores approximately to 70% are considered average classifiers
and AUC scores approximately to 80% are considered good classifiers. If the AUC

score of the model is bigger than 90%, then this model is a perfect classifier.
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2.9 Advantages

In summary, a random forest is a good choice of model building for a number of

reasons:

Very little pre-processing of the data needs to be performed.

Same idea for regression and classification except of the split criterion.
Handle categorical and continuous predictors.

Quick to fit even for large problems.

Automatic variable selection.

o g s w N PE

Many trees are built using two levels of randomness, the one level is from the
bagging procedure and the other from variable selection. In this way each
tree is an independent model and the resulting model tends not to overfit to
the training dataset.

It produces very accurate classifiers and learning fast.

It offers an experimental method for detecting variable interactions.

9. No need of pruning in trees.

3. Variable Selection using Random Forests (varSelRF)

3.1 Introduction

In machine learning and statistics, variable selection is the process of selecting a
subset of relevant features (variables/predictors) to include in the model construction.
Variable selection is used to reduce the number of redundant variables. In
microarrays, the number of variables (genes) is much larger than the number of
samples (patients), in this case, we want to keep only the most important variables
which have the capacity of separating classes of patients. We want to keep a small
number of variables because from all only few are correlated with the pathogenesis
of a disease. For this reason, it's difficult for several classification methods to classify

and find the most important genes.

3.2 Algorithm Description

In our study, we have a microarray gene expression dataset with dimensions
40x463442. Our goal is to find a small subset of CpG sites, that classifies the

patients correctly to their pre-defined classes, and achieve good predictive
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performance as well. Due to the high dimensionality of our dataset (40x463442), it
was very difficult to classify correctly our patients to their pre-defined classes
applying the random forest algorithm to the entire dataset. Before the selection of this
method, we applied several statistical methods to our dataset which we will explain in
chapter 4, in order to find a small number of CpG sites with good predictive accuracy.
However, none of these methods could find a small number of CpG sites with good
predictive accuracy. Therefore, after a lot of research we conclude that in order to
have a good prediction model we have to reduce our CpG sites, and keep only the
relevant CpG sites according to the random forest classification procedure. We used
the method proposed by Diaz-Uriarte et al. (Diaz-Uriarte 2007). We applied this
method, because it is suitable for microarray datasets and keeps only the relevant
CpG sites according to the random forest classification procedure. In their research,
they investigate the use of random forest for classification of microarray data and
propose a new method of gene selection, which is based on the variable importance
of random forest and the OOB error. Variable importance and OOB error rate are two

important measures of random forests.

Diaz-Uriarte et al. (Diaz-Uriarte 2007), describe a backward elimination
procedure using random forests for selecting genes from microarray data. The steps

of this method are the following:

e Fit a random forest model to all data and rank in decreasing order all genes
based on their variable importance.

e lteratively fit random forests and in each step remove 20% of genes which
have the lowest variable importance.

e Select the group of genes corresponding to the random forest reaching the
smallest OOB error rate.

e Estimate the prediction error rate based on the fact that the OOB error rate is
biased down due to the recursive variable elimination and it can’t be used to

assess the overall error rate of the approach.

In their study, in order to calculate the prediction error rate they applied the
“.632+" bootstrap method to the complete procedure (the remaining variables who
achieve the lowest OOB error rate, after the variable selection procedure). The
“.632+" bootstrap method was proposed by Efron and Tibshirani (Efron and
Tibshirani 1997). The “.632+” method adds weights both to resubstitution error and to
the leave-one-out bootstrap error. The resubstitution error represents the classifier’s
(random forest) error when applied to training data. On the other hand, the leave-
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one-out. bootstrap method represents the error on samples (patients) that are not
used to train the classifier or in the variable selection procedure. To give a better
understanding, if we want to predict Y with X using our prediction model f (in our case

is the random forest model) then the resubstitution error would be:

err = —
N

-

L (Yi’ ?(Xi)),

i=1

N N 2
where L(x, f(y)) = (y—f(x)) is a function such as squared error and N is the

number of samples. In addition x is a vector of input data (CpG sites) of each sample
and y is the actual class of each sample. The resubstitution error isn't a good
estimator, because it uses the same data to construct and assess a prediction rule.
The resubstitution error decreases when the model complexity is increased. When

the model complexity is increased enough then err = 0.

For the leave-one-out bootstrap method suppose that the training data is Z =
(21,2, ..., Zy) Where z; = (x;,y;). From this set we can take B bootstrap samples with
replacement M, M,, ... , My , where each M; has the same size N. Hence, the leave-

one-out bootstrap estimator is given by the following equation:

N
1 1 "
Errpoor = NZ KT Z L (Yi; fb(Xi)),
=1 beK!
where fb (x;) is the predicted value from the random forest model corresponding to
the b-th bootstrap sample (b=1, ..., [K{]). K! is the set of indices of bootstrap samples

that don’t contain observation i, and |Ki| is the number of such bootstrap samples.

The resubsitution error tends to underestimate the prediction error. On the other
hand, the leave-one-out bootstrap error tends to overestimate the prediction error.
For this reason, in their study Efron and Tibshirani (Efron and Tibshirani 1997)
proposed the “.632" method, which adds weights both to resubstitution error and to

the leave-one-out bootstrap error based on the following equation:
Err.632 = 0368ﬁ + 0.632Errboot.

Coefficient 0.632 is multiplied with Erryp,. based on the argument that each
bootstrap sample contains approximately 2/3=0.632 of the complete sample set.

Hence, the resubstitution error will be multiplied with 1-0.632=0.368. We note that
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this-method assigns more weight on the leave-one-out bootstrap error estimation

than on the resubstitution error estimation.

The Err 43, performs better than other competitors, but in highly overfit rules
where err = 0, the Errg;, tends to be downwardly biased. In order to improve the

Err 43, €stimator ¥ is defined to be the no-information error rate as:

LR
N_EZ yuf(xu)

The estimator y is the error rate of our prediction rule if the inputs and class labels
were independent. The estimator ¥ is obtained by evaluating the prediction rule on all
possible combinations of targets y; and predictors x;-. The relative overfitting rate is

defined then as:

,R _ Erilioot —_m
Yy —err
This quantity ranges from 0 (Errpoor = err) to 1 (Errpgor = ¥ ). Finally the “.632+”

estimator is defined as:

Err(632+) — (1 —w) -err + w- Errpgot, ®)

.632

withw = ———
1-.368R"

The weight w ranges from .632 if R=0 to 1 if R = 1. Therefore, Err‘®32+) ranges
from Err ¢35, t0 Errygor - We can also express equation (3) as:

.368..632-R

Err(632+) = Err Erry o — err =
632 T (ETpoot ) Te32R

, (4)

which emphasizes that Err(®32+) exceeds Err ¢;, by an amount depending on R. In
cases where 7 <‘err or err < ¥ < Errpoo¢ the relative overfitting rate fall outside of

bounds [0,1]. In order to deal with this problem, we need to modify Erry,o. and R:
Errpoor = min(Errygorn 7))
and
(Errpoor — €IT)

R={"G-sm
0 , otherwise.

if Errpgor, v > err,
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After these madifications the equation (4) yields the following equation:

.368-.632 R’

Err(632+) = Err ., + (Errpgo; — f) ——Mm8 ———.
.632 ( boot ) 1— 368-R

To calculate the “.632+" bootstrap method, Diaz-Uriarte et al. (Diaz-Uriarte
2007) applied this method to the complete procedure. The leave-one-out bootstrap
error is calculated by using the samples that are not used in the random forest
construction or in the variable selection procedure. According to Jiang and Simon
(Jiang and Simon 2007) for microarray datasets with n<p, where n= number of
samples (patients) and p=number of variables (CpG sites), the overifitting problem
exists and the resubstitution error is often close to zero due to the complexity of the
model. When the resubtitution error is zero and w=.632 then Err(632+) = 632Erry,,
is systematically downwardly biased where there are no class differences (Breiman,
Friedman et al. 1984, Efron and Tibshirani 1997). In this case, the “.632+” method
puts too much weight on the leave-one-out bootstrap error, in order to deal with this
problem. In the case where n>p, the “.632+” bootstrap method often performs well in
classification problems and is very popular for having low variability and only

moderate bias.

There are two different types of variable importance, the importance based on
the mean decrease of classification accuracy and the Gini Index. In their study Diaz-
Uriarte et al. (Diaz-Uriarte 2007) used the importance based on the mean decrease
of classification accuracy. Moreover, they applied this method in nine microarray
datasets, and in each dataset they find small sets of genes with high predictive
accuracy. In addition, they proved that this method'’s results are equally efficient with
other existing methods of gene selection. This method can only be applied for
supervised random forest classification problems and not for regression random
forests and unsupervised problems. In Figure 9 we present the variable selection

procedure explained before.
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Figure 9: Variable selection procedure.

4. Real-data Application

4.1 Methodology and data description

In our study, we have a set of 40 patients with chronic lymphocytic leukemia. Each
patient has two states, one state before the relapse and the other after the relapse.
37/40 patients were treated with the same treatment (FCR). Each patient has 463442
CpG sites with range of their values from 0-1. Hence, we have two matrices with
dimensions 40x463442. In our main research, we have chosen to work with the first
state, in which each patient is checked before the relapse. We worked with this state
because we wanted to know if the patients responded to the treatment. If they didn't,
i.e. the time to relapse is short, then, it might have been better to consider they
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receive another treatment. Moreover, we have a file with the clinical-biological data of

each patient, which contains the actual classes of patients we want to classify.

The aim of our study is to detect the most important CpG sites, which have
the ability to separate the patients to their pre-defined classes based on their clinical-

biological data before the relapse.

We started by “cleaning” the data and synchronize the order of patients from
the annotation file with the matrix of dimensions 40x463442. Our first attempts were
to detect the most important CpG sites with standard statistical techniques. We
applied the Wilcoxon rank sum test to our data. The Wilcoxon rank sum test is
appropriate because we have samples from two different states, and our data didn’t
follow the normal distribution. The null hypothesis of Wilcoxon rank sum test was Ho:
two samples come from the same population against an alternative hypothesis,

especially that a particular population tends to have larger values than the other.

After the evaluation of the Wilcoxon rank sum test we kept only the CpG sites
with p-value<0.05. Continuing, we evaluated the false discovery method due to the
multiple comparisons that the Wilcoxon rank sum test made. Specifically, we used
the method proposed by Benjamini-Hocheberg (Benjamini and Hochberg 1995) with
threshold 0.1 because it is less conservative and more appropriate than the method
of Benjamini-Yekutieli (Benjamini and Yekutieli 2001). In addition, the evaluation of
Benjamini-Yekutieli method yields in zero CpG sites with the same threshold and

seems to be more restrictive and conservative.

The evaluation of the false discovery method yields again to approximately
100 remaining CpG sites. In addition these CpG sites didn't classify correctly our
patients to their pre-defined classes. The number of CpG sites should be small
enough because, then, CpG sites can be easier checked by biologists in order to be
used as a prognostic signature. In another attempt, we applied the random forest
algorithm to the entire dataset, but the algorithm crashed because of the high
dimensionality of our data (40x463442). Although our work take place in INAB and in
a server with large memory capacity, the random forest algorithm requirements exists

the memory capacity of the server.

All the above methods didn’'t work as we expected. In order to reduce the
number of CpG sites, we computed the s.d. of the entire dataset for each CpG and
we kept only CpG sites with s.d.20.3. The threshold 0.3 is an empirical cutoff. We
calculated the s.d. at each CpG site, to choose those where the patients exhibited
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have high variance. This possibly would reflect their dissimilarity. The number of the
remaining CpG sites was 6721. Therefore, in these CpG sites, we applied the
method of Diaz-Uriarte et al. (Diaz-Uriarte 2007), which can find the most important
CpG sites based on the random forest algorithm. The variable selection method was
necessary because we wanted a small set of CpG sites which achieved good
predictive performance. In addition, the variable selection method detected the most
relevant CpG sites to the classification procedure and eliminated the irrelevant CpG
sites. Moreover, we applied the random forest algorithm to the matrix of dimensions
40x6721 which follows as a result of the s.d. filtering but the results weren't
satisfying. Therefore, probably the random forest algorithm should be applied to a

smaller set of CpG sites, in order to be more accurate.

The variable selection algorithm of Diaz-Uriarte et al. (Diaz-Uriarte 2007) was
suitable for our problem and, in addition, in their study they applied the algorithm in
nine microarray data sets. In our study, we examined the supervised learning method
of random forests. Initially, we separated the patients in two groups based on their
clinical-biological data. In the first grouping, patients separated based on their
differential methylated CpG sites in two classes “High” and “Low”. In the class “Low”
belonged the patients who had few changes on their CpG sites comparing the two
states of them. On the other hand, in class “High” belonged the patients who had big
changes on their CpG sites comparing the two states of them. We have to mention,
that small number of differential methylated CpG sites is related to short time to
relapse. The second grouping was separated based on the months each patient
relapsed. For this group, we had two classes of patients where the first class was for
patients who relapsed in less than 24 months (“Ultra High risk”) and the other class
was for patients who relapsed in more than 24 months (“Others”). It is important to
note that the period less than 24 months was followed by aggressive disease after

recurrence.

In the first grouping, we had 40 patients. In the first class “High” belonged 23
from 40 patients and in the second class “Low” belonged 17 patients. In the matrix of
dimensions 40x6721 we applied the variable selection algorithm. The algorithm starts
by creating a large random forest, with a number of trees 5000 and the number of
predictors tried at each split is the square root of 6721. After the random forest
evaluation, the algorithm sorts by decreasing order the CpG sites based on their
variable importance. Next, it removes 20% of the CpG sites with the lowest variable
importance. The variable importance is computed based on the mean decrease of

accuracy and not the Gini Index. Iteratively the variable selection algorithm fits
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random. forests, but, now, with a number of trees equal to 2000 and the same
number of predictors as before is evaluated at each split. The number of trees is
selected to be large enough because we want to increase the stability of our results.
When the variable selection method finishes, we can see the most important CpG
sites of the complete procedure which achieve at best to classify the patients
correctly to their classes and the confusion matrix which shows how the model

classifies the patients to their classes.

In Table 9, the first random forest is presented, which is applied to 6721 CpG
sites with number of trees 5000 and number of predictors 81 at each split. The above
random forest classification procedure wasn't satisfying. We observed that the OOB
error rate is 50%. As we mentioned earlier the confusion’s matrix columns represent

the model predictions and the rows the actual class of each patient.

Table 9: First random forest confusion matrix for classes “High” and “Low”.

Type of random forest: classification
Number of trees: 5000
Number of variables tried at each split: 81

OOB estimate of error rate: 50%

Predicted  High Low Classification
error

Actual
High 19 4 0.173
Low 16 1 0.941

In Table 9, the model classified correctly 19/23 patients in class “High” and
wrongly 4/23 in class “Low” with classification error 17.3%. The model classified
correctly 1/17 patient in class “Low” and it classified wrongly 16/17 patients in class
“High” with classification error 94.1%. Only one patient of class “Low” classified
correctly based on his actual class. For class “High” the model predicted that 4
patients belonged to class “Low” but they actually belonged in class “High”. For class
“Low” the model predicted that 16 patients belonged to class “High” but they actually

belonged in class “Low”. This model before the variable selection wasn’t satisfying. In
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the following matrix in Table 10 we present the final random forest which was

constructed by the remaining variables from the variable selection procedure.

These remaining CpG sites had the biggest variable importance and the
ability to classify the patients correctly to their classes. In the end of the variable
selection algorithm the remaining and most important CpG sites were 11. This was
very important because we found a small set of CpG sites which achieved very good
predictive accuracy. As we mentioned earlier the confusion’s matrix columns
represents the model predictions and the rows the actual class of each patient. In
Table 10 the model classified correctly 23/23 patients in class “High” with
classification error 0%. Each patient of class “High” classified correctly based on his
actual class. The model classified correctly 16/17 patients in class “Low” and it
classified wrongly one patient in class “High” with classification error 5.8%. This
means that the model classified the patient in class “High” but actually this patient

belonged in class “Low".

Table 10: Final random forest confusion matrix for classes “High” and “Low”.

Type of random forest: classification

Number of trees: 2000
Number of variables tried at each split: 3

OOB estimate of error rate: 2.5%

Predicted High Low Classification
Actual error
High 23 0 0.000
Low 1 16 0.058

It is obvious that after the variable selection the random forest improved for
11 CpG sites than for 6721 CpG sites. Also these 11 CpG sites seem to achieve
good predictive accuracy instead of 6721.
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Figure 10: The OOB error rate is displayed for classes "High" and "Low" of 11 CpG
sites for different number of trees.

In Figure 10 we see the error of each class and the OOB error of this
procedure for different number of trees. The red dashed line represents the error rate
of class “High” in each tree, green dashed line represents the error rate of class
“Low” in each tree and the black line represents the OOB error rate in each tree. We
note, that as the number of trees growing the OOB error is reduced. . Note that the

OOB error remained unchanged, approximately between 150 and 1750 trees.

In their study, Diaz-Uriarte et al. (Diaz-Uriarte 2007) note that the OOB error
rate is biased down due to the backward elimination. In order to handle the bias
problem and find the prediction error rate, they applied the “.632+” bootstrap method
of Efron and Tibshirani (Efron and Tibshirani 1997) to the complete procedure (the
remaining variables who achieve the lowest OOB error rate, after the variable
selection procedure). In addition, they note that “the error rate of the variable
selection procedure, estimated using the .632+ bootstrap method, indicates that the
variable selection procedure does not lead to overfitting, and can achieve the

objective of aggressively reducing the set of selected genes”.

Hence, after the evaluation of the variable selection procedure we applied the
“.632+" bootstrap method to the remaining 6 CpG sites, in order to understand the
specificity of our predictors (CpG sites). Specifically, we applied this method five
different times for 200 bootstrap samples and took the average prediction error of
them in order to compare our results with the results of Diaz-Uriarte et al.(Diaz-
Uriarte 2007). In Table 11, we present the prediction error rate values for each

different run.
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Table 11: The prediction error rate is displayed, which was calculated with the
*.632+" bootstrap method of classes "High" and "Low" of 11 CpG sites.

Number of Prediction
runs error rate

1 0.1436

2 0.1415

3 0.1232

4 0.1250

5 0.1346

The average prediction error rate is 0.1335. For example in the first run, the
resubstitution error was equal to zero, the leave-one-out bootstrap was equal to
0.1940, and the weight was equal to 0.7402. We note that the “.632+" method puts
more weight in order to handle the bias problem. The OOB error rate can be viewed
as a non-smooth estimator compared to the leave-one-out bootstrap error. This may
happen because the OOB error rate employs a majority vote on all trees for sample i,
while the leave-one-out bootstrap method takes an average on errors of these
predictions. Hence, due to the variable elimination procedure, we expected that the
OOB error rate would be biased down and every time would be less than the leave-

one-out bootstrap estimator.

Based on bibliography, our results are reasonably good. Moreover, we used
these 11 CpG sites to evaluate two other well-known methods in order to see how
they respond. The first method is called heatmap and the second principal
component analysis. We evaluated these methods for the set of 6721 CpG sites and
for the set of 11 CpG sites resulted by the random forest in order to see their

differences before and after the selection procedure.
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Figure 11: Heatmap of 6721 CpG sites.

In Figure 11 is a heatmap of 6721 CpG sites, in which was applied
hierarchical clustering both in patients (columns) and in CpG sites (rows). The
dendrogram shows the clusters of the patients and the CpG sites that have been
made after the hierarchical clustering. The elements under the top dendrogram are
the clinical-biological data for each patient taken from another file. The green color in
the above figure depicts that the DNA methylation value of a CpG site in a patient is
less than 0.3 and this CpG site with such value is hypomethylated. On the other
hand, red color depicts that the DNA methylation value of a CpG site is
hypermethylated in a patient and its value is bigger than 0.7. Finally, the black color
range from (0.3, 0.7) represents a DNA methylation value of a CpG site which is not

hyper or hypo methylated in a patient.

After the hierarchical clustering of patients and the separation of them in
clusters, we observed that they couldn't manage to group based on their clinical-

biological data and the classes that we wanted.
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Figure 12: Heatmap of 11 CpG sites.

The above heatmap in figure 12 evaluated based on the selected 11 CpG
sites, which have been taken after the variable selection procedure. In this heatmap
we notice that the patients who belonged in the same cluster had almost the same
clinical-biological data. In the first cluster of patients (left), only 2 of 16 belonged to
the other group. In the second cluster of patients (right), only 3 of 24 belonged to the

other group. Also we observed that between these two clusters of patients revealed a

slightly change in the volatility of patients DNA methylation values.

Hence, we concluded that after the variable selection method these 11 CpG
sites yield to a better grouping of patients than the grouping made with 6721 CpG

sites. Also we detected changes between DNA methylation values of CpG sites in

two clusters.
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Figure 13: Classes “High”, “Low” of 11 CpG sites.

In order to give a better understanding according to the volatility of the DNA
methylation values of patients we separated the two classes. We note, that in class

“Low” we had more green cells than in class “High” in Figure 13.

PC 2

PC1~ PL3

Figure 14: Principal component analysis of 6721 CpG sites of classes “High” and
“Low”.

The above principal component analysis in Figure 14 was based on 6721
CpG sites. Each point represents a patient. Yellow points represent the patients who
belonged in class “Low” and light blue points represent the patients who belonged in
class “High”. We observed that the patients couldn’'t manage to group based on their

clinical-biological data and we can'’t see a clear separation between them.
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Figure 15: Principal component analysis of 11 CpG sites of classes “High” and “Low”.

The principal component analysis of Figure 15 was evaluated was based on
11 CpG sites taken from the variable selection procedure which was applied before.
The difference between these two plots of figures 14 and 15 was very large. In figure
15, patients tended to group together and only 3 patients of class “High” were in the

wrong side.

Therefore, we concluded that the heatmap and the principal component
analysis methods achieved better performance of grouping patients to their classes
for these 11 CpG sites than for the 6721 CpG sites.

Finally, in order to check the performance of our classifier, we evaluated ROC

analysis which shows us the performance of our classifier in binary problems.
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Figure 16: ROC plot of 11 CpG sites.
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In Figure 16 we see the performance of our classifier. We note, that the area
under curve (AUC) was equal to 0.99744. This means that our classifier was perfect.
Values bigger than 0.9 means that the classifier's performance is perfect. True
positive and false positive rates calculated from the table’s votes produced by the

random forest algorithm.

A table of votes contains in rows patients and in columns their classes. For
each patient was given the probability to be classified in the one or in the other class
by the random forest model. These probabilities for each class and patient were
calculated by the number of (OOB) votes from the random forest. This method was
evaluated in R and the package was ROCR. In Table 12 is given the matrix of votes
produced by the random forest algorithm, the true class of each patient, the false

positive rate (FPR), and the true positive rate (TPR).

Table 12: Votes of classes "High" and "Low" from the last random forest procedure.

Patients Probability Probability | True class FPR TPR
“High” “Low”

0.00000000 0.00000000
1 0.03984064 0.96015936 “Low” 0.00000000 0.05882353
2 0.11961057 0.88038943 “Low” 0.00000000 0.11764706
3 0.12275862 0.87724138 “Low” 0.00000000 0.17647059
4 0.19350474 0.80649526 “Low” 0.00000000 0.23529412
5 0.19464034 0.80535966 “Low” 0.00000000 0.29411765
6 0.20726783 0.79273217 “Low” 0.00000000 0.35294118
7 0.20728291 0.79271709 “Low” 0.00000000 0.41176471
8 0.20827586 0.79172414 “Low” 0.00000000 0.47058824
9 0.21014493 0.78985507 “Low” 0.00000000 0.52941176
10 0.23915900 0.76084100 “Low” 0.00000000 0.58823529
11 0.26266667 0.73733333 “Low” 0.00000000 0.64705882
12 0.28922237 0.71077763 “Low” 0.00000000 0.70588235
13 0.31504923 0.68495077 “Low” 0.00000000 0.76470588
14 0.33736559 0.66263441 “Low” 0.00000000 0.82352941
15 0.39337176 0.60662824 “Low” 0.00000000 0.88235294
16 0.44157609 0.55842391 “Low” 0.00000000 0.94117647
17 0.50210379 0.49789621 “High” 0.04347826 0.94117647
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We note that we started by sorting the column “Low” in decreasing order, and
a list of cutoffs defined by the numbers of column “Low”. Each time for a given cutoff
we observed if the above patient’s true classes were the same with the classes that
the random forest model predicted. We observed that all patients with true classes
“Low”, achieved higher probabilities to be classified in the class “Low” than in the
class “High” by the random forest model except from the patient 18. Specifically, the
probability that the patient 18 would be classified to the class “High” was only

marginally higher than the probability of the class “Low” but the actual class of this
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patient was. “Low”. In this case, the performance of our model decreased, because
the model’s prediction in the case of patient 18 wasn't the same with the true class of
this patient and the FPR was calculated as FPR=1/23.

Now we will evaluate the same method but for classes “Ultra High risk” and
“Others”. In the second group we had the same 40 patients. In the first class “Ultra
High risk” belonged 26 from 40 patients and in the second class “Others” belonged
14 patients. In the matrix of dimensions 40x6721 we applied the variable selection

algorithm with the same parameters as before.

In Table 13 is presented the first random forest which applied to 6721 CpG
sites with number of trees 5000 and number of predictors 81. We observed that the
OOB error rate is 32.5%. In Table 13 the model classified correctly 26/26 patients in
class “Ultra High risk” with classification error 0%. The model classified correctly 1/14
patient in class “Others” and it classified wrongly 16/17 patients in class “Ultra High
risk” with classification error 92.8%. Only one patient of class “Others” classified
correctly based on his actual class. The model predicted correctly that all patients
belonged to class “Ultra High risk”.

Table 13: First random forest confusion matrix for classes “Ultra High risk” and
“Others”.

Type of random forest: classification

Number of trees: 5000
Number of variables tried at each split: 81

OOB estimate of error rate: 32.5%

Predicted Ultra Others Classification
Actual High risk error
Ultra High 26 0 0.000

risk

Others 13 1 0.928

Furthermore, for class “Others” the model predicted that 13 patients belonged

to class “Ultra High risk” but they actually belonged in class “Others”. This model
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before the variable selection wasn't satisfying. In Table 14, we present the final

random forest which produced by variable elimination.

Table 14: Final random forest confusion matrix for classes “Ultra High risk” and
“Others”.

Type of random forest: classification
Number of trees: 2000
Number of variables tried at each split: 2

OOB estimate of error rate: 7.5%

Predicted Ultra Others Classification
Actual High risk error
Ultra High 24 2 0.076

risk
Others 1 13 0.071

In the end of the variable selection algorithm the remaining and most
important CpG sites were 6. This was a reasonably good result because we found a
very small set of CpG sites which achieved very good predictive accuracy. In Table
14, the model classified correctly 24/26 patients in class “Ultra High risk” with
classification error 7.6%. Only two patients of the original class “Ultra High risk”
misclassified. The model classified correctly 13/14 patients in class “Others” and it
classified wrongly one patient in class “Ultra High risk” with classification error 7.1%.
This means that the model classified the patient in class “Ultra High risk” but actually

this patient belonged in class “Others”.

It is obvious that after the variable selection the random forest improved for 6
CpG sites than for 6721 CpG sites. Also these 6 CpG sites seems to achieve good

predictive accuracy instead of 6721.
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Figure 17: The OOB error rate is displayed of classes "Ultra High risk" and "Others"
of 6 CpG sites for different number of trees.

In Figure 17 is represented the error of each class and the OOB error of this
procedure for each tree. The red dashed line represents the error rate of class “Ultra
High risk” in each tree, green dashed line represents the error rate of class “Others”
in each tree and the black line represents the OOB error rate in each tree. We

observe that after =600 trees the OOB error rate is stabilized.

In order to find the prediction error rate, we evaluated the “.632+” bootstrap
method, for the remaining 6 CpG sites, five different times for 200 bootstrap samples
and took the average prediction error rate of them. In the Table 15, we present the

prediction error rate values for each different run.

Table 15: The prediction error rate is displayed, which was calculated with the
“.632+” bootstrap method for classes "Ultra High risk" and "Others" of 6 CpG sites.

Number of Prediction error
runs rate
1 0.1247
2 0.1274
3 0.1374
4 0.1269
5 0.1250
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The .average prediction error rate has value 0.1282. For example in the first
run the resubstitution error was equal to zero, the leave-one-out bootstrap was equal
to 0.1701, and the weight was equal to 0.7330. We note that the leave-one-out
bootstrap error, and the weight are less than in the previous prediction error rates.
This means that this procedure achieved better the objective of aggressively

reducing the set of selected genes.

Based on bibliography this was a reasonably good and comparable value.
We have to mention, that these methods were applied to a real dataset with big

heterogeneity and the results achieved to have good predictive accuracy.

Moreover, we used these 6 CpG sites as before to evaluate two other
methods in order to see how they respond. The below heatmap in figure 18
evaluated based on the selected 6 CpG sites, which have been taken after the
variable selection procedure for classes “Ultra High risk” and “Others”. In this
heatmap, we note that the patients who belonged in the first cluster (left) have the
same clinical-biological data. On the other hand, the patients who belonged to the
second cluster (right), couldn’t manage to group satisfying based on their clinical-
biological data. Furthermore, we observed that between these two clusters of

patients there are completely different DNA methylation values.
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Figure 18: Heatmap of 6 CpG sites.
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Hence, we concluded that after the variable selection method these 6 CpG
sites yield to a better grouping of patients than the grouping made with 6721 CpG
sites. Also we find changes between DNA methylation values of CpG sites in two

clusters.

Ultra High risk Others

cgl7TBEETS
cg21917976
22621310
cO25767T154
cgi13619408

col10146935

Figure 19: Classes “Ultra High risk”, “Others” of 6 CpG sites.

In order to see the difference between the DNA methylation values of patients
we separated the patients based on their classes. As we observe in Figure 19, the
patients who belonged in class “Ultra High risk” had most of their CpG sites
hypermethylated. On the other hand, the patients who belonged in class “Others” had
their CpG sites hypomethylated. This was very important because for the same CpG
sites, we found different DNA methylation values on patients of different classes. As
before, the last method which remain to be evaluated, is the method of principal

component analysis.

L - -

Figure 20: Principal component analysis of 6721 CpG sites for classes “Ultra High
risk” and “Others”.
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The above principal component analysis in figure 20 was based on 6721 CpG
sites and on classes “Ultra High risk” and “Others”. Each point represents a patient.
Beige points represent the patients who belonged in class “Ultra High risk” and green
points represent the patients who belonged in class “Others”. As we can see, the
patients couldn't manage to group based on their clinical-biological data and we

couldn’t see a clear separation between them.
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Figure 21: Principal component analysis of 6 CpG sites for classes “Ultra High risk”
and “Others”.

The principal component analysis in Figure 21 was based on 6 CpG sites
taken from the variable selection procedure which was applied before. The difference
between these two plots of figures 20 and 21 was very large. In Figure 21, the
patients tended to group together and only 1 patient of class “Ultra High risk” and 1

patient of class “Others” were in the wrong side.

Therefore, we concluded that heatmap and principal component analysis
methods achieved better performance of grouping patients to their classes for these
6 CpG sites than 6721 CpG sites.

Finally, in order to check the performance of our classifier, we evaluated ROC

analysis which shows us the performance of our classifier in binary problems.
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Figure 22: ROC plot of 11 CpG sites.

In Figure 22 we see the performance of our classifier. We note that the area
under curve (AUC) = 91.7%. This means that our classifier was perfect. Values

bigger than 0.9 means that the classifier's performance is perfect.

In Table 16 we present the votes of classes “Ultra High risk” and “Others”, the
true class of each patient, the FPR and TPR. We note that we started by sorting the
column “Others” in decreasing order and the cutoffs are defined to be the numbers of
column “Others”. We observed that the patients 12 and 13, who have true class
“Ultra High risk”, achieved higher probability to be classified in the class “Others” than
in the class “Ultra High risk”. In this case, the FPR of the patient 12 was calculated as
FPR=1/26, and for the patient 13 was calculated as FPR=2/26.

Table 16: Votes of classes "Ultra High risk" and "Others".

Patients Probability Probability True Class FPR TPR
“Ultra High risk” “Others”
0.00000000 0.00000000
1 0.00131406 0.998685940 “Others” 0.00000000 0.07142857
2 0.02567568 0.974324324 “Others” 0.00000000 0.14285714
3 0.04949239 0.950507614 “Others” 0.00000000 0.21428571
4 0.12500000 0.875000000 “Others” 0.00000000 0.28571429
5 0.15006821 0.849931787 “Others” 0.00000000 0.35714286
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0.16666667

0.19333333

0.22544952

0.26153846

0.27052490

0.31400283

0.41374663

0.44460432

0.45481050

0.47008547

0.58310249

0.70661157

0.73772791

0.74229692

0.74668435

0.79382889

0.82030178

0.82065217

0.82421875

0.82794118

0.86046512

0.86856369

0.88811189

0.833333333

0.806666667

0.774550484

0.738461538

0.729475101

0.685997171

0.586253369

0.555395683

0.545189504

0.529914530

0.416897507

0.293388430

0.262272090

0.257703081

0.253315650

0.206171108

0.179698217

0.179347826

0.175781250

0.172058824

0.139534884

0.131436314

0.111888112

“Others”
“Others”
“Others”
“Others”
“Others”
“Others”
“Ultra High risk”
“Ultra High risk”
“Others”
“Others”
“Ultra High risk”
“Ultra High risk”
“Ultra High risk”
“Ultra High risk”
“Ultra High risk”
“Ultra High risk”
“Ultra High risk”
“Ultra High risk”
“Ultra High risk”
“Ultra High risk”
“Ultra High risk”
“Ultra High risk”

“Ultra High risk”

0.00000000

0.00000000

0.00000000

0.00000000

0.00000000

0.00000000

0.03846154

0.07692308

0.07692308

0.07692308

0.11538462

0.15384615

0.19230769

0.23076923

0.26923077

0.30769231

0.34615385

0.38461538

0.42307692

0.46153846

0.50000000

0.53846154

0.57692308
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0.42857143

0.50000000

0.57142857

0.64285714

0.71428571

0.78571429

0.78571429

0.78571429

0.85714286

0.92857143

0.92857143

0.92857143

0.92857143

0.92857143

0.92857143

0.92857143

0.92857143

0.92857143

0.92857143

0.92857143

0.92857143

0.92857143

0.92857143



29 0.91292876 0.087071240 *“Ultra High risk” 0.61538462 0.92857143
30 0.92408377 0.075916230 “Ultra High risk” 0.65384615 0.92857143
31 0.93108108 0.068918919  “Ultra High risk” 0.69230769 0.92857143
32 0.96986301 0.030136986 “Ultra High risk” 0.73076923 0.92857143
33 0.97010870 0.029891304  “Ultra High risk”  0.76923077 0.92857143
34 0.97503285 0.024967148 “Ultra High risk” 0.80769231 0.92857143
35 0.98424069 0.015759312 *“Ultra High risk” 0.84615385 0.92857143
36 0.98770492 0.012295082 “Ultra High risk” 0.88461538 0.92857143
37 0.98850575 0.011494253  “Ultra High risk” 0.92307692 0.92857143
38 0.99007092 0.009929078 “Ultra High risk” 0.96153846 0.92857143
39 0.99316940 0.006830601 *“Ultra High risk” = 1.00000000 0.92857143
40 0.99709724 0.002902758 “Others” 1.00000000 1.00000000
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Additionally, we investigated the behavior of the variable selection method
(varSelRF) for different values of ntree and mtry. Specifically in Table 17, we made
32 different runs in the same dataset for ntree= 64, 128, 500, 1000, 2000(default),

3000, 4000, 5000 and for each ntree values we chosen mtry= 1, VM/2 ,~/M(default),

VM % 2 , where M was the number of variables (CpG sites) included in the dataset
and we reported the OOB error rate for each procedure. These trials have been
made to the same dataset, which concluded 40 patients with 6721 CpG sites with

classes “Ultra High risk” and “Others”.

We have to note, that this error isn’t the prediction error of the procedure. This
error was downwardly biased, and represents the error of the last random forest,
which evaluated with the remaining variables. Finally, the column variables selected
represents the number of the remaining variables that achieved the best OOB error

rate.
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Table 17: Iterations results.

Ntree Mtry Variables Selected 0o0oB
64 1 3442 0.325
VM/2 5377 0.25

VM 152 0.075

VM * 2 3442 0.20

128 1 2754 0.30
VM/2 1410 0.15

VM 2754 0.30

VM * 2 4302 0.30

500 1 237 0.10
VM/2 62 0.025

Nivi 26 0.05

VM * 2 2 0.10

1000 1 32 0.025
VM /2 152 0.05

VM 40 0.025

VM * 2 32 0.075

2000 1 14 0.05
VM/2 40 0.025

VM 14 0.05

VM * 2 2 0.10

3000 1 17 0.125
VM/2 62 0.025

VM 2 0.10

VM * 2 2 0.10

4000 1 40 0.05
VM/2 26 0.025
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JM 3 0.075

VM * 2 3 0.10

5000 1 21 0.05
VM/2 4 0.05

VM 2 0.075

VM * 2 2 0.10

We concluded that after these trials, highest number of ntree and mtry values
yields to better results. The desired result for the model, was to conclude to a small
number of CpG sites which can achieve a small OOB error rate. This may happens,
because with highest ntree number we increased the stability of variable importance.
This was important because the variable selection method (varSelRF) eliminates at
each step the variables based on their variable importance. Also with highest number
of mtry values, the algorithm searches more variables for the best split. In this way,
the probability of choosing the more informative variable for the split was increased,

and the results tended to be better than for lower mtry values.

In Figures 23 and 24 below represent the variable selection procedure for
specific ntree and mtry values. Because the number of runs was very high, we will
only present a few figures of selected procedures. In the following figures, our claim
that the results are better for higher ntree and mtry values is verified. We achieve to
select only few variables with good predictive accuracy. In addition, for highest
values of ntree and mtry the OOB error rate stability is increased. We note that the
OOB error rate is biased down, and the prediction error rate is calculated in Table 16.
In Figure 23, we present the change in OOB error with the number of variables used
at each iteration. In Figure 24, we present the change in OOB error with the number

of trees used at each iteration.
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Figure 23: Number of variables used from right to left vs OOB error.
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Finally, in order to investigate the behavior of the most informative variables

we introduce the following graph, which represents the variable importance of each

of the six most informative variables for different mtry values. The six most

informative CpG variables tend to appear as selected variables in other procedures

with high variable importance too.
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Figure 25: The six most informative CpG variables.

Based on figure 25, we concluded that for highest mtry values as previously

the most informative variables were distinguished. The most informative variable was

the one with the red and green line for mtry=vM * 2. In Table 16, we present the

prediction error estimate of our selected variable selection procedures.

Table 16: The prediction error rate is displayed, which was calculated with the
“.632+" bootstrap method, for different numbers of ntree and mtry values.

12/22/2016

Mtree 64 500 3000

Mitry
1 0.3462 0.2412 0.2429
VM * 2 0.3305 0.1335 0.0978
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As we can see, for mtry=y/M * 2 the prediction error rate had the lowest
values'for all ntree values. We note, that the prediction error rate is the error obtained
from the evaluation of the “.632+" bootstrap method which was mentioned and
explained in Chapter 3. Moreover, we observed that for highest ntree values, the
prediction error rate decreased for both mtry values. Finally, we present a plot in
Figure 26, in order to see the behavior of the prediction error rate for the different

values of ntree and mtry.
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Figure 26: The prediction error estimate graph of Table 16.

The prediction error rate tended to decrease for highest ntree values. This
may happen because with highest ntree and mtry values, the variable selection
method which was based on the variable importance given from random forest
algorithm was more stable than for lowest ntree values. Finally, we observed that for
ntree=64 for both mtry values, the prediction error rates were too close, and this may
happens because the variable selection method tends to be more unstable for low

ntree values.
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5. Conclusions

The aim of this study was to detect a small set of CpG sites among the overall
number 463442, which achieved good predictive accuracy, and classify patients
correctly to their pre-defined classes. Moreover, we investigated the importance of
ntree and mtry values, by changing their values and executed the variable selection

algorithm repeatedly.

After a lot of trials, we managed to have a set of 6 CpG sites for patients who
belonged in the grouping which was based on the months each patient relapses and
11 CpG sites for patients who belonged in the grouping which was based on their
differential methylated CpG sites. Moreover, these CpG sites from both groupings
achieved good predictive accuracy and their roc curves achieved excellent
performance. In addition, comparing the heatmap and principal component analysis
plots, the selected CpG sites after the variable selection algorithm tended to group
the patients in their pre-defined classes better than 6721 CpG sites. It is worth
mentioning that random forest algorithm couldn’t achieve good predictive accuracy

and run in finite time for large sets of CpG sites.

Considering the parametrization of ntree and mtry values, after a lot of trials
we concluded that for highest ntree and mtry values the variable selection algorithm
improved, eliminated irrelevant CpG sites and selected only the most informative.
Additionally, the variable selection algorithm resulted a small set of genes which
achieved good predictive accuracy.

Further research could be done with the help of networks. The combination of
networks and DNA methylation sites analysis is an undiscovered and uprising field,
because with the help of networks we can discover groups, patterns and analyze
several of nodes behaviors. It would be very useful in the future, to construct an
algorithm, which has the ability to separate patients in their groups based on their
DNA methylation values and uncover interesting patterns.
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