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ABSTRACT

This thesis is an extension to the existing literature on applications of network theory
for portfolio selection. Until now, networks for portfolio selection are identified via Pearson
correlation -a linear correlation measure- of stock returns while the stocks from which the
portfolios are constructed are chosen based on common centrality measures. In the current
thesis not only Pearson but also non-linear measures are applied which lead to both
symmetric and asymmetric adjacency matrices. In total, 6 different types of (overlapping)
networks are identified: Net I: Pearson correlation with replacement of negative values by
zero, ii) Net II: Absolute values of Pearson correlation, iii) Net III: Normalized Mutual
Information, iv) Net IV: Directed Normalized Mutual Information, v): Net V: Information
Interdependence, vi): Net VI Information Dependence (Asymmetric). For each node of
those overlapping networks, the following are computed: strength, closeness centrality,
betweenness centrality, eigenvector centrality, eccentricity; portfolios are constructed from
the stocks with the highest and the lowest score on those measures. Apart from the
application of non-linear measures and the identification of directed networks, a separate
study for the 2008 financial crisis era is performed in order to also come up with the best
performing networks during periods of extreme volatility. Portfolios are evaluated based on
returns, total risk, systemic risk, adjusted to total risk return and adjusted to systemic risk

return.

Regarding the most crucial conclusions to be made, networks identified through
Pearson Correlation achieve higher returns. However, non-linear measures are superior
when it comes to building portfolios of less risk (both total and systematic). Concerning
adjusted to risk return, top performance is shared between linear measures and the best
performing non-linear ones. However, during the crisis the superiority of non-linear
measures is evident, with the importance of directed networks during high volatility eras

becoming lucid as well.
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IHEPIAHYH

H mopovoa dimhopotikn| epyacio anotelel emékraom e Epeuvag mov £xeL Yivel yio
v aglomoinon g Bewpiog dSiktdHmV 6TN dNpovpyia yapToPLAaKiny. Méypt Tdpa. pe Pdon
TIS OMOOOCEIS TV UETOXDV ovaryvwpilovTotl SikTuo HECO amd TOV GUVTEAEGTI] GLUGYETIONG
Pearson -o omoiog amotelel £va ypopkd PETPO GUGYETIONG- KOl EMAEYOVIOL LETOYEG ME
Baon yvootd péTpo KEVIPIKOTNTOG. X1V mopovoo epyacio avayvopilovtol diktvo Oyt
uévo pe tov Pearson oAAG Kot e U1 YPOUUIKA HETPOL TTOV 0O YOUV GE GUUUETPIKOVS OAAA
KOL 1]  GUUUETPIKOVS TivaKeS  YerTviaonc. Yuvolkd avayvopilovion 6 TOMOL
(emxaivmTopevev) diktowv: Net I: Pearson correlation pe pndevioud apvntikev opdv, ii)
Net II: Amoivteg Tipég Pearson correlation, iii) Net II1: Normalized Mutual Information, iv)
Net 1V: Directed Normalized Mutual Information, v): Net V: Information Interdependence,
vi): Net VI. Information Dependence (Asymmetric). ' kabéva omd to emkalvaTopeva.
diktoa k@Oe tOHmov vrmoAoyileton To Strength, m closeness centrality, m betweenness
centrality n eigenvector centrality kot m eccentricity kéfs xoppov ko oynuorifovron
YOPTOPLAAKLOL OO TIG LETOYEG TTOV £YOVV TIC YOUNAOTEPES KO TIS VYNAOTEPES TYES O€ KO
eva amd owtd to pétpo. EkTOg omd TV €QOPHOYN U YPOUUIK®OV HETPOV KOl TNV
avVOyVOPLoT KoTevduvopevay Siktdmv, yivetar Kot Eexmploty LEAETN Yo TNV TEPiodo TG
ypNHatookovokng kpiong tov 2008 étot dote va dwmeTmdel To YopTOPULAAKLL TOUDY
OOV  amodidovy  KoAOTEPO O MEPLOOOLG TOAD LyMANG petofAntomrog. Ta
yoptoeurdkia actoloyobvton pe PBdon v amdddon TOovg, TOV Kivouvo (CLVOAKO Ko

GLOTNIKG) OAAG Kot TNV ardd0oT) TPOG TOV KivOUVO TOLG,.

Ocov agopd ta Pacwotepa copmepdopata, to diktva mov avayvopilovtol
péow Pearson onueidvouv kaAVTepeg £MOO0EL; OGOV aPOPA TO KEPOOG, EVM TO UM
YPOUUKG HETPOL VIEPTEPOVY GTN ONUIOLPYIL XOPTOPVAOKIOV YOUNAOTEPOL KIVODVOL
(CLVOAMKOV KOl GLUGTNUATIKOV). AVAQOPIKE LE TNV TPOCAUPUOCUEVN GTOV Kivouvo
amddoon, oiktva péow Pearson evaAldccovtolr otnv Kopven He KAmowo amd To Un
ypoppkd diktva. Mésa otnv Kpion OU®G 1 VIEPOYN TOV UN YPOUKOV UETPOV givat
caeNe, He TV onuocio TV Katevfuvopevemy SIKTVOV va avadeikvietar e£icov Katd

NV TEPi0d0 VYNANG LETAPANTOTNTOC.
AEZEIZ KAEIAIA

Aikroa, Emioyn Xaptopuiakiov
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XYNOYH

H dwyeipion yopto@uiokiov kot 1 €MAOYN] TOV KATOAANA®V TEPLOVCIUKMV
otoyeiov vy ™ Sdpbwon Tov eivar éva amd to peilova (nmuoto TV
YPNUOTOOIKOVOUIKADV KOl OTAUGYOAEL TOGO OPYOVIGHOVG Kol €ToUPieg OGO Kol OmAOVG
moAlteg. 'Evag amd tovg Oepelddelg otdyovg g dlayeipiong yoptouAakiov givar
dlPopoToincn TOL, M EMAOYN ONANSYT| TEPLOVGLOKAOV GTOWEIMV Ol OTOJOCELS TMOV
omoimv ovoyeTilovionl apvnTIKG £T0L MOTE VO UEWMVETOL O GLUVOAIKOC KivOuvog TOv

YOPTOPLAOKIOL.

H emloyn meplovclok®y 6Toeldv yivotay 61o mopeAfov Kupimg epmelpikd Kot
Bacilopevn mavem o©e 1GTOPIKA OTOLKEID. Yo TIS OMOOOCELS TMOV UETOYDOV KOl TMV
VoAV TTPoidovImV. Avtd dAlate otov o Markowitz to 1952 dnuovpynoe
ouyypovn Bewpio yaptopulokiov, 1 omoio €KTOG OO TIG 10TOPIKES TWEG KAOE
TEPLOVGLOKOV GTOLXEIOL AapPavel VITOYT TOV KIVOLVO TOV OAAL KO TIG GUGYETICELS TV
OTOYEIOV AVTAOV Kol OMOGKOTEL GTNV EMAOYN TOL (PIGTOL YOPTOPLAOKIOV, AVTOV
ONAadn pe TV LYNAGTEPT OVALEVOUEVT] OTOSO0T) SEGOUEVOL TOV KIVOUVOL 1} OWTOL UE
TO XOUNAGTEPO dVVATO EKTILAOUEVO Kivouvo dedopévng tng avauevopevng amddoonc. O

Markowitz pédiota Bpapevdnke pe voumed owkovopukamv to 1990.

Baowlopevol mive otn Aoy g Bewpiog tov Markowitz, kdmolotr cuyypageic
€youvv MoM Kotaevysl ot Bewpio SIKTOOV OOCTE Vo KATAPEPOLY Vo EMAEEOVY e
pHeYaALTEPY] emTLYIOL TEPLOVGLOKE oTOolElor Yoo TN Onuovpyion €vog PEATIGTOL
yaptoeviakiov. Ot Pozzi, Di Matteo, & Aste (2013) mpoomabovv va dnuovpynovy
YOPTOPLANKIO LETOYDV «OVTI-GLGYETILOUEVOV» KaTd TO duvatdv meptosotepo. [ va
10 eMTOHYOLV VT, AVAYVEOPILOVY EMKAALTTOUEVO SIKTVA YPOVOCEIPDOV HETOYDOV LECH
TOVL GLVTEAESTN GLOYETIONG Pearson kot otn cuvEyela vroAoyilovv yua kdbe kOUPO TV
dwtowv avtdv tnv degree centrality, tmv closeness centrality, v eigenvector
centrality, tqv betweenness centrality kofdg kot tnv eccentricity. To Pacikd Tovg
cupumépacio  gtvor 0Tl YOPTOPULAGKIOL TOL €MEVOVOLV GE  UETOXEG-KOUPOLS TNg
TEPLPEPELNG  OmOdIdoVY KOADTEPA OGOV aQOPE TNV TPOGOPUOGUEVY] GTOV Kivouvo
anddoorn. O Peralta, Zareei (2016) mpoPaivovv otnv emovoualouevn p-dependent
strategy Bewpmvtog 0Tt pe TV oTpaTNYIKn LT Tpoceyyilovy opBotepa v Bewpia Tov
Markowitz. X0peovo pe T GTPATNYIKY TOVG, 0EV EMAEYOLV TAVTO TEPLPEPELOKOVG
KOpuPovg-peToyéc aAa e€etalovy tn cuoyETion g eigenvector centrality pe tov deiktn
Sharpe towv petoy®dv kol avéloyo pe to av avt) 1 TR Eemepvder n Oyl éva
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OVYKEKPLUEVO KOTOPAL emevovovy ot 20 mepiocdtepo 1| AMyodtepo central petoyéc
avtictoyo. Emione, evad o1 Pozzi et al. (2013) dnuiovpyodv kdamota cuvletikd pétpa
KevIpikotntog Pdoel tov puétpov mov vmoAoyiovv, ot Peralta, Zareei (2016)

BaoiCovtot anokAelotikd oto eigenvector centrality.

2KOTOG TNG TaPOVGOS OUTAMUATIKNG €PYACiag €ivol vo eNEKTEIVEL TNV €pguva
mov  &yel yivet O6cov agopd v aflomoinon TV JKTO®V oTN  Onuovpyic
yopto@LAakiov. Bacwo 0épa mov eetdletarl ivor n KOTAAANAOTNTA TOV GUVIEAESTN
ocvoyétiong Pearson wg pétpov yio v avayvopton dwtdwv. O Pearson, o omoiog
ypnoonoteital 1060 ot Bewpia yoptopviakiov 660 kol ota paper tov Pozzi et al.
(2013) & Peralta, Zareei (2016) eivor £éva ypapukd HETPO GLOYETIONG. XN
BProypapio Odpmg vrapyovv onuavtikéS evoeiEelg OTL Ot oY€oelg UETOEL TV
YPNUOTOOIKOVOUIKADV TEPIOVGLOKMV oToyeimv sivan un ypouukés. 'Etor Aowmdv
avoyvopilovtoar 6 dtapopetikd €idn emkaAvntopevov dktowv: 1) Net 1. Pearson
correlation pe undeviopd apvniikov Papodv, i) Net II: Amdlvteg tipég Pearson
correlation, iii) Net IIl: Normalized Mutual Information, iv) Net IV: Directed
Normalized Mutual Information, v): Net V: Information Interdependence, vi): Net VI:
Information Dependence (Asymmetric). Amo to mapamdve diktoa, To TpdTe dVO gival
YPOLLUKA EVD TOL VITOAOUTOL U1 YPOLLUKA, E Ta OIKTLOL IV KO Vi VoL Vo i) GOUUETPIKA.
Tnv o&ia e&étaong un cvPPETPIKOV dikTO®V vIoypoaupilovy pdioto kar ov Peralta,

Zareei (2016).

A@ob avoyvoptotobv avtol ot 6 SopopETIKOL THTOL EMKAAVTTOUEVOV SIKTO®V,
vy k4B €va amo ta emkoAvTTopeva dikTuo VToAoyilovTon To. HETPO TOV VTOAGYIGOV
kot ot Pozzi et al. (2013). Kdébe @opd dnuovpyodvot xaptopuAdkia iong otdduong e
T1G 20 petoyéc pe LYNAOTEPOLG Kot YapUNAOTEPOLS OgikTeg Kat voAoyiletan 1 emidoon
TOUG 00OV 0eOopd To. mopakdte kprrnpua: omddoon (return), cvvolikdg kivovvog
(variance), ocvotnuikog-un  dwagopomomoipnoc  kivovvog  (beta),  oamddoon
TPOGOPUOCUEVT] GTO GLVOAMKO Kivovvo (pio mapaAilayn tov yvootol dgiktn Sharpe),
amOO0GN TPOGUPLOGHEVT] GTO GLGTNKO Kivouvo (pio Tapadioyn TOL YVOOTOD JelKTN
Treynor). Ot emd6ce1g avtég vroAoyilovtat yia mepiodo daxpdtnong omd 51 péypt 250
NUEPES. XN cvvéyewn voAoyiletar  péom emidoom kabevog amd to €51 diktvo dGov
a@opd 10 kdbe amd Ta S Kprripre (LEGOG OPOG TV EMOOCEDV TOV EMKOAAVTTOUEV®OV

OIKTOOV avd NUEPOL dLOKPATNONG).
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Méoo omo Vv oaviivon, To pétpa kevrpwotrag Strength, closeness,
eigenvector @aivovtor vo €ivol 0VTG TOV 0ONYOVV GE YUPTOPVAGKIN UE KAADTEPN
amod00n  —MPOGOPUOCUEVT] oTOV  KivOLVO Kol  Un-, YOUNAOTEPO  Kivouvo Kot
emPePaidvouv kot 1 PipAoypaeio meEPL ENEVOLONG GE UETOYEG TNG TEPLPEPELNG TOV
dwtoov. H olOykpion pHETOED TV S0pOpETIKOV SIKTV®V deiyvel OTL Ta diKTLO TTOL
avayvopilovtal pécm Pearson onueidvouy KaAVTEPES EMOOGES OGOV apopd To KEPSOC,
EVOD TO UM YPOUUIKG UETPO VTETEPOVV OVOPOPIKG LE TN dNUOvPYio YOPTOPUAKIWV
younAdtepov  Kwwdbvov  (cvuvolkoL kot ovotnpatikov). Ocov  agopd Vv
TPOCAPHOCUEVT OTOV Kivouvo amddoon, dlktva pécm Pearson evaAldccoviolr otnv

KOPLOY| L€ KATO0, 0O TOL U1 YPOUUKE dikTva.

Mo mv eayoyn tepatép® GLUTEPAGUATOV, akoAlovbeital 1 S dradikacio
Yoo TV TePiodo TG XPNUATOOKOVOUIKNG Kpiong Tov 2008, n omoia oproBeteitar ota
mhaiow avtg ™ epyaciog petagd 01/08/2007 won 31/03/2009. Tnv mepiodo avtn M
VIEPOYN TV UN YPOUUK®OV SIKTOOV &vol €UQAVAG, O10MTEPA. OTNV KOTOOKELT
YOPTOPLAAKI®V YOUNAOTEPOL KIVOVVOV. TNV TEPi0d0 TG KPIoNG KOTASEIKVOETOL ENIONG
N ONUOVTIKOTNTA KOlU TV U] GUUUETPIKAOV OIKTO®OV apoV elval meplocOTePES Ol

TEPMTMOGELS GTIG OTOLEG CNUEIDOVOLV TNV KAAVTEPT EMIOOOT).

Avopopikd pe 1o oo 4ikTvo amodidel kalvtepa, kpivetar 6t to vi (Information
Dependence) amodidel kaAbtepo 6 GUYKPIOT U TO £T€po Un cvppetpko iv (Directed
Normalized Mutual Information). To oiktvo iii (Normalized Mutual Information)
Bpioketor pe ovvémela ot mpateg Béoeig, to net v (Information Interdependence)

OtokpiveTor OHmG Yia Tig EMOAGELS TOL KATA TN SEPKELR TNG KPioTG.

Mo v eneEepyacio Tov dedopévov ypnoomomdnkoy ta Aoyispukd R kot

Matlab. A6 v R ypnopomomnkav o1 frfrodnkec: igraph, sna, entropy.
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PROLOGUE

This thesis examines the issue of selection of the most suitable assets in order
for a well-diversified portfolio to be constructed. As stated in Farlex Financial
Dictionary, portfolio diversification entails the “investing in different asset classes and
in securities of many issuers in an attempt to reduce overall investment risk and to avoid
damaging a portfolio’s performance by the poor performance of a single security,
industry or country.” Risk is usually measured by the volatility (variance) of the returns.
Portfolio selection is crucial for practical purposes for both institutions and individuals,
and plays a key role to the sustaining of lifetime consumption and bequest. On the one
hand, institutions, mutual funds, pension funds and hedge funds are only examples of
those that face this decision when managing large portfolios. On the other hand, even
individuals are confronted with this issue when making their financial plans and
thinking about the consequences of their choices (Detemple, 2012). Regarding
diversification in particular, -as mentioned in Pozzi et. al (2013)- managing risk is of the
utmost importance in periods of financial turmoil (Meucci, 2013 ; Hull J.C, 2012). A
look at the recent Global Financial Stability Reports by the International Monetary Fund
is indicative of the fact that we are living in an era characterized by such potential
instability and risk. However, irrespective of the economic status, solely focusing on
the risk can have positive results in the returns as well. According to theory, there is no
point in a mere minimization of risk -not considering the expected returns- by the
investor (Sharpe, 1964). However, there is extensive empirical evidence of low risk
anomalies, according to which low risk assets outperform high risk ones (Unger, 2015;
Blitz and van Vliet, 2007; Clarke et. al, 2006). This is another reason which renders the

minimization of risk important for portfolio optimization.

Subject thesis is an extension on the existing literature of exploiting network science
in order to build well-diversified portfolios, consisting of stocks as anti-correlated as
possible. After the prologue, the main part includes: i) a literature review on modern
portfolio theory and applications of network science on the matter, ii) the data processed,
iii) the applied methodology, iv) the results. On the epilogue, the main conclusions as well
as proposals for further research are mentioned. The appendices include images and graphs

for further study.
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MAIN PART

Literature Review

Modern Portfolio Theory

Before 1952, portfolio selection was a result of ad hoc methods lacking any
mathematical background. Emphasis was mainly given to the individual returns of each
investment. Markowitz (1952, 1959) was the one that came up with a revolutionary

mathematical way for portfolio construction.

Instead of focusing solely on returns, he stressed the importance of risk in a
portfolio as well. The optimum portfolio would be the one with the maximum expected
return given the level of risk or - given the expected return -the one with the minimum
risk among all the possible portfolios. In order for this problem to be solved, it is also of

the utmost importance to study how each asset co-moves along with the other ones.

Markowitz was the first one that demonstrated how diversification can help to
reduce the total portfolio risk without losing on return. He initiated a new logic in
investing by proposing a focus on overall risk-reward characteristics rather than solely
on individual ones. The assumptions of this model have to be comprehended in order
for it to be properly utilized:

e Investors examine each asset assuming that it is represented by a probability
distribution of expected returns to be generated during a holding period. It is
also assumed that this distribution is normal.

e Investors maximize their one-period expected utility and their utility curves are
characterized by decreasing marginal utility of wealth. In other words, investors’
utility increases as their wealth does so as well, but each unit of wealth being
added results in progressively lower utility increase.

¢ Investors calculate portfolio risk based on the volatility of its expected returns

e Investment decisions are made depending on expected return and risk, the
investor’s utility curves are therefore functions of expected return and variance

(or standard deviation)
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e Single period investment horizon. In the beginning, the investor opts for the
suitable assets (or asset classes) and allocates his wealth accordingly by
assigning weights to each asset. During the holding period each of them
generates a random rate of return. In the end, the investor’s return is a weighted
average of the returns from each asset.

e Investors opt for higher returns to lower risk and lower risk for the same return

e Risk-averse investors. They will accept more risk only if this will increase
expected return.

e Markets are perfectly efficient (no taxes or transaction costs)

Return & risk

Return

Let N be the assets of the portfolio with returns Ry, k=1,2...N. In addition, let:
e Ry portfolio return
e W  weight of asset k
o oy standard deviation of asset k

e E(Ry) the mean or expected return of asset k

Then portfolio return is calculated as follows:

N
Ry =) Wby (D
k=1

Risk
According to Markowitz model, the risk of a portfolio is a function of the risk of
each asset (the variance of each asset’s returns) and the covariance between the returns

of all the assets of which the portfolio consists. Portfolio risk is calculated as follows:

N N
Var(rp) = of = Z Z Wi Wiog - (2)

k=11=1
, Where ay; is the covariance of the returns of stock k and stock |. Covariance is a
measure of the degree to which two variables tend to move in tandem. However, its
interpretation can sometimes turn out to be ambiguous. For instance, a high covariance
between two risky assets could indicate either a strong positive correlation or a weak

positive correlation between asset returns, depending on whether subject time series are

13
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characterized by low or high volatility respectively. In order therefore for such
ambiguity to be eschewed, the covariance can be replaced by the product of the
correlation coefficient and the standard deviation of each of the assets returns. Taking
that into consideration, the following formula for portfolio risk is also applicable:

N N
Var(. ) = of = z z Wi Wipraokor  (3)
k=11=1

Portfolio risk depends on the variance of each asset’s returns, the covariance
between the assets and the portfolio weights assign to each asset. Covariance is of
higher importance than the individual risk of each asset, and the more assets are the
portfolio includes, the higher is the importance of covariance in contrast to individual

risk.

Systematic risk

Risk in stock markets is divided in systematic and unsystematic risk. The
unsystematic risk is the one inherent in each company or sector someone invests.
Unsystematic risk is also called diversifiable as this is the one which can be decreased
through diversification. Systematic is the risk that characterizes the whole market.
Systematic risk cannot be diversified; therefore it is also called undiversifiable risk.
Systematic risk can be measured through beta (Sharpe, 1963). Beta is calculated as
follows:

Bk :ak_zm 4)

Om

orm- Covariance of stock’s k returns with market returns (a market index is chosen as
representative of the market)

a2 Variance of market returns

Beta is indicative of whether and in what extent a stock moves in tandem with

the market. Table 1 shows how beta is interpreted:
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Table 1: Beta coefficient values and interpretation

B<0 The stock moves opposite to the market

=0 The stock moves in a manner uncorrelated to the market

0<B<1 | Stock-market moves are correlated but the stock moves less than the market

B=1 Stock-market moves are totally correlated

p>1 Stock-market moves are correlated but the stock moves more than the
market

The larger the beta of a stock, the more systematic risk this stock is believed to
have.

Efficient portfolio

An efficient Markowitz portfolio can contain assets of any number. For starters,
the asset allocation between two assets is examined. In such a portfolio, an investors
invests w; and w; in the two assets, with w,=1-w;. The logic is similar for portfolios of
more assets. In the case of a two-asset portfolio, 3 extreme cases can be examined at
first:

a. Correlation Coefficient of 1 between the two assets

E{ &) F

E{fy)

E{f.)

v

oy I o

Image 1: Expected return and risk for correlation coefficient of 1 between two assets
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In this first case, portfolio risk and return are merely linear combinations of the

risk and return of each asset.

b. Correlation Coefficient of -1 between the two assets

E(Ry) y

E(Ry)

E(R,)

—
4

G o [+

Image 2: Expected return and risk for correlation coefficient of -1 between two assets

In this second case, portfolio risk and return remain linear combinations of the
risk and return of each asset. It should also be noted that portfolio risk of assets with a
correlation coefficient of -1 is always lower that the respective of perfectly positively
correlated assets. When two assets are perfectly negatively correlated, a portfolio of

zero risk can be constructed.
c. Correlation Coefficient of 0 between the two assets

E(R;) &

E(Ry)

E(R )

0y o (4

Image 3: Expected return and risk for correlation coefficient of 0 between two assets
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In this third case, the portfolio risk is the square root of the weighted mean of the
variance of the two risky assets, while the portfolio’s expected return logic remains the

Same.

Comparing the three scenarios, it can be inferred that p=1 is the only case in
which no benefit from diversification exists. Irrespective of the wealth allocation
between the two assets, both the portfolio mean return and risk are simple weighted
averages. No portfolio can be regarded as inefficient, investors choose among the
possible portfolios only with risk as a criterion. On the other hand, when asset returns
correlation is less than 1, there is a diversification effect. Investors can therefore reduce
the individual asset risk they are subjected to through a diversified portfolio. Such a

constructed portfolio will allow the same expected return with less amount of risk.

Expected return on Portfolio

Standard deviation of the Portfolio’s retumn

Image 4: Combinations of risk and return for different values of correlation coefficient (Ross et al, 2002).
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Expected
Portfolio
Return, kp

Efficient Set

\/— Feasible Set

Risk, G,
Feasible and Efficient Portfolios

Copyright © 2002 Harcourt, Inc. All rights reserved.

Image 5: Efficient Frontier and Feasible Set of Portfolios

Adding more assets to the analysis, the goal of the Markowitz model is the
construction of an efficient portfolio. The latter refers to a portfolio with the best
possible expected return given the level of risk or the least possible risk given the
amount of expected return. The set of all the efficient portfolios is called the efficient
frontier. The efficient frontier is located “on the northwest” of the feasible set of
portfolios. The feasible set refers to all the portfolios that can be constructed with the
available assets by the investor. In other words, the efficient frontier consists of all the

dominant portfolios in terms of risk and return in comparison to all the possible ones.

Image 6 is indicative of the efficient frontier. It begins from the Minimum
Variance Portfolio (point V) and ends at the maximum return portfolio (point A).
Therefore the curve VA is the efficient frontier and contains all the efficient portfolios.
Subject image changes if short selling is allowed. Short selling is common market
practice nowadays. Short selling involves the borrowing and selling of assets that are
not owned by the investor. It is incited by a belief that the subject asset’s price will
decrease. In that case, the investor can buy the security at the lower price after some

time, return the shares to the owner and earn the difference of the borrowing and the
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afterwards buying price. Apparently if the security price rises after the short position,

the investor incurs a loss.

Expected Return

Minimum

Investment

Variance .
Portfolio Opportunity
(MVP) Set
B
Standard Deviation

Image 6: MVP and Efficient Frontier with no short selling (Lee, Lee, Lee, 2010)

Short selling increases the efficient frontier bounds to plus/minus infinity, as

depicted below. An investor can continuously short sell B and reinvest in A. That would

result in upper infinity as the maximum expected return. On the other hand, if someone

short sells A and reinvests in B, this can result in an infinitely negative expected returns,

which explain the minus infinity as the new bound.

Expected Return

without short sales
— — — . with short sales

Standard Deviation

Image 7: MVP and Efficient Frontier with short selling (Lee, Lee, Lee, 2010)
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Constructing efficient portfolios
In order to find the minimum variance portfolio weights, one can minimize the
Lagrange function F for portfolio variance (Lee, Lee, Lee, 2010).

N N

Min oy = Z Wi WPkl Ok 0}
k=11=1

Subject to wytwotwst. . twyptwn=1
F=3N 1 X awewion + 4 (1-3R-1w)  (5)

, Where 23 is the Lagrange multiplier, py the correlation coefficient between the asset

returns, wy, w, the asset weights and ok and o) the assets standard deviation.

By adding a condition about the expected return, one can find other points of the
efficient frontier curve (Lee, Lee, Lee, 2010).

N N

Min o, = 2 Wi WPkl Ok 0]
k=11=1

, Subject to

YN _wi E(R,) = R* , where R*=expected return

n
ZWk =1
k=1

The Lagrangian objective function is rewritten as follows:

F=3Noq X wiwi 0 + 4 [R* — XRoy wi E(r)] + 22(1 — ZRoiwi)  (6)

In case short selling is allowed, then the second constraint is replaced by
ZII¥=1|WR,| =1

and the Lagrangian function is the following (Lee, Lee, Lee, 2010):

F = YR 1 T awew oy + A1 [R* — TRz wie E(mi)] + 22(1 — ZR=qlwi]) (7)

This altered constraint still demands the sum of the wealth to be 1 but allows for
negative positions, in line with the essence of short selling. A similar alteration is

needed for Minimum Variance Portfolio if short selling is allowed.
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The final choice of the optimal portfolio among the efficient ones depends on
the each investor’s type and in particular on the risk tolerance of each investor. This is
depicted in the investor utility curves. An investor is indifferent between portfolios on
the same curve. The optimum portfolio for each investor is located on the intersection of

the utility curve with the efficient frontier.

For instance, in the Image 8 portfolios A and B are the optimum for two
different investors. Both portfolios are efficient as they are located on the efficient
frontier. However investor B is less risk averse than A and therefore opts for a portfolio

with higher risk (and higher expected return).

U,
B
c A
5
i v
©
[J]
ey
3 -
g Minimum
w variance
portfolio AN Efficient
N
b frontier
0 Standard Deviation

Image 8: Selection of the optimal portfolio (Lee, Lee, Lee, 2010)

Assessing Portfolio Performance

Investors often judge a portfolio’s performance only by the return achieved.
However, they should always keep in mind the risk incurred in order for this return to
be attained. In literature, there are several ratios and formulas which are utilized in order
for the performance of the portfolio to be evaluated. Two of the most basic ones, which

take both the risk and the return into consideration, can be found below:
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Sharpe Ratio
The Sharpe Ratio is a method for calculating the adjusted to risk return,

developed by Nobel laureate William F. Sharpe (Sharpe, 1966). The ratio is calculated
as follows:

S =L (8)

Ok
,where ry : the expected return of asset k
rs. the risk free rate (e.g. Treasury bill interest rate)

ok: asset k standard deviation

Treynor Ratio
The Treynor Ratio (Treynor, Black, 1973) is similar to Sharpe Ratio in the sense

that it calculates risk adjusted return. The difference is that instead of total risk (standard

deviation), Treynor Ratio has systematic risk (beta) as its denominator.

TL—7T
T; = kﬁk L9

Networks

Networks and Graphs
As stated by Newman (2010), “a network -also called a graph in the

mathematical literature- is a collection of vertices joined by edges”. Vertices are also
called nodes while edges are often reported as links. Barabasi (2016) defines a network
as “a catalog of a system’s components often called nodes or vertices and the direct
interactions between them, called links or edge”.

In most cases, there is at most one link between two nodes. If there is more than
one edge between two vertices, then those edges that connect the same pair of vertices
constitute a multiedge (Newman, 2010), while a network containing multiedges is
called a multigraph (Newman, 2010). In addition, vertices are not usually connected to
themselves; however, if they do, such a link connecting a node to itself is known as a

self-edge or self-loop (Newman, 2010).
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There are different ways in order for a network to be mathematically
represented. The adjacency matrix belongs to the rudiments of those ways. The

adjacency matrix A of a simple graph A is one with elements Ay, such that:

Ay = 1, if there is a link between node k and node |
A= 0, otherwise

An example of adjacency matrices can be found on image 9.

a. Adjacency matrix

Ay Ay Ay Ay

A= Ay Ay Ay Ay

Ay Ay Ay Ay

Ay Ay Ay Ay
b. Undirected network C. Directed network
0110 00 10
1 010

Ao L B (S A=

i 1 100 00 00
0100 01 00

Image 9: Networks and Adjacency Matrices (Barabasi, 2016)

It can be noticed that networks containing no self-loops have adjacency matrices
whose diagonal elements equal to zero.

It should also be mentioned that if the matrix is symmetric (such the matrix in b.
Undirected network), then if there is an edge between k and I, there will be an edge
between | and k as well. If this is not the case, (such as in matrix C. Directed Network),
then the matrix is called asymmetric. In asymmetric matrices, the fact that there is a link
from node k to | does not mean that there is also a node from I pointing to k.

Apart from networks whose adjacency matrix elements equal to either 1 or 0,
there are also the so called weighted networks, in which each link from node k to node |
has a unique weight wy, (Barabasi, 2016). Weights are usually positive but there is no
reason why they cannot be negative (Newman, 2010). An example of weighted

adjacency matrix can be found below in image 10.
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0 2 7
A 2 0 0.5
1 05 0

Image 10: Example of a weighted adjacency matrix

A distinction should also be made between undirected and directed networks. A

directed network or directed graph or a digraph is a network that contains edges

pointing from one node to another. The adjacency matrix of a digraph is not symmetric
(Newman, 2010).

Distance is also a fundamental notion when studying graph theory and describes

numerically how remote objects are. Distance between objects belonging to a set X is a

number given to any pair K,A € X. The pair (X, d) is called metric space. Distance in

space X is defined in terms of an equivalence (=) between the objects of X, satisfying

the below conditions:
d: YXY ->R: (K, A) —» d (K,A)

Positivity: d(K,A) 20

Identical beings are Indiscernible: K=A => d(K,A)=0, d(K,A)>0 => Kz A
Identity of Indiscernibles: d(K,A)=0=> K=A

Triangle Inequality: d(K,A)< d(K,¥)+d(¥, A)

Symmetry: d(K,A)=d (A,K)

In statistics, networks and geometry two generalizations are applicable in order

for real-world challenges to be met: the divergence meeting the first three

aforementioned conditions and the asymmetric distance which satisfies the first four

(Antoniou).
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Graph Filtering

In literature, several methods have been proposed so that complex data sets are
filtered out and a subgraph of representative links is extracted, being regarded as the key
information. This need for filtering a densely connected graph has been found to be of
great importance in the case of correlation networks, in which, if any filtering procedure
is not present, links among all elements exist (Tumminello, Aste, Matteo, & Mantegna,
2005).

In order for the below to be better comprehended, it should be noted that a tree is
a connected, undirected network containing no closed loops while a graph is planar if it
is possible to draw it on a plane without any of its links crossing (Newman, 2010).

One of the most fundamental methods for graph filtering is the Minimum
Spanning Tree (Mantegna, 1999). This filtering method results in a spanning subgraph
of a connected, weighted, undirected graph. This subgraph connects all the nodes
together; however no cycles are reported (the MST is a tree) and the selected edges have
the minimum possible total edge weight.

Another filtering procedure is the Planar Maximally Filtered Graph
(Tumminello et al., 2005). It is similar to the Minimum Spanning Tree, with the main
difference being that the resulting spanning subgraph must be a planar graph.

The MST and the PMFG can be summarized in the below steps (Tumminello et
al., 2005). First, a similarity measure between the different nodes is set. For example, in
case of correlation networks, Pearson correlation coefficient can be such a measure.
Then, a list G is created by sorting the similarities in a decreasing order. After the
sorting, in order for an MST to be constructed, starting from the very first element of G,
the respective edge is added if and only if the graph remains a forest (acyclic graph
consisting only of trees) or a tree. In order for a PMFG to be constructed, the process is
similar. However, after creating the list G and starting from its very first element, the

respective edge is added if and only if the produced graph remains planar.

Centrality/Peripherality Measures

Degree Centrality- Strength
The concept of centrality deals with the issue of finding the most important or
the most central nodes in a network. Degree centrality is the simplest measure of all.

Degree centrality refers to the degree of a vertex; in other words, degree is the number
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of edges connected to a vertex. In case of directed networks, in-degree and out-degree
are applicable and refer to the number of edges stemming from or pointing to a vertex
respectively. In case of weighted networks, the strength is computed. Strength is the
sum of the weights of the edges with which a node is connected. Strength of a vertex k
in a graph with adjacency matrix o and N vertices is defined as follows (Barrat,

Barthélemy, Pastor-Satorras, Vespignani, 2004)
N

Sk = z ApiWki (10)

=1

Eigenvector Centrality

Eigenvector centrality (Bonacich, 1987) is actually an extension of degree
centrality. Degree (or strength) does not discriminate between the nodes connected to a
vertex; in other words, it assigns the same importance to all connections. This is not the
case with eigenvector centrality. Many times, a nodes’ importance exists in the fact that
it is connected to nodes which are themselves important, which is exactly the concept
behind eigenvector centrality. The latter assigns each vertex a score which is
proportional to the sum of the scores of the vertices with which a vertex is connected.
For a graph G:= (V,E) with W=(wy) its weighted adjacency matrix, the relative
centrality score of a vertex k can be defined as:

1
Xp = zz Wk, X1 (11)

leG

,with A being a constant. This can be also written as the eigenvector equation
Wx=Ax (12)

There may be several eigenvalues; the A, however, is the largest eigenvalue and
the eigenvector centrality is the eigenvector corresponding to the largest eigenvalue.
Eigenvector centrality is computed for both directed and undirected networks. In case of
directed networks, the right eigenvector refers to the in-eigenvector centrality, while the
left eigenvector to the out-eigenvector (Newman, 2010). The out-eigenvector can be
computed by computing the right eigenvector of the transposed adjacency matrix. It
should also be noted that mathematically, only nodes of a strongly connected
component of at least two nodes or the out-component of such a component can have an
eigenvector centrality different from zero. It should thus be inferred that acylic networks

—which have no such strongly connected components- will have all their vertices have
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zero eigenvector centrality. Therefore eigenvector centrality is considered to be of no
use for acyclic networks (Newman, 2010).

Closeness Centrality
Closeness centrality demonstrates the average distance of a node from the others
nodes in the network. If dy is the geodesic path from vertex k to vertex I, then closeness

centrality of a vertex k is calculated as follows (Freeman, 1978)

1

€k :Zkil gl (13)

In other words, one can say that closeness is the reciprocal of farness. In case of
directed networks, in-closeness and out-closeness are defined accordingly.

Two issues are often reported with regards to closeness. The first is that the
values tend to have a small range from the smallest to largest, thus rendering the
discrimination between central and less central vertices relatively difficult (Newman,
2010). The second one is that if two vertices are in different components or if there is
no path between two vertices (in case of directed networks), the distance between those
two vertices is infinite and the Cy is zero. A common practice in order for this issue to
be eschewed is the computation of closeness only inside the different components or the
computation of the harmonic mean distance (the mean of the inverse distances).
Another practice, which is implemented in this thesis, is to list the total number of
vertices instead as the path length in case there is no (directed) path between two

vertices.
Betweenness Centrality
Betweenness centrality (Freeman, 1977) measures how much a node is located

in paths between other nodes. The betweenness centrality of a node k is calculated as

follows:

8o (k
b= ) SR

6mn
mnm#k#n

Smn. total number of shortest paths from vertex m to vertex n

Smn (k): total number of those shortest paths which pass through k
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Eccentricity

The eccentricity of a node is the highest geodesic distance of this node and any
other node. In other words, eccentricity captures how far a vertex is from the most
distant vertex in the graph. In case of directed networks, in-eccentricity and out-

eccentricity are applicable.

Networks and portfolio selection in literature

Network theory has also been exploited in the portfolio selection process. Pozzi,
Di Matteo and Aste (2013) have initiated the use of the network centrality measures in
order to build well diversified portfolios. Working on equity data from the American
Stock Exchange market, they first identify moving weighted correlation networks.
Further to the construction of the dependency matrices, the authors proceed with the
identification of filtered networks. In order to filter the matrices, they use two very well-
known tools: the Minimum Spanning Tree (Mantegna, 1999) and the Planar Maximally
Filtered Graph (Tumminello et. al, 2005). Having identified the moving filtered
networks, they compute the following centrality and peripherality indices: degree,
betweenness, eccentricity, closeness and eigenvector. Their proposed strategy involves
the selection of nodes of low centrality in favor of highly centralized ones. They also
come up with two synthetic centrality indices which are found to be performing better
than the regular centralities. The main finding is that investors should opt for stocks that
belong to the network periphery, with the network centralities being the criterion of
selection. This strategy is found to be resulting in portfolios of lower risk and better
returns in comparison to portfolios constructed with other traditional methods.

Peralta and Zareei (2016) also try to exploit networks in the portfolio selection
process. Their method has many similarities with the one of Pozzi et al (2013), as they
also propose the use of nodes centrality for asset selection. The originality of their work
is found in the following two factors: i) instead of the synthetic centrality indices they
use eigenvector centrality, ii) they come up with an investing method that is said to be
more in accordance with the logic of the Markowitz model. They argue that Pozzi et al.

(2013) do not take the individual performance of assets into consideration, which can
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have a negative impact on the portfolio performance. For this reason they propose the
so- called p-dependent strategy. According to this strategy, the correlation between the
nodes’ centrality and their Sharpe Ratio is computed. If the correlation between the
centrality and Sharpe ratio values is found to be below a certain threshold, they naively
invest in the 20 stocks with the lower centrality (which is similar to Pozzi et al, 2013).
If, however, p exceeds a certain limit, then they naively invest in the 20 stocks with the

higher centrality.

Information Theory

Information theory studies -among other issues- the quantification of
information. A basic notion of information theory is information entropy (Shannon,
1948). The latter refers to the mean amount of information which a
probabilistic stochastic source of data produces. If we let x7, x3, ..., xy  be thefi, <T
distinct observed values of each Variable X, , v=1,2,...,N, Shannon’s (1948) entropy is

defined as follows:

S, = —;mxhlogzmx?) (15)

Information entropy is often regarded as a measure of uncertainty. Joint
Shannon entropy which measures such an uncertainty characterizing a set of variables is

defined for two variables X, , X; as:

e Ty

Sa ==y Y o) logap(e ) (16)
i=1 j=1
, where max {$,,8,} < S < S + S, Joint entropy is not a distance as it does not

satisfy all the below conditions (Antoniou):

e Positivity: S[K,A ]=20

o S[KK]=S[K]#0 Not satisfied

e S[K,A] =0 < K,A are deterministic Not satisfied
e Triangle Inequality: § [K ,Z] <S [K ,A] + S [A ,Z]
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o Symmetry: § [K ,A] =S [A, K]

Mutual information S[K, A] of two variables X, , X, is the defined as the sum of

their information entropies S, and S, minus their joint entropy S, or else:
S[K, Al= 8i+83-8  (17)

Mutual Information is not a distance since it only satisfies the first and the fifth

property (Antoniou):

e Positivity: S[K ;A ]=0

e S[K; K] =S [K] Not satisfied

e S[K;A] =0« K,A Independent Not satisfied

e Triangle Inequality: S [K ; Z] < S [K; A] + § [A ; Z] Not satisfied
e Symmetry: S [K; A] =8 [A; K]

Conditional Entropy, illustrating the uncertainty about a variable K after

observing a variable A is defined as follows:

S[AK]=S[K ,A]- S[K] (18)

Conditional entropy satisfies the first properties and is thus regarded as an

asymmetric distance (Antoniou):

e Positivity: S[K,A]=0

e S[KK]=0

e S[K|K]=0<K=¢(B) = K~A

e Triangle Inequality: S [K |Z] <S [K|A] + S [A |Z]

The sum
S[K|A] + S[AIK] = 4(K ,A) (19
of the conditional entropies of two random variables defines a distance in random

variables algebra and is known as Rokhlin information distance [Rokhlin, 1961;
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Rokhlin, 1967; Martin, England, 1981; Katok, 2007]. This sum satisfies the following
properties (Antoniou):

e Positivity: d(K ,A)=20

e ldentical beings are Indiscernible: K~A =d(K ,A)=0
e Identity of Indiscernibles: 4(K ,A)=0 = K=A

e Triangle Inequality: 4(K ,A)= d(K ,2)+ d(Z ,A)

o Symmetry: 4(K ,A)=d(A K)

Information distance can take the following values:

0<S[K|A]+ S[AK]< S[KAISS[K]+S[A] .
In order for a distance with values from 0 to 1 to be available, the following
normalized distance is applicable:

dR(K,A) — S[K|A]+S[A|K] 2 S[K]+S[A] _ S[K;A] (20)

S[K,A] s[k.Al S[K,A]
Mutual information and Pearson Correlation Coefficient achieve maximum
values in case of deterministically dependent variables. This can be estimated through
affinity, similarity and proximity, which are defined by the distance in a manner that

objects with large affinity will have a small distance (Deza, Deza, 2013)

Affinity between K,A in a set X is a number w: (K,A)— w (K->A)=wxa,

satisfying the following properties (Antoniou):

e Al. Values: —1<uw(K—A)<I

o A2 wrxa=1 A is positively determined by K

o A3. wxka>0 A positively depends on K

e A4 wrxa=0 A is not influence by K

e A5. wxa<0 A negatively depends on K

e A6. wxa=1 A is negatively determined by K

Similarity is the symmetric affinity A7. wxa=wga, While proximity is the
positive symmetric affinity A8. wka>0 .
In order for someone to switch between proximity to distance and vice versa,

subtracting from 1 is applicable as follows:
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e Proximity from distance: w=1-d

e Distance from proximity: d=1-w

Apart from mutual information, normalized mutual information (proximity),
defined as follows:
)
kA= min {$,, $;}

(2D

where 0<[,; <1.

Based on information distance, the following proximity can be defined, named

as information dependence

— S

Kkl = = (22)
,where 0 < K,; < 1.
The above formula is extracted as follows:

_ . _ SIKIA]+ S[AIK] _ S[K]+ S[A] - S[K,A] _ S[K; ]
Ka=1-d'(KA) =—cm == SIK, 4] =sma @Y

Finally, the following positive affinity is also applicable, originating from

conditional entropy and named as Information Dependence:
I R )
fg=="—F—= (4
Sk

, where 0 < [T, < 1. The above formula is extracted as follows:

= . S[AIK] _ SIKI+S[A]-S[KA] _ S[K;A]
MTey=1- JIAIK]=1-Goo = SiA] =S 25

Critique on existing literature

As already mentioned, Markowitz’s work has been groundbreaking and in the
field of portfolio optimization. The impact of his work was so remarkable that he
received a Nobel Prize in Economics in 1990.
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However, there are some serious issues to point out when it comes to the
application of the theory. It has been recognized that a Markowitz optimal portfolio is
highly sensitive to even a small alteration in expected asset returns (Black and
Litterman, 1992). Jorion (1985) found that changing a few observations in the sample is
able to significantly alter the asset allocation. Best and Grauer (1991) go on to note that
a mere slight increase in an asset mean can lead to exclusion of half of the assets from
the portfolio. Nevertheless, such a dramatic change will only slightly affect the portfolio
expected return and volatility.

This issue of over-sensitivity to returns becomes more important if we consider
the following point. Someone has only a finite number of past observations, based on
which the expected returns are computed. However, since many years there is evidence
that a historical average is not an accurate estimator of future returns (Merton, 1980;
Jorion, 1985). Similar estimation errors have been reported regarding the covariance
matrix (Jobson and Korkie, 1980).

However, Chopra and Ziemba (1993) also noted that for an investor with a
mediocre affinity for risk, mean-variance optimization is eleven times more sensitive to
estimation error in returns in contrast to estimation error in risk (variance), while the
model is two times more prone to estimation error in risk (variance) in comparison to
estimation error in covariance.

Not only are the inputs prone to estimation error, but it has also been reported
that the Markowitz model as an optimization procedure has an error-maximizing
property (Michaud, 1989). In other words, it has the tendency to increase the influence
of estimation errors as it assigns high weights to assets with high expected returns, small
variance or negative covariance.

In addition, according to Sharpe (1964), investors should hold the market
portfolio as this is theoretically the one achieving the highest Sharpe ratio. One may be
thus tempted to note that according to theory there is no point in ignoring returns and
focusing solely on the minimization of risk (Scherer, 2010). Nevertheless, there is
significant empirical evidence of low risk stocks performing better than high risk ones
and of the minimum variance portfolio outperforming the market one. (Haugen and
Baker, 1991; Blitz and van Vliet, 2007; Clarke et. al, 2006). This is another argument in

favor of excluding expected returns from portfolio selection.
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An important point to be made about network theory in portfolio selection is that
the usability of financial filtered networks could turn out questionable. Pozzi et. al
(2013) use both the Minimum Spanning Tree and the Planar Maximally Filtered Graph
while Peralta and Zareei (2016) choose only the Minimum Spanning Tree in order to
filter the correlation matrix. The reason of this choice is the reduction of data
complexity as a fully connected network is regarded as difficult to analyze. However,
the analyst has to wonder whether such filtering is in line with the research objective
and whether this is a proper way to handle correlations from a finance point of view.
Tse et. al (2010) report that both MST & PMFG are characterized by serious
information loss. The reason for this is that high correlations edges can be neglected
while low correlation ones are kept in order to satisfy the topological criteria set. They
mention that this reduces the usefulness of the aforementioned filtered networks,
especially regarding their ability to identify the correlations among assets. This ability is
of the utmost importance in portfolio construction, whereas restrictions such as the
filtered network being a tree or planar do not seem to add anything to the analysis as far
as finance is concerned. Instead, if high correlations are removed so that such criteria
are satisfied, this can turn out to be detrimental to the selected portfolio performance.

However, the most important issue to point out is the choice of the correlation
measure. Both Markowitz and the existing literature in networks & portfolio selection
try to identify the correlations between the asset returns with the Pearson correlation
coefficient. The latter refers to a linear measure of dependence between the two
variables. However, as stated by Fiedor (2014) there is strong evidence in literature that
financial markets are characterized by non-linearity. Fiedor (2014) comes up with a
series of examples from literature having provided us with evidence of non-linearity in
financial markets. Such examples include rates of return in commodities (Frank,
Stengos, 1989), currency rate changes (Hsieh, 1989; Brock, Hsieh, LeBaron,1991;
Meese,Rose,1991; Brooks, 1996; Qi, Wu, 2003), financial indexes (Scheinkman,
Lebaron, 1989), the FTSE-100 index (Abhyankar, Copeland, Wong, 1995). Stock
returns [Qi, 1999; McMillan, 2001; Sornette, Andersen, 2002; Oh, Kim, 2002] and
market index returns [Franses, Van Dijk, 1996; Chen, 1996; Abhyankar, Copeland,
Wong, 1997; Ammermann, Patterson 2003], which are more close to the scope of this
thesis, have also been found to be characterized from non-linearity. Furthermore, apart

from symmetric relations between stocks, directed ones could also be examined. Lead-
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lag relationships have already been studied in financial literature [Kullmann, Kertesz,
Kaski, 2008; Curme et al., 2014; Sandoval, 2013; Billio et. al, 2012] As also stated by
Peralta & Zareei (2016), who have already adopted network theory in portfolio
selection, the construction of directed networks of stocks is regarded as extremely
appealing. Therefore, the identification of directed networks as well as symmetric

networks through non-linear measures does seem to have very valid grounds.

Data
The dataset used consists of daily closing prices of 185 highly capitalized stocks

of the S&P-500 index, which demonstrate non-negative total equity from October to
December 2012. Stocks chosen are mentioned in the appendix. Data source is
Datastream by Thomson Reuters. Testing time period is between 01/10/2002 and
31/12/2012. This is a dataset resembling the one used by Peralta & Zareei (2016).

Methodology
For all stocks of the dataset, daily logarithmic returns are computed as follows:

rt:m(ﬁ) (26)

e r1;:the daily logarithmic return
e p¢ price of a stock at day t
® pra: price of a stock t-1
The returns are split in overlapping windows of 125 observations, with the
oldest 25 observations being replaced by 25 new ones as we move from window to

window. For each of the windows, the networks mentioned in Table 2 are identified.

Table 2: List of Networks identified and studied

Net I: Pearson correlation with #t = [ > 0] - #x 0<7hH <1

negative values replaced by zero

Net II: Absolute values of |7],ea 0< |l <1

Pearson correlation

Net IIT: Normalized Mutual B ) e P 0<ly<1
_ A= & &

Information g min {S,, $;}

Net IV Directed Normalized Ieoa = Ta[[Se = 81] 0<l.;<1

Mutual Information
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Net V: Information - Se +8 — S 0<K, <1
R = &
Interdependence Ska
Net VI: Information q Se + 8 — Sz 0<i,; <1
. 1= 3
Dependence (Asymmetric) - Sk

As shown in the third column of Table 2, the networks are weighted. Net I,

Netll, Netlll and Net V are symmetric, while Net IV and Net VI are asymmetric. The

networks are not exposed to any filtering due to the reasons described in the literature

review section. The formulas used for the aforementioned networks are depicted on

Table 3.

Table 3: Formulas for the different networks

0, if (Zm - rm) - (Zb& - ﬁul) =0
221()(_%‘ - ) (x? - ﬁla_)
\BT_, G — mo) 2 2[5, ok — mp)2] /2’

a1

KA

otherwise )

(27)- Pearson Correlation

T
1 v
m, = ?Z Xt

u=1

(28)-the empirical mean of the
Variable X,

1,if Statement is true The lverson bracket of the
[Statement] =1 .. .
0,if Statement is not true
Statement
[Knuth D.1992]

X1y XYy eees X the i, < T distinct observed
values of each Variable X, ,
v=1,2,...,N

s The empirical Entropy of the
S = — Y p(xY 5(x?
i=1

0< S, <log,(#,)

Sioalx¥=x{] . -
el iy,

ﬁ(xi s 1T eees Iy

(30)- The empirical probability

of the variable X,
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e Ty The Empirical Joint Entropy
Yl =~ z z p(att, %) logyp(xf, 1) of the Variables X, , X,
i=1 j=1

max {S,,$;} < S < Sk +8;

Tk = xf1[x? = x}] (31)- The empirical joint
T probability of the Variables

X, X3

plxf,x) =

For the purpose of identification of Networks Ill, IV, V, VI, the observations are
discretized into 8 distinct states. This is a number chosen in previous literature, too
(Navet, Chen, 2008). Besides, the binning in 8 states was chosen based on the famous

Sturges’ rule (Sturges, 1926), which indicates the optimal number of bins (denoted here
as k):

k=1 +logo(N) (32)

Furthermore, as shown by David Scott (Scott, 2009) , Sturges’ rule concides
with some more modern rules such as the Terrell-Scott inequality for the optimal

number of bins for sample sizes n = 100.

For each of the windows and the respective networks identified, the following

are computed -where applicable- for each of the stocks- vertices:

e Strength, in-Strength, out-Strength

e in-Eigenvector, out-Eigenvector

e Betweenness

e Closeness, in- Closeness, out- Closeness

e Eccentricity, in- Eccentricity, out- Eccentricity

For the degree and eigenvector centrality, the link between vertex k and vertex A
is 5, |Flan L » Teon » K s Ly depending on the network tested, while for
betweenness, closeness and eccentricity the link between vertex k and vertex A equals to

1 minus the aforementioned weights (¥, |Flia, T s Teon » Kt s iea)-

After the above centrality/peripherality measures are computed, the stocks-

vertices with the 20 highest and the 20 lowest values are chosen per window/network.
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Thus, two portfolios are constructed per window/network, one from the most central

and one from the least central stocks-vertices.

In order for the performance of those portfolios to be tested (short selling is
prohibited), the performance criteria mentioned in Table 4 are computed for each of
them for a holding period of 51, 52, 53...248, 249, 250 days:

Table 4: Portfolio performane criteria

N
Return (33) Ry = z Wic B
k=1
N N
Variance (34) Var(, ) = o2 = Z Z Wy W0
k=11=1
N
Beta (35) B, = Z Wi B
k=1
Risk adjusted g R
return (36) g,
Systemic risk . R,
adjusted return k= ﬁ_p
(37)

Sp and T, are similar to Sharpe and Treynor ratios respectively. The only
difference is that the risk free rate is not included. Risk free rate was excluded as it
would not add anything to the analysis, it terms of which network is the best-performing

one.

Then, for each network & centrality/peripherality measure, | have computed the
mean of the results for each performance criterion per holding day. The images in the
results section as well as in the appendix namely depict how the portfolios stemming
from each network type and network centrality have performed on average per holding
day in terms of each of the 5 performance criteria set for the whole testing period. The
same methodology has also been applied only for the financial crisis period (August
2007-March 2009) in separate, so as to check which networks and centrality measures
perform better at times of extreme volatility.
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Results

One of the first points to be made is that, in accordance with the findings of
Pozzi et. al. (2013) portfolios made of stocks/vertices with lower strength, closeness and
eigenvector centrality perform better in terms of return, risk and adjusted to risk return
in contrast to stocks/vertices of high centrality values. The same is the case with

stocks/vertices of higher eccentricity in comparison to the ones of lower eccentricity.

Return min eigenvector Return max eigenvector

Net 1
08 > Net2
Net 3
Net 4 in
014k Net 4 out
Net 5
Net 6 in
Net B out

016

014

01F

01F

0.08

Return

0.06 |

© Net1
©  Net2
Net 3
Net 4 in

0.04 F78R

Net 4 out
Net 5
Net 6 in
Net 6 out

002

| | | ) \ \ \ )
50 100 150 200 250 50 100 150 200 250
Holding days Holding days

Image 11: First example- Less central vertices outperform more central ones (higher return)
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Image 12: Second example- Less central vertices outperform more central ones (higher return adjusted to
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Image 13: Third example-Less central vertices outperform more central ones (lower risk)
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Regarding strength, the nets recognized by Pearson Correlation have in most
cases the best results in Return. In only 9.5% of the cases (all of them for holding
periods of less than 150 days) the results of Net 6 in are better. However, the case is
exactly the opposite when risk criteria and not return are set as targets. Net 6 out
produces the best results in 100% of the testing holding periods regarding beta, while
Net 5 the best results for variance in 99% of the holdings periods. Net 3’s results are
also close to optimal regarding beta and variance while Net 6 in also demonstrates
satisfactory results regarding variance. The results regarding risk-adjusted return are
mixed between linear and non-linear measures. As shown in the relevant graph, too, the
results of Nets 1 &2 almost coincide with those of Net 3 and Net 6 out, while the
percentage table reveals that the split between linear and non-linear nets is close to 50%
- 50%. The same networks are the optimal for systemic risk adjusted return as well.
However, the networks recognized by non-linear measures produce the best results in
most of the cases as shown by both the respective image and the percentage table (Net 6
out being the best in 67.5% of the cases)

Return min closeness Return max closeness

Net 1 Y Net 1
Net 2 0161 Net 2
Net 3 Net 3
Net 4 in Net 4 in
014} Net 4 out 014k Net 4 out
Net 5 Net &
Net 6 in Net 6 in
Net B out

016

Net 6 out

012

\ | . ) \ | \ )
50 100 150 200 250 50 100 150 200 250
Holding days Holding days

Image 14: Closeness- Pearson correlation networks outperform the rest in terms of return
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Variance min strength Beta min strength
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Image 15: Strength- Networks identified by non-linear measures outperform the rest in terms of risk
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Image 16: Closeness- The best non-linear measures perform equally well or sometimes better than the

linear measures in terms of adjusted to risk return
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The results of closeness centrality demonstrate significant similarity with those
of the strength. The Pearson Correlation Networks 1&2 produce again the best results in
Return, while the bigger the holding period, the bigger the gap between those
aforementioned networks and the second best performing Net 3 and Net 6 out. This is
identical to the image of the strength return results. While the linear measures stemming
networks are the best performing ones about return, the non-linear stemming ones are -
exactly as for strength- the best performing ones about risk measures. Net 3 produces
satisfactory -though not the best- results concerning both beta and variance; Net 6 (in) is
among the best options for variance while the best results stem again from Net 5 and
Net 6 (out) for variance and beta respectively. The results for adjusted to (systemic)
risk return are no objection to the general empirical result of similarity between strength
and closeness. Nets 1,2 as well as Net3 and Net 6 (out) in are among the best
performing regarding risk adjusted return, with the best performance per holding day
being almost equally split between linear and non-linear measures. Just like strength,
the same networks are the best performing for systemic risk adjusted return as well,
with the non-linear Net 6 (out) being the best performing one for the majority of the

holding days.

Although not identical to the results of strength and closeness, the results of
eigenvector centrality also have significant similarities with those of the aforementioned
centrality measures. Regarding return, Nets 1 & 2 are the best performing ones. Unlike
strength and closeness, Net 1 is the best performing one. However, the differences
between two Pearson stemming networks are negligible. Therefore, the main conclusion
to be drawn regarding return is the same as in the previous cases; namely that the
networks recognized by Pearson correlation appear to be leading to better results. As far
as risk criteria are concerned, non-linear networks constitute once more the best options.
Net 3 and Net 6 (in) are the best regarding beta, while Net 5 and Net 6 out (and then Net
3) the best concerning variance. In comparison to strength/closeness, two points about
risk measures and eigenvector centrality could me made: i) Net 6 (in) appears as one of
the best choices for the first time, ii) there are different networks to be opted for
depending on the investing horizon. For a short investing horizon, the directed non-
linear networks are better in 100% of the holding days (Net 6 in for beta, Net 6 out for
variance). On the other hand, the undirected non-linear networks are the best performing
in most of the cases in which the holding period is longer (Net 3-93%-Beta, Net5-63%-
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Variance). Although the difference of the results between Nets 3,5 & 6 is not
significantly large, this different image per investment horizon (and especially the fact
that directed networks perform better the longer this investing horizon) cannot be

neglected.

Beta min eigenvector Variance min eigenvector

Net 1 Net 1

Net 2 Net 2
—Net3 Net 3
Net 4 in Net 4 in
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Image 17: Eigenvector- Asymmetric measures prevail for a shorter horizon in terms of risk minimization

Regarding eccentricity, the best results [biggest return, (systemic) risk adjusted
return and smallest beta, variance] stem from the portfolios constructed from stocks
(nodes) with the highest eccentricity. This may appear as a difference compared to the
centrality measures mentioned above, for which the nodes with the minimum centrality
scores were chosen in order for portfolios to be constructed. However, this should not
provoke confusion. As already mentioned in literature, “the lower the eccentricity of a
particular node, the closer it is to every other node, that is, the more central it is” (Kaya,
2013). However, unlike the centrality measures, the best results do not necessarily come
from Pearson correlation recognized networks. In fact, 70% of the best results stem
from non-linear measures and mainly Net 6 (in) and Net 5. Eccentricity’s results
resemble, however, those of centrality measures concerning risk criteria as the best
results for beta and variance come from networks recognized from non-linear measures.
Net 6 (out) is the best for beta, which was also the case for strength and closeness
centrality. Net 6 (in) is the best option for variance. Finally, non-linear networks and

especially Net 5 are the best options for risk-adjusted return. Net 3 is among the best
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options for adjusted to (systemic) risk return while Net 6 (out) only for systemic risk

adjusted return.

The above analysis about eccentricity is only worth it from such a point of view
that the linear measures are compared to the non-linear ones. In fact, the portfolio
performance of eccentricity is significantly inferior to the one of portfolios constructed
with strength, closeness and eigenvector centrality. Based on the results of this thesis,
eccentricity is therefore suggested to be an unsuitable criterion in order for optimal

portfolios to be constructed.

Risk adjusted return min eccentricity Risk adjusted return max eccentricity
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Image 18: Eccentricity- High eccentricity vertices outperform low eccentricity ones but are outperformed

by strength, closeness, eigenvector.
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Betweenness centrality is also found to be unsuitable for the purposes of this
essay. The performance of portfolios constructed from nodes with minimum
betweenness are in most cases equal or inferior to the one of high-centrality portfolios,
while neither maximum or minimum betweenness centrality nodes can lead to results
that minimum strength, closeness eigenvector can, judging from the results of this
thesis. The reason behind this may be that many nodes have betweenness centrality
equal to zero; therefore Betweenness itself may not be a sufficient criterion in order to
select the optimal stocks (20 in our case).

Beta min betweenness centrality Beta max betweenness centrality
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Image 19: Beta betweenness
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Variance min betweenness centrality Variance max betweenness centrality
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Image 20: Variance Betweenness
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Image 21: Betweenness Return

In a nutshell, the results of this thesis indicate that eccentricity and betweenness
would better be not regarded as someone’s first option when trying to implement
network theory for portfolio selection. On the other hand, opting for stocks/vertices with
the minimum strength, closeness or eigenvector centrality appears as the optimal
decision. The main conclusion until now is that such networks recognized by Pearson
Correlation more or less to the best results regarding return, whereas networks

recognized by non-linear measures lead to far better results as far as risk in concerned.
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In order to further check the latter results, the same methodology (with an
overlap of 115 observations) was applied specifically for the period of the financial
crisis of 2008. In particular, the financial crisis testing period was chosen to be between
01.08.2007 and 31.03.2009. The logic of setting the start point on August 2007 is that
BNP Paribas froze three of their funds at that month, admitting their inability to price
the CDOs (collateralized debt obligations), more or less accepting their high exposure to
subprime loans. On 02/04/2009, a global stimulus package of $5tn was agreed, which is
why the end of the turmoil was set by the writer at the end of March 2009.

Regarding strength, the best results for return do not only stem from Netl & Net
2 anymore, as for about 60% of the tested holding days the best results stem from some
of the non-linear networks. Nevertheless, the most impressive results are observed in
the case of risk and risk adjusted return. When examining the whole testing period, it
was already shown that portfolios constructed by networks recognized from non-linear
measures perform better in terms of risk, meaning that portfolios of less risk are
constructed. This finding is confirmed during the crisis period, in which, however, the
difference between the risk of the two categories of portfolios becomes much bigger.
Images 22 & 23 about variance and beta respectively are indicative.

During both the whole period and the crisis period, the least containing risk
portfolios are those that have been constructed from non-linear networks. However,
during the crisis there is a much greater gap between linear and non-linear ones. In
addition, during the crisis all non-linear networks result in portfolios of less risk
compared to the linear ones, which was not the case for the whole period. Non-linear
measures are also found to be superior also in terms of (systemic) risk adjusted return,

as their portfolios achieve higher adjusted to risk return for 100% of the holding days.
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Image 22: Strength Beta during the whole period (right) and crisis (left).Superiority of non-linear

measures in contrast to linear ones is more evident during the crisis
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Image: 23: Strength Variance during the whole period (right) and crisis (left).Superiority of non-linear

measures in contrast to linear ones is more evident during the crisis

Just as for the whole testing period, the results of closeness centrality are almost
identical to the ones of strength for the crisis period as well. In other words, non-linear
nets (Net 4 out, Net 5) achieve the best performance in return for most of the holding
days tested, with the based on Pearson correlation Net 2 also achieving the best

performance for an important amount of holding days. Net 6 (in) and Net 5 are the
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optimal choices as far as beta and variance is concerned. Concerning risk adjusted
return, Net 4 out and Net 3 have the greatest performance. However, it should be noted
that in contrast to risk, the differences between the networks and the constructed

portfolios are not notably big for risk adjusted return.
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Image 24: Return (closeness) during the crisis- Less difference between central and less central vertices;

Non-linear measures are also taking over in terms of performance

As far as eigenvector centrality is concerned, Net 1 & Net 2 still manage to
achieve the best performance in return, with this superiority being greater the larger the
investing horizon. The results about risk show some similarity to the ones of closeness
and strength, in terms of choosing between linear and nonlinear measures. However,
Net 6 out (and not Net 6 in which was the best for strength & closeness) is the optimal
choice for eigenvector centrality, with Net 5 being the second best performing network.
Regarding (systemic) risk adjusted return, the results of the different networks do not
notably differ with each other. Nevertheless, Net 6 out and Net 3 are the best

performing networks.
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Image 25: Eigenvector Crisis; Linear measures remain the best regarding return
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Image 26: Eigenvector Crisis-Net 6 is the best performing in terms of risk minimization

Until now, the main point of the discussion is the comparison between networks
recognized by linear and nonlinear measures. However, a comparison should also be
made between symmetric and asymmetric networks. One point to be made is that
(excluding betweenness), Net 4 is not the best performer for any one of the tested
investing horizons for the whole testing period. However, Net 4 (out) seems to be quite
a good performer during the crisis period. In particular, it’s the optimal choice for 32%
of the holding days in return (strength), 58% in risk adjusted return and 32.50% in

systemic risk adjusted return. In addition, those percentages are significantly bigger for
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a larger investing harizon (64%, 98%, 65% for Return, risk adjusted and systemic risk
adjusted return respectively). The corresponding percentages are (almost) identical for
closeness due to the aforementioned similarity of the results of the two centrality

measures.

The above comments about Net 4 indicate that directed networks seem to be of
greater value during the crisis period. This turns out to be true if Table 5 is consulted.
Table 5: Frequency table of best performance per criterion; Division in i)networks from linear measures,

symmetric networks from non-linear measures, asymmetric networks from non-linear measures, ii)whole
testing period, crisis period

WHOLE PERIOD CRISIS

Strength Linear NLSymmetric NL Asymmetric Strength Linear NLSymmetric NLAsymmetric

Return 90,00% 0,50% 9,50% Return 42,50% 21,50% 36,00%

Beta 0,00% 0,00% 100,00% Beta 0,00% 10,50% 89,50%

Variance 0,00% 99,00% 1,00% Variance 0,00% 57,00% 43,00%

Risk adj. return 51,00% 43,50% 5,50% Risk adj. return 0,00% 36,50% 63,50%

Systemicrisk adj.return  3,50% 29,00% 67,50% Systemic risk adj.return 0,00% 59,00% 41,00%
Eigenvector Linear NLSymmetric NL Asymmetric Eigenvector Linear NLSymmetric NL Asymmetric

Return 100,00% 0,00% 0,00% Return 77,00% 5,00% 18,00%

Beta 0,00% 46,50% 53,50% Beta 0,00% 0,00% 100,00%

Variance 0,00% 31,50% 68,50% Variance 0,00% 0,00% 100,00%

Risk adj. return 100,00% 0,00% 0,00% Risk adj. return 26,00% 31,50% 42,50%

Systemic risk adj.return 85,50% 0,00% 14,50% Systemic risk adj.return  27,00% 33,50% 39,50%
Closeness Linear NLSymmetric NL Asymmetric Closeness Linear NLSymmetric NL Asymmetric

Return 93,00% 0,00% 7,00% Return 45,50% 19,00% 35,50%

Beta 0,00% 0,00% 100,00% Beta 0,00% 10,50% 89,50%

Variance 0,00% 99,00% 1,00% Variance 0,00% 57,00% 43,00%

Risk adj. return 54,00% 41,50% 4,50% Risk adj. return 1,50% 35,00% 63,50%

Systemic risk adj.return 5,00% 27,50% 67,50% Systemic risk adj.return 0,00% 59,00% 41,00%

The above summarizes what has been described in the analysis of each centrality
measure’s results. In the whole period, linear networks seem to be superior as far as
return is concerned while nonlinear in terms of risk with asymmetric ones performing
better in terms of beta and symmetric ones in terms of variance. Regarding adjusted to
risk return, linear measures perform better for eigenvector centrality, while the results

are mixed for strength and closeness.

Apart from the worse performance of linear measures during the crisis, which
has already been analyzed, it is evident that asymmetric networks’ superiority increases
significantly during the crisis for most the cases [strength/closeness: return-variance-

risk adjusted return , Eigenvector: return-beta-variance-(systemic) risk adjusted return].
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In order for a comparison between nonlinear symmetric and asymmetric
networks to be possible, the investing horizon should also be taken into consideration.
With the exception of variance (strength/closeness), asymmetric networks perform
better than nonlinear symmetric for more than 150 holding days during the crisis. On
the other hand, symmetric networks seem to be performing better in terms of return and
(systemic) risk adjusted return for a smaller investing horizon during the same period. It
should be also noted that asymmetric networks perform better in terms of both beta and

variance when it comes to a smaller investing horizon during the crisis.

Table 6: Frequency table of best performance per criterion. Additional division in max horizon (holding
days: 151-250) and min horizon (51-150)

WHOLE PERIOD-max horizon CRISIS-max horizon
Strength Linear NLSymmetric NL Asymmetric Strength Linear NLSymmetric NLAsymmetric
Return 100,00% 0,00% 0,00% Return 36,00% 0,00% 64,00%
Beta 0,00% 0,00% 100,00% Beta 0,00% 0,00% 100,00%
Variance 0,00% 100,00% 0,00% Variance 0,00% 100,00% 0,00%
Risk adj. return 56,00% 44,00% 0,00% Risk adj. return 0,00% 2,00% 98,00%
Systemic risk adj.return  2,00% 32,00% 66,00% Systemic risk adj.return 0,00% 32,00% 68,00%
Eigenvector Linear NLSymmetric NL Asymmetric Eigenvector Linear NLSymmetric NLAsymmetric
Return 100,00% 0,00% 0,00% Return 100,00% 0,00% 0,00%
Beta 0,00% 93,00% 7,00% Beta 0,00% 0,00% 100,00%
Variance 0,00% 63,00% 37,00% Variance 0,00% 0,00% 100,00%
Risk adj. return 100,00% 0,00% 0,00% Risk adj. return 1,00% 28,00% 71,00%
Systemic risk adj.return  72,00% 0,00% 28,00% Systemic risk adj.return 12,00% 34,00% 54,00%
Closeness Linear NLSymmetric NL Asymmetric Closeness Linear NLSymmetric NLAsymmetric
Return 100,00% 0,00% 0,00% Return 37,00% 0,00% 63,00%
Beta 0,00% 0,00% 100,00% Beta 0,00% 0,00% 100,00%
Variance 0,00% 100,00% 0,00% Variance 0,00% 100,00% 0,00%
Risk adj. return 60,00% 40,00% 0,00% Risk adj. return 0,00% 2,00% 98,00%
Systemic risk adj.return  5,00% 29,00% 66,00% Systemic risk adj.return 0,00% 32,00% 68,00%

WHOLE PERIOD-min horizon CRISIS-min horizon

Strength Linear NLSymmetric NLAsymmetric Strength Linear NLSymmetric NLAsymmetric
Return 80,00% 1,00% 19,00% Return 49,00% 43,00% 8,00%
Beta 0,00% 0,00% 100,00% Beta 0,00% 21,00% 79,00%
Variance 0,00% 98,00% 2,00% Variance 0,00% 14,00% 86,00%
Risk adj. return 46,00% 43,00% 11,00% Risk adj. return 0,00% 71,00% 29,00%
Systemic risk adj.return  5,00% 26,00% 69,00% Systemic risk adj.return 0,00% 86,00% 14,00%
Eigenvector Linear NLSymmetric NL Asymmetric Eigenvector Linear NLSymmetric NL Asymmetric
Return 100,00% 0,00% 0,00% Return 54,00% 10,00% 36,00%
Beta 0,00% 0,00% 100,00% Beta 0,00% 0,00% 100,00%
Variance 0,00% 0,00% 100,00% Variance 0,00% 0,00% 100,00%
Risk adj. return 100,00% 0,00% 0,00% Risk adj. return 51,00% 35,00% 14,00%
Systemic risk adj.return 99,00% 0,00% 1,00% Systemic risk adj.return  42,00% 33,00% 25,00%
Closeness Linear NLSymmetric NL Asymmetric Closeness Linear NLSymmetric NL Asymmetric
Return 86,00% 0,00% 14,00% Return 54,00% 38,00% 8,00%
Beta 0,00% 0,00% 100,00% Beta 0,00% 21,00% 79,00%
Variance 0,00% 98,00% 2,00% Variance 0,00% 14,00% 86,00%
Risk adj. return 48,00% 43,00% 9,00% Risk adj. return 3,00% 68,00% 29,00%
Systemic risk adj.return  5,00% 26,00% 69,00% Systemic risk adj.return 0,00% 86,00% 14,00%
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Table 7: Comparing the performance of non-linear symmetric networks. The percentages do not have
sum equal to 1, the rest of the respective best performances have been achieved by the rest networks

NL Symmetric WHOLE PERIOD NL Symmetric WHOLE PERIOD-MAX HORIZON NL Symmetric WHOLE PERIOD-MIN HORIZON
Strength Net3 Net5 Strength Net 3 Net5 Strength Net3 Net5
Return 0,50% 0,00% Return 0,00% 0,00% Return 1,00% 0,00%
Beta 0,00% 0,00% Beta 0,00% 0,00% Beta 0,00% 0,00%
Variance 0,00% 99,00% Variance 0,00% 100,00% Variance 0,00% 98,00%
Risk adj. return 43,50% 0,00% Risk adj. return 44,00% 0,00% Risk adj. return 43,00% 0,00%
Systemic risk adj.return = 29,00% 0,00% Systemic risk adj.return 32,00% 0,00% Systemicrisk adj.return  26,00% 0,00%
Eigenvector Net3 Net 5 Eigenvector Net 3 Net5 Eigenvector Net3 Net5
Return 0,00% 0,00% Return 0,00% 0,00% Return 0,00% 0,00%
Beta 46,50%  0,00% Beta 93,00% 0,00% Beta 0,00% 0,00%
Variance 0,00% 31,50% Variance 0,00% 63,00% Variance 0,00% 0,00%
Risk adj. return 0,00% 0,00% Risk adj. return 0,00% 0,00% Risk adj. return 0,00% 0,00%
Systemic risk adj.return  0,00% 0,00% Systemic risk adj.return  0,00% 0,00% Systemic risk adj.return 0,00% 0,00%
Closeness Net3 Net5 Closeness Net3 Net5 Closeness Net 3 Net5
Return 0,00% 0,00% Return 0,00% 0,00% Return 0,00% 0,00%
Beta 0,00% 0,00% Beta 0,00% 0,00% Beta 0,00% 0,00%
Variance 0,00% 99,00% Variance 0,00% 100,00% Variance 0,00% 98,00%
Risk adj. return 41,50% 0,00% Risk adj. return 40,00% 0,00% Risk adj. return 43,00% 0,00%
Systemic risk adj.return = 27,50% 0,00% Systemic risk adj.return 29,00% 0,00% Systemic risk adj.return  26,00% 0,00%
NL Symmetric CRISIS NL Symmetric CRISIS-MAX HORIZON NL Symmetric CRISIS-MIN HORIZON
Strength Net3 Net5 Strength Net 3 Net5 Strength Net3 Net5
Return 1,00% 20,50% Return 0,00% 0,00% Return 2,00% 41,00%
Beta 0,00%  10,50% Beta 0,00% 0,00% Beta 0,00% 21,00%
Variance 0,00% 57,00% Variance 0,00% 100,00% Variance 0,00% 14,00%
Risk adj. return 36,50% 0,00% Risk adj. return 2,00% 0,00% Risk adj. return 71,00% 0,00%
Systemic risk adj.return = 59,00% 0,00% Systemic risk adj.return 32,00% 0,00% Systemicrisk adj.return  86,00% 0,00%
Eigenvector Net 3 Net5 Eigenvector Net3 Net5 Eigenvector Net3 Net5
Return 0,00% 5,00% Return 0,00% 0,00% Return 0,00% 10,00%
Beta 0,00% 0,00% Beta 0,00% 0,00% Beta 0,00% 0,00%
Variance 0,00% 0,00% Variance 0,00% 0,00% Variance 0,00% 0,00%
Risk adj. return 27,50% 4,00% Risk adj. return 20,00% 8,00% Risk adj. return 35,00% 0,00%
Systemicrisk adj.return  18,50%  15,00% Systemic risk adj.return 17,00% 17,00% Systemic risk adj.return  20,00% 13,00%
Closeness Net 3 Net5 Closeness Net3 Net5 Closeness Net3 Net5
Return 1,00% 18,00% Return 0,00% 0,00% Return 2,00% 36,00%
Beta 0,00%  10,50% Beta 0,00% 0,00% Beta 0,00% 21,00%
Variance 0,00% 57,00% Variance 0,00% 100,00% Variance 0,00% 14,00%
Risk adj. return 35,00% 0,00% Risk adj. return 2,00% 0,00% Risk adj. return 68,00% 0,00%
Systemic risk adj.return  59,00% 0,00% Systemic risk adj.return 32,00% 0,00% Systemic risk adj.return  86,00% 0,00%

Comparing Net 3 and Net 5, it should be pointed out that both of them are
usually among the best performers in terms of return, risk and adjusted to risk return.
More accurately, they usually refrain from placing at the bottom. However, it should be
noted that Net 3 performs better during the whole period while Net 5 does so during the
crisis. Regarding strength and closeness, Net 3 is among the top options for (systemic)
risk adjusted return and beta, with Net 5 being the next option having a significant
difference from the top. Net 5 is the best option for building a portfolio of low variance.
On the other hand, during the crisis Net 5 is one of the two best options for
beta/variance, with Net 3 being the next option. Regarding eigenvector, the main point
to be made is that Net 5 does not perform well at all in terms or return/adjusted to risk

return during the whole period while Net 3’s performance is sufficient. During the
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crisis, however, Net 5 is the second best performing one, with Net 3 being the third best

option.

Table 8: Comparing the performance of non-linear asymmetric networks. The percentages do not have
sum equal to 1, the rest of the respective best performances have been achieved by the rest networks

NL Asymmetric- WHOLE PERIOD NL Asymmetric- WHOLE PERIOD- MAX HORIZON NL Asymmetric- WHOLE PERIOD- MIN HORIZON
Strength Net4in Net4out Net6in Net6out Strength Net4in Net4out Net6in Net6out Strength Net4in Net4out Net6in Net6out
Return 0,00%  0,00%  9,50% 0,00% Return 0,00%  0,00% 0,00%  0,00% Return 0,00%  0,00% 19,00%  0,00%
Beta 0,00% 0,00%  0,00% 100,00% Beta 0,00%  0,00% 0,00%  100,00% Beta 0,00%  0,00%  0,00% 100,00%
Variance 0,00%  0,00% 1,00% 0,00% Variance 0,00%  0,00% 0,00%  0,00% Variance 0,00%  0,00% 2,00% 0,00%
Risk adj. return 0,00%  0,00% 0,00% 5,50% Risk adj. return 0,00% 0,00% 0,00%  0,00% Risk adj. return 0,00% 0,00% 0,00%  11,00%
Systemicrisk adj.return  0,00%  0,00% 0,00%  67,50% Systemic risk adj.return  0,00% 0,00% 0,00%  66,00% Systemicrisk adj.return  0,00% 0,00% 0,00%  69,00%
Eigenvector Net4in Net4out Net6in Net6out Eigenvector Net4in Net4out Net6in Net6out Eigenvector Net4in Net4out Net6in Net6out
Return 0,00%  0,00%  0,00% 0,00% Return 0,00%  0,00% 0,00%  0,00% Return 0,00%  0,00%  0,00% 0,00%
Beta 0,00% 0,00% 53,50% 0,00% Beta 0,00%  0,00% 7,00%  0,00% Beta 0,00%  0,00% 100,00% 0,00%
Variance 0,00% 0,00% 0,00% 68,50% Variance 0,00%  0,00% 0,00%  37,00% Variance 0,00%  0,00%  0,00% 100,00%
Risk adj. return 0,00% 0,00% 0,00% 0,00% Risk adj. return 0,00% 0,00% 0,00% 0,00% Risk adj. return 0,00% 0,00% 0,00% 0,00%
Systemicrisk adj.return  0,00% 0,00% 14,50%  0,00% Systemic risk adj.return  0,00% 0,00% 28,00% 0,00% Systemicrisk adj.return  0,00% 0,00% 1,00% 0,00%
Closeness Net4in Net4out Net6in Net6out Closeness Net4in Net4out Net6in Net6out Closeness Net4in Net4out Net6in Net6out
Return 0,00%  0,00% 7,00% 0,00% Return 0,00%  0,00% 0,00%  0,00% Return 0,00%  0,00% 14,00% 0,00%
Beta 0,00% 0,00%  0,00% 100,00% Beta 0,00%  0,00% 0,00%  100,00% Beta 0,00%  0,00%  0,00% 100,00%
Variance 0,00%  0,00% 1,00% 0,00% Variance 0,00%  0,00% 0,00%  0,00% Variance 0,00%  0,00% 2,00% 0,00%
Risk adj. return 0,00%  0,00%  0,00% 4,50% Risk adj. return 0,00%  0,00% 0,00%  0,00% Risk adj. return 0,00%  0,00%  0,00% 9,00%
Systemicrisk adj.return  0,00%  0,00% 0,00%  67,50% Systemic risk adj.return  0,00% 0,00% 0,00%  66,00% Systemicrisk adj.return  0,00% 0,00% 0,00%  69,00%
NL Asymmetric- CRISIS NL Asymmetric- CRISIS- MAX HORIZON NL Asymmetric- CRISIS- MIN HORIZON
Strength Net4in Net4out Net6in Net6out Strength Net4in Net4out Net6in Net6out Strength Net4in Net4out Net6in Net6out
Return 0,00%  32,00%  4,00% 0,00% Return 0,00% 64,00% 0,00% 0,00% Return 0,00%  0,00%  8,00% 0,00%
Beta 0,00% 0,00% 89,50%  0,00% Beta 0,00%  0,00% 100,00% 0,00% Beta 0,00%  0,00% 79,00%  0,00%
Variance 0,00% 0,00%  43,00% 0,00% Variance 0,00% 0,00% 0,00% 0,00% Variance 0,00% 0,00% 86,00% 0,00%
Risk adj. return 550% 58,00% 0,00% 0,00% Risk adj. return 0,00% 98,00% 0,00%  0,00% Risk adj. return 11,00% 18,00%  0,00% 0,00%
Systemicrisk adj.return  1,00%  32,50%  7,50% 0,00% Systemicrisk adj.return  0,00%  65,00%  3,00% 0,00% Systemicrisk adj.return  2,00% 0,00% 12,00% 0,00%
Eigenvector Net4in Net4out Net6in Net6out Eigenvector Net4in Net4out Net6in Net6out Eigenvector Net4in Net4out Net6in Net6out
Return 0,00% 0,00% 0,00% 18,00% Return 0,00%  0,00% 0,00%  0,00% Return 0,00% 0,00%  0,00% 36,00%
Beta 0,00% 0,00% 0,00% 100,00% Beta 0,00% 0,00% 0,00% 100,00% Beta 0,00% 0,00%  0,00% 100,00%
Variance 0,00% 0,00%  0,00% 100,00% Variance 0,00%  0,00% 0,00%  100,00% Variance 0,00%  0,00%  0,00% 100,00%
Risk adj. return 0,00%  0,00% 0,00%  42,50% Risk adj. return 0,00% 0,00% 0,00%  71,00% Risk adj. return 0,00% 0,00% 0,00%  14,00%
Systemicrisk adj.return  0,00%  0,00% 0,00%  39,50% Systemic risk adj.return  0,00% 0,00% 0,00%  54,00% Systemicrisk adj.return  0,00% 0,00% 0,00%  25,00%
Closeness Net4in Net4out Net6in Net6out Closeness Net4in Net4out Net6in Net6out Closeness Net4in Net4out Net6in Net6out
Return 0,00% 31,50%  4,00% 0,00% Return 0,00% 63,00% 0,00% 0,00% Return 0,00%  0,00%  8,00% 0,00%
Beta 0,00% 0,00% 89,50% 0,00% Beta 0,00%  0,00% 100,00% 0,00% Beta 0,00%  0,00% 79,00%  0,00%
Variance 0,00% 0,00% 43,00% 0,00% Variance 0,00%  0,00% 0,00%  0,00% Variance 0,00%  0,00% 86,00% 0,00%
Risk adj. return 5,50% 58,00% 0,00% 0,00% Risk adj. return 0,00% 98,00% 0,00%  0,00% Risk adj. return 11,00% 18,00%  0,00% 0,00%
Systemicrisk adj.return  1,00%  32,50%  7,50% 0,00% Systemicrisk adj.return  0,00%  65,00% 3,00%  0,00% Systemicrisk adj.return  2,00% 0,00% 12,00% 0,00%

Regarding asymmetric networks, Net 4 does not make it to the top performers
for any of the tested holding days during the whole testing period. However, Net 4 (out)
shows up a regularly good performer during the crisis [strength/closeness: return-
(systemic) risk adjusted return]. Nevertheless, it should be noted that Net 6 clearly
outperforms Net 4, judging from both the whole as well as the crisis period. During the
whole period, Net 6 (out) is the best beta performer for all holding days, the best
systemic risk adjusted return performer for most of the days, while its performance in
risk adjusted return and variance is also among the top. During the crisis, Net 6 is by far
the best beta performer for strength/eigenvector/closeness, while it is also the best
variance performer for eigenvector. On this other hand, Net 4’s risk performance during
the crisis is very poor and often comparable to the one of Net 1 & Net 2. Their seeming

superiority in adjusted to (systemic) risk return during the crisis is due to the return.
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However, returns in such a crisis period are by default negligible; risk is of the utmost
importance at such times and after all, Net 4 does not manage to have such a
performance in adjusted to (systemic) risk return during the whole period. Net 6’s
consistency leads therefore to the conclusion that it is more suitable than Net 4 in order

for portfolios with low risk or relatively high adjusted to risk return to be constructed.

EPILOGUE-CONCLUSIONS
In a nutshell, the main conclusions to be drawn from this thesis are the following:

e Stocks with lower strength, eigenvector, and closeness centrality and higher
eccentricity scores form better performing portfolios in terms of return, risk
(total and systemic), and adjusted risk return.

e Eccentricity performs worse in comparison to strength, eigenvector and
closeness. No conclusion can be drawn about betweenness centrality.

e Networks identified from linear correlation measures lead to better performing
portfolios in terms of return

e Networks identified from nonlinear measures lead to portfolios containing less
systematic and unsystematic risk, while networks identified from the best
performing nonlinear measures perform equally or sometimes better than the
ones identified from linear ones.

e During periods of crisis, the better performance of nonlinear measures in
contrast to linear measures in terms of building of portfolios of less total and
systematic risk is emphatic.

e During periods of crisis, the importance of asymmetric networks is increased in
order for better performance to be ensured.

e For strength/closeness, asymmetric networks build portfolios of less systematic
risk and higher adjusted to systematic risk return.

e Net 6 (Information Dependence) is the best of the asymmetric networks tested.
Net 3(Normalized Mutual Information) performs decently both during the whole
period and the crisis while Net 5(Information Interdependence) performs better
than Net 3 during the crisis.
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The application of the same methodology to further datasets would be very useful in
order for the possibility of the extraction of more generic conclusions to be examined.
Furthermore, apart from network centralities, network communities could also be
exploited in portfolio selection and especially in asset allocation. Instead of allocating
wealth among different asset categories or sector, which is common practice, it would
be very fruitful to check if an allocation between network communities can lead to

better performance and risk mitigation.
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APPENDICES

Appendix A. Images

Appendix A.1.1- Whole Testing Period
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Image 36: Eigenvector Adjusted to systemic risk return
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Image 37: Closeness Return
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Image 38: Closeness Beta
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Image 39: Closeness Variance
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Image 40: Closeness Adjusted to systemic risk return
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Image 41: Betweenness Return
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Image 44: Betweenness Adjusted to risk return
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Image 45: Betweenness Adjusted to systemic risk return
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Image 46: Eccentricity Return
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Image 47: Eccentricity Beta
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Image 48: Eccentricity Variance
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Image 49: Eccentricity Adjusted to risk return
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Image 50: Eccentricity Adjusted to systemic risk return

Appendix A.1.2- Whole Testing Period/Crisis axis bounds

The images of Appendix A.1.2 refer to the same values as Appendix A.1.1. However,
they are plotted now with same axis bounds as the crisis images in Appendix A.2 in
order for a comparison between the whole testing period and the crisis period to be
facilitated.
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Image 51: Strength return
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Image 52: Strength Beta
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Image 53: Strength Variance
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Image 54: Strength Adjusted to risk return

Systemic risk adjusted return min strength

Net 1

Net 2
Net 3
Net 4 in
Net 4 out
Net 5
Net B in
Net 6 out

50

|
100 150
Holding days

L
200

)
250

Adjusted to systemic risk return

o
o
T

o

o
o
@

o
T

005

01k

Systemic risk adjusted return max strength

+ Net1

Net 2
Net 3
Net 4 in
Net 4 out
Net 5
Net 6 in
Net 6 out

50

\ )
100 150 200 250
Holding days

Image 55: Strength Adjusted to systemic risk return
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Image 56: Eigenvector Return
Beta min eigenvector Beta max eigenvector
151 161
+ Net1 + Net1
Net 2 Net 2
Net 3 Net 3
141 Net 4 in 141 Net 4 in
Net 4 out Net 4 out
Net 5 Net 5
Net B in Net B in
135 et 6 out 13 et 6 out
e e e
e e
12F 1.2 Ty I
© ]
° \r = dak
o o

250

08
07 | | | )
50 100 180 200
Holding days

09
08}
07 \ | | )
50 100 150 200 250
Holding days

Image 57: Eigenvector Beta
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Image 58: Eigenvector Variance
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Image 59: Eigenvector Adjusted to risk return
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Image 60: Eigenvector Adjusted to systemic risk return
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Image 61: Closeness return
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Image 62: Closeness beta
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Image 63: Closeness variance
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Image 64: Closeness Adjusted to risk return
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Image 64: Closeness Adjusted to systemic risk return
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Image 65: Betweenness Return
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Image 66: Betweenness beta
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Image 67: Betweenness variance
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Image 68: Betweenness Adjusted to risk return
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Image 69: Betweenness Adjusted to systemic risk return
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Image 71: Eccentricity beta
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Image 72: Eccentricity variance
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Image 73: Eccentricity Adjusted to risk return
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Image 74: Eccentricity Adjusted to systemic risk return
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Appendix A.2- Crisis Period
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Image 75: Strength return during the crisis
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Image 76: Strength beta during the crisis
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Image 77: Strength variance during the crisis
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Image 78: Strength Adjusted to risk return during the crisis
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Image 79: Strength Adjusted to systemic risk return during the crisis
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Image 80: Eigenvector return during the crisis
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Image 81: Eigenvector beta during the crisis
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Image 82: Eigenvector variance during the crisis
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Image 88: Closeness Adjusted to risk return during the crisis
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Appendix B. Frequency Tables

Table 9: Frequency Table of best performances per performance criterion: whole testing period (Oct
2002-Dec 2012), holding days: 51-250

Strength
Return
Beta
Variance
Risk adj. return
Systemic risk adj.return

Eigenvector
Return
Beta
Variance
Risk adj. return
Systemic risk adj.return

Closeness
Return
Beta
Variance
Risk adj. return
Systemic risk adj.return

Betweenness
Return
Beta
Variance
Risk adj. return
Systemic risk adj.return

Eccentricity
Return
Beta
Variance
Risk adj. return
Systemic risk adj.return

Net 1
8,50%
0,00%
0,00%
2,00%
2,50%

Net1
100,00%
0,00%
0,00%
79,50%
76,50%

Net 1

12,00%
0,00%
0,00%
2,00%
2,50%

Net 1
0,00%
0,00%

36,50%
0,50%
0,00%

Net1

30,00%
0,00%
0,00%
7,50%
0,00%

Net 2

81,50%
0,00%
0,00%

49,00%
1,00%

Net 2
0,00%
0,00%
0,00%

20,50%
9,00%

Net 2

81,00%
0,00%
0,00%

52,00%
2,50%

Net 2
0,00%

18,00%

63,50%
0,00%
0,00%

Net 2
0,00%
0,00%
0,00%
0,00%
0,00%

WHOLE PERIOD

Net3
0,50%
0,00%
0,00%

43,50%

29,00%

Net3
0,00%

46,50%
0,00%
0,00%
0,00%

Net3
0,00%
0,00%
0,00%

41,50%

27,50%

Net 3
0,00%
0,00%
0,00%
0,00%
0,00%

Net3
9,50%
2,50%
0,00%

25,50%

19,50%

Net4in
0,00%
0,00%
0,00%
0,00%
0,00%

Net4in
0,00%
0,00%
0,00%
0,00%
0,00%

Net4in
0,00%
0,00%
0,00%
0,00%
0,00%

Net4
0,00%
0,00%
0,00%

88,50%
30,00%

Net4in
0,00%
0,00%
0,00%
0,00%
0,00%

Net 4 out
0,00%
0,00%
0,00%
0,00%
0,00%

Net 4 out
0,00%
0,00%
0,00%
0,00%
0,00%

Net 4 out
0,00%
0,00%
0,00%
0,00%
0,00%

Net5
100,00%
82,00%
0,00%
11,00%
70,00%

Net 4 out
0,00%
0,00%
0,00%
0,00%
0,00%

Net 5
0,00%
0,00%

99,00%
0,00%
0,00%

Net5
0,00%
0,00%

31,50%
0,00%
0,00%

Net 5
0,00%
0,00%

99,00%
0,00%
0,00%

Net 6
0,00%
0,00%
0,00%
0,00%
0,00%

Net5
24,50%
0,00%
0,00%
64,50%
60,50%

Net6in
9,50%
0,00%
1,00%
0,00%
0,00%

Net6in
0,00%
53,50%
0,00%
0,00%
14,50%

Net6in
7,00%
0,00%
1,00%
0,00%
0,00%

Net6in
36,00%
0,00%
100,00%
0,00%
0,00%

Net 6 out
0,00%
100,00%
0,00%
5,50%
67,50%

Net 6 out
0,00%
0,00%

68,50%
0,00%
0,00%

Net 6 out
0,00%
100,00%
0,00%
4,50%
67,50%

Net 6 out
0,00%
97,50%
0,00%
2,50%
20,00%
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Table 10: Frequency Table of best performances per performance criterion: whole testing period(Oct

2002-Dec 2012), holding days: 151-250 (max horizon)

WHOLE PERIOD-MAX HORIZON

Strength Net1 Net 2 Net3  Net4in Net4out
Return 2,00%  98,00% 0,00% 0,00% 0,00%
Beta 0,00% 0,00% 0,00% 0,00% 0,00%
Variance 0,00% 0,00% 0,00% 0,00% 0,00%
Risk adj. return 0,00% 56,00% 44,00% 0,00% 0,00%
Systemic risk adj.return 0,00% 2,00%  32,00% 0,00% 0,00%
Eigenvector Net1 Net 2 Net3 Net4in Net4dout
Return 100,00% 0,00% 0,00% 0,00% 0,00%
Beta 0,00% 0,00%  93,00% 0,00% 0,00%
Variance 0,00% 0,00% 0,00% 0,00% 0,00%
Risk adj. return 96,00% 4,00% 0,00% 0,00% 0,00%

Systemic risk adj.return 72,00% 0,00% 0,00% 0,00% 0,00%

Closeness Net1 Net2 Net3 Net4in Netdout

Return 1,00%  99,00% 0,00% 0,00% 0,00%

Beta 0,00% 0,00% 0,00% 0,00% 0,00%

Variance 0,00%  0,00%  0,00%  0,00%  0,00%

Risk adj. return 0,00%  60,00%  40,00% 0,00% 0,00%

Systemic risk adj.return 0,00% 5,00%  29,00% 0,00% 0,00%
Betweenness Net 1 Net 2 Net3 Net4 Net5

Return 0,00% 0,00% 0,00% 0,00% 100,00%

Beta 0,00% 0,00% 0,00% 0,00% 100,00%

Variance 0,00% 100,00% 0,00% 0,00% 0,00%

Risk adj. return 0,00% 0,00% 0,00% 87,00%  13,00%

Systemic risk adj.return 0,00% 0,00% 0,00% 36,00%  64,00%

Eccentricity Net 1 Net 2 Net3 Netdin Net4out

Return 60,00% 0,00% 2,00% 0,00% 0,00%

Beta 0,00% 0,00% 0,00% 0,00% 0,00%

Variance 0,00% 0,00% 0,00% 0,00% 0,00%

Risk adj. return 15,00% 0,00%  14,00% 0,00% 0,00%

Systemic risk adj.return 0,00% 0,00%  10,00% 0,00% 0,00%
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Net 5
0,00%
0,00%

100,00%
0,00%
0,00%

Net 5
0,00%
0,00%

63,00%
0,00%
0,00%

Net 5
0,00%
0,00%

100,00%
0,00%
0,00%

Net 6
0,00%
0,00%
0,00%
0,00%
0,00%

Net 5
19,00%
0,00%
0,00%
66,00%
50,00%

Net6in
0,00%
0,00%
0,00%
0,00%
0,00%

Net6in
0,00%
7,00%
0,00%
0,00%

28,00%

Net6in
0,00%
0,00%
0,00%
0,00%
0,00%

Net6in
19,00%
0,00%
100,00%
0,00%
0,00%

Net 6 out
0,00%
100,00%
0,00%
0,00%
66,00%

Net 6 out
0,00%
0,00%

37,00%
0,00%
0,00%

Net 6 out
0,00%
100,00%
0,00%
0,00%
66,00%

Net 6 out
0,00%
100,00%
0,00%
5,00%
40,00%
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Table 11: Frequency Table of best performances per performance criterion: whole testing period(Oct
2002-Dec 2012), holding days: 51-150 (min horizon)

Strength
Return
Beta
Variance
Risk adj. return
Systemic risk adj.return

Eigenvector
Return
Beta
Variance
Risk adj. return
Systemic risk adj.return

Closeness
Return
Beta
Variance
Risk adj. return
Systemic risk adj.return

Betweenness
Return
Beta
Variance
Risk adj. return
Systemic risk adj.return

Eccentricity
Return
Beta
Variance
Risk adj. return
Systemic risk adj.return

Net1

15,00%
0,00%
0,00%
4,00%
5,00%

Net 1
100,00%
0,00%
0,00%
63,00%
81,00%

Net1

23,00%
0,00%
0,00%
4,00%
5,00%

Net1
0,00%
0,00%

73,00%
1,00%
0,00%

Net1
0,00%
0,00%
0,00%
0,00%
0,00%

WHOLE PERIOD-MIN HORIZON

Net 2

65,00%
0,00%
0,00%

42,00%
0,00%

Net 2
0,00%
0,00%
0,00%

37,00%

18,00%

Net 2

63,00%
0,00%
0,00%

44,00%
0,00%

Net 2
0,00%

36,00%

27,00%
0,00%
0,00%

Net 2
0,00%
0,00%
0,00%
0,00%
0,00%

Net 3
1,00%
0,00%
0,00%

43,00%

26,00%

Net 3
0,00%
0,00%
0,00%
0,00%
0,00%

Net 3
0,00%
0,00%
0,00%

43,00%

26,00%

Net 3
0,00%
0,00%
0,00%
0,00%
0,00%

Net 3
17,00%
5,00%
0,00%
37,00%
29,00%

Net4in
0,00%
0,00%
0,00%
0,00%
0,00%

Net4in
0,00%
0,00%
0,00%
0,00%
0,00%

Net4in
0,00%
0,00%
0,00%
0,00%
0,00%

Net4
0,00%
0,00%
0,00%

90,00%
24,00%

Net4in
0,00%
0,00%
0,00%
0,00%
0,00%

Net 4 out
0,00%
0,00%
0,00%
0,00%
0,00%

Net 4 out
0,00%
0,00%
0,00%
0,00%
0,00%

Net 4 out
0,00%
0,00%
0,00%
0,00%
0,00%

Net5
100,00%
64,00%
0,00%
9,00%
76,00%

Net 4 out
0,00%
0,00%
0,00%
0,00%
0,00%

Net5
0,00%
0,00%

98,00%
0,00%
0,00%

Net5
0,00%
0,00%
0,00%
0,00%
0,00%

Net5
0,00%
0,00%

98,00%
0,00%
0,00%

Net 6
0,00%
0,00%
0,00%
0,00%
0,00%

Net5
30,00%
0,00%
0,00%
63,00%
71,00%

Net6in
19,00%
0,00%
2,00%
0,00%
0,00%

Net6in
0,00%

100,00%
0,00%
0,00%
1,00%

Net6in
14,00%
0,00%
2,00%
0,00%
0,00%

Net6in
53,00%
0,00%
100,00%
0,00%
0,00%

Net 6 out
0,00%
100,00%
0,00%
11,00%
69,00%

Net 6 out
0,00%
0,00%

100,00%
0,00%
0,00%

Net 6 out
0,00%
100,00%
0,00%
9,00%
69,00%

Net 6 out
0,00%
95,00%
0,00%
0,00%
0,00%
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Table 12: Frequency Table of best performances per performance criterion: financial crisis period(Aug
2007-Mar 2009), holding days: 51-250

CRISIS
Strength Net1 Net2 Net3 Netd4in Netd4out Net5 Net6in Net6out
Return 3,00%  39,50% 1,00% 0,00% 32,00% 20,50% 4,00% 0,00%
Beta 0,00% 0,00% 0,00% 0,00% 0,00% 10,50%  89,50% 0,00%
Variance 0,00% 0,00% 0,00% 0,00% 0,00% 57,00% 43,00% 0,00%
Risk adj. return 0,00% 0,00%  36,50% 5,50%  58,00% 0,00% 0,00% 0,00%

Systemic risk adj.return 0,00% 0,00%  59,00% 1,00%  32,50% 0,00% 7,50% 0,00%

Eigenvector Net1 Net2 Net3 Net4in Net4out Net5 Net6in Net6out
Return 29,50%  47,50% 0,00% 0,00% 0,00% 5,00% 0,00%  18,00%
Beta 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00%
Variance 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00%
Risk adj. return 14,00% 12,00%  27,50% 0,00% 0,00% 4,00% 0,00%  42,50%

Systemic risk adj.return 9,00%  18,00%  18,50% 0,00% 0,00%  15,00% 0,00%  39,50%

Closeness Net1 Net2 Net3 Netdin Netd4out Net5 Net6in Net6out
Return 0,00%  45,50% 1,00% 0,00% 31,50% 18,00% 4,00% 0,00%
Beta 0,00% 0,00% 0,00% 0,00% 0,00% 10,50%  89,50% 0,00%
Variance 0,00% 0,00% 0,00% 0,00% 0,00% 57,00%  43,00% 0,00%
Risk adj. return 0,00% 1,50%  35,00% 5,50%  58,00% 0,00% 0,00% 0,00%

Systemic risk adj.return 0,00% 0,00%  59,00% 1,00%  32,50% 0,00% 7,50% 0,00%

Betweenness Net1 Net 2 Net 3 Net 4 Net5 Net 6
Return 0,00% 0,50% 0,00% 0,50% 26,00%  73,00%
Beta 25,00%  75,00% 0,00% 0,00% 0,00% 0,00%
Variance 6,50%  93,50% 0,00% 0,00% 0,00% 0,00%
Risk adj. return 0,00% 1,50% 0,00%  25,50% 16,00% 57,00%

Systemicrisk adj.return 0,00% 17,00% 0,00% 0,00% 37,50%  45,50%

Eccentricity Net1 Net2 Net3 Netd4in Netd4out Net5 Net6in Net6out
Return 0,00% 0,00%  13,50% 0,00% 0,00% 2,50%  84,00% 0,00%
Beta 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00% 0,00%
Variance 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00% 0,00%
Risk adj. return 17,00% 0,00%  24,00% 500% 16,50% 0,00% 0,00%  37,50%

Systemic risk adj.return 0,00% 0,00%  39,00% 0,00% 0,00% 1,00% 8,50% 51,50%
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Table 13: Frequency Table of best performances per performance criterion: financial crisis period(Aug

2007-Mar 2009), holding days: 151-250 (max horizon)

CRISIS-MAX HORIZON

Strength Net1 Net 2 Net3 Net4in
Return 6,00%  30,00% 0,00% 0,00%
Beta 0,00% 0,00% 0,00% 0,00%
Variance 0,00% 0,00% 0,00% 0,00%
Risk adj. return 0,00% 0,00% 2,00% 0,00%

Systemic risk adj.return 0,00% 0,00%  32,00% 0,00%

Eigenvector Net1 Net 2 Net3 Net4in
Return 48,00%  52,00% 0,00% 0,00%
Beta 0,00% 0,00% 0,00% 0,00%
Variance 0,00% 0,00% 0,00% 0,00%
Risk adj. return 0,00% 1,00%  20,00% 0,00%

Systemicrisk adj.return  12,00% 0,00%  17,00% 0,00%

Closeness Net 1 Net 2 Net3 Net4in
Return 0,00%  37,00% 0,00% 0,00%
Beta 0,00% 0,00% 0,00% 0,00%
Variance 0,00% 0,00% 0,00% 0,00%
Risk adj. return 0,00% 0,00% 2,00% 0,00%

Systemic risk adj.return 0,00% 0,00%  32,00% 0,00%

Betweenness Net1 Net 2 Net 3 Net4
Return 0,00% 0,00% 0,00% 1,00%
Beta 0,00% 100,00% 0,00% 0,00%
Variance 0,00% 100,00% 0,00% 0,00%
Risk adj. return 0,00% 0,00% 0,00% 0,00%

Systemic risk adj.return 0,00% 0,00% 0,00% 0,00%

Eccentricity Net 1 Net 2 Net3 Net4in
Return 0,00% 0,00% 0,00% 0,00%
Beta 0,00% 0,00% 0,00% 0,00%
Variance 0,00% 0,00% 0,00% 0,00%
Risk adj. return 0,00% 0,00% 4,00% 2,00%

Systemic risk adj.return 0,00% 0,00% 31,00% 0,00%

Net 4 out
64,00%
0,00%
0,00%
98,00%
65,00%

Net 4 out
0,00%
0,00%
0,00%
0,00%
0,00%

Net 4 out
63,00%
0,00%
0,00%
98,00%
65,00%

Net5
52,00%
0,00%
0,00%
28,00%
47,00%

Net 4 out
0,00%
0,00%
0,00%

27,00%
0,00%

Net5
0,00%
0,00%

100,00%
0,00%
0,00%

Net5
0,00%
0,00%
0,00%
8,00%

17,00%

Net5
0,00%
0,00%

100,00%
0,00%
0,00%

Net 6
47,00%
0,00%
0,00%
72,00%
53,00%

Net5
0,00%
0,00%
0,00%
0,00%
0,00%

Net6in
0,00%

100,00%
0,00%
0,00%
3,00%

Net6in
0,00%
0,00%
0,00%
0,00%
0,00%

Net6in
0,00%

100,00%
0,00%
0,00%
3,00%

Net6in
100,00%
100,00%
100,00%

0,00%
1,00%

Net 6 out
0,00%
0,00%
0,00%
0,00%
0,00%

Net 6 out
0,00%
100,00%
100,00%
71,00%
54,00%

Net 6 out
0,00%
0,00%
0,00%
0,00%
0,00%

Net 6 out
0,00%
0,00%
0,00%

67,00%
68,00%
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Table 14: Frequency Table of best performances per performance criterion: financial crisis period(Aug

2007-Mar 2009), holding days: 51-250 (min horizon)

CRISIS-MIN HORIZON

Strength Net 1 Net2 Net3 Net4in
Return 0,00%  49,00% 2,00% 0,00%
Beta 0,00% 0,00% 0,00% 0,00%
Variance 0,00% 0,00% 0,00% 0,00%
Risk adj. return 0,00% 0,00% 71,00%  11,00%

Systemic risk adj.return 0,00% 0,00%  86,00% 2,00%

Eigenvector Net1 Net2 Net3 Net4in
Return 11,00%  43,00% 0,00% 0,00%
Beta 0,00% 0,00% 0,00% 0,00%
Variance 0,00% 0,00% 0,00% 0,00%
Risk adj. return 28,00%  23,00%  35,00% 0,00%

Systemic risk adj.return 6,00% 36,00%  20,00% 0,00%

Closeness Net1 Net 2 Net3 Net4din
Return 0,00%  54,00% 2,00% 0,00%
Beta 0,00% 0,00% 0,00% 0,00%
Variance 0,00% 0,00% 0,00% 0,00%
Risk adj. return 0,00% 3,00% 68,00% 11,00%

Systemic risk adj.return 0,00% 0,00%  86,00% 2,00%

Betweenness Net1l Net2 Net3 Net4
Return 0,00% 1,00% 0,00% 0,00%
Beta 50,00%  50,00% 0,00% 0,00%
Variance 13,00%  87,00% 0,00% 0,00%
Risk adj. return 0,00% 3,00% 0,00%  51,00%

Systemicrisk adj.return 0,00%  34,00% 0,00% 0,00%

Eccentricity Net1 Net2 Net3 Net4in
Return 0,00% 0,00%  27,00% 0,00%
Beta 0,00% 0,00% 0,00% 0,00%
Variance 0,00% 0,00% 0,00% 0,00%
Risk adj. return 34,00% 0,00%  44,00% 8,00%

Systemicrisk adj.return 0,00% 0,00% 47,00% 0,00%

101

Net 4 out
0,00%
0,00%
0,00%

18,00%
0,00%

Net 4 out
0,00%
0,00%
0,00%
0,00%
0,00%

Net 4 out
0,00%
0,00%
0,00%

18,00%
0,00%

Net5
0,00%
0,00%
0,00%
4,00%

28,00%

Net 4 out
0,00%
0,00%
0,00%
6,00%
0,00%

Net 5
41,00%
21,00%
14,00%

0,00%
0,00%

Net5

10,00%
0,00%
0,00%
0,00%

13,00%

Net5
36,00%
21,00%
14,00%

0,00%
0,00%

Net 6
99,00%
0,00%
0,00%
42,00%
38,00%

Net5
5,00%
0,00%
0,00%
0,00%
2,00%

Net6in
8,00%
79,00%
86,00%
0,00%
12,00%

Net6in
0,00%
0,00%
0,00%
0,00%
0,00%

Net6in
8,00%
79,00%
86,00%
0,00%
12,00%

Net6in
68,00%
100,00%
100,00%
0,00%
16,00%

Net 6 out
0,00%
0,00%
0,00%
0,00%
0,00%

Net 6 out
36,00%
100,00%
100,00%
14,00%
25,00%

Net 6 out
0,00%
0,00%
0,00%
0,00%
0,00%

Net 6 out
0,00%
0,00%
0,00%
8,00%

35,00%
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Appendix C. -Stocks of the dataset

Table 15: Stocks included in the dataset

ABBOTT LABORATORIES
ADOBE SYSTEMS
E1DUPONT DE NEMOURS
BOSTON PROPERTIES
ALLSTATE

HONEYWELL INTL.
AMGEN

HESS

AMERICAN EXPRESS
AFLAC

AMERICAN INTL.GP.
ANADARKO PETROLEUM
ALEXION PHARMS.
VALERO ENERGY

APACHE

APPLE
ARCHER-DANLS.-MIDL.
AUTOMATIC DATA PROC.
BAKER HUGHES
BERKSHIRE HATHAWAY 'B'
BAXTER INTL.

BECTON DICKINSON
VERIZON COMMUNICATIONS
FIRSTENERGY

BRISTOL MYERS SQUIBB
ONEOK

SEMPRA EN.

FEDEX

BROWN-FORMAN 'B'

CSX

CONSTELLATION BRANDS 'A'
CARDINAL HEALTH
CATERPILLAR

CELGENE

CENTURYLINK

JP MORGAN CHASE & CO.
CIGNA

CISCO SYSTEMS

COCA COLA
COLGATE-PALM.
CONSOLIDATED EDISON
CORNING

CUMMINS

DANAHER

COGNIZANT TECH.SLTN.'A'
MEDTRONIC

WALGREENS BOOTS ALLIANCE

TARGET

DEERE

MORGAN STANLEY
WALT DISNEY

DOW CHEMICAL

DTE ENERGY

EBAY

BANK OF AMERICA
CITIGROUP

ECOLAB

EMERSON ELECTRIC
EOG RES.

EQUITY RESD.TST.PROPS. SHBI
ESTEE LAUDER COS.'A'
EXXON MOBIL
NEXTERA ENERGY
MACY'S

FRANKLIN RESOURCES
FREEPORT-MCMORAN
GAP

GENERAL DYNAMICS
GENERAL MILLS
GILEAD SCIENCES
MCKESSON

GENERAL ELECTRIC
HALLIBURTON
GOLDMAN SACHS GP.
HERSHEY

REYNOLDS AMERICAN
HOME DEPOT

BIOGEN

ILLINOIS TOOL WORKS
INTUIT

INTEL
INTERNATIONAL PAPER
JOHNSON & JOHNSON
DEVON ENERGY
KELLOGG
KIMBERLY-CLARK
BLACKROCK

ELI LILLY

UNITED PARCEL SER.'B'
LOCKHEED MARTIN
LOEWS

CARNIVAL

HP

ALLERGAN

LOWE'S COMPANIES
DOMINION RESOURCES
MCDONALDS

MARSH & MCLENNAN
METLIFE

CVS HEALTH
MICROSOFT

3M

NATIONAL OILWELL VARCO

NEWMONT MINING
NIKE 'B'

NOBLE ENERGY
NORFOLK SOUTHERN
NISOURCE

COACH

NORTHROP GRUMMAN
WELLS FARGO & CO
MONSANTO

CAPITAL ONE FINL.
OCCIDENTAL PTL.
ORACLE

PACCAR

EXELON

PPL

PEPSICO

PFIZER
CONOCOPHILLIPS
PG&E

ALTRIA GROUP
PNCFINL.SVS.GP.
AETNA

PPG INDUSTRIES
PRAXAIR

COSTCO WHOLESALE
TROWE PRICE GROUP
PROCTER & GAMBLE
QUALCOMM
REGENERON PHARMS.
US BANCORP

MERCK & COMPANY
PRICELINE GROUP
SCHLUMBERGER
CHARLES SCHWAB
SHERWIN-WILLIAMS
SIMON PROPERTY GROUP

JOHNSON CONTROLS INTL.

CROWN CASTLE INTL.

PRUDENTIAL FINL.
EDISON INTL.

SOUTHERN

BB&T

AT&T

CHEVRON

STATE STREET
STARBUCKS

PUBLIC STORAGE
STRYKER

SUNTRUST BANKS
SYMANTEC

SYSCO

TEXAS INSTRUMENTS
THERMO FISHER SCIENTIFIC
MARATHON OIL

UNION PACIFIC

UNITED TECHNOLOGIES
UNITEDHEALTH GROUP
VORNADO REALTY TRUST
WAL MART STORES
WASTE MANAGEMENT
WEYERHAEUSER

WHOLE FOODS MARKET
WILLIAMS

YAHOO

TIX

MOLSON COORS BREWING 'B'
CBS'B'

BANK OF NEW YORK MELLON
CHUBB

TRANSOCEAN

PROLOGIS

ACCENTURE CLASS A
RALPH LAUREN CL.A
MOTOROLA SOLUTIONS
AON CLASS A
INGERSOLL-RAND

TIME WARNER
AMERICAN TOWER
EXPRESS SCRIPTS HOLDING
DUKE ENERGY

MONDELEZ INTERNATIONAL CL.A

EATON
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