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Asterios Mpatziakas

Abstract

Advances in sequencing techniques have massively increased the publicly accessible
genome data and thus enable further and more extensive research opportunities on
genome diversity at increasing levels of detail. The concept of the pangenome refers to
the union of gene families shared by a set of genomes. There are several studies that
have implemented specific pangenome analyses for a variety of organisms, ranging from
microbes to viruses and plants, leading to genomic projects of various scales. These
projects have led to the advancement of general understanding of evolutionary
mechanisms, leading to usable knowledge across multiple sectors such as health,
medicine and agriculture. A pangenome can be defined as the identification and
construction of three distinct subsets of gene families, the Core genome consisting of all
gene families that are shared amongst all genomes, the Dispensable or Accessory
genome consisting of gene families present in the majority of the genomes and genes
that have presence only in one genome, known as Peripheral or Cloud genome. Other
names and overlapping definitions have been used in literature that provide alternate
description of a pangenome. However, the essential part of this type of analysis is the
use of data in an encompassing way instead of the traditionally linear approaches
evident in targeted genome studies.

Currently there is a variety of tools available, enabling several computational aspects of
the pangenome approach, the majority of which are primarily aimed towards the study
of prokaryote genomes. We present a package written for the statistical programming
language R, named pasaR, usable in the later stages of such an analysis, i.e. after the
construction of the gene families for a given set of genomes, based on information of
the full complement of gene families. A complete methodology is proposed, suitable for
sets of genomes of varying complexity, optimizing and enriching an assortment of
existing measures from micropan, the only R package currently available on CRAN for
such studies. Furthermore, we propose a new technique using the Sorensen distance,
referred to as fluidity in the context of a pangenome analysis, that allows the
identification of distinct subsets of genomes in a given dataset, based on their inferred
commonalities at the gene family level. Finally, we demonstrate the methodology using
publicly available data from UniProt and additional reference databases.

Keywords: pangenome, genome diversity, comparative genomics, R statistical language
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NepiAnyn

H mpdodog oTIg TEXVIKEG sequencing €xel aufnoel tov dnuoola Slabéoipo, Oyko NG
mAnpodopiag mou adopd TO YoVISIWUO ETUTPEMOVIAG TEPALTEPW Kol €1¢ Pabog
EPELVNTIKN SpaoTNPLOTNTA OTO {ATNHA TNG Yovidlakng molkilopopdiag. H évvola tou
navyoviSiwpatog (pangenome) avadEpetal otV €Vwon OLKOYEVELWV YoviSiwv Tou
elval kowa avapeoa o KAMoLa yovidlwpata . YIApXEL pia TANBwpa amd UEAETEG OTLG
omoleg edpapuooTnKe N availuon Tou mavyoviSiwpatog os Slddopoug opyaviopoug,
anod UKpOBLa o oUG Kal putd. OL HEAETEG AUTEG €xouv BonBroeL otnv  mpoaywyn
YEVIKOTEPNG KATAVONONG OXETIKA HE TOUG €EEALKTIKOUC HUNXAVIOUOUG, odnywvtag o€
TIPAKTLKA Yyvwon o€ 8Lddopoug TopELG OWG TIX. TNV U UYEla, tnv dpapuakoAoyia Kal Thv
yewpyla.

Evw umdpxel pa mowkidia epyaleiwv mou eival dtabéoipa ya tv Ste€aywyn ULog
QvVAaAuong MavyovISLWHaToG, N TAsloPndia autwy €XeL wG KUPLO AELTOUPYLO TNV UEAETN
TIPOKOAPUWTLKWVY YOVISIWHATWY. TNV Tapoloa epyacia mapouctaletal €va AOYLOUIKO
YPOUUEVO OTNV OTATLOTLKI) TIPOYPAUUATIOTIKY YAwooa R, mou ovoudletal pasaR, to
omolo pnopet va xpnotponolnBel ota teAevtaia otdadla plag tétolag availuong, dnAadn
HETA TNV KOTOOKEUN TWV OLKOYEVEIWV TwV YoviSiwv ylo KAmola yoviSlwuoTa.
Mpoteivetal pwa mARpng pebodoloyia yla tnv avaluon yovidlakwv SeSopévwv
Sladopetikng moAumAokotntag, BeATioTonMolWVTAG Kot eunmAouTtilovtag nén undapyovta
€pyoAEla OO TO MOKETO Micropan, To HOVASIKO avtioTolyo MaKETo Sltabéoiuo yla tnv
vAwooa R. EmutAéov mMpoTeilveTal ULt KOvoUpYLa TEXVIKN N Omola XPnoLlomolel tnhv
arnootacn Sorensen, yvwoth kot wg pevototnta (fluidity) oto mAaiolo tg avaAuong
TIAVYOVLOLWUATOG, HE OTOXO TNV avayvwplon SLoKpLtwv UToopdadwy yoviSlwudtwy
puéoa oe Soopévo olvolo Sedouévwy. TéElog edapudletal n pebodoloyia autr oe
dnuooia Stabéoipa dedopéva amnod tig Baoelg UniProt kat Ensembl.

Né€elc kAeSLa: Mavyovidiwpa. Tovidlakn molkolhopopdia, CUYKPLTIKA genomics. R
statistical language
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1. Introduction

The term pangenome is fairly new, being introduced by Tettelin et al. in 2005 (H. Tettelin et
al. 2005) to describe a method of comparatively analyzing genetic data of different strains of the
Streptococcus Agalactiae microbe in order to explore variability between them and most
importantly trying to answer if there is a way to determine the number of genomes that must
be sequenced in order to have a full genetic description of a bacterial species. Since then, this
concept was applied by various other researchers, whose work ranges from species to phylum
level (Vernikos et al. 2015), since it involves a more complete and dynamic way of handling
genomic data as opposed to more linear approaches that have been used in the past (The

Computational Pan-genomics Consortium et al. 2016, Lapierre and Gogarten (2009)).

The development of high throughput sequencing, vastly increased the genomic data available to
researchers and provided new insights in the evolution and physiology mechanisms of various
species (Muzzi, Masignani, and Rappuoli 2007). This plethora of data is enabling the pangenome
analysis: While early works mainly involved prokaryotic species, with more than forty (40)
studies existing for bacterial pangenomes (Rouli et al. 2015), the last years, pangenomic studies
have expanded to agronomic plants such as maize (Hirsch et al. 2014), rice (Sun et al. 2017) and
soybean (Y.-h. Li et al. 2014), eukaryote microorganisms such as phytoplankton Emiliania (Read
et al. 2013) and research in the direction of finding a human pan-genome has been conducted

(Li et al. 2010).

In this thesis, a new software package for the R language for statistical computing (R Core
Development Team 2016) is presented and showcased on various datasets. This software,
named pasaR, is usable for the last stages of a pangenomic analysis, that is after the genomes
that are analyzed have been sequenced and the gene families found have been clustered,
allowing both exploration of the data and its statistical analysis. Some of the functions used in
pasaR are based on existing ones from the only other complete package for pangenomic
analysis in R micropan (Snipen & Liland, 2015), however they have been tweaked to optimize for

speed. Comparison results are available in appendix: benchmarking.
13
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1.1 Components of a pangenome

Pangenome, also known as supragenome (Tettelin et al. 2008) as a concept refers to the
union of gene families shared by a number of genomes of a grouping of organisms (Lapierre and
Gogarten 2009). Other more limiting definitions include the one given by Vernikos et al.
(Vernikos et al. 2015) i.e. "the entire genomic repertoire of a given phylogenetic clade and
encodes for all possible lifestyles carried out by its organisms" or the one by Mclnerney et al.
(McInerney, McNally, and O’Connell 2017) "the collection of gene families that are found to be

present in all members of a particular species".

A pangenome consists of three parts (H. Tettelin et al. 2005, Lapierre and Gogarten (2009),Carlos

Guimaraes et al. (2015)) :

1. the Core genome consisting of all gene families that shared amongst all genomes examined
2. the Dispensable or Accessory genome consisting of genes present in some of the genomes

3. a subset of the Dispensable genome, genes present only in one genome, known as

singletons or ORFans and might be species or strain specific
Other names and overlapping definitions are used in the literature, to describe the pangenome.

A pan-genome can be characterized as closed when as genome sample grows it's size
approaches a constant number and open when new gene families are detected with every new
genome sample (Golicz, Batley, and Edwards 2016). A closed pangenome is observed in species
that exist in isolated and sparse ecological niches, while an open pangenome is a sign of flexible
genetic content in the cases of the same species pangenome (Carlos Guimaraes et al. 2015) or a
sign of genome diversity and non-coherence in the case where multiple species are examined.

MCirney et al. offer a useful schematic representation of a pangenome.

14
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Accessory genome

Pangenome ( j’ Core genome

) @

Figure 1 "Schematic representation of pangenomes as Venn diagramms" (Mclnerney, McNally, and O’Connell 2017)

1.2 Gene "homology"

The building block for a pangenomic analysis, is a dataset of clustered gene families from
some genomes of interest. The first step to produce such a dataset is the identification of
homologous sequences between the genomes using tools such as BLAST, FASTA or HMMR3
(Pearson 2013) and computing in a pairwise manner a similarity measure between all sequences
of interest. Another technique, faster than the identification of all similarities but less accurate
(Dalguen and Dessimoz 2013), is the bidirectional best hit (BBH) where only best matched pairs
of genes are kept in the results. The final step is clustering the homologue genes, using
algorithms such as Marcovian Cluster Algorithm (MCL) or CFinder (Rhee and Mutwil 2014). A
lack of a community standard for the dataset construction for a pangenomic analysis should be

noted.

15
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The increased interest on the pan-genome, has led to the availabity of various software

for various aspects of such an analysis. These programs, written in various programming

languages, are either stand-alone or complimentary to existing ones and the majority is aimed

for prokaryote organisms. The results of an extensive literature review on pangenomic related

software published until 2016 is presented on table 1. A software is characterized as a full

pipeline when it provides functionalities than cover all steps from ortholog detection to

pangenomic analysis results.

Table 1 Software for pangenomic analysis

Title Species Methods Standalone
EDGAR (Blom et. al, 2009) Prokaryote Full pipeline: Core & pangenome Yes
size analysis
PanCGHweb (Bayjanov et. al, Bacteria Genotyping through pangenome data Yes - online
2010)
CAMBer (Wozniak,Wong & Bacteria Core, accessory genome analysis Yes
Tiryun, 2011) and pangenome size
Panseq (Laing et. al, 2011) Bacteria Core and accessory genome analysis Yes, online &
offline versions
PGAT (Brittnacher et. al, 2011) Bacteria Ortholog prediction & Yes - online
Presence/absence gene analysis
PGAP (Zhao et al., 2011) Bacteria Full pipeline: pangenome profile analysis Yes
& exponential fit
PanDaTox (Amitai & Sorek, E. Coli Specific app mainly to investigate toxicity of Yes-online
2012) organisms to E. Coli using pangenome analysis
PANNOTATOR (Santos et. Al, Bacteria Pipeline for pangenome annotation Yes - online
2013) but not analysis
Pancake Full pipeline for pangenome exploration Yes
(Ernst&Rahmann,2013) implemented through pooling similar genomic
subsequence
GET_HOLOGUES (Conteras Microbes Full pipeline: tools for pangenome creation, Yes
& Vinueas, 2013) overview & statistical analysis
eCAMBer (Wozniak,Wong Bacteria Core, accessory genome analysis Yes - online

& Tiryun, 2014)

and pangenome size

16
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Table 2 (continued) Software for pangenomic analysis

Title Species Methods Standalone

ITEP (Benedict et al., 2014) Microbes Full pipeline: pangenome analysis Yes, python/BASH
& exploration of subsets of interest scripts also available

SplitMem (Marcus et al, N/A de Brujjin Graphs Yes

2014) pangenome representation

PanGP (Zhao et al., 2014) Bacteria Full pipeline: pangenome profile Yes
analysis with sampling capabilities

Spine/AGEnt/ClustAGE (Ozer, Bacteria Full pipeline for core and Yes - online

2014) accessory genome detection
and annotation

Harverst (Trangen et al.,, Microbes Full pipeline for core genome Yes

2014) alighment and visualization

Roary (Page et al., 2015) Prokaryote BLASTP and MCL, graphs for No (Perl)
cluster relationships

Pan-tetris (Hennig, Bernhart Microbes "Super-genome" based alighnment Yes

& Niselt 2015) and visualization

Micropan (Snipen & Liland, Microbes Full pipeline: tools for pangenome No (R)

2015) creation, overview & statistical analysis

BFT (Holley, Wittler & Stoye, - Indexing scheme of the Yes

2016) pangenome through de brujin graphs

PanTools (Sheikhizadeh et. al, Microbes Full pipeline: De Brujjin Graphs Yes - online

2016) & pangenome comparison

PanX (Ding, Baumdicker & Bacteria Full pipeline: Analysis & Visualization Yes - online

Neher, 2016)

1.4

Software development perspectives

One of the main outcomes of this thesis is a software package for the R language. The

package, named pasaR is open source software licensed under the GNU general public license

v3.0 (Free Software Foundation 2007), meaning that the user has access to all source code of

the software and can use, modify or distribute the package at will. The software is available

through the popular (Perez-Riverol et al. 2016) code repository service Git Hub, in the address

https://github.com/ampatzia/pasaR . All tools available through the package where written

17
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using the style guide proposed by Wickham (2015), are documented using standard R procedure

and a minimal reproducible example of use is provided.
The decisions presented above offer several positive traits:

a) R as a scripting language that has all components available for free, enables fast reproducible

results,

b) The combination of public availability of the code and the explicit permission of modification
enables community accessibility, evaluation and opportunities of scientific collaboration or

reuse
c) The software is ready to use, with minimum setup required from the user

d) Repository services such as Git Hub, offer automated software versioning, collaboration and
issues tracking tools thus allowing existing users of the software a clear overview of the status

of the software, recent changes made

The practices presented comply with a number of recommendations from researchers and
software developers that promote open science and software instead of more traditional

approaches (McKiernan et al. 2016; Jiménez et al. 2017).

18



Defining thestatisticalimetries of a Pangenome

2. Theory and Methods

In this chapter, mathematical tools that will be used in the analysis part of the thesis, are

extensively presented along with relevant proofs and details of usage.
2.1 Heap's Law.

In their seminal work Tettelin et al. (Tettelin et al. 2008), proposed the utilization of a
power law model for the estimation of the pan-genome size, replacing the exponential decay
model used up to that point. In many natural cases, an attribute n grows in concurrence to a
power law of the number N of the objects under examination, something that can be expressed
asn~ NY,0<y<1.This empirical law has been used in various scientific areas and in the
context of pan-genomics, originated from linguistics information retrieval (Heaps 1978), where
it is known as Heaps' and to a lesser extend Herden - Heaps' Law. Examples of quantities that
follow a power law include word frequencies inside big bodies of text, populations of cities and

the magnitude of earthquakes (Newman 2004).

Two parameters are needed to describe a power law, the exponent written as y or more
commonly as @ = 1 — ¥ and a constant k. Then the power law can be written as,
n=k*NVD=FxN"¢
O0<y<l,
a=1-y
describing the number n of genes i.e. the pan-genome, of N genomes. It follows from this
equation, that the number of genes observed are decreasing, as the number of genomes
sampled increase. For @ > 1 (y < 0), n diverges to a constant as N increase and we call the pan-
genome closed. For @ = 1, n is not bounded and increases as N increases and the pan-genome

is open .
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2.2 Chao lower bound estimator.

A common problem faced in field biology is the estimation of the size of an organism
population based on data gathered by observing or capturing members of that population in
different locations also known as sites. Considering genomes as the components of population,
genes the "individuals" and genome clusters the sites one can use ecological tools in order to
find the pan-genome size. One such estimator, using the method of moments, was proposed by
Chao (Chao 1987) and can be used on pan-genomic analyses as it provides a conservative
population estimation (Snipen, Almgy, and Ussery 2009), suitable even for data where species
are observed with unequal probability. The proof of the estimator as given from Chao is

presented below.

Consider the Pan-genome size of a number of genomes to be N, composed by i =1,2,..,N
genes and j= 1,2,...,t clusters. Let p;; be the probability of gene i to participate in cluster t and
assume that p;; =p; for j=1,..t and p; for i =1,...,N are sampled from a probability
distribution F. The population could be written as a X = (Xij) matrix sized (N,t), with X;; = [i €

Jj] using the lverson Bracket. It is also assumed that X;;, i and j are mutually independent. The

jr

number of distinct observations is denoted by

N
=3

L

X;; = 1]

t
Jj=1
and the number of individuals observed exactly k times in t clusters is
N
fi== Y1) Xy=klk=01,..t
i=1 j=1

If f, are the number of unobserved genomes, then it follows that the pan-genome size equals
N =S + f,. The number of observations (fy, f1,..., ft), have a multinomial joint, unconditional

distribution function:
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t

pnfufd =, - )] Jleen @

i=0
where

1

o = | (})pia-pidre)

0
From (1), Chao provides the following estimator

1

E(f) = Nf (f) pt(1 —p) " 'dF(p), i=01,....t (2)

0

which for a sufficiently large t and small p can be rewritten as

E(fi)szO MdF(p), i=01,....t (3)

Considering a cumulative distribution in the [0, t] space

u - X
Jy xe ¥ dF ()

G =
() fotxe‘xdF(%)

and combining it with (3), we get

1

B(fo) = N [ e df(p) ~ E (1) jo W dGw) (5)

0

Consequently, the kth moment of G, my, is,

[y () e~ dF (x) E(fes1)
~ (k+ 1)!
T are YRR

e = f uk dG (u) = ©)
0

E(f;) can be replaced by f;, to obtain an estimator of my, (if f; # 0)

fiex1
f

my, = (k + 1)!
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Combining (5) and (6), and Jensen's inequality

E(f) _ E(D)
Hq 2E(f2)

E(fo) 2

Thus, a lower bound of the population size Nis:

2

N=s+1
2f2

An approximation formula of the lower bound with would be:

1- m1
N N fl
Nminle S+2—f2

tm1

)

An asymptotic variance estimator of the above quantity is

_ ﬁ 4 fl 3 fl
ﬁ«)%)+%)+29))
with a 95% confidence interval of
(N-9) A
[S + C , S+ (N —=95)C]

where

¢ = emp(196(tog =t b
R sy

treating log(]l\\l — §) as an approximately normal random variable.
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2.3 Binomial Mixture model for pan genome size estimation

Let the pan-genome size of sample number of a grouping of genomes, composed by i =

1,2,..,G genes and j= 1,2,...,t clusters, to be N and 1/\\/ be the true pan-genome size, that

resulting from all genomes of the grouped organisms, already included or not.
AN
If ¥, is the unobserved number of gene families existing in all genomes, then it follows that N =

AN
N + y, and it is clear that an estimation of y, allows the estimation of N.

Snipen, Almgy and Ussery (2009), propose a model that relates y, to the sum of gene families

Y1, Y2, -+, Yc Of each genome present in the families. Considering the population pan-genome

N
size N as constant and assuming independence between gene families, allows the consideration
of y = {¥o,¥1,¥2,---»Y¢} as a multinomial vector. Let 8 = {6,604, 0,,...,0;} be the multinomial
probabilities of detecting a gene family in O, ... G genomes. Using these assumptions, the

expected value of y, is,
AN
E(yo) = N6,
and
N
E(N)=N(1-86,),

which can be combined to

E(ye) = E(N) —2
(ro) = BN T4
which can be simplified, by using N instead of E(N), to:
E(y) = N—2_ (1
(o) = N1 (1

Consequently, by estimating 8,, the value of y, can be computed through (1). Assuming a
degree of smoothness over the probability distribution and using a binomial mixture model

(Hand,1989) we can continue with the estimation of 8.This model is composed by
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K

Og :anf(g;pk)» 9=0,...,6 (2)

k=1

with m;, called the mixing proportion and the binomial probability mass function (PMF) of

detection probability p;

G
Flom) = ()Pl -pot k=1 @

It should be noted that Y k_, m) is always one, also an assumption that p; = 1, i.e. there is
always a core genome presented, is applied. We end up with a model where the
aforementioned multinomial distribution is explained by K binomial PMFs. Hence, the next step
is to estimate the parameters of these PMFs, something that can be accomplished by
maximizing the following zero-truncated log-likelihood function:

G
0
L mlk) = ) ¥y log (=25 +C ()
g=1

_ Y

where p, = o
—Yo

is the probability of an element of g = 1,...,G from the multinomial vector

Yy = (y1 +Y2+...+y¢) over a fixed N, 8,,...,0; are dependent on m and p as described in
(2,3) and Cis a independent constant. For arbitrary choices of K and maximizing (4), k = 1,...,K
estimations of p and m occur which can be denoted p; and m;; these can then be used in
equations one to three, in reverse order, to get a prediction of }’>0. Finally, the optimal number
of components is determined by choosing the minimal value of the Bayesian Information

Criterion (BIC)
BIC(K) = 2(k — 1)logN — 2l(m, k|K)

The number of free parameters, differs to the formal by one due to the assumption of p; = 1.
These computations lead to the desired results: the pan-genome size 1/\\1 =N+ )90 and the core

A NA
sizey=Nmy.
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2.4 Genomic Fluidity

Genomic Fluidity was proposed by Kislyuk, Haegernan, Bergman & Weitz (2011) as a
more robust alternative to core and pan genome size estimation techniques to assess the

similarity of a group of genomes.

The genomic fluidity of a group of N genomes is:

2 U, + U,

o=—" L k<l
NON-1), & M+ M

with Uy, U, are the number of gene families that are respectively unique in the k,l genomes and
M, ,M, all the gene families in the k,l genomes. In plain language, it is the average of sum of the
unique gene families between pairs of genomes divided by the sum of all gene families between
pairs of genomes. A useful aspect of the genomic fluidity is its intuitive interpretation: A group

with ¢ =0.2, has on average 80% shared genes and 20% of the genes are unique.

In other contexts, the same measure is known as Sorensen distance (M. M. Deza and Deza 2009)

and before averaging is a "true" mathematical distance.

2.5 Hierarchical Clustering using Fluidity as a distance

As the Sorensen distance is a distance function, it can be used as measure of cluster
proximity in the sense of agglomerative or also known as bottom-up hierarchical clustering.
While the process of hierarchical clustering can be considered trivial or common knowledge it

will be briefly presented for the sake of completeness: Let the number of genomes under study

be N with ¢;j the complete set of all pairwise fluidity values for these genomes, 1) in

number. In the beginning of the process, all genomes are considered individual clusters. Then
using a linkage method, for example Average or Complete, the least dissimilar genomes are
found and fused, resulting to N — 1 clusters and the dissimilarities between the remaining

clusters is recalculated.
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This process is repeated until N genomes are pooled in one (1) cluster (James et al.
2007). In the present work, the Ward method of linkage known also as Ward2 is used which
produces clusters by minimizing intra-cluster variance. While this method was originally
developed to be used with Euclidean distances, it can be also used with other distance metrics

(Murtagh and Legendre 2014, Miyamoto et al. (2016)).

There are numerous indices that can be used to determine the optimal number of clusters
(Kovacs, Legany, and Babos 2005). In the context of the pan-genome study, non-exhaustive
empirical evidence, in our experiments, shows that the gap statistic (Tibshirani, Walther, and
Hastie 2001) and the Dunn index (Dunn 1973) produces adequate splits of the data, however
the Silhouettes Index (Rousseeuw 1987) and the Variation of Information Index (Meila 2007) are

provided.
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3. Analysis

In this chapter, a pangenomic analysis workflow, based on the theoretical tools introduced in
chapter two, is proposed. The workflow is implemented via the pasaR R package, on five (5)

datasets of various genomic sizes.
3.1 Proposed workflow

The input of the workflow is datasets containing clustered gene families from different
genomes, for example the output of a sequence clustering pipeline with the default settings
(Blast and MCL). First the sample core genome, pangenome size and number of orfan genes
should be computed to assess the dataset quality and genome coherence. Further insights can
be achieved through visualizing cluster spread for genomes, genome participation per cluster

and gene participation per cluster.

Continuing, the openness of the pangenome can be evaluated using Heap's Law and then
estimate the actual pangenome size using the Chao estimator or Binomial Mixtures. Binomial
mixtures models also provide estimates about the core genome size and the number of
underlying components that compose the pangenome, the component mixture probabilities

and corresponding detection probabilities.

Finally, either the whole sample or an estimation of the fluidity, with the use of the first one
recommended, can be computed. If the fluidity score is smaller than an arbitrarily chosen
threshold, then the user can choose to use agglomerative clustering based on fluidity, in order

to determine existent coherent subsets of dataset. The process is depicted in the picture below.
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Clustered gene families dataset ]
—
Compute Core genome, Orfs and pan-
genome size for sample, plot genome
families distributions
L
Apply Heap's Law. to Estimate pan-genome size,

core size and components
with Chao estimator &
Binomial mixture models

discover if pan-genome is
open or closed

b

Compute either sample or estimated fluidity

fluidity smaller than arbitrarity chosen thrashold
[

L 4
[ Agslomerative fluidity based clustering to ]

determine existant coherent subsets

Figure 2 Proposed analysis flow
3.2 Dataset summary

Five (5) different datasets with different sizes from various sources ares used:

1. The first dataset was made publicly available by the authors of the R package micropan
(Snipen and Liland 2017) and contains seven (7) strains of the Mycoplasma Pneumoniae

bacteria. It provides a good example of a small, closed bacterial pangenome.

2. The second dataset was made using publicly available data from Ensembl (Aken et al.
2016), and contains eighty one (81) strains in total, distributed across the following four (4)
bacterial species: twelve (12) strains of Streptococcus pneumoniae, thirteen (13) of
Streptococcus Pyogenes, thirty nine (39) of Bacillus cereus and seventeen (17) of Bacillus
thuringiensis. It was produced by a standard clustering pipeline with the default settings

(BLAST and MCL).
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3. The third dataset made from the same genomic data used in the second, however only the

best bidirectional hits where kept during the homology detection.

4. The fourth dataset was made using publicly available data from the Ensembl database, and
contains twenty-two (22) strains from three distinct groups: twelve strains (12) of
Streptococcus pneumoniae, six (6) strains of the Buchnera Aphidicola proteobacteria, four
species (4) of the Pyrococcus Genus p. abyssi, p. furiosus, p horikoshii and p. kodakarensis.
It was produced by a standard clustering pipeline with the default settings (BLAST and
MCL).

5. The last dataset was constructed using publicly available data from UniProt (The Uniprot
Consortium 2017), Plaza (Proost et al. 2015) and Pico-Plaza (Vandepoele et al. 2013) and
contains ninety five (95) genomes of organisms with photosynthetic abilities. It was

originally presented in (Psomopoulos, Kintsakis, and Mitkas 2016)

Frequency tables of Genome participation in clusters for all the datasets are available on the

appendix.
3.3 Mycoplasma pneumoniae

The sample pangenome size of the Mycoplasma Pneumoniae Genomes is 1210 gene families,
the sample core size is 1100 gene families and the number of orfan genes is 33. Fitting the
Mycoplasma Genomes according to Heap's Law, results to the estimation of a closed
pangenome a = 1.42766, with an intercept of k = 59.59479. Using the Chao estimator, a
pangenome size of n = 1258 C.I. 95% = (1212,2456), with variance of s2 = 710.30025 occurs.

Using Binomial mixture model, it is estimated that the optimal fit for the model comprises by 3

with the following mixing probabilities:

Comp_1 Comp 2 Comp_3

Detection.prob 0.0742364 0.6652024 1.0000000
Mixing.prop 0.0779073 0.0576295 0.8644632
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while the pangenome characteristics are estimated to be:

BIC.table.Core.size BIC.table.Pan.size BIC.table.BIC

3 components 1096 1268 1143.909

Finally the sample fluidity is ¢ = 0.0199089 with s = 0.006602, while a population estimate

through the use of permutations gives (% = 0.0200534 with ¢ = 0.0064887.

Panmatix exploration Plots
Gluster spead for Genomes Genome. participation per Gluster

Gene participation per Cluster Gene participation frequency

Figure 3 Summary plots and information for the sample Mycoplasma Pneumoniae pangenome
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3.4 Four Species dataset

The sample pangenome size of the four (4) species genome collection is 149721 gene families,
no sample core is found and the number of orfan genes is 93296. Fitting the Genomes according
to Heap’s Law, results to the estimation of an open pangenome a = 0.23614, with an intercept
of k = 3989.0162. Using the Chao estimator, a pangenome size of n = 338349 C.l. 95% =
(156401,5475997), with variance of s? = 3256678.02761 occurs.

Using Binomial mixture model, it is estimated that the optimal fit for the model comprises by 9

with the following mixing probabilities:

Comp_1 Comp_2 Comp_3

Detection.prob 0.008268 0.07223 0.2384
Mixing.prop 0.9199 0.06976 0.00839

Comp_4 Comp_5 Comp_6
Detection.prob 0.4696 0.6578 0.8015
Mixing.prop 0.001377 0.00044 0.00008865

Comp_7 Comp_8 Comp_9
Detection.prob 0.8585 0.954 1
Mixing.prop 0.0000001162 0.00000004843 0.0000006824

while the pangenome characteristics are estimated to be:

BIC.table.Core.size BIC.table.Pan.size BIC.table.BIC

9 components 0 282357 435058

Finally the sample fluidity is ¢ = 0.9162145 with s = 0.1092225, while a population estimate

through the use of permutations gives q/l\> = 0.9146962 with ¢ = 0.1089366.
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Panmatrix exploration Plats
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Figure 4 Summary plots and information for the 4 species dataset, as produced by a standard sequence clustering

pipeline with default settings (BLAST and MCL)

3.4.1 Bacilus Cereus

The dataset consists of thirty nine (39) strains of a single species i.e. Bacilus Cereus.The sample

pangenome size of the genome collection is 102964 gene families, the sample core is found to

be 10 and the number of orfan genes is 67714. Fitting the Genomes according to Heap’s Law,

results to the estimation of an open pangenome a = 0.22679, with an intercept of k =

4702.29435. Using the Chao estimator, a pangenome size of n = 242660 C.l. 95% =

(107835,4109459), with variance of s?= 2482078.26512 occurs.

Using Binomial mixture model, it is estimated that the optimal fit for the model comprises by 8

with the following mixing probabilities:
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Comp_1 Comp_2 Comp_3
Detection.prob 0.01044 0.08666 0.2731
Mixing.prop 0.9117 0.0744 0.01153

Comp_4 Comp_5 Comp_6
Detection.prob 0.5959 0.8615 0.9682
Mixing.prop 0.001826 0.0004516 0.0001111
Comp_7 Comp_8

Detection.prob 0.9986 1
Mixing.prop 0.00000176 0.0000001573

while the pangenome characteristics are estimated to be:

BIC.table.Core.size BIC.table.Pan.size BIC.table.BIC

8 components 0 262445 261593

Finally the sample fluidity is ¢ = 0.8783143 with s = 0.102614, while a population estimate

through the use of permutations gives c/l; = 0.8775756 with 0 = 0.1086773.
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Figure 5 Summary plots and information for the Bacillus Cereus sample, as produced by a standard sequence

clustering pipeline with default settings (BLAST and MCL)

3.4.2 Bacillus thuringiensis

The dataset consists of seventeen (17) strains of a single species, i.e. of Bacillus thuringiensis.

The sample pangenome size of the genome collection is 53243 gene families, sample core size is

discovered to be 91 and the number of orfan genes is 35740. Fitting the Genomes according to

Heap’s Law, results to the estimation of an open pangenome a = 0.24956, with an intercept of

k = 4837.87588. Using the Chao estimator, a pangenome size of n = 148494 C.l. 95% =

(55963,3388574), with variance of s? = 2464843.37952 occurs.

Using Binomial mixture model, it is estimated that the optimal fit for the model comprises by 5

with the following mixing probabilities:
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Comp_1 Comp_2 Comp_3
Detection.prob 10.001084 0.1189 0.3849
Mixing.prop 0.9842 0.01399 0.001565
Comp_4 Comp_5
Detection.prob 0.8321 1
Mixing.prop 0.0001726 0.00006187

while the pangenome characteristics are estimated to be:

BIC.table.Core.size BIC.table.Pan.size BIC.table.BIC

5 components 102 1655919 127952

Finally the sample fluidity is ¢ = 0.8276564 with s = 0.1399459, while a population estimate

through the use of permutations gives cll; = 0.8243079 with 0 = 0.1468341 .

Gluster spead for Genomes Genome parficipation per Cluster

=======
Gena pariicipation per Cluster Gene participation frequency

Ganes Numbes of Memers

Figure 6 Summary plots and information for the Bacillus Thurigensis sample, as produced by a standard sequence

clustering pipeline with default settings (BLAST and MCL)

35



Asterios Mpatziakas

3.4.3 Streptococcus pneumoniae

The dataset consists of twelve (12) strains of a single species i.e., Streptococcus pneumoniae.
The sample pangenome size of the genome collection is 10331 gene families, sample core size is
145 and the number of orfan genes is 5659. Fitting the Genomes according to Heap’s Law,
results to the estimation of an open pangenome a = 0.56344, with an intercept of k =
1995.30055. Using the Chao estimator, a pangenome size of n= 17854 C.l. 95% =
(10695,165629), with variance of s? = 74229.37295 occurs.

Using Binomial mixture model, it is estimated that the optimal fit for the model comprises by 5

with the following mixing probabilities:

Comp_1 Comp_2 Comp_3
Detection.prob 0.05686 0.2867 0.6145
Mixing.prop 0.8568 0.08809 0.03544
Comp_4 Comp_5
Detection.prob 0.9113 1
Mixing.prop 0.01729 0.002334

while the pangenome characteristics are estimated to be:

BIC.table.Core.size BIC.table.Pan.size BIC.table.BIC

5 components 42 17998 31306

Finally the sample fluidity is ¢ = 0.6473961 with s = 0.0946125, while a population estimate

through the use of permutations gives (I,l\) = 0.6467789 with ¢ = 0.0945409 .
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Panmatrix exploration Plats
Cluster spead for Genomes Gename participation per Cluster
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Figure 7 Summary plots and information for the Streptococcus Pneumoniae sample, as produced by a standard

sequence clustering pipeline with default settings (BLAST and MCL)
3.4.4 Streptococcus Pyogenes

The dataset consists of twelve strains (12) of a single species, i.e. Streptococcus pneumoniae.
The sample pangenome size of the genome collection is 9952 gene families, sample core
genome is 103 and the number of orfan genes is 5333. Fitting the Genomes according to Heap’s
Law, results to the estimation of an open pangenome a = 0.55862, with an intercept of k =
1839.18593. Using the Chao estimator, a pangenome size of n= 16288 C.. 95% =
(10285,130620), with variance of s? = 54407.78325 occurs.

Using Binomial mixture model, it is estimated that the optimal fit for the model comprises by 5

with the following mixing probabilities:
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Comp_1 Comp_2 Comp_3
Detection.prob ~0.05937 0.2896 0.6279
Mixing.prop 0.8673 0.08618 0.02648
Comp_4 Comp_5
Detection.prob 0.8807 1
Mixing.prop 0.01597 0.004077

while the pangenome characteristics are estimated to be:

BIC.table.Core.size BIC.table.Pan.size BIC.table.BIC

5 components 67 16379 30178

Finally the sample fluidity is ¢ = 0.6659675 with s = 0.1054033, while a population estimate

through the use of permutations gives cll; = 0.6604302 with 0 = 0.1132254 .

Joraton Piots
Cluster spead for Genomes. Genome participation per Cluster

- s e ——

Clusters (log)

Figure 8 Summary plots and information for the Streptococcus Pyogenes sample, as produced by a standard

sequence clustering pipeline with default settings (BLAST and MCL)

38



Defining thestatisticalimetries of a Pangenome

3.5 Four species dataset with best bi-directional hits

The sample pangenome size of the four species variant bacterial genome collection consists of
185188 gene families and the number of orfan genes consists of 128528 genes, while the

sample core genome was found to be zero.

Fitting the Genomes according to Heap’s Law, results to the estimation of an open pangenome
a = 0.23614, with an intercept of k = 3989.0162. Using the Chao estimator, a pangenome size
of n = 495538 C.I. 95% = (194765, 10242219), with variance of s? = 6927692.13345 occurs.

Using Binomial mixture model, it is estimated that the optimal fit for the model comprises by 11

with the following mixing probabilities:

Comp_1 Comp_2 Comp_3
Detection.prob 0.008195 0.09414 0.3215
Mixing.prop 0.9577 0.0386 0.002725
Comp_4 Comp_ 5 Comp_6

Detection.prob 0.4947 0.6099 0.6513
Mixing.prop 0.0003989 0.0005557 0.00002408

Comp_7 Comp_8 Comp_9
Detection.prob 0.673 0.8367 0.8972
Mixing.prop 0.000001487 0.000004839 0.000001412

Comp_10 Comp_11

Detection.prob 0.9481 1
Mixing.prop 0.000001056 0.000001654

while the pangenome characteristics are estimated to be:

BIC.table.Core.size BIC.table.Pan.size BIC.table.BIC

11 components 1 364366 447447
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Finally the sample fluidity is ¢¢ = 0.9374495 with s = 0.1027686, while a population estimate

through the use of permutations gives g/l\> = 0.9374038 with ¢ = 0.1049131.

Panmatrix exploration Plats
Cluster spead for Genomes Gename participation per Cluster

Chusters (og)
Genomes

Gene parficipation per Cluster Gene pariicipation frequency

Chustars log)
a

Genes Number of Meribers.

Figure 9 Summary plots and information for the four bacterial species dataset, produced by a standard sequence
clustering pipeline with the default settings (Blast and MCL), but maintaining only the best bidirectional hits during

the homology detection
3.5.1 Bacilus Cereus with best bi-directional hits

The dataset consists of the thirty-nine (39) strains of a single species i.e. Bacillus Cereus. The
sample pangenome size of the genome collection is 124218 gene families, sample core was
found to be 7, and the number of orfan genes is 90692. Fitting the Genomes according to

Heap’s Law, results to the estimation of an open pangenome a = 0.22679, with an intercept of
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k = 4702.29435. Using the Chao estimator, a pangenome size of n = 354004 C.I. 95% =
(131047, 7856400), with variance of s?= 5509793.80747 occurs.

Using Binomial mixture model, it is estimated that the optimal fit for the model comprises by 8

with the following mixing probabilities:

Comp_1 Comp_2 Comp_3

Detection.prob 0.01038 0.1081 0.3855
Mixing.prop 0.9587 0.03676 0.003735

Comp 4 Comp 5 Comp_6
Detection.prob 0.758 0.9295 0.9911
Mixing.prop 0.0005879 0.0001625 0.000009597

Comp_7 Comp_8

Detection.prob 1 1
Mixing.prop 0.0000008876 0.000001278

while the pangenome characteristics are estimated to be:

BIC.table.Core.size BIC.table.Pan.size BIC.table.BIC

8 components 0 343840 256962

Finally the sample fluidity is ¢ = 0.908099 with s = 0.1013906, while a population estimate

through the use of permutations gives (/,l\) = 0.9099123 with ¢ = 0.1028378 .
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Panmatrix exploration Plats
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Figure 10 Summary plots and information for the Bacillus Cereus sample, produced by a standard sequence
clustering pipeline with the default settings (Blast and MCL), but maintaining only the best bidirectional hits during

the homology detection

3.5.2 Bacillus thuringiensis with best bi-directional hits

The dataset consists of seventeen strains (17) of Bacillus thuringiensis. The sample pangenome
size of the genome collection is 60328 gene families, sample core genome was discovered to be
90 and the number of orfan genes is 44110. Fitting the Genomes according to Heap’s Law,
results to the estimation of an open pangenome a = 0.24956, with an intercept of k =
4837.87588. Using the Chao estimator, a pangenome size of n = 213312 C.I. 95% = (63877,
6655804), with variance of s? = 5958473.3486 occurs.
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Using Binomial mixture model, it is estimated that the optimal fit for the model comprises by 9

with the following mixing probabilities:

Comp_1 Comp_2 Comp_3

Detection.prob 0.004072 0.004787 0.1416
Mixing.prop 0.2987 0.6663 0.03249
Table continues below

Comp_4 Comp_5 Comp_6
Detection.prob 0.4788 0.5058 0.8843
Mixing.prop 0.002048 0.000000001131 0.0002602

Comp_7 Comp_8 Comp_9
Detection.prob 0.9893 0.9999 1
Mixing.prop 0.0001306 0.00003496 0.0000001394

while the pangenome characteristics are estimated to be:

BIC.table.Core.size BIC.table.Pan.size BIC.table.BIC

9 components 0 575896 124386

Finally the sample fluidity is ¢ = 0.8577856 with s = 0.1419978, while a population estimate

through the use of permutations gives (/,l\) = 0.8646134 with ¢ = 0.13102.

43



Asterios Mpatziakas

Panmatrix exploration Plats
Cluster spead for Genomes Gename participation per Cluster

Clustars (log)
Genomes

Genomes Clusters {leg)

Gene parficipation per Cluster Gene parlicipation frequency

Chustars log)
a

Genes Number of Mermbers

Figure 11 Summary plots and information for the Bacillus Thurigensis sample, produced by a standard sequence
clustering pipeline with the default settings (Blast and MCL), but maintaining only the best bidirectional hits during

the homology detection
3.5.3 Streptococcus pneumoniae with best bi-directional hits

The dataset consists of the twelve strains (12) of Streptococcus pneumoniae. The sample
pangenome size of the genome collection is 11484 gene families, the sample core size is 119
gene families and the number of orfan genes is 6870. Fitting the Genomes according to Heap’s
Law, results to the estimation of an open pangenome a = 0.56344, with an intercept of k =
1995.30055. Using the Chao estimator, a pangenome size of n = 21947 C.I. 95% = (11943,
250106), with variance of s = 122920.51518 occurs.
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Using Binomial mixture model, it is estimated that the optimal fit for the model comprises by 5

with the following mixing probabilities:

Comp_1 Comp_2 Comp_3
Detection.prob 0.05064 0.289 0.6013
Mixing.prop 0.8919 0.06766 0.02562
Comp_4 Comp_5
Detection.prob 0.8936 1
Mixing.prop 0.01289 0.001902

while the pangenome characteristics are estimated to be:

BIC.table.Core.size BIC.table.Pan.size BIC.table.BIC

5 components 42 22051 31656

Finally the sample fluidity is ¢¢ = 0.6854532 with s = 0.0996208, while a population estimate

through the use of permutations gives cll; = 0.6848218 with ¢ = 0.0990319.
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Figure 12 Summary plots and information for the Streptococcus Pneumoniae sample, produced by a standard
sequence clustering pipeline with the default settings (Blast and MCL), but maintaining only the best bidirectional

hits during the homology detection

3.5.4 Streptococcus Pyogenes with best bi-directional hits

The dataset consists of twelve strains (12) of Streptococcus pneumoniae. The sample
pangenome size of the genome collection is 11028 gene families, 85 geme families comprise the
sample core genome and the number of orfan genes is 6444. Fitting the Genomes according to
Heap’s Law, results to the estimation of an open pangenome a = 0.55862, with an intercept of
k = 1839.18593. Using the Chao estimator, a pangenome size of n= 19631 C.I. 95% = (11444,
189147), with variance of s? = 85323.81203 occurs.
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Using Binomial mixture model, it is estimated that the optimal fit for the model comprises by 4

with the following mixing probabilities:

Comp_1 Comp_2 Comp_3 Comp_4
Detection.prob 0.056 0.3406 0.7729 1
Mixing.prop 0.9089 0.06371 0.02345 0.003986

while the pangenome characteristics are estimated to be:

BIC.table.Core.size BIC.table.Pan.size BIC.table.BIC

4 components 77 19347 30488

Finally the sample fluidity is ¢ = 0.701132 with s = 0.1109669, while a population estimate

through the use of permutations gives </]§ = 0.6962727 with ¢ = 0.1204666.

Fanmatrix exploration Plats.

Figure 13 Summary plots and information for the Streptococcus Pyogenes sample, produced by a
standard sequence clustering pipeline with the default settings (Blast and MCL), but maintaining

only the best bidirectional hits during the homology detection
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3.6 Comparison of DB and BBH dataset samples

As can be observed above, the datasets produced with default BLAST settings and by choosing

the best bidirectional hits produce different datasets. The best bidirectional hits (BBH) scheme

produces a pangenome of 19.5% bigger size, with 27.4% more orfan genes. No core genome

was discovered and an open pangenome is predicted in both cases. Concerning the subsets, the

following results occur:

In the Bacillus Cereus Group, there is a very small core genome of six (6) in the BBH
variation and ten (10) in the DB set with an open pangenome of approximately 120 and
102 thousand gene families respectively with more than 50% of which being orfan
genes, something that is reflected by the high fluidity scores that are 0.877 for the DB
and 0.908 for the BBH datasets.

In the Bacillus Thurigiensis subset, results estimated are more similar: A pangenome of
approximately fifty three (53) and sixty (60) thousand in the DB and BBH sets with a core
genome of ninety one (91) and ninety (90) gene families with a fairly large fluidity score,

= 0.8276 and ¢=0.8503.

Streptococcus Pneumoniae strain datasets, are quite smaller in size compared to those
of the Bacillus group: sample Pangenomes of ten (10) and eleven (11) thousand genome
families with one hundred fourty-five (145) and one hundred nineteen (119) core gene
families with a little more than 50% of the total gene families present being orfan genes

in both cases.

Streptococcus Pyogenes datasets produce pangenomes of similar size to the S.
Pneumoniae sets: ten (10) and eleven (11) thousand genome families with one hundred
and three (103) and eighty-five (85) core gene families with a little more than 50% of the

total gene families present being orfan genes in both cases.
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3.7 Three Species dataset

The sample pangenome size of the three groups genome collection is 20763 gene families, no
sample core was found, and the number of orfan genes is 15371. Fitting the Genomes according
to Heap's Law, results to the estimation of an open pangenome a = 0.30404, with an intercept
of k = 1802.32008. Using the Chao estimator, a pangenome size of n = 65138 C.I. 95% =
(21953,1676108), with variance of s2 = 1297926.97679 occurs.

Using Binomial mixture model, it is estimated that the optimal fit for the model comprises by 9

with the following mixing probabilities:

Comp_ Comp_ Comp_ Comp_ Comp_ Comp_ Comp_ Comp_ Comp

1 2 3 4 5 6 7 8 9
Detection. 0.0184 0.0201 0.2161 0.4447 0.6058 0.7397 0.8717 0.9705 1
prob 099 156 462 411 099 026 815 084
Mixing.pr  0.3793 0.5717 0.0356 0.0131 0.0000 0.0000 0.0001 0.0000 O
op 133 951 060 210 000 000 646 000

while the pangenome characteristics are estimated to be:

BIC.table.Core.size BIC.table.Pan.size BIC.table.BIC

9 components 0 54335 42893.35

Finally the sample fluidity is ¢ = 0.8922678 with s = 0.1619261, while a population estimate

through the use of permutations gives (I,l\) = 0.8891019 with ¢ = 0.1690081 .
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Figure 14 Summary plots and information for the 3 species sample pangenome

3.7.1 Buchnera Aphidicola

The dataset consists of six (6) Buchnera Aphidicola proteobacteria strains. The sample
pangenome size of the genome collection is 2335 gene families, the sample core size is 2 gene
families, and the number of orfan genes is 1855. Fitting the Genomes according to Heap's Law,
results to the estimation of an open pangenome a = 0.3449, with an intercept of k = 566.90363.
Using the Chao estimator, a pangenome size of n = 9828 C.l. 95% = (2488,368729), with
variance of s? = 377203.56526 occurs.

Using Binomial mixture model, it is estimated that the optimal fit for the model comprises by 3

with the following mixing probabilities:
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Comp_1 Comp_2 Comp_3

Detection.prob 0.0096415 0.3106778 1.0000000
Mixing.prop 0.9749189 0.0250712 0.0000098

while the pangenome characteristics are estimated to be:

BIC.table.Core.size BIC.table.Pan.size BIC.table.BIC

3 components 0 30149 3330.829

Finally the sample fluidity is ¢¢ = 0.8682637 with s = 0.2204161, while a population estimate

through the use of permutations gives cll; = 0.8537481 with 0 = 0.2242996.

Panmatrix exploration Plats
Cluster spead for Genomes Gename participation per Cluster
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Gene parficipation per Cluster Gene parlicipation frequency

Figure 15 Summary plots and information for the Buchnera Aphidicola sample pangenome
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3.7.2 Streptococcus pneumoniae

The dataset consists of twelve (12) of Streptococcus pneumoniae bacteria strains. The sample

pangenome size of the genome collection is 10951 genes, the sample core size is 120 gene

families, and the number of orfan genes is 6335. Fitting the Genomes according to Heap's Law,

results to the estimation of an open pangenome a = 0.50979, with an intercept of k

1965.28548. Using the Chao estimator, a pangenome size of n = 20177 Cl. 95%

(11370,214023), with variance of s? = 101820.31186 occurs.

Using Binomial mixture model, it is estimated that the optimal fit for the model comprises by 6

with the following mixing probabilities:

Comp_1 Comp 2 Comp_3 Comp_4 Comp_5 Comp_6
Detection.prob 0.0328943 0.0598360 0.2964512 0.6148279 0.9101975 1.0000000
Mixing.prop 0.2683650 0.6196189 0.0686302 0.0283327 0.0134505 0.0016027

while the pangenome characteristics are estimated to be:

BIC.table.Core.size BIC.table.Pan.size BIC.table.BIC

6 components 34 20905 31295.56

Finally the sample fluidity is ¢ = 0.6712107 with s = 0.0978154, while a population estimate

through the use of permutations gives $ = 0.6699617 with 0 = 0.10035 .
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Figure 16 Summary plots and information for the Streptococcus Pneumoniae sample pangenome
3.7.3 Pyrococcus

The dataset consists of four (4) of Pyrococcus genomus. The sample pangenome size of the
genome collection is 7780 gene families, the sample core size is 0 gene families, and the number
of orfan genes is 7482. Fitting the Genomes according to Heap's Law, results to the estimation
of an open pangenome a = 0.02231, with an intercept of k = 1958.01206. Using the Chao
estimator, a pangenome size of n = 112598 C.l. 95% = (8601,13389474), with variance of s? =

47650910.08926 occurs.

Using Binomial mixture model, it is estimated that the optimal fit for the model comprises by 4

with the following mixing probabilities:
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Comp_1 Comp_2 Comp_3 Comp_4

Detection.prob 0.0035738 0.0074906 0.1655041 1.0000000
Mixing.prop 0.8307720 0.1645480 0.0046761 0.0000039

while the pangenome characteristics are estimated to be:

BIC.table.Core.size BIC.table.Pan.size BIC.table.BIC

4 components 2 407331 2805.628

Finally the sample fluidity is ¢ = 0.9693334 with s = 0.0049403, while a population estimate

through the use of permutations gives cll; = 0.9693222 with 0 = 0.0045424 .

Panmatrix axploration Plats
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Figure 17 Summary plots and information for the Pyrococcus sample pangenome
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3.8 Photosynthetic Species

The sample pangenome size of the photosynthetic species genome collection is 190759 gene
families, the sample core size is 102 gene families, and the number of orfan genes is 150326.
Fitting the Genomes according to Heap’s Law, results to the estimation of an open pangenome
a = 0.58993, with an intercept of k = 3846.06608. Using the Chao estimator, a pangenome size
of n = 1094452 C.l. 95% = (204331,60362862), with variance of s2= 87971756.31804 occurs.

Using Binomial mixture model, it is estimated that the optimal fit for the model comprises by 9

with the following mixing probabilities:

Comp_1 Comp_2 Comp_3

Detection.prob 0.001151 0.03289 0.1455
Mixing.prop 0.9764 0.01449 0.002419

Comp_4 Comp_5 Comp_6
Detection.prob 0.4147 0.5436 0.7868
Mixing.prop 0.003842 0.002333 0.0001513

Comp_7 Comp_8 Comp_9
Detection.prob 0.909 0.9807 1
Mixing.prop 0.0001621 0.0002213 0.00003119

while the pangenome characteristics are estimated to be:

BIC.table.Core.size BIC.table.Pan.size BIC.table.BIC

9 components 48 1535780 441631

Finally the sample fluidity is ¢ = 0.6618692 with s = 0.2408981, while a population estimate

through the use of permutations gives q/l\> = 0.6532063 with 0 = 0.2413633 .
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Panmatrix exploration Plats
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Figure 18 Summary plots and information for the photosynthetic species dataset pangenome

3.8.1 Viridiplantae species

This subset contains only the 56 Viridiplantae genomes. The sample pangenome size of the
genome collection is 167290 gene families, the sample core size is 74 gene families, and the
number of orfan genes is 120585. Fitting the Genomes according to Heap’s Law, results to the
estimation of an open pangenome a = 0.2017215, with an intercept of k = 5257.3362573.
Using the Chao estimator, a pangenome size of n = 1031333 C.Il. 95% = (179589,60866893),

with variance of s?= 94744793.7 occurs.
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Using Binomial mixture model, it is estimated that the optimal fit for the model comprises by 8

with the following mixing probabilities:

Comp_1 Comp_2 Comp_3

Detection.prob 0.001419 0.04645 0.1928
Mixing.prop 0.9813 0.01206 0.001347

Comp_4 Comp_5 Comp_6
Detection.prob 0.4565 0.7432 0.8966
Mixing.prop 0.0004251 0.002794 0.001063

Comp_7 Comp_8

Detection.prob 0.9759 1
Mixing.prop 0.0009456 0.00005931

while the pangenome characteristics are estimated to be:

BIC.table.Core.size BIC.table.Pan.size BIC.table.BIC

8 components 107 1801753 350749

Finally the sample fluidity is ¢ = 0.4618706 with s = 0.175542, while a population estimate

through the use of permutations gives (/}_’\) = 0.4656785 with ¢ = 0.1794218 .
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Figure 19 Summary plots and information for the Viridiplantae species dataset pangenome
3.8.2 Cyanobacteria species

This subset contains only the 39 Cyanobacteria genomes. The sample pangenome size of the
genome collection is 26686 gene families, the sample core size is 367 gene families, and the
number of orfan genes is 16039. Fitting the Genomes according to Heap’s Law, results to the
estimation of an open pangenome a = 0.3918113, with an intercept of k = 1753.6772477.
Using the Chao estimator, a pangenome size of n = 86730 C.I. 95% = (28078,2616541), with

variance of s?= 2340842.69 occurs.

Using Binomial mixture model, it is estimated that the optimal fit for the model comprises by 9

with the following mixing probabilities:
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Comp_1 Comp_2 Comp_3

Detection.prob ~0.00499 0.005542 0.07828
Mixing.prop 0.5887 0.3352 0.03509

Comp_4 Comp_5 Comp_6
Detection.prob 0.2188 0.4277 0.6563
Mixing.prop 0.01477 0.007077 0.004267

Comp_7 Comp_8 Comp_9
Detection.prob 0.8368 0.9499 1
Mixing.prop 0.003386 0.004971 0.006474

while the pangenome characteristics are estimated to be:

BIC.table.Core.size BIC.table.Pan.size BIC.table.BIC

9 components 707 109261 88662

Finally the sample fluidity is ¢¢ = 0.4303886 with s = 0.0693669, while a population estimate

through the use of permutations gives (/,i; = 0.4282775 with 0 = 0.0661636 .
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Figure 20 Summary plots and information for the Cyanobacteria species dataset pangenome

3.10 Clustering with fluidity

In the following section genome clustering with fluidity is showcased on the datasets already

examined.
3.10.1 Four bacterial species

This dataset consists of genomes of Streptococcus pneumoniae,Streptococcus Pyogenes,Bacillus
Cereus and Bacillus Thuringiensi. Both versions of the dataset will be examined, i.e. with all
homologs accepted as hits and bidirectional best hits (BBH). Based on Gap statistic the dataset,

in both versions, splits optimally in two (2) clusters that separate the Bacillus and the
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Streptococcus genomes while the Dunn statistic results suggest three (3) clusters in the
"default" dataset and two (2) clusters in the "BBH" dataset separation. The three (3) cluster
scheme results in a clear separation of the Bacillus genomes, the Streptococcus pneumoniae

and the Streptococcus Pyogenes.

Table 3 Proposed number of clusters in DB

Clusters Index Value
10 Average Silhuette Width 0.24944
2 Gap Statistic 0.96782
3 Dunn 1.00219
7 Entropy 0.66971
|
Tﬁ WH W mﬂﬂmmmm

Figure 21 Two clusters separation of four species dataset produced
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Table 4 Proposed number of clusters in BBH

Clusters Index Value

10 Average Silhuette Width 0.23506
2 Gap Statistic 0.98569
2 Dunn 1.00215
7 Entropy 0.69664

Figure 22 Three clusters separation of four species dataset produced by standard pipeline (BLAST and MCL)

3.10.2 Three Species dataset

This dataset consists of Streptococcus Pneumoniae, Buchnera Aphidicla and Pyrococcus
genomes. The Gap statistic results suggest three (3) clusters: One (1) cluster contains the
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Streptococcus Pneumoniae genomes, one (1) consists of four (4) Buchnera Aphidicla genomes
and the last contains a mix of the four (4) Pyrococcus genomes and the remaining (3) Buchnera
genomes. The Dunn Index results suggest two (2) clusters, with one (1) containing the

Streptococcus Pneumoniae genomes and the other the Buchnera and Pyrococcus genomes.

Table 5 Proposed number of clusters in the Three species dataset

Clusters Index Value

3 Average Silhuette Width 0.2501
3 Gap Statistic 0.99353
2 Dunn 0.98473
5 Entropy 0.64091

Ll

Figure 23 Three species dataset split into two clusters
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25

Ll

Figure 24 Three species dataset split into three clusters

3.10.3 95 genomes dataset

This dataset consists of photosynthetic species, of the Viridiplanate and the
Cyanobacteria Phylum. The Dunn index results to 2 (two) clusters clearly spliting the dataset
between the Viridiplanate and Cyanobacteria genomes while the Gap statistic results into 8

clusters.
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Table 6 Photosynthetic species proposed number of clusters

Clusters Index Value

2 Average Silhuette Width 0.48942
8 Gap Statistic 0.58324
2 Dunn 0.94983
4 Entropy 0.22123

Clusters according to Dunn Statistic:

Figure 25 Two clusters separation of 95 photosynthetic species
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Figure 26 Eight clusters separation of 95 photosynthetic species
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4 Discussion

In this thesis, the statistical properties that occur during an analysis known as pangenomic are
examined. After outlining the existing knowledge surrounding this process through the available
literature, the mathematical tools that allow the creation of a software package that enables
this analysis are presented. The use of this package is demonstrated on many publicly available

data.

First, a dataset that consists solely of Mycoplasma Pneuomoniae bacteria strains is examined: a
closed pangenome is estimated, and the results of both the Chao estimator and the binomial
mixture produce very close results for the pangenome size with the core genome comprising
most it. This is also evident in the fluidity score which predicts 1.96% unique genes per strain.
Then, a dataset consisting of 81 strains of Streptococcus Pneumoniae, Streptococcus Pyogenes,
Bacillus cereus and Bacillus Thurigiensis where examined in two different versions: One with
produced with the default settings used in the BLAST process (DB) and one using the best
bidirectional hits between genomes. In both datasets, the entirety and each species collection
of strains where examined. A big genomic difference between the bacteria examined is
discernible through the fluidity scores, where 91.66% (DB set) and 93.28% (BBH set) different
genes per genome are anticipated. A binomial mixture model predicts the absence of a core
genome even if the organisms examined are of the same Phylum, Firmicutes. The diversity is
reflected in the pangenome size estimation varying from a minimum of 319715 genes families
(DB set, binomial mixture) to 495538 gene families (BBH set - Chao est.). In respect to the four
(4) subsets:

e  Both the Bacillus Cereus dataset variants show large diversity, an open pangenome with a
core genome prediction of one (1) gene family and pangenome size estimation of
approximately three hundred and twenty thousand (320k) to three hundred and fifty
thousand (350k) in the BBH set and two hundred and forty-two thousand (242k) to two
hundred and fifty-seven thousand (257k) gene family using binomial mixtures and the Chao

estimator respectively.
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e  Concerning the Bacillus Thurigensis and comparing the DB and BBH sets, the DB subset
produces an estimation of a smaller pangenome of approximately one hundred thousand
(100k) less gene families with a prediction a much larger core of one hundred and four
(104) to a predicted core of seventeen (17) genes families in the BBH subset. In both set
there is a big discrepancy between results of the estimation of pangenome size computed
with the mixture models and the Chao estimator, with the latter producing much smaller
outcomes: n= 148494 C.l. 95% = (55963,3388574), with variance of s?=2464843.37952 for
the DB subset and n= 213312 C.I. 95% = (63877, 6655804), with variance of s?=
5958473.3486 for the BBH subset.

e The Streptococcus Pneumoniae pangenome sample sizes are considerably smaller,
therefore resulting to smaller size estimations 17854/17991 (Binomial Mixture / Chao
Estimator) for the DB dataset and 21947/24859 for the BBH dataset. However, while
binomial mixture models predict a mixture of five (5) components in both cases, a larger
core genome of seventy-five (75) gene families is estimated for the BBH set in contrast of a
core of forty-seven (47) gene families in the DB set even though the first set has a fluidity

of ¢ = 0.6854 as compared to the lowest ¢ = 0.6473 of the second set.

e A similar pattern is also evident in the Streptococcus Pyogenesis, a smaller pangenomes
sizes than Bacillus: 16288/16366 for the DB set and 19339/19631 gene families (Binomial
Mixture / Chao Estimator) for the BBH set. However, a core genome of 66 gene families as

compared to one of 77 gene families is observed in the DB as opossed in the BBH set.

The third big grouping consists of Pyrococcus species genomes, Streptococcus Pneumoniae
strains and Buchnera Aphidicola strains. These genomes are quite diverse between them and
considering that the dataset was synthesized to test the fluidity clustering scheme, a prediction
of an open pangenome with no core families and pangenome size quite larger, 54331/65138 for
Binomial mixtures and Chao est., that the pangenome size of the individual species datasets, is

not surprising.
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The final dataset comprises of 95 Viridiplantae and Cyanobacteria genomes and was chosen to
examine the aspects of a more complex pangenome, i.e. that of species capable of
photosynthesis. Both subsets exhibit core genomes and the sample core genome is 102 gene
families while the core genome size predicted to be 48 gene families. However, this outcome
should not be interpreted as definitive and a larger dataset containing more strains of the same

organisms will provide more complete results.

As pertaining to clustering results using fluidity, it is observed that it can be used in successfully
distinguishing between genomes of different genera of the same phylum but not between
species, as observed in the case of the dataset containing four bacterial species. It can be also
used to distinguish between genomes of different kingdoms as is evident in the case of

Viridiplantae and Cyanobacteria in the dataset containing the photosynthetic species.

Some general remarks can be made concerning the techniques used and possible directions of
research. Our first point concerns the Heap's law model which is not as effective, in terms of
information derived, when applied to datasets consisting of diverse genomes as these datasets
are expected to always have open pangenomes. Moreover, even though Heap's law models in
the pangenomic context where originally applied on microbial data, they are usually presented
as a golden standard (Golicz, Batley, and Edwards 2016, Carlos Guimaraes et al. (2015)) without

any further mathematical scrutiny.

Secondly, the basis of a reliant pangenomic analysis is the stage of the genome alignment and
clustering. In the cases examined, it is shown that different techniques can produce

pangenomes of different size and cohesiveness leading to false conclusions.

The relevance of both points can be examined using the paradigm of the Buchnera genomes:
our results from an examination of six genomes of the species suggest an open pangenome with
no core genome. However, the literature findings impart a closed pangenome with about 20%
to 26% of the gene families comprising the core genome (Mira et al. (2010), Manzano-Marin et

al. (2012)).
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Feature development aims include: a) application of automated testing to code in order to
further quality control, b) optimization of code and documentation up to CRAN, a formally
regulated R package repository, publication standards, c) creation of an interactive web
application, with the R functionality Shiny based on the workflow presented and finally d)
Integration of process in an existing pipeline to offer a complete analysis (Kintsakis,

Psomopoulos, and Mitkas 2016; Psomopoulos, Vrousgou, and Mitkas 2015).
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Appendix

Genome summary - Dataset 1 (M. Pneumoniae)
Genomes 1 2 3 4 5 6 7
Clusters 33 10 13 16 22 16 1100

Genome summary - Dataset 2 (4 species)

Genomes 1 2 3 4 5
Clusters 93296 23071 12247 5615 3386
Genomes 7 8 9 10 11 12

Clusters 1681 1380 1029 855 728 693

Genomes 15 16 17 18 19 20 21
Clusters 284 249 239 210 189 142 123

Genomes 24 25 26 27 28 29 30 31 32
Clusters 61 71 48 46 43 34 40 36 36

Genomes 36 37 38 39 40 41 42 43 44
Clusters 2 22 22 22 25 21 18 15 25

Genomes 48 49 50 51 52 53 54 55 56
Clusters 16 17 10 13 21 16 11 9 7

Genomes 60 61 62 63 64 65 66 67 68
Clusters 1 1 3 0 2 1 0 2 3
Genomes 72 73 74 75 76 77 78 79 80
Clusters 0 0 0 0 0 0 0 0 0

Dataset 2 - subset 2 (B. Cereus)
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511 360
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Genomes 1 2 3 4 5 6
Clusters 67714 16410 6847 3763 2235 1385
Genomes 7 8 9 10 11 12 13 14
Clusters 1021 682 506 479 403 316 168 120
Genomes 15 16 17 18 19 20 21 22 23 24 25
Clusters 110 91 70 78 59 42 45 40 44 38 32
Genomes 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Clusters 39 27 25 19 15 12 18 22 16 13 20 16 16 8
Dataset 2 - subset 2 (B. Thurigiensis)
Genomes 1 2 3 4 5 6 7
Clusters 35740 6704 5220 1862 1204 921 491
Genomes 8 9 10 11 12 13 14 15 16 17
Clusters 251 184 176 99 61 54 49 44 68 115
Dataset 2 - subset 3 (S. Pneumoniae)
Genomes 1 2 3 4 5 6 7 8 9 10 11 12
Clusters 5659 2127 766 432 279 225 168 163 120 113 133 146
Dataset 2 - subset 4 (S. Pyogenes)
Genomes 1 2 3 4 5 6 7 8 9 10 11 12 13
Clusters 5333 2243 749 420 278 165 125 127 103 91 106 94 118
Genome summary - Dataset 3 (4 species BBH)
Genomes 1 2 3 4 5 6
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Clusters

Genomes

Clusters

Genomes

Clusters

Genomes

Clusters

Genomes

Clusters

Genomes

Clusters

Genomes
Clusters
Genomes

Clusters

Dataset 3 - subset 1 (B. Cereus)

Genomes

Clusters

Genomes

Clusters

Genomes
Clusters
Genomes

Clusters

Dataset 3 - subset 2 (B. Thurigiensis)

Genomes

128528 26613 12787

7 8 10

1340 1083 838 732
15 16 17 18 19
220 186 166 161 132
25 26 27 28 29 30
46 27 23 27 26 20
37 38 39 40 41 42
13 18 14 19 14 16
49 50 51 52 53 54
17 8 9 20 10 12
61 62 63 64 65 66
0 1 0 0 0 0
73 74 75 76 77 78
0 0 0 0 0 0

1 2

90692 17896 6262

8 9 10 11 12
502 390 357 350 252
18 19 20 21 22 23
48 32 32 30 23 28
30 31 32 33 34 35
11 14 13 19 13 14

1

4976 2750
11 12 13
644 574 415
20 21 22
103 92 75
31 32 33 34
25 22 20 9
43 44 45 46
12 16 13 7
55 56 57 58
10 4 1 0
67 68 69 70
0 1 0 0
79 80 81
0 0 0
4 5
3209 1707
13 14 15
115 75 69
24 25 26 27
34 30 33 16
36 37 38 39
14 12 12 6
5 6

73

1903

14
254

23
48

35
19

47

59

71

6
1002

16
63

28
15

24
38

36
15

48
12

60

72

772

17
44

29
12



Clusters. 44110 6358 5183 1597
Genomes 8 9 10 11 12 13
Clusters 189 147 141 66 39 34
Dataset 3 - subset 3 (S. Pneumoniae)
Genomes 1 2 3 4 5
Clusters 6870 2254 722 413 264
Dataset 3 - subset 4 (S. Pyogenes)
Genomes 1 2 3 4 5
Clusters 6444 2412 682 401 251

Dataset 4 (3 Species)

Geno 1 2 3 4 5 6 7 8
mes

153
71

26 97 44 28 22 17 14
61 6 7 2 4 2 8

Cluste
rs

Dataset 4 - subset 1 (B. Aphidicola)
Genomes 1 2 3 4 5 6
Clusters 1857 229 218 28 2 1
Dataset 4 - subset 2 (S. Pneumoniae)

Genomes 1 2 3 4 5 6
6356 2188 735 404 274 212

Clusters

Dataset 4 - subset 3 (Pyrococcus genomes)
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1045 789 400
14 15 16 17
39 35 55 101
6 7 8 9 10 11 12
216 159 137 113 104 115 117
6 7 8 9 10 11 12 13
151 119 112 95 92 88 88 93
9 1 11 12 1 1 1 1 1 1 1 2 2
0 5 1
12 9 11 12 6 5 4 0 0O O O O O O
2 8 9 8
7 8 9 10 11 12
169 148 114 103 122 126



Defining thestatisticalimetries of a Pangenome

Genomes 1 2 3 4

Clusters 7482 266 29 3

Dataset 5 (Photosynthetic species)

Genomes 1 2 3 4 5 6
Clusters 150326 12502 6173 3613 1621 1353
Genomes 7 8 9 10 11 12 13 14 15

Clusters 700 559 471 418 377 359 449 245 169

Genomes 16 17 18 19 20 21 22 23 24
Clusters 116 145 128 120 92 100 95 113 101

Genomes 25 26 27 28 29 30 31 32 33 34
Clusters 129 138 124 110 82 81 87 8 103 126

Genomes 35 36 37 38 39 40 41 42
Clusters 135 156 215 234 451 558 1022 945

Genomes 43 44 45 46 47 48 49 50 51
Clusters 442 337 281 230 277 291 293 307 256

Genomes 52 53 54 55 56 57 58 59 60 61
Clusters 270 316 378 459 374 56 38 28 26 17

Genomes 62 63 64 65 66 67 68 69 70 71 72 73
Clusters 13 23 17 22 14 17 10 10 16 11 11 18

Genomes 74 75 76 77 78 79 80 81 82 83 84 &5
Clusters 14 17 8 14 17 23 22 30 18 19 29 28
Genomes 86 87 88 8 90 91 92 93 94 95

Clusters 17 31 26 41 33 37 61 77 110 102

Viridiplantae species

Genomes 1 2 3 4 5 6 7
Clusters 134228 10425 5245 3090 1205 991 438
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Genomes 8 9 10 11 12 13 14 15 16
Clusters 370 291 248 234 250 356 156 82 60

Genomes 17 18 19 20 21 22 23 24 25 26 27 28
Clusters 61 59 41 44 41 43 57 56 74 84 90 58

Genomes 29 30 31 32 33 34 35 36 37 38
Clusters 43 32 45 39 53 8 80 101 143 166

Genomes 39 40 41 42 43 44 45 46
Clusters 319 513 1015 965 451 353 283 248
Genomes 47 48 49 50 51 52 53 54 55 56
Clusters 293 326 332 362 288 311 403 500 618 547

Cyanobacteria species

Genomes 1 2 3 4 5 6 7 8
Clusters 17310 2494 1101 647 510 406 323 250

Genomes 9 10 11 12 13 14 15 16 17 18
Clusters 237 1% 173 122 133 112 97 83 93 89

Genomes 19 20 21 22 23 24 25 26 27 28 29 30
Clusters 86 69 69 47 57 63 56 61 55 60 53 65
Genomes 31 32 33 34 35 36 37 38 39
Clusters 55 58 66 86 92 119 153 159 781

Benchmarks

Following benchmarks where run at the mpneumoniae dataset from package micropan. All commands where
evaluated 100 times. Function names with a “pm” suffix belong to package pasaR. Package pasaR shows a clear
advantage over micropan in terms of speed, with the only exception being the binomial mixture models. This
happens due to different parameter choices in the optimization of the log-likelihood function: Micropan calls for a
maximum of 300 iterations with a relative tolerance of 107-6 while in pasaR the number of maximum iterations is
200 times the number of components examined with a relative tolerance of 107-8.
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Chao Estimator runtime comparison
## Unit: milliseconds

expr min Iq mean median uq max neval
chao(panm) 76.31 78.86 85.62 80.53 82.1 190.6 100
pm_chao(panm) 3.644 3.881 4.146 3.991 4.132 6.603 100
pm_chao(panm)-
chao(panm) -
10 100
Time [milliseconds]
Binomial models runtime comparison
Unit: seconds
expr min Iq mean median uq max
binomixEstimate(panm, 2:10) 1.053 1.077 1.12 1.121 1.127 1.259
pm_binom(panm, 2:10) 2.656 2.752 2.799 2.811 2.83 2.983

pm_bimnomipanm, 2:10) =

bimomixEstimate(panm, 2:10) -

Time [seconds]

77

s

neval
100
100



Asterios Mpatziakas

Heaps model runtime comparison
Unit: milliseconds

expr min Iq mean median uq max neval

heaps(panm, 100) 1240 1294 1347 1341 1406 1500 100

pm_heaps(panm, 100) 158 166 177.3 169.5 173.8 2933 100
pm_heaps(panm, 100) = &

heapsipanm, 100) -

1000
Time [milliseconds]

Fluidity runtime comparison
Unit: milliseconds

expr min Iq mean median uq max neval
pm_fluidity(panm, 100) 6.012 6.85 7.703 7.839 8.464 10.45 100
fluidity(panm, 100) 6068 6273 6309 6332 6357 6528 100
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