ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ ΤΟΜΕΑΣ ΣΕΙΣΜΟΛΟΓΙΑΣ ΚΑΙ ΓΕΩΦΥΣΙΚΗΣ

Μελέτη των σεισμοτεκτονικών και γεωδυναμικών ιδιοτήτων της ευρύτερης περιοχής του Αιγαίου με βάση τη χωρική κατανομή των μηχανισμών γένεσης

ΙΩΑΝΝΙΔΗ ΠΑΡΑΣΚΕΥΗ-ΙΩ

AEM: 4293

Επιβλέπουσα Καθηγήτρια: Παπαδημητρίου Ελευθερία Συνεπίβλεψη: Λεπτοκαρόπουλος Κωνσταντίνος

19/2/2015

9101

HB=995182 HCI=1334625

Εισαγωγή

Η παρούσα εργασία αποτελεί Διπλωματική Εργασία στα πλαίσια του προγράμματος προπτυχιακών σπουδών του τμήματος Γεωλογίας, της **Σχ**ολής Θετικών Επιστημών του Αριστοτελείου Πανεπιστημίου Θεσσαλονίκης. Σκοπός της είναι η μελέτη της χωρικής κατανομής των μηχανισμών γένεσης επιφανειακών σεισμών και των σεισμών ενδιαμέσου βάθους του ελληνικού χώρου, η εξαγωγή συμπερασμάτων για την κατανομή των τάσεων και η σύνδεσή τους με τα σεισμοτεκτονικά χαρακτηριστικά στην ευρύτερη περιοχή του Αιγαίου.

Χωρίζεται σε 4 κεφάλαια με τα εξής περιεχόμενα:

Στο πρώτο κεφάλαιο, γίνεται αναφορά στις σεισμοτεκτονικές ιδιότητες του ελληνικού χώρου και αναφέρονται προηγούμενες έρευνες στην Ελλάδα, με παρόμοιο περιεχόμενο.

Στο δεύτερο κεφάλαιο επεξηγούνται τα δεδομένα παρατήρησης και παρατίθεται ο αντίστοιχος κατάλογος των μηχανισμών γένεσης των σεισμών που μελετώνται.

Στο τρίτο κεφάλαιο παρουσιάζονται και αναλύονται τα αποτελέσματα των μηχανισμών γένεσης και χωρίζονται σε επί μέρους ζώνες οι περιοχές της Ελλάδας, σύμφωνα με τα κοινά σεισμοτεκτονικά χαρακτηριστικά τους.

Το τέταρτο κεφάλαιο παρουσιάζει τα συμπεράσματα που έχουν προκύψει από την παρούσα εργασία.

Η πραγματοποίηση της εργασίας έγινε υπό την καθοδήγηση της κ. Ε. Παπαδημητρίου, την οποία ευχαριστώ θερμά για την υποστήριξη και τη συμπαράστασή της καθ' όλη τη διάρκεια που η εργασία ήταν σε εξέλιξη.

Τέλος, θα ήθελα να ευχαριστήσω τον Κ. Λεπτοκαρόπουλο για τη βοήθεια που μου προσέφερε με την εγκατάσταση και τη λειτουργία του λογισμικού που χρησιμοποιήθηκε για τους χάρτες που περιέχονται στο τρίτο κεφάλαιο καθώς επίσης και για τη παραχώρηση του μεγαλύτερου μέρους των μηχανισμών γένεσης, πάνω στους οποίους βασίστηκε η εργασία.

120464

ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ ΒΙΒΛΙΟΘΗΚΗ

Περιεχόμενα

K	εφάλαι	ο 1. Το γεωτεκτονικό πλαίσιο της Ελλάδας	1
	1.1	Τα δυο συστήματα ηπειρωτικής διάρρηξης του φλοιού και η θέση της Ελλάδας	1
	1.1.	1 Ηπειρωτικό σύστημα διάρρηξης	1
	1.1.	2 Σύστημα μεσο-ωκεάνιων ράχεων	1
	1.2	Σεισμοτεκτονικές ιδιότητες του ελληνικού χώρου	2
	1.3	Σεισμική δράση στην Ελλάδα	6
	1.4	Προηγούμενη έρευνα στην Ελλάδα	7
K	εφάλαι	ο 2. Εύρεση κι επεξεργασία των δεδομένων	9
	2.1	Δεδομένα παρατήρησης	9
	2.2	Κατάλογος μηχανισμών γένεσης σεισμών (1953-2012)	10
	Πίνα	ακας 2.1	
K٤	εφάλαι	ο 3. Χωρική κατανομή των μηχανισμών γένεσης σεισμών	27
	3.1	Λύσεις μηχανισμών γένεσης επιφανειακών σεισμών	27
	3.1.	1 Ακτές κατά μήκος της Αλβανίας και της βορειοδυτικής ηπειρωτικής Ελλάδας	
	3.1.	2 Κεντρικά Ιόνια νησιά	
	3.1.	3 Ελληνική Τάφρος	
	3.1.	4 Εξωτερικές Ελληνίδες	
	3.1.	5 Θεσσαλία, Μακεδονία και Θράκη	
	3.1.	6 Κεντρική Ελλάδα – Νότιο Αιγαίο	
	3.1.	7 Βόρειο Αιγαίο	42
	3.1.	8 Θάλασσα Μαρμαρά και Βόρεια Τουρκία	43
	3.2	Λύσεις μηχανισμών γένεσης σεισμών ενδιαμέσου βάθους	44
	3.2.	Σεισμοί που έχουν τις εστίες τους στο επιφανειακό τμήμα της ζώνης Benioff	
	3.2.	2 Σεισμοί που έχουν τις εστίες τους σε μεγάλα βάθη (h>100 km)	46
Kŧ	εφάλαι	ο 4. Συμπεράσματα	47
Ει	υχαρισι	τίες	50
В	ιβλιογρ	αφία	50
	Διεθνή	ίς	50
	Ελληνι	ική	63
	Διαδικ	ατυακή	63

Κεφάλαιο 1. Το γεωτεκτονικό πλαίσιο της Ελλάδας

1.1 Τα δυο συστήματα ηπειρωτικής διάρρηξης του φλοιού και η θέση της Ελλάδας

Από το τέλος του Παλαιοζωικού μέχρι σήμερα ο φλοιός της Γης υφίσταται συνεχώς τη δράση τεκτονικών δυνάμεων, έχοντας ως αποτέλεσμα τη δημιουργία σεισμών, ηφαιστείων και άλλων γεωδυναμικών φαινομένων. Ο τρόπος κατανομής των φαινομένων αυτών δεν είναι τυχαίος, αλλά προσδιορίζει τις πιο ενεργές τεκτονικά ζώνες της Γης, χωρίζοντάς τες ως εξής:

1.1.1 Ηπειρωτικό σύστημα διάρρηξης

Αποτελείται από δυο κύριες ζώνες, την Ευρασιατική - Μελανησιακή, η οποία αρχίζει από το Γιβραλτάρ και φτάνει μέχρι τη Βιρμανία, και από την Περιειρηνική, που περιλαμβάνει όλες τις χώρες που βρέχονται από τον Ειρηνικό Ωκεανό. Στο σύστημα αυτό βρίσκονται όλες οι νέες οροσειρές, τα νησιωτικά τόξα, τα ανδεσιτικά ηφαίστεια, οι εστίες των σεισμών βάθους και οι περισσότερες εστίες των επιφανειακών σεισμών. Το σύστημα αυτό αποτελεί περιοχή σύγκλισης των λιθοσφαιρικών πλακών όπου καταστρέφεται ο φλοιός της Γης.

1.1.2 Σύστημα μεσο-ωκεάνιων ράχεων

Οι μεσο-ωκεάνιες ράχεις είναι επιμήκεις υποθαλάσσιες εξάρσεις του ωκεάνιου φλοιού, οι οποίες διατρέχουν τον Ατλαντικό ωκεανό από βορά προς νότο και διασχίζουν τον Ινδικό και τον Ειρηνικό. Το ύψος των ράχεων ανέρχεται συνήθως πάνω από 1000 m, ενώ σε ορισμένες περιπτώσεις φτάνει πάνω από 3000 m. Έχουν παρατηρηθεί και περιπτώσεις όπου μια μεσο-ωκεάνια ράχη υψώνεται πάνω από την επιφάνεια της θάλασσας, όπως π.χ. στην περιοχή της Ισλανδίας. Στο σύστημα των μεσο-ωκεάνιων ράχεων παρατηρούνται μόνο επιφανειακοί σεισμοί (h<60 km). Σ' αυτό το σύστημα διάρρηξης παρατηρείται απόκλιση λιθοσφαιρικών πλακών και δημιουργία νέου ωκεάνιου φλοιού.

Σχήμα 1.1 Τα συστήματα ζωνών διάρρηξης. Η Ελλάδα βρίσκεται στο τμήμα του ηπειρωτικού συστήματος διάρρηξης που χωρίζει την Ευριασιατική και την Αφρικανική λιθοσφαιρική πλάκα (Πηγή: USGS)

Στο Σχήμα 1.1 φαίνεται ότι η Ελλάδα βρίσκεται στο όριο σύγκλισης δύο μεγάλων πλακών, της Ευρασιατικής και της Αφρικανικής. Λόγω της θέσης της αυτής, η ενεργός τεκτονική είναι έντονη, γεγονός που υποδηλώνεται από την σχετικά υψηλή σεισμικότητα του χώρου, την έντονη διάρρηξη και πτύχωση των πετρωμάτων, τα ηφαιστειακά και γεωθερμικά φαινόμενα κ.λπ. Η κύρια τεκτονική δομή του Ελληνικού χώρου που βρίσκεται σε ενεργό δράση σήμερα είναι το Ελληνικό τόξο.

1.2 Σεισμοτεκτονικές ιδιότητες του ελληνικού χώρου

Κατά τη σύγκλιση δυο μεγάλων λιθοσφαιρικών πλακών, αποκόπτονται από τα περιθώριά τους μικρότερα τεμάχη, τα οποία κινούνται σχετικά. Έτσι, κατά τη σύγκλιση Αφρικής και Ευρασίας, το

ηπειρωτικό τέμαχος της Αραβίας, που έχει αποσπασθεί από την Αφρικανική πλάκα μέσω του ανοίγματος της Ερυθράς Θάλασσας, κινείται προς το βορά σχετικά ανεξάρτητα και με μεγαλύτερη ταχύτητα από την Αφρική. Η Αραβική πλάκα με την κίνησή της αυτή, πιέζει το Ευρασιατικό περιθώριο στο χώρο της Μικράς Ασίας (Ανατολία), η οποία ως μια άλλη ανεξάρτητη μικροπλάκα εξαναγκάζεται σε περιστροφή με κατεύθυνση από τα ανατολικά προς δυτικά τα (αριστερόστροφη), πιέζοντας έτσι το χώρο του Αιγαίου (μικροπλάκα Αιγαίου), ο οποίος με τη σειρά του ωθείται σε ελαφρά νοτιοδυτική κίνηση. Η κίνηση της

από ηπειρωτική (Τροποποιημένο από Park & Siever 1994).

μικροπλάκας της Ανατολίας πραγματοποιείται μέσω του μεγάλου δεξιόστροφου ρήγματος οριζόντιας μετατόπισης της βόρειας Ανατολίας. Στη διαμόρφωση του Αιγαιακού χώρου, επομένως, έχουν συμβάλει όλα τα προαναφερθέντα φαινόμενα.

Ο ελληνικός χώρος είναι μια από τις πιο ενεργές, σεισμικά, περιοχές της Γης. Το πιο χαρακτηριστικό του γνώρισμα είναι το Ελληνικό Τόξο, το οποίο βρίσκεται στο νότιο άκρο του και η μελέτη του έχει μεγάλο ενδιαφέρον. Λόγω της θέσης του κατά μήκος του ορίου σύγκλισης της Ευρασιατικής και της Αφρικανικής λιθοσφαιρκής πλάκας, αποτελεί το τελευταίο υπολειμματικό τμήμα της Τηθύος που δεν έχει ακόμη συμμετάσχει στην υπό εξέλιξη αλπική ορογένεση και επομένως, αντιπροσωπεύει το απαραμόρφωτο, ακόμα, περιθώριο της Αφρικανικής πλάκας. Η ιδιαιτερότητα αυτή του Ελληνικού Τόξου δίνει τη δυνατότητα μελέτης των διαφόρων ορογενετικών φαινομένων εν τη γενέσει τους.

Τα μορφοτεκτονικά στοιχεία, από τα οποία συγκροτείται, αντιστοιχούν σε αυτά των νησιωτικών τόξων που βρίσκονται σε περιοχές κατάδυσης μιας ωκεάνιας πλάκας κάτω από μια ηπειρωτική. Τα κύρια μορφοτεκτονικά γνωρίσματα του ελληνικού χώρου είναι τα εξής (Σχήμα 1.4) :

 Το Εξωτερικό ιζηματογενές τόξο, το οποίο περιλαμβάνει τις Δυτικές εξωτερικές οροσειρές της ηπειρωτικής Ελλάδας, την Κρήτη και τα Δωδεκάνησα. Ιδιαίτερα η Κρήτη έχει τη χαρακτηριστική μορφή του πρίσματος επαύξησης.

- Το Εσωτερικό ηφαιστειακό τόξο, το οποίο αποτελείται από τα διαδοχικά ηφαιστειακά κέντρα (ενεργά και ανενεργά) Σουσάκι, Μέθανα, Μήλος, Σαντορίνη, Νίσυρος. Τα ηφαίστεια αυτά συνδέονται με τη βύθιση και την τήξη της πλάκας της Αφρικής σε βάθος περίπου 150 Km, πίσω από το μέτωπο σύγκλισης των πλακών.
- Η Ελληνική περιφερειακή τάφρος (Hellenic trench) η οποία περιβάλλει το κυρτό μέρος του ιζηματογενούς τόξου (από τα εξωτερικά) και εκτείνεται από το Ιόνιο Πέλαγος μέχρι τα νότια της Κρήτης και της Ρόδου και αποτελεί σύστημα βαθιών υποθαλάσσιων βυθισμάτων. Το μεγαλύτερο βάθος της εντοπίστηκε νοτιοδυτικά της Πελοποννήσου, στο Ιόνιο Πέλαγος (βάθος περίπου 4500 m). Αυτό είναι και το βαθύτερο σημείο της Μεσογείου.
- Η Οπισθότοξη λεκάνη (back-arc basin) του Αιγαίου που δημιουργείται από εφελκυστικές τάσεις πίσω από το τόξο. Περιλαμβάνει το Αιγαίο Πέλαγος, την ηπειρωτική Ελλάδα, την Αλβανία, την π.Γ.Δ.Μ., τη Ν. Βουλγαρία και τη Δ. Τουρκία.

1.3 Δημιουργία νησιωτικού τόξου λόγω κατάδυσης ωκεάνιας λιθοσφαιρικής πλάκας κάτω από ηπειρωτική (Τροποποιημένο από Park & Siever 1994)

Ένα άλλο μορφοτεκτονικό γνώρισμα του συστήματος, εκτός του ελληνικού χώρου, είναι η Μεσογειακή Ράχη (Mediterranean Ridge), μια υποθαλάσσια έξαρση του φλοιού που διασχίζει την Ανατολική Μεσόγειο νότια από την Ελληνική τάφρο και παράλληλα στο Ελληνικό τόξο.

Σχήμα 1.4 Κύρια μορφοτεκτονικά χαρακτηριστικά του Ελληνικού Τόξου. Από τα εσωτερικά προς τα εξωτερικά με τη σειρά διακρίνονται: το ενεργό ηφαιστειακό τόξο, το εξωτερικό ιζηματογενές και η Ελληνική Τάφρος.

Στην περιοχή του Αιγαίου εκδηλώνεται η εντονότερη σεισμική δράση σε όλη τη δυτική Ευρασία. Αυτή η έντονη σεισμικότητα αποδίδεται στη σύγκρουση της μικροπλάκας του Αιγαίου με το βορειότερο τμήμα της Αφρικανικής λιθοσφαιρικής πλάκας. Πριν από τριάντα περίπου χρόνια αναγνωρίστηκε η ζώνη Benioff στην περιοχή του νότιου Αιγαίου, όπου παρατηρείται η κατάδυση της ωκεάνιας λιθόσφαιρας της Ανατολικής Μεσογείου κάτω από την μικροπλάκα του Αιγαίου, κατά μήκος του Ελληνικού Τόξου. Η ζώνη Benioff αποτελείται από το επιφανειακό τμήμα (h≤100 km) που καταδύεται με σχετικά μικρή γωνία κλίσης και όπου δημιουργούνται σεισμοί με μεγέθη ως 7.7 και από το βαθύτερο τμήμα της (100≤h≤180 km), το οποίο καταδύεται με μεγαλύτερη γωνία και δίνει σεισμούς με μεγέθη ως 7.0.

Το Ελληνικό Τόξο, όμως, δεν είναι ο μόνος παράγοντας που διαμορφώνει την ενεργό τεκτονική στην ευρύτερη περιοχή του ελληνικού χώρου. Σ' αυτή τη διαμόρφωση συμβάλλει κατά πολύ και το ότι το Αιγαίο κινείται ως μια ανεξάρτητη μικροπλάκα προς τα νοτιοδυτικά με ταχύτητα αρκετά μεγαλύτερη από τη σχετική ταχύτητα της Ευρασίας ως προς την πλάκα της Ανατολίας (~3.5cm/yr).

Όπως είδαμε παραπάνω, η πλάκα της Ανατολίας περιστρέφεται αριστερόστροφα, σε σχέση με τη λιθοσφαιρική πλάκα της Ευρασίας. Ο ρυθμός της αριστερόστροφης αυτής κίνησης είναι περίπου 1,2°/10⁶yrs και προκαλεί ολίσθηση της πλάκας κατά μήκος της ζώνης ρηγμάτων της βόρειας Ανατολίας με ταχύτητα 2.5cm/yr περίπου. Όμως, η ολίσθηση αυτή προς τα δυτικά δεν προκαλεί συμπιεστικό πεδίο τάσεων στο Αιγαίο, όπως θα αναμενόταν. Αντίθετα, στην περιοχή του Αιγαίου επικρατεί εφελκυστικό πεδίο τάσεων. Αυτό συμβαίνει γιατί η πλάκα του Αιγαίου δεν περιστρέφεται όπως η Ανατολία, αλλά πραγματοποιεί γρήγορη γραμμική κίνηση προς τα νοτιοδυτικά με ταχύτητα μεγαλύτερη από της Ευρασίας (περίπου 3.5cm/γr). Έτσι, η λιθόσφαιρα του Αιγαίου απομακρύνεται από την Ανατολία, με συνέπεια να δημιουργείται μια μεταβατική ζώνη μεταξύ τους κοντά στο δυτικό όριο της δεύτερης. Γεωδαιτικά και σεισμολογικά στοιχεία δείχνουν ότι η ταχύτητα της γρήγορης γραμμικής κίνησης του Αιγαίου αυξάνεται από το βορά προς το νότο. Συνέπεια αυτής της διαφοροποίησης στην ταχύτητα είναι η επέκταση της λιθόσφαιρας του Αιγαίου κατά τη διεύθυνση αυτή.

Σχήμα 1.5 Οι κινήσεις των λιθοσφαιρικών πλακών που επηρεάζουν την ενεργό τεκτονική στο Αιγαίο και τις γύρω περιοχές (από Papazachos and Papazachou, 2003).

Υπεύθυνο για τη νοτιοδυτική κίνηση της πλάκας του Αιγαίου είναι το ρήγμα της Βόρειας Ανατολίας, το οποίο προεκτείνεται και μέσα στο Αιγαίο. Την προέκταση αυτή αποτελεί ουσιαστικά η τάφρος του Β. Αιγαίου στην οπισθότοξη περιοχή της λεκάνης.

Η εφελκυστική αυτή τεκτονική του Β. Αιγαίου, που είναι από τις εντονότερες της ευρύτερης περιοχής, δημιουργεί μεγάλα και βαθιά ρήγματα στον ανώτερο φλοιό, που διευκολύνουν την άνοδο θερμών ρευστών από τον άνω μανδύα, τα οποία μεταφέρουν στην επιφάνεια ή σε μικρά βάθη μεγάλες ποσότητες θερμικής ενέργειας και δημιουργούν έντονες γεωθερμικές ανωμαλίες.

Η τεκτονική κατάσταση των πρόσφατων γεωλογικών χρόνων χαρακτηρίζεται από έναν εκτεταμένο εφελκυσμό και το σχηματισμό μεγάλης κλίμακας κανονικών ρηγμάτων και ρηγμάτων οριζόντιας

μετατόπισης στο Β. Αιγαίο και ανάστροφων στον υποθαλάσσιο χώρο της Ελληνικής τάφρου και των Ιόνιων Νήσων.

Σύμφωνα με τις παραπάνω παρατηρήσεις, ο ελληνικός χώρος εμφανίζει σε κάθε επί μέρους περιοχή συγκεκριμένα μορφοτεκτονικά χαρακτηριστικά που συνδέονται με το γεωδυναμικό πλαίσιο της ευρύτερης περιοχής στην οποία βρίσκονται.

Έτσι, η περιοχή της ανατολικής Μακεδονίας και Θράκης εμφανίζει φαινόμενα παραμόρφωσης και συγκεκριμένα επέκταση διεύθυνσης βορά-νότου. Παρόλο που στο παρελθόν έχουν σημειωθεί σεισμοί μεγάλης κλίμακας, θεωρείται περιοχή σχετικά χαμηλής σεισμικότητας.

Παρόμοια είναι και η κατάσταση που επικρατεί στις Κυκλάδες και τα Δωδεκάνησα. Γενικά η μορφολογία του βυθού βορά-νότου υποθέτει δομή παρόμοια με αυτή της δυτικής Τουρκίας, δηλαδή κανονικά ρήγματα με επέκταση. Ιδιαίτερα ενεργή σεισμικά, όμως, φαίνεται να είναι η περιοχή των Δωδεκανήσων μεταξύ Κω και Καρπάθου. Στις Κυκλάδες κυριαρχούν κανονικά ρήγματα βορά-νότου.

Στην **Πελοπόννησο** παρατηρείται δεξιόστροφη περιστροφή 25° και επέκταση στο νότιο τμήμα της, διεύθυνσης ανατολής-δύσης. Η σεισμικότητα περιορίζεται στον Κορινθιακό και τον Πατραϊκό κόλπο, ενώ εντοπίζεται και μικρή σεισμικότητα στην Καλαμάτα.

Στα νότια και δυτικά της **Κρήτης** παρατηρούνται ανάστροφα ρήγματα με παράταξη ανατολής-δύσης, εξ αιτίας του συμπιεστικού πεδίου τάσεων, ενώ στα βόρεια το εφελκυστικό καθεστώς που επικρατεί, λόγω της γενικότερης επέκτασης του Αιγαίου, δημιουργεί κανονικά ρήγματα βορά-νότου.

Μεγάλη ιδιαιτερότητα παρουσιάζουν επίσης τα **Ιόνια Νησιά**, και πιο συγκεκριμένα η περιοχή Κεφαλονιάς - Λευκάδας. Εκεί, παρατηρούνται δεξιόστροφα ρήγματα οριζόντιας μετατόπισης, με κυρίαρχο αυτό της Κεφαλονιάς, που δημιουργούνται λόγω της νοτιοδυτικής κίνησης της μικροπλάκας του Αιγαίου σε σχέση με την Ευρασιατική και την Απουλία.

Στο **B. Αιγαίο**, τα κύρια μορφοτεκτονικά χαρακτηριστικά είναι η είσοδος σε αυτό του βόρειου κλάδου του ρήγματος της Ανατολίας, το οποίο αποτελεί δεξιόστροφο ρήγμα οριζόντιας μετατόπισης και δημιουργείται από τη σχετική κίνηση της πλάκας της Ανατολίας σε σχέση με το Αιγαίο και την περιστροφή της πρώτης, η επέκταση της λιθόσφαιρας του Αιγαίου, η οποία χαρακτηρίζει την οπισθότοξη περιοχή και η ύπαρξη της ομώνυμης τάφρου (Τάφρος B, Αιγαίου).

Το **Ν. Αιγαίο** χαρακτηρίζεται από την ύπαρξη του Ελληνικού τόξου. Κατά μήκος του κυριαρχούν τα ανάστροφα ρήγματα μικρής γωνίας κλίσης με διεύθυνση του μέγιστου άξονα συμπίεσης βορειοανατολικά-νοτιοδυτικά, που συνδέονται με το δεξιόστροφο ρήγμα μετασχηματισμού της Κεφαλονιάς στα δυτικά και με το αριστερόστροφο ρήγμα της Ρόδου στα ανατολικά. Κυριαρχούν τα ανάστροφα ρήγματα στο εξωτερικό τμήμα του τόξου και τα κανονικά στο εσωτερικό του.

1.3 Σεισμική δράση στην Ελλάδα

Σύμφωνα με τους Tsapanos and Papazachos (1998), η επιφανειακή σεισμική δράση κατανέμεται κυρίως κατά μήκος των δύο ζωνών ηπειρωτικής διάρρηξης. Στο ωκεάνιο σύστημα διάρρηξης, η σεισμική δράση σχηματίζει στενές σεισμικές ζώνες που συμπίπτουν με τις μεσο-ωκεάνιες ράχεις. Αντίθετα, στο ηπειρωτικό σύστημα διάρρηξης είναι διάσπαρτη. Έτσι, η σεισμική δράση στην Ελλάδα και τις γύρω περιοχές κατανέμεται χωρικά σε μια ευρεία περιοχή λόγω της θέσης της στην Ευρασιατική-Μελανησιακή ζώνη ηπειρωτικής διάρρηξης, όπου η ενεργός τεκτονική είναι πολύπλοκη.

Πρώτη φορά, γίνεται αναφορά στη σεισμικότητα του Ελληνικού χώρου τον 6ο αιώνα π.Χ. από αρχαίους Έλληνες και Λατίνους ιστορικούς οι οποίοι παρείχαν πληροφορίες για τις μακροσεισμικές συνέπειες των σεισμών. Παρόμοιες περιγραφές έγιναν αργότερα και από Βυζαντινούς αλλά και πιο σύγχρονους ιστορικούς (1550-1845). Από τα μέσα του 19ου αιώνα συγκροτήθηκαν κατάλογοι με τις ημερομηνίες και τις μακροσεισμικές συνέπειες των σεισμών, ενώ παραμετρικοί κατάλογοι με τις ημερομηνίες, τις συντεταγμένες, τα εστιακά βάθη και τα μεγέθη των σεισμών υπάρχουν για την Ελλάδα τις τελευταίες τέσσερις δεκαετίες.

Η ελληνική ζώνη κατάδυσης χαρακτηρίζεται από υψηλή σεισμικότητα κατά μήκος του τόξου, ενώ το Κρητικό Πέλαγος είναι ασεισμικό. Νότια του Ελληνικού Τόξου, πάνω στην Αφρικανική πλάκα, η σεισμικότητα είναι μικρή (Σχήμα 1.6).

Σχήμα 1.6 Σεισμικότητα του Αιγιακού χώρου (σύμφωνα με τον κατάλογο του NEIC), εμπλουτισμένη με ταχύτητες GPS θεωρώντας σταθερή την Ευρασιατική πλάκα (από Cocard et al., 1999, McClusky et al., 2000). Οι μαύρες γραμμές παριστάνουν ενεργά ρήγματα.

1.4 Προηγούμενη έρευνα στην Ελλάδα

Σημαντικά αποτελέσματα, σχετικά με τη γνώση της ενεργού τεκτονικής του Αιγαίου, έχουν προκύψει ως τώρα από τη μελέτη των μηχανισμών γένεσης ισχυρών σεισμών. Στις πρώτες σχετικές έρευνες οι μηχανισμοί γένεσης καθορίστηκαν με τη μέθοδο των πρώτων αποκλίσεων των επιμήκων κυμάτων σε καταγραφές μακρινών σεισμολογικών σταθμών (Hodgson and Cock, 1956, Παπαζάχος, 1961, Δελήμπασης, 1968, Papazachos and Delibasis, 1969, Ritsema 1974, McKenzie, 1972, 1978), ενώ αργότερα χρησιμοποιήθηκαν οι πρώτες αποκλίσεις των επιμήκων κυμάτων από καταγραφές σε τοπικά δίκτυα (Hatzfeld et al., 1989, Hatzidimitriou et al., 1991, κ.α.). Επίσης, λύσεις μηχανισμών γένεσης σεισμών στην Ελλάδα βρέθηκαν και με μοντελοποίηση κυματομορφών κυμάτων χώρου (Soufleris and Stewart, 1981, Anderson and Jackson, 1987, Papadimitriou, 1988, 1993, Kiratzi and Langston, 1989, 1991, Ioannidou, 1989, Taymaz et al., 1990, 1991, Kiratzi et al., 1987, 1991).

Ήδη από την αρχή της εφαρμογής των μηχανισμών γένεσης, είχαν προκύψει πολύ σημαντικά αποτελέσματα σχετικά με την ενεργό τεκτονική στην Ελλάδα. Έτσι, στις μεθόδους αυτές αποδίδεται σήμερα η εύρεση του εφελκυστικού πεδίου τάσεων τόσο κατά μήκος των Ελληνίδων (Papazachos et al., 1984b), όοο και στο βόρειο τμήμα της λιθόσφαιρας του Αιγαίου (McKenzie, 1970). Επίσης, η αναγνώριση της ζώνης ανάστροφων ρηγμάτων κατά μήκος του κυρτού τμήματος του Ελληνικού Τόξου (Papazachos and Delibasis, 1969), των ρηγμάτων μετασχηματισμού της Κεφαλονιάς (Scordilis et al., 1985) και της Ρόδου (Παπαζάχος και συνεργάτες, 2001) και του αριστερόστροφου ρήγματος της Σκύρου (Karakostas et al., 2003), αποδίδεται στη συμβολή των μηχανισμών γένεσης των σεισμών, με τις μεθόδους που αναφέρθηκαν πιο πάνω.

Κεφάλαιο 2. Εύρεση κι επεξεργασία των δεδομένων

Κεφάλαιο 1.

Κεφάλαιο 2.

2.1 Δεδομένα παρατήρησης

Για την εκπόνηση της παρούσας εργασίας χρησιμοποιήθηκε κατάλογος με τους μηχανισμούς γένεσης σεισμών, οι οποίοι έγιναν στην περιοχή που ορίζεται από 18° έως 32° ανατολικό γεωγραφικό μήκος και από 33° έως 43° βόρειο γεωγραφικό πλάτος. Ο κατάλογος παραχωρήθηκε από τον Τομέα Γεωφυσικής, του Τμήματος Γεωλογίας, του Αριστοτέλειου Πανεπιστημίου Θεσσαλονίκης κι εμπλουτίστηκε από τους διαθέσιμους μηχανισμούς γένεσης του δικτυακού τόπου του Global Centroid-Moment-Tensor (GCMT) Project (<u>www.globalcmt.org</u>). Πιο συγκεκριμένα, από τον Τομέα Γεωφυσικής και Σεισμολογίας ο κατάλογος περιείχε 482 μηχανισμούς γένεσης που κάλυπταν την περίοδο από 18-3-1953 μέχρι 28-12-2008 με μεγέθη 4.4≤M≤7.7 και βάθη έως 170 km. Αντίστοιχα, ο κατάλογος του GCMT περιλάμβανε συμπληρωματικά 52 μηχανισμούς γένεσης που καλύπτουν τα έτη 2009-2012, με μεγέθη 4.8≤M≤6.4 και βάθη έως 174 km.

2.2 Κατάλογος μηχανισμών γένεσης σεισμών (1953-2012)

Στον ενοποιημένο κατάλογο που παρατίθεται παρακάτω, στην πρώτη και τη δεύτερη στήλη αναγράφονται η ημερομηνία και η ώρα γένεσης του σεισμού, ενώ στη τρίτη και τέταρτη στήλη το γεωγραφικό πλάτος (φ) και το γεωγραφικό μήκος (λ) σε μοίρες (°). Η πέμπτη στήλη παρέχει πληροφορίες για το εστιακό βάθος του αντίστοιχου σεισμού σε χιλιόμετρα και η έκτη για το μέγεθος, Μ, του σεισμού. Στις επόμενες τρεις στήλες δίνονται οι παράμετροι του σεισμικού ρήγματος, δηλαδή το αζιμούθιο, ζ, η γωνία κλίσης, δ, και η γωνία του διανύσματος ολίσθησης, λ. Τέλος παρατίθεται η σεισμική ροπή υπολογισμένη σε dγη·cm·10²⁵ καθώς και οι πηγές από τις οποίες λήφθηκαν οι μηχανισμοί γένεσης.

Από τους 534 συνολικά σεισμούς, οι 28 είναι σεισμοί ενδιαμέσου βάθους (h≥60 km), ενώ οι υπόλοιποι 506 είναι επιφανειακοί (h<60 km).

Πίνακας 2.1 Μηχανισμοί γένεσης για όλους τους σεισμούς με Μ≥4.4 των τελευταίων 59 ετών (1953-2012).

Ημ/νία	Ώρα γένεσης	φ(° _B)	λ(° _A)	Βάθος (km)	М	ζ (°)	δ (°)	λ (°)	Mo (dyn∙cm ·10 ²⁵)	Αναφορές
19530318	19:06:16	40.00	27.40	7	7.4	250	70	-21		Papazachos et al., 1992
19530812	9:23:00	38.30	20.80	10	6.9	163	34	101		Anderson & Jackson, 1987
19540430	13:02:36	39.28	22.29	8	7.0	285	43	-88		Papadimitriou & Karakostas, 2003
19550419	16:47:19	39.27	23.00	8	6.2	267	45	-90		Papadimitriou & Karakostas, 2003
19550716	7:07:00	37.66	27.19	10	6.8	55	51	-133		McKenzie, 1972
19560220	20:31:00	39.86	30.49	10	6.2	140	56	-51		McKenzie, 1972
19560709	3:11:00	36.70	25.80	15	7.7	65	40	-90		Shirokova, 1972
19570308	12:21:13	39.38	22.63	8	6.8	267	45	-88		Papadimitriou & Karakostas, 2003
19570424	19:10:13	36.40	28.60	1	6.8	83	63	28		McKenzie, 1972
19570425	2:25:42	36.50	28.60	1	7.2	58	85	19		McKenzie, 1972
19570526	6:33:00	40.66	30.89	10	7.2	87	78	179		McKenzie, 1972
19590425	0:26:00	37.00	28.50	1	6.2	65	76	-70		McKenzie, 1972
19591115	17:08:40	37.80	20.50	12	6.8	46	37	-173	17.18	Papadimitriou, 1993
19630726	4:17:12	42.10	21.40	5	6.1	322	73	-20		McKenzie, 1972
19630918	16:58:08	40.8	29.1	7	5.9	304	56	-82	0.96	Taymaz et al., 1991
19631216	13:47:53	37.00	21.00	15	(5.9)	296	16	101	0.13	Papadimitriou, 1993
19640411	16:00:00	40.30	24.80	33	5.5	310	89	1		McKenzie, 1972
19641006	14:31:23	40.30	28.20	11	6.9	101	44	-87		Papazachos et al., 1991b
19650309	17:57:54	39.30	23.8	7	6.1	44	75	175	1.47	Taymaz et al., 1991

19/2/2015 Ψηφιακή Βιβλιοθήκη Θεόφραστος - Τμήμα Γεωλογίας - Α.Π.Θ.

Ημ/νία	Ώρα γένεσης	ф([°] _В)	λ(° _A)	Βάθος (km)	м	ζ (°)	δ (°)	λ (°)	Mo (dyn∙cm ·10 ²⁵)	Αναφορές
19650331	9:47:31	38.6	22.4	55	6.3	136	76	78		Liotier, 1989
19650405	3:12:00	37.70	22.00	28	6.1	226	58	-161		McKenzie, 1972
19650427	14:09:06	35.60	23.50	13	5.4	22	27	-81		Lyon-Caen, 1998
19650613	20:01:51	37.80	29.30	1	5.6	259	38	-90		Papazachos et al, 1991b
19650706	3:18:42	38.40	22.40	10	6.1	281	34	-71	1.67	Baker et al., 1997
19651220	0:08:00	40.20	24.80	33	5.6	132	32	-90		McKenzie, 1972
19660205	2:01:45	39.10	21.74	11	6.2	263	40	-95	2.46	Baker et al., 1997
19660509	0:42:53	34.40	26.40	10	5.8	295	40	90		McKenzie, 1972
1 <mark>966102</mark> 9	2:39:25	38.90	21.10	6	(6.0) 5.5	324	40	48		Baker et al., 1997
19670304	17:58:09	39.20	24.60	10	6.2	313	43	-56	2.43	Taymaz et al., 1991
19670501	7:09:02	39.50	21.20	11	6.4	2	36	-100		Papazachos et al., 1991b
19670722	16:56:58	40.67	30.69	12	7.2	275	88	-178	75	Taymaz et al., 1991
19670730	1:30:00	40.70	30.40	16	5.6	301	50	-110		McKenzie 1972
19671130	7:23:50	41.41	20.44	9	6.2	190	43	-88	2.2	Baker et al., 1997
19680219	22:45:42	39.40	24.90	10	(7.2)	216	81	173	22.4	Kiratzi et al., 1991
196803 28	7:39:59	37.80	20.90	6	5.9	354	34	137		Anderson & Jackson, 1987
19680530	17:40:26	35.40	27.90	7	5.9	293	25	90		McKenzie, 1972
19680704	21:47:51	37.70	23.20	15	5.5	235	40	-125		Ritsema, 1974
19681205	7:52:00	36.60	26.90	7	6.0	57	46	-108		McKenzie, 1972
19690114	23:12:07	36.18	29.20	33	6.3	100	74	82		McKenzie, 1972
19690303	0:59:10	40.08	27.50	6	6.0	60	40	68	0.5	Taymaz et al., 1991
19690323	21:08:42	39.10	28.50	8	5.9	112	34	-90	0.98	Eyidogan & Jackson, 1985
19690325	13:21:34	39.20	28.40	8	6.1	90	40	-104	1.7	Eyidogan & Jackson, 1985
19690328	1:48:29	38.50	28.50	3	6.7	300	41	-97	12.9	Braunmiller & Nabelek, 1996
19690403	22:12:00	40.50	19.90	18	5.8	164	40	97		Anderson & Jackson, 1987
19690406	3:49:34	38.50	26.40	10	5.9	280	30	-90		McKenzie, 1972
19690416	23:21:06	35.20	27.70	8	5.5	301	30	109		McKenzie, 1972
19690430	20:20:32	39.10	28.50	8	5.4	78	39	-114		McKenzie, 1972
19690612	15:13:31	34.40	25.00	19	6.0	163	50	44	1.1	Taymaz et al., 1990
19690708	8:09:13	37.50	20.30	10	(5.9)	354	18	115	0.38	Papadimitriou, 1993
19691013	1:02:31	39.80	20.60	8	5.8	340	30	160		Anderson & Jackson, 1987
19700328	21:02:23	39.20	29.50	10	7.1	308	35	-90	87.5	Eyidogan & Jackson, 1985
19700328	23:11:43	39.10	29.60	10	5.5	73	32	-109		McKenzie, 1978

19/2/2015

Ψηφιακή Βιβλιοθήκη Θεόφραστος - Τμήμα Γεωλογίας - Α.Π.Θ.

Ημ/νία	Ώρα γένεσης	ф([°] в)	λ(° _A)	Bάθος (km)	M	ζ (°)	δ (°)	λ(°)	Mo (dyn∙cm ·10 ²⁵)	Αναφορές
19700408	13:50:29	38.30	22.60	9	5.9	265	23	-81	0.9	Liotier, 1989
19700416	10:42:24	38.97	29.92	8	5.6	280	31	-100	0.27	Eyidoğan & Jackson, 1985
19700419	13:29:38	39.00	29.80	9	[·] 6.1	104	43	-90	1.94	Eyidogan & Jackson, 1985
19700423	9:01:27	39.10	28.60	11	5.6	265	40	-83		McKenzie, 1978
19700819	2:01:52	41.10	19.80	9	5.5	343	20	90		McKenzie, 1972
19710103	23:18:45	34.90	26.30	2	5.4	144	70	86		McKenzie, 1978
19710512	10:10:38	37.60	29.70	5	5.6	73	14	-90		Papazachos et al., 1991b
19710512	12:57:25	37.60	29.60	7	5.7	79	22	-72		Papazachos et al., 1991b
19710512	6:25:15	37.60	29.70	10	6.2	68	40	-90		Papazachos et al., 1991b
19710525	5:43:26	39.00	29.70	3	6.1	298	55	-77	0.95	Eyidogan & Jackson, 1985
19720314	14:05:47	39.30	29.50	1	5.6	101	40	-101		McKenzie, 1978
19720504	21:39:57	35.10	23.60	40	6.2	308	18	90	2.62	Kiratzi & Langston, 1989
19720917	14:07: 1 5	38.30	20.30	8	6.3	46	66	-174	2.16	Papadimitriou, 1993
19730105	5:49:18	38.50	21.90	42	5.6	306	30	82		McKenzie, 1978
19731104	15:5 2 :13	38.90	20.50	8	5.8	320	45	154		Baker et al., 1997
19731129	10:57:44	35.20	23.80	18	(5.7)	283	38	97	0.42	Papadimitriou, 1993
19750327	5:15:08	40.34	26.14	15	(6.1)	68	55	-145	2	Taymaz et al., 1991
19750404	5:16:18	38.10	22.10	15	5.5	70	75	-130		Papazachos, 197 <u>5</u>
19750430	4:28:57	36.18	30.77	25	5.4	109	80	70	0.18	Yilmazturk & Burton, 1999
19750922	0:45:00	35.38	26.35	64	(5.4)	209	75	131	0.29	Taymaz et al., 1990
19751231	9:45:45	38.49	21.70	12	5.7	236	39	-125		Papazachos, 1975
19760511	16:59:45	37.40	20.40	16	6.3	335	14	106	3.57	Papadimitriou, 1993
19760612	0:59:18	37.50	20.60	8	5.8	297	20	90		Anderson & Jackson, 1987
19760819	1:12:37	37.70	28.89	4	6.1	276	69	-131	1.48	Yilmazturk & Burton, 1999
19770818	9:27:41	35.30	23.50	38	5.6	114	79	96	0.20	Taymaz et al., 1990
19770911	23:19:19	34.90	23.00	16	(5.8)	295	40	95	0.53	Papadimitriou, 1993
19771103	2:22:57	41.46	23.85	15	5.5	104	35	-94	0.26	HRV
1977 112 8	2:59:10	36.00	27.80	66	5.6	88	51	32		Benetatos et al., 2004
19780307	22:33:46	34.33	25.11	42	5.4	42	18	-162		Benetatos et al., 2004
19780523	23:34:11	40.70	23.20	6	5.8	265	40	-82	0.62	Baker et al., 1997
19780619	10:31:00	40.71	23.26	12	5.3	283	56	-60		Soufleris & Stewart, 1981
19780620	20:03:21	40.78	23.24	7	6.1 - 6.4	271	42	-74	4.24	Liotier, 1989

Ημ/νία	Ώρα γένεσης	φ(° _в)	λ(° _A)	Βάθος (km)	м	ζ (°)	δ (°)	λ (°)	Mo (dyn∙cm ·10 ²⁵)	Αναφορές
19790409	2:10:21	41.90	19.03	9	5.4	306	28	30	0.17	Louvari et al., 2001
1 9790415	6:19: 4 1	42.00	19.00	4	7.1	316	14	90	24.8	Baker et al., 1997
19790415	14:43:06	42.30	18.90	7	5.8	339	10	113	0.41	Baker et al., 1997
19790515	6:59:23	34.60	24.50	35	5.7	253	17	65	0.39	Taymaz et al., 1990
19790524	17:23:18	42.20	18.80	5	5.9	322	32	90	1.02	Baker et al., 1997
19790614	11:44:46	38.80	26.60	8	5.8	262	41	-108	0.67	Taymaz et al., 1991
19790615	11:34:17	34.90	24.20	40	5.6	150	75	70	0.35	Taymaz et al., 1990
19790616	18:42:03	38.46	26.77	15	5.3	127	45	-48	0.12	HRV
19790 718	13:12:09	39.44	29.19	15	5.3	111	34	-85	0.11	HRV
19790723	11:41:55	35.50	26.40	11	5.5	61	35	-40		Ekstrom & England, 1989
19790822	20:12:48	35.90	27.39	68	5.3	64	31	-106		Benetatos et al., 2004
19800502	5:31:10	36.35	29.39	22	5.6	94	75	104	0.34	Kiratzi & Louvari, 2003
198005 18	20:02:57	43.29	20.84	10	5.8	21	79	156	0.65	Louvari et al., 2001
19800709	2:10:20	39.30	22.90	10	5.6	82	42	-79		Papazachos et al., 1983
19800709	2:11:57	39.30	22.90	10	6.5	81	40	-90		Papazachos et al., 1983
19800709	2:35:52	39.20	22.60	10	6.1	81	40	-90		Papazachos et al., 1983
19800710	19:39:03	39.28	23.01	15	5.6	79	31	-123	0.31	HVR
19810224	20:53:37	38.10	22.84	12	(6.1- 6.7)	264	42	-80	8.75	Taymaz et al., 1991
19810225	2:35:53	38.14	23.05	8	(6.4)	241	44	-85	3.97	Taymaz et al., 1991
19810304	21:58:07	38.18	23.17	7	(6.2)	230	45	-90	2.7	Taymaz et al., 1991
19810305	6:59:09	37.77	23.01	15	5.4	276	43	-59	0.18	HRV
19810307	11:34:44	37.62	23.34	15	5.4	91	40	-84	0.15	HRV
19810310	15:16:1 8	39.31	20.74	7	5.4	350	25	106	0.16	Louvari et al., 2001
19810624	18:41:28	37.87	20.10	20	5.2	27	60	171		Benetatos et al., 2004
19810628	17:20:23	37.81	20.06	15	5.6	15	76	180	0.30	Louvari et al., 1999
19810913	23:25:26	34.56	25.13	15	5.5	256	65	-11	0.19	HRV
19811219	14:10:51	39.20	25.20	6	6.8	47	77	-167	22.4	Kiratzi et al., 1991
19811227	17:39:15	38.90	24.90	8	6.3	216	79	175	3.82	Taymaz et al., 1991
19811229	8:00:46	38.38	25.06	15	5.4	330	63	10	0.14	HRV
19820118	19:27:25	39.80	24.40	7	6.5	233	62	-173	7.32	Taymaz et al., 1991
19820622	3:04:30	37.04	21.20	30	5.5	16	57	-62		Benetatos et al., 2004
19820817	22:22:20	33.70	22.90	15	(6.4)	246	31	125	2.03	Papadimitriou, 1993
19821116	23:41:21	40.90	19.60	17	5.4	323	27	92	0.17	Baker et al., 1997
19830103	0:12:24	33.97	23.89	102	5.1	30	36	70	0.06	HRV

19/2/2015

Ψηφιακή Βιβλιοθήκη Θεόφραστος - Τμήμα Γεωλογίας - Α.Π.Θ.

Ημ/νία	Ώρα γένεσης	φ(° _B)	λ(° _A)	Βάθος (km)	M	ζ (°)	δ (°)	λ (°)	Mo (dyn∙cm ·10 ²⁵)	Αναφορές
19830117	12:41:31	38.10	20.20	11	6.8	39	45	175	20.8	Papadimitriou et al., 1993
19830119	0:02:14	38.20	20.30	9	5.7	41	49	171	0.37	Louvari et al., 1999
19830131	15:27:01	38.18	20.39	12	5.5	41	82	-177	0.22	Louvari et al., 1999
19830221	0:13:08	37.86	20.13	24	5.2	75	42	-134		Benetatos et al., 2004
19830319	21:41:49	34.75	24.89	65	5.6	129	62	62	0.33	HRV
19830323	23:51:05	38.29	20.26	7	6.1	31	69	174	1.92	Papadimitriou et al., 1993
19830324	4:17:32	38.09	20.29	18	5.4	62	70	172	0.15	Louvari et al., 1999
19830514	23:13:48	38.44	20.33	13	5.5	36	86	167	0.20	Louvari et al., 1999
19830705	12:01:27	40.32	27.22	10	5.4	245	68	155	0.13	Papadimitriou, 1988
19830714	2:54:20	35.67	21.81	17	5.3	318	48	124	0.12	Kiratzi & Łouvari, 2003
19830806	15:43:52	40.05	24.70	9	6.6	50	76	177	12.1	Kiratzi et al., 1991
19830826	12:52:11	40.11	24.40	15	5.1	72	73	-168	0.06	HRV
19830919	1:18:14	38.69	22.38	8	5.1	242	52	-100		Burton et al, 1995
19830927	23:59:40	36.97	27.70	170	5.4	312	46	162	0.14	HRV
19831010	10:17:01	40.23	26.80	11	5.4	70	64	176	0.16	Kiratzi & Louvari, 2003
19840211	8:02:51	38.37	22.10	3	5.6	116	36	-71	0.34	Kiratzi & Louvari, 2003
19840506	9:12:02	38.77	25.64	9	5.4	237	89	-161	0.18	Kiratzi & Louvari, 2003
19840513	12:45:00	42.93	17.73	16	5.4	350	30	148	0.15	Louvari et al., 2001
19840522	13:57:06	35.90	22.60	63	5.1	188	44	32		Benetatos et al., 2004
19840617	7:48:08	38.86	25.70	15	5.1	156	73	-9	0.06	HRV
19840621	10:43:46	35.40	23.30	40	6.2	322	16	114	1.35	Papadimitriou, 1993
19840709	18:57:15	41.05	22.55	10	5.2	212	38	-105	0.08	HRV
19850116	23:35:59	40.67	19.22	17	5.2	282	17	20	0.08	Louvari et al., 2001
19850421	8:49:41	35.70	22.20	25	5.2	149	50	78		Benetatos et al., 2004
19850430	18:14:13	39.30	22.80	10	5.8	77	50	-106		Taymaz et al., 1991
1985052 3	16:02:27	36.99	22.81	22	5.2	186	55	-159	0.09	HRV
19850722	21:32:29	34.16	28.40	15	5.2	67	48	-34	0.07	HRV
19850907	10:20:50	37.50	21.20	29	5.3	24	57	168	0.13	Kiratzi & Louvari, 2003
19850927	16:39:48	34.05	26.94	44	5.6	135	76	13	3.3	HRV
19850928	14:50:20	41.22	22.18	21	5.2	209	70	-158	0.09	HRV
19851109	23:30:47	41.24	24.12	21	5.2	256	33	-85	0.08	HRV
19851121	21:57:15	41.70	19.30	8	5.6	345	15	119	0.32	Louvari et al., 2001
19860303	1:24:06	42.04	19.75	23	4.9	94	38	-128	0.03	HRV
19860325	1:41:36	38.40	25.10	6	5.5	163	59	-22	0.22	Kiratzi & Louvari, 2003

Ημ/νία	Ώρα γένεσης	ф(° _в)	λ(° _A)	Βάθος (km)	м	ζ (°)	δ (°)	λ (°)	Mo (dyn∙cm ·10 ²⁵)	Αναφορές
19860329	18:36:28	38.37	25.17	14	5.3	52	77	152	0.13	Kiratzi & Louvari, 2003
19860522	19:52:19	34.25	26.55	27	5.3	118	86	99		Benetatos et al., 2004
19860608	4:55:15	36.67	22.20	29	5.1	109	34	86	0.06	HRV
19860913	17:24:34	37.10	22.20	6	6.0	200	50	-81		Papazachos et al 1988
19861002	10:12:46	34.65	29.16	15	5.2	99	37	-53	0.09	HRV
19861011	9:00:12	37.91	28.53	9	5.7	325	42	-36	0.39	Kiratzi & Louvari, 2003
19870227	23:34:54	38.42	20.36	13	5.7	26	61	168	0.41	Louvari et al., 1999
19870412	2:47:17	35.40	23.27	15	5.1	252	90	180	0.06	HRV
19870529	18:40:31	37.50	21.50	49	5.2	51	59	-175		Benetatos et al. 2004
19870610	14:50:11	37.17	21.39	27	5.4	25	67	176	0.14	Kiratzi &
19870619	18:45:42	36.80	28.20	65	5.2	121	41	88		Benetatos et
19871005	9:27:02	36.25	28.28	29	5.1	38	55	170		Yilmazturk & Burton, 1999
19880109	1:02:47	41.16	19.68	30	5.7	323	25	69	0.50	Louvari et al., 2001
19880424	20:49:39	40.77	28.73	15	5.3	356	71	-11	0.1	HRV
19880518	5:17:42	38.36	20.42	23	5.3	45	70	163	0.11	Louvari et al., 1999
19880905	20:03:36	34.51	26.65	15	5.2	15	55	-11	0.09	HRV
19881016	12:34:06	37.89	20.89	29	5.9	32	87	-166	0.75	HRV
19881120	21:01:10	35.38	28.86	15	5.4	24	32	-152	0.16	HRV
19890219	14:28:54	37.01	28.32	15	5.4	93	32	-85	0.16	HRV
19890317	5:42:53	34.51	25.53	17	5.7	77	10	-118	0.41	HRV
19890319	5:37:02	38.61	23.53	15	5.4	230	90	180	0.14	HRV
19890328	13:29:14	34.06	24.68	56	5.5	67	53	29	0.22	HRV
19890427	23:06:53	37.10	28.20	7	5.3	271	57	-103	0.11	Kiratzi & Louvari, 2003
19890428	13:30:20	37.06	28.01	22	5.3	271	58	-103	0.11	Kiratzi & Louvari, 2003
19890607	19:45:59	38.05	21.63	25	5.2	154	64	-26	0.07	HRV
19890614	18:06:40	34.30	26.10	15	5.5	260	83	-93	0.23	HRV
19890820	18:32:31	37.26	21.14	16	5.7	193	74	-174	0.45	Kiratzi & Louvari, 2003
19890824	2:12:14	37.94	20.14	16	5.2	36	46	142	0.07	Louvari et al., 1999
19890827	1:21:17	34.25	26.28	15	5.6	223	19	33	0.3	HRV
19890905	6:52:37	39.12	25.66	15	5.4	317	79	-58	0.15	HRV
19900616	2:16:20	39.16	20.54	7	5.5	352	33	105	0.25	Louvari et al., 2001
19900709	11:22:16	34.90	26.60	9	5.2	217	56	-21	0.07	Kiratzi & Louvari, 2003
19900718	11:29:26	37.04	29.51	14	5.4	270	41	-60	0.14	Kiratzi & Louvari, 2003
19901221	6:57:45	40.27	22.28	15	6.1	249	41	-72	1.7	HRV
19910319	12:09:23	34.80	26.30	12	5.5	261	30	40	0.25	Kiratzi & Louvari, 2003

Ημ/νία	Ώρα γένεσης	ф(° _в)	λ(° _A)	Βάθος (km)	м	ζ (°)	δ (°)	λ (°)	Mo (dyn∙cm ·10 ²⁵)	Αναφορές
19910626	11:43:34	38.34	21.04	22	5.1	151	51	-105	0.06	Kiratzi & Louvari, 2003
19911018	14:04:55	35.70	28.56	43	5.2	82	88	13		Benetatos et al., 2004
19920123	4:24:19	38.40	20.57	9	5.6	345	19	68	0.29	Louvari et al., 1999
19920320	5:37:26	36.65	24.51	15	5.2	293	45	-90	0.07	HRV
19920430	11:44:40	35.10	26.60	7	5.8	214	52	-47	0.56	Kiratzi & Louvari, 2003
19920723	20:12:45	39.81	24.40	8	5.3	272	51	-148	0.11	Kiratzi & Louvari, 2003
19921106	19:06:02	38.02	26.97	6	6.0	146	76	13	1.09	Kiratzi & Louvari, 2003
199211 18	21:10:41	38.30	22.50	12	5.7	258	31	-81		Karakaisis et
19921121	5:07:21	35.90	22.50	52	5.9	97	77	141		Benetatos et al., 2004
19930305	6:55:06	37.20	21.50	20	5.1	128	59	57		Benetatos et al., 2004
19930318	15:47:06	38.10	21.80	52	5.8	136	67	66		Benetatos et al., 2004
19930326	11:58:18	37.66	21.30	15	5.4	122	60	5	0.16	HRV
19930613	23:26:41	39.28	20.49	9	5.3	325	30	106	0.11	Louvari et al., 2001
19930714	12:31:49	38.17	21.77	19	5.4	229	79	-174	0.18	Kiratzi & Louvari, 2003
19931104	5:18:41	38.12	22.03	15	5.3	79	37	-105	0.11	HRV
19940111	7:22:52	35.83	21.83	14	5.3	331	60	126	0.13	Kiratzi & Louvari, 2003
19940128	15:45:26	38.67	27.48	14	5.3	259	35	-120	0.11	Kiratzi & Louvari, 2003
19940225	2:30:50	38.76	20.56	9	5.5	22	58	168	0.22	Louvari et al., 1999
19940416	23:09:34	37.36	20.63	22	5.5	124	76	90	0.21	Kiratzi & Louvari, 2003
19940523	6:46:12	35.00	24.90	71	6.0	69	59	148		Benetatos et al., 2004
19940524	2:05:39	38.83	26.49	10	5.5	256	60	-131	0.21	Kiratzi & Louvari, 2003
19941129	14:30:31	38.61	20.49	15	5.1	185	90	-180	0.05	HRV
19950504	0:34:11	40.54	23.63	12	5.2	84	66	-103	0.08	Kiratzi & Louvari, 2003
19950513	8:47:15	40.13	21.67	12	6.4	242	38	-91	4.59	Kiratzi & Louvari, 2003
19950515	4:14:00	39.80	21.52	15	5.2	272	61	-73	0.07	HRV
19950519	6:48:56	39.98	21.58	15	5.1	265	48	-56	0.06	HRV
19950615	0:15:49	38.36	22.20	7	6.2	277	33	-76	3.38	Bernard et al., 1997
19950717	23:18:18	39.83	21.46	15	5.2	266	57	-80	0.07	HRV
19951001	15:57:16	38.06	30.13	4	6.3	136	43	-87	3.1	Wright et al., 1999
19951207	18:01:01	34.79	24.15	15	5.6	106	85	87	0.28	HRV
19951210	3:27:50	34.76	23.99	24	5.2	266	9	54	0.07	Kiratzi & Louvari, 2003
19960201	17:57:59	37.70	20.05	20	5.5	173	55	71	0.256	Louvari et al., 1999
19960402	7:59:26	37.84	26.87	9	5.3	261	53	-119	0.11	Kiratzi & Louvari, 2003
19960412	15:39:11	36.59	27.04	162	5.2	235	80	-52		Benetatos et al., 2004

Ημ/νία	Ώρα γένεσης	ф(° _в)	λ(° _A)	Βάθος (km)	м	ζ (°)	δ (°)	λ (°)	Mo (dyn∙cm ·10 ²⁵)	Αναφορές
19960426	7:01:29	36.34	27.96	70	5.3	343	54	174		Benetatos et al., 2004
19960720	0:00:40	36.07	27.46	12	6.1	232	42	-52	1.53	Kiratzi & Louvari, 2003
19960722	1:45:13	36.11	26.91	15	5.0	223	36	-78	0.046	HRV
19960726	18:55:50	40.08	20.64	7	5.1	34	36	-93	0.06	Louvari et al., 2001
19960905	20:44:14	42.48	17.95	12	5.7	302	40	71	0.44	Louvari et al., 2001
19960917	13:45:25	42.90	17.65	7	5.4	285	14	79	0.16	Louvari et al., 2001
19970321	6:17:08	39.30	23.77	10	5.0	39	88	-170		Panagiotou, 2000
19970516	7:00:52	40.93	20.47	7	5.3	352	47	-135	0.115	Louvari et al., 2001
19970716	10:06:09	39.05	25.22	10	5.0	245	78	-170		Panagiotou, 2000
19970727	10:07:53	35.51	21.18	16	5.3	203	86	47	0.101	Kiratzi & Louvari, 2003
19971013	13:39:40	36.45	22.16	32	6.3	123	72	84	3.19	Kiratzi & Louvari, 2003
19971105	21:10:28	38.40	22.45	13	5.3	344	63	-45	0.109	Kiratzi & Louvari, 2003
19971105	12:22:53	34.51	23.93	22	5.2	309	6	108	0.069	Kiratzi & Louvari, 2003
19 97 11 14	21:38:52	38.73	25.91	10	5.7	58	83	175	0.404	Louvari, 2000
19 97 11 18	13:07:41	37.54	20.53	32	6.5	354	20	159	6.456	Kiratzi & Louvari, 2003
19980110	19:21:58	37.29	20.86	17	5.3	200	73	-109	0.103	Kiratzi & Louvari, 2003
19980309	11:21:20	35.66	29.12	54	5.1	220	60	-74	0.064	HRV
19980429	3:30:3 8	35.96	21.88	13	5.3	176	81	117	0.13	Kiratzi & Louvari, 2003
19980501	4:00:15	37.62	20.75	13	5.1	19	53	131	0.051	Kiratzi & Louvari, 2003
19980930	23:43:00	41.93	20.81	18	5.3	266	33	-50	0.097	HRV
19981006	12:27:42	37.13	20.98	9	5.2	308	61	54	0.078	Kiratzi & Louvari, 2003
19981007	18:47:38	34.02	25.84	22	5.1	318	60	150	0.054	HRV
19990417	8:17:58	36.03	21.59	27	5.3	172	59	95		Benetatos et al., 2004
19990611	7:50:20	37.30	21.17	59	5.2	304	82	-177	0.084	HRV
19990725	6:56:57	38.96	28.19	15	5.2	250	67	-158	0.083	HRV
1 9990 8 1 7	0:01:38	40.76	29.97	10	7.4	267	85	-175	131.1	Kiratzi & Louvari, 2001
19990831	8:10:51	40.75	29.92	15	5.1	82	78	-141	0.047	Kiratzi & Louvari, 2001
19990907	11:56:51	38.08	23.58	10	5.9	115	57	-80	0.922	Louvari & Kiratzi, 2001
19990913	11:55:29	40.80	30.03	16	5.7	268	49	180	0.49	Kiratzi & Louvari 2001
19991005	0:53:28	36.80	28.24	21	5.0	240	41	-57		Benetatos et al., 2004
19991111	14:41:24	40.81	30.20	13	5.6	297	55	-179	0.264	Kiratzi & Louvari, 2001
19991 1 12	16:57:21	40.79	31.21	12	7.1	262	53	-177	47.08	Kiratzi & Louvari, 2001
19991222	9:06:17	41.61	20.83	15	5.1	189	44	-90	0.053	HRV
20000222	11:55:32	34.95	25.38	20	5.0	92	71	68		Benetatos et al., 2004

Ημ/νία	Ώρα γένεσης	ф(° _в)	λ(° _A)	Βάθος (km)	М	ζ (°)	δ (°)	λ (°)	Mo (dyn∙cm ·10 ²⁵)	Αναφορές
20000310	2 2:01:49	34.13	25.98	15	5.2	256	22	72	0.087	HRV
20000405	4:36:58	34.08	25.83	15	5.5	276	43	80	0.2	HRV
20000524	10:01:44	35.92	22.10	15	5.2	93	80	78	0.072	HRV
20000524	5:40:38	35.90	21.87	18	5.5	111	80	63		Benetatos et al., 2004
20000526	1:28:29	38.96	20.54	15	5.5	85	69	-1	0.26	HRV
20000613	1:43:18	35.17	27.16	16	5.0	49	71	-46		Benetatos et al., 2004
20000615	21:30:36	34.45	20.49	15	5.1	221	65	90	0.061	HRV
20010310	11:20:53	34.73	26.01	21	5.0	268	78	-1	0.0336	Pondrelli et al., 2004
20010322	6:21:23	38.43	30.87	31	4.7	185	77	178	0.0120	Pondrelli et al., 2004
20010409	17:38:42	39.93	20.54	34	5.0	298	36	42	0.0357	Pondrelli et al., 2004
20010410	14:00:06	34.03	26.10	25	4.7	8	40	-159	0.0118	Pondrelli et al., 2004
20010428	0:06:0 1	34.65	22.82	15	4.7	295	31	63	0.0146	Pondrelli et al., 2004
20010501	6:00:58	35.74	27.48	15	5.2	160	52	-98	0.0778	Pondrelli et al., 2004
20010529	4:43:58	35.49	27.75	21	5.1	43	59	-21	0.0597	Pondrelli et al., 2004
20010610	13:11:05	38.45	25.53	19	5.6	146	73	-22	0.0299	Pondrelli et al., 2004
20010622	19:45:03	39.36	27.88	15	5.1	342	52	-25	0.0499	Pondrelli et al., 2004
20010623	12:58:26	39.23	27.74	15	4.8	347	52	-4	0.0173	Pondrelli et al., 2004
20010623	6:52:45	35.65	28.40	47	5.6	350	78	178		Benetatos et al., 2004
20010721		39.06	24.39	4	5.1	130	60	0		Ganas et al. 2004
20010725		39.08	24.35	7	4.7	245	75	-170		Ganas et al. 2004
20010726	0:21:00	39.07	24.25	15	6.4	148	76	-1	5.61	HRV
20010726	1:48:40	38.82	24.45	15	4.9	199	42	164	0.0319	Pondrelli et al., 2004
20010726	4:53:39	39.02	24.29	15	4.7	58	80	178	0.0125	Pondrelli et al., 2004
20010726	14:24:38	39.06	24.23	15	4.7	125	57	-21	0.0142	Pondrelli et al., 2004
20010726	2:06:34	38.73	24.91	21	5.2	240	44	167	0.0159	Pondrelli et al., 2004
20010730	15:25:00	39.04	24.17	16	5.0	219	63	175	0.0361	Pondrelli et al., 2004
20010913	15:42:55	35.41	26.08	51	4.9	7	16	114	0.026	Pondrelli et al., 2004
20010916	2:00:50	37.16	21.85	15	5.5	317	55	-89	0.0258	Pondrelli et al., 2004
20010926	4:19:55	34.91	27.18	24	4.7	40	70	2	0.0138	Pondrelli et al., 2004
20011026	13:32:24	38.06	23.22	20	4.8	92	28	-108	0.0194	Pondrelli et al., 2004
20011029	20:21:51	38.88	24.32	17	5.0	281	83	-123	0.0371	Pondrelli et al., 2004
20011030	21:00:10	35.93	29.81	29	5.0	207	75	8	0.0464	Pondrelli et al., 2004
20011104	17:23:28	33.89	25.40	26	4.8	296	37	77	0.0169	Pondrelli et al., 2004

Ημ/νία	Ώρα γένεσης	φ(° _B)	λ(° _A)	Βάθος (km)	м	ζ (°)	δ (°)	λ (°)	Mo (dyn·cm ·10 ²⁵)	Αναφορές
20011126	5:03:25	34.68	24.46	30	5.1	331	85	-129	0.0546	Pondrelli et
20011207	19:44:52	39.16	23.73	15	5.1	236	65	-163	0.0558	Pondrelli et
20011230	4:06:32	34.65	27.50	19	5.0	34	67	157	0.0351	Pondrelli et al., 2004
20020121	14:34:29	38.63	27.76	10	4.7	277	39	-117	0.0131	Pondrelli et al., 2004
20020122	4:53:56	35.46	26.59	93	6.1	9	36	-176		Benetatos et al., 2004
20020126	20:05:36	37.00	20.97	16	4.9	209	63	177	0.0275	Pondrelli et al., 2004
20020224	5:36:07	34.59	27.20	33	4.8	255	74	-17	0.0168	Pondrelli et al., 2004
20020403	12:00:14	35.63	23.73	22	4.7	144	38	-80	0.0128	Pondrelli et al., 2004
20020405	7:55:04	37.48	21.23	15	4.7	90	25	53	0.0147	Pondrelli et al., 2004
20020424	10:51:56	42.32	21.48	15	5.7	240	40	-93	0.426	Pondrelli et al., 2004
20020521	20:53:30	36.37	24.31	105	5.8	352	89	4		Benetatos et al., 2004
20020606	22:35:45	35.54	26.01	94	4.9	153	31	-22		Benetatos et al., 2004
2 0020 7 2 8	17:16:29	37.74	20.58	22	5.1	34	51	180	0.0598	Pondrelli et al., 2004
20020902	9:23:43	35.20	26.73	44	4.7	105	72	-177	0.0153	Pondrelli et al., 2004
20020905	22:19:50	38.59	24.52	18	4.8	252	74	-164	0.0186	Pondrelli et al., 2004
20020908	16:14:30	34.84	22.84	67	4,7	50	75	-179	0.0148	Pondrelli et al., 2004
20020914	19:50:19	37.76	20.92	26	4.9	33	73	-173	0.0321	Pondrelli et al., 2004
20020919	9:19:46	37.87	20.86	23	4.7	39	68	-173	0.0159	Pondrelli et al., 2004
200210 12	5:58:54	34.95	26.33	10	5.3	161	90	112	0.102	Pondrelli et al., 2004
20021 106	9:12:45	37.73	20.71	19	4.9	44	67	-166	0.0243	Pondrelli et al., 2004
20021202	4:58:59	37.75	21.01	25	5.6	41	64	-163	0.363	Pondrelli et al., 2004
20021209	9:35:06	37.82	19.88	15	4.7	67	18	-175	0.0125	Pondrelli et al., 2004
20021231	20:47:05	38.80	21.18	23	4.9	181	51	-137	0.0241	Pondrelli et al., 2004
20030130	20:20:05	36.40	27.17	19	4.7	210	40	-31	0.0133	Pondrelli et al., 2008
20030410	0:40:21	38.16	26.90	15	5.6	151	74	-24	0.352	Pondrelli et al., 2008
20030417	22:34:25	38.21	26.90	16	5.1	159	57	-23	0.0611	Pondrelli et al., 2008
20030419	20:55:53	35.39	27.77	22	4.7	315	82	174	0.0138	Pondrelli et al., 2008
20030429	1:51:18	36.60	21.68	32	5.0	205	71	14	0.0437	Pondrelli et al., 2008
20030609	17:44:04	40.18	27.97	15	4.7	272	52	-138	0.0118	Pondrelli et al., 2008
20030609	7:06:46	39.94	22.32	21	5.2	296	49	-89	0.0699	Pondreili et al., 2008
20030616	8:27:56	37.58	19.74	15	4.7	321	31	43	0.0118	Pondrelli et al., 2008
20030706	19:10:32	40.40	26.12	15	5.7	345	64	-18	0.521	Pondrelli et al., 2008

Ημ/νία	Ώρα γένεσης	ф(° _в)	λ(° _A)	Βάθος (km)	м	ζ (°)	δ (°)	λ (°)	Mo (dyn∙cm ·10 ²⁵)	Αναφορές
20030706	20:10:20	40.45	26.08	15	5.3	338	70	-36	0.11	Pondrelli et
20030709	22:31:48	40.36	25.82	15	4.7	342	46	-15	0.0164	Pondrelli et
20030723	4:56:08	37.88	28.77	15	5.3	97	31	-111	0.12	HRV
20030726	1:00:58	38.02	28.82	15	4.7	26	69	-158	0.0149	Pondrelli et al., 2008
20030726	13:31:38	38.12	29.03	15	4.8	303	69	-82	0.023	Pondrelli et al., 2008
20030726	8:36:51	37.98	28.86	16	5.4	306	59	-42	0.152	Pondrelli et al., 2008
20030814	5:15:08	38.70	20.67	15	6.3	18	59	-174	3.0	HRV
20030814	8:41:41	38.77	20.53	15	4.7	287	82	-3	0.0161	Pondrelli et al., 2008
20030814	12:18:18	38.62	20.40	15	5.2	176	64	85	0.0694	Pondrelli et al., 2008
20030814	16:18:07	38.69	20.44	16	5.5	353	27	79	0.191	Pondrelli et al., 2008
20030814	20:46:55	38.64	20.36	17	4.7	357	27	104	0.0123	Pondrelli et al., 2008
20030913	13:46:14	36.57	26.9	163	4.9	0	82	161	0.0288	Pondrelli et al., 2008
20031017	12:57:07	35.84	22.09	16	5.3	225	22	4	0.107	Pondrelli et al., 2008
20031116	7:22:50	38.11	20.34	16	4.9	23	82	-141	0.033	Pondrelli et al., 2008
20031124	15:51:08	34.78	25.0 3	27	5.1	176	78	-171	0.0557	Pondrelli et al., 2008
20031219	9:51:27	35.96	21.96	16	4.8	148	34	148	0.0171	Pondrelli et al., 2008
20040207	21:17:25	35.81	26.89	16	5.1	213	38	-67	0.0487	Pondrelli et al., 2008
20040209	3:48:13	35.98	22.36	22	4.8	18	52	-89	0.0214	Pondrelli et al., 2008
20040225	22:02:00	36.15	30.33	50	4.7	21	45	-147	0.0133	Pondrelli et al., 2008
20040301	0:35:58	36.94	22.03	16	5.1	175	44	-88	0.0646	Pondrelli et al., 2008
20040317	5:21:04	34.45	23.27	16	6.0	82	80	177	1.1	HRV
20040328	14:54:47	35.57	22.99	55	4.7	310	31	97	0.013	HRV
20040407	1:32:33	40.64	20.46	58	4.9	331	61	-82	0.0286	Pondrelli et al., 2008
20040525	5:34:32	35.86	27.27	17	4.8	146	68	-122	0.018	HRV
20040615	12:02:43	40.36	25.80	16	5.2	346	67	-35	0.0767	Pondrelli et al., 2008
20040803	5:33:38	36.75	27.88	15	4.7	60	37	-112	0.0123	Pondrelli et al., 2008
20040803	13:11:35	36.75	27.92	15	5.2	60	43	-108	0.0771	Pondrelli et al., 2008
20040804	3:01:09	36.76	27.82	15	5.5	63	28	-115	0.0227	Pondrelli et al., 2008
20040804	4:19:51	36. 7 8	27.71	15	5.2	83	23	-83	0.0864	Pondrelli et al., 2008
20040804	14:18:51	36.72	27.88	15	5.3	68	36	-100	0.0118	Pondrelli et al., 2008
20040926	3:06:00	38.02	24.04	18	4.6	346	53	-2	0.01	HRV
20041005	10:41:27	37.31	20.56	15	4.7	304	23	73	0.0119	Pondrelli et al., 2008
20041007	7:16:55	36.44	22.75	86	4.7	174	78	4	0.0134	Pondrelli et al., 2008

Ημ/νία	Ώρα γένεσης	ф (° _в)	λ(° _A)	Βάθος (km)	М	ζ (°)	δ (°)	λ (°)	Mo (dyn•cm •10 ²⁵)	Αναφορές
20041007	1:05:12	36.15	26.79	144	5.5	83	86	168	0.2	Pondrelli et al., 2008
20041008	0:47:54	41.20	20.92	12	4.6	42	49	-48	0.0094	HRV
20041104	6:22:37	35.75	23.14	86	5.2	181	49	59	0.0694	Pondrelli et al., 2008
20041122	19:13:35	38.50	25.62	15	4.9	141	41	-18	0.026	Pondrelli et al., 2008
20041123	2:26:17	40.21	20.56	17	5.5	173	41	-110	0.0187	Pondrelli et al., 2008
20041209	18:35:19	41.87	20.30	28	4.8	209	36	-83	0.018	HRV
20041220	23:02:14	37.00	28.45	15	5.3	103	27	-74	0.1	Pondrelli et al., 2008
20050110	23:48:50	37.01	27.80	7	5.3	81	31	-78	0.11	GS
20050111	4:35:58	36.84	27.84	12	5.0	100	33	-69	0.044	HRV
20050131	1:05:34	37.53	20.15	11	5.7	144	85	85	0.45	GS
20050529	8:55:34	38.18	22.53	115	4.8	110	67	-165	0.019	HRV
20050530	9:20:09	33.92	26.06	40	4.7	96	60	74	0.016	HRV
20050710	13:10:15	42.37	19.70	12	5.2	148	45	-106	0.067	HRV
20050730	22:39:29	35.21	27.05	21	4.7	62	58	-26	0.015	HRV
20050801	13:35:04	36.29	26.74	151	4.8	306	27	180	0.02	HRV
20050804	10:45:29	34.70	26.28	31	5.0	90	80	7	0.043	HRV
20050824	0:00:00	39.86	25.60	23	4.7	145	68	-23	0.015	HRV
20050902	7:42:30	33.94	25.74	23	5.1	138	80	178	0.058	HRV
20050919	22:17:22	38.04	20.29	19	4.8	93	38	-103	0.021	HRV
20051011	5:44:31	35.53	27.42	21	4.9	215	61	-27	0.026	HRV
20051017	9:46:57	38.18	26.66	7	5.8	228	79	-171		Benetatos et al., 2006
20051017	21:40:00	38.19	26.70	10	5.9	50	84	-172		Aktar et al., 2007
20051017	5:45:19	38.15	26.62	15	5.5	247	82	-175		Benetatos et al., 2006
20051017	9:55:32	38.15	26.63	21	5.2	255	73	-175		Benetatos et al., 2006
20051018	15:36:33	37.56	20.76	14	5.0	181	82	85	0.047	HRV
20051018	15:26:00	37.62	20.92	18	5.5	70	46	144	0.2	GS
20051019	10:11:31	38.18	26.67	15	4.6	244	89	178		Benetatos et al., 2006
20051020	21:40:04	38.18	26.69	7	5.8	133	73	-25		Benetatos et al., 2006
20051022	11:47:00	38.16	26.61	9	4.6	150	90	0		Aktar et al., 2007
20051031	5:26:40	38.14	26.64	16	4.9	231	75	156		Benetatos et al., 2006
20051125	9:31:01	34.73	23.21	55	5.2	289	34	67	0.074	HRV
20051209	14:33:26	35.29	27.24	26	4.8	216	39	-27	0.021	HRV
20060108	11:35:00	35.93	23.29	64	6.7	201	44	55	15	HRV
20060123	21:22:02	38.28	28.52	13	4.9	301	28	-103	0.028	HRV
20060314	9:17:01	37.98	19.86	10	4.8	155	76	36	0.0175	AUTH Solution
20060403	0:49:41	37.62	20.93	10	4.9	139	70	63	0.0217	AUTH Solution

Ημ/νία	Ώρα γένεσης	φ(° _B)	λ(° _A)	Βάθος (km)	м	ζ (°)	δ (°)	λ (°)	Mo (dyn∙cm ·10 ²⁵)	Αναφορές
20060404	22:05:02	37.66	20.91	7	5.5	130	74	76	0.211	AUTH Solution
20060409	23:27:22	35.34	27.29	26	5.3	144	36	-117	0.11	HRV
20060411	0:02:40	37.66	20.90	9	5.5	137	72	76	0.183	AUTH Solution
20060411	17:29:34	37.60	20.83	22	5.5	167	59	71	0.25	HRV
20060412	16:52:01	37.61	20.95	22	5.6	22	33	130	0.27	GS
20060415	21:15:16	37.73	20.66	26	4.9	146	66	62	0.028	HRV
20060419	15:16:31	37.65	20.76	21	5.4	345	33	126	0.14	HRV
20060510	7:01:42	40.50	23.40	6	4.4	97	50	-68	0.0042	AUTH Solution
20060525	23:14:41	36.55	19.91	24	5.2	346	23	129	0.076	HRV
20060605	4: 2 3:32	37.80	28.65	22	4.8	295	34	-88	0.019	HRV
20060618	5:25:05	38.53	23.55	15	4.7	76	35	-97	0.0155	Pondrelli et al., 2008
20060621	15:54:45	38.90	20.60	11	4.8	171	87	164	0.0134	AUTH Solution
20060624	2:49:27	38.30	20.40	4	4.6	223	74	161	0.0105	AUTH Solution
20060730	4:04:10	37.40	21.10	11	4.4	24	48	-93	0.0041	AUTH Solution
20060806	7:49:48	40.10	19.80	6	4.7	149	66	81	0.0141	AUTH
20060808	21:20:08	40.20	19.70	6	4.7	145	49	77	0.0112	AUTH Solution
20060813	10:35:14	34. 4 6	26.58	25	5.3	107	76	169	0.1	HRV
20060822	9:23:22	35.17	27.11	12	5.1	267	89	99	0.016	HRV
20060828	22:48:50	37.90	20.20	18	4.5	131	85	91	0.0058	AUTH Solution
20061020	18:15:27	40.20	27.80	6	4.8	83	51	-139	0.0191	AUTH Solution
20061123	13:21:43	40.06	20.66	32	4.4	176	76	154	0.0038	AUTH Solution
20061221	18:30:55	39.35	23.58	6	5.0	231	85	-158	0.0328	AUTH Solution
20070202	12:06:30	39.42	20.78	4	4.6	214	60	-132	0.0086	AUTH Solution
20070203	13:43:25	35.89	22.62	60	5.4	9	86	-10	0.129	AUTH Solution
20070320	16:54:43	38.71	22.78	4	4.4	80	64	-116	0.0051	AUTH
20070325	18:57:21	38.39	20.28	2	4.6	119	73	-14	0.0095	AUTH
20070325	17:57:56	38.48	20.41	16	5.7	125	85	-15	0.388	AUTH
20070326	2:19:33	38.32	20.23	6	4.6	113	80	-14	0.0077	AUTH Solution
20070410	3:17:56	38.55	21.64	6	4.9	329	52	-52	0.0296	AUTH Solution
20070410	7:15:41	38.53	21.53	6	5.1	314	56	-61	0.0483	AUTH Solution
20070410	10:41:01	38.55	21.64	6	5.1	316	57	-63	0.0517	AUTH Solution
20070410	7:13:03	38.54	21.63	8	4.6	76	66	-170	0.0097	AUTH Solution
20070416	7:38:53	41.23	19.94	24	4.9	118	53	79	0.0222	AUTH
20070419	10:15:47	39.70	24.26	16	4.8	245	89	-179	0.0163	AUTH Solution

Ψηφιακή Βιβλιοθήκη Θεόφραστος - Τμήμα Γεωλογίας - Α.Π.Θ.

Ημ/νία	Ώρα γένεσης	ф(° _в)	λ(° _A)	Βάθος (km)	M	ζ (°)	δ (°)	λ (°)	Mo (dyn∙cm ·10 ²⁵)	Αναφορές
20070507	1:34:46	37.72	21.05	40	4.9	301	48	83	0.0283	AUTH Solution
20070521	16:39:11	35.14	27.62	18	5.0	1	39	-146	0.045	HRV
20070605	11:50:20	38.53	21.66	4	4.8	94	70	-104	0.0163	AUTH Solution
20070607	19:24:26	37.11	20.95	8	4.5	118	59	99	0.0075	AUTH Solution
20070612	13:12:56	38.90	26.39	9	4.5	108	86	5	0.0057	AUTH Solution
20070624	10:31:52	37.14	20.76	3	4.4	331	46	85	0.0041	AUTH
20070624	18:37:39	35.72	25.19	40	4.5	59	81	-3	0.0055	AUTH Solution
20070629	18:09:13	39.31	20.23	6	5.5	142	60	82	0.0168	AUTH
20070629	22:21:14	39.31	20.20	7	4.9	107	63	49	0.0234	AUTH
20070717	18:23:19	40.18	21.53	12	4.7	62	36	-95	0.0138	AUTH
20070807	22:23:31	37.44	20.78	40	4.5	210	84	-9	0.0067	AUTH Solution
20070812	12:26:09	39.26	20.18	4	4.5	93	83	34	0.0075	AUTH Solution
20070828	6:29:05	38.31	20.44	10	4.7	285	62	-66	0.0108	AUTH Solution
20070828	9:05:33	37.78	21.70	34	4.5	108	81	-180	0.0062	AUTH Solution
20070831	20:52:41	36.73	26.29	12	5.0	244	55	-94	0.0364	AUTH Solution
20070905	5:08:23	41.37	19.33	23	4.9	0	29	120	0.027	HRV
20070923	0:54:34	35.24	26.92	18	5.3	342	75	-129	0.13	HRV
20070924	18:12:30	34.74	23.36	26	4.9	252	43	-92	0.0272	AUTH Solution
20071010	10:14:12	37.97	20.26	10	4.4	297	66	-12	0.0044	AUTH Solution
20071014	9:18:11	34.51	26.54	20	4.7	239	82	-14	0.0134	AUTH Solution
20071027	5:29:38	37.69	21.22	12	5.0	297	64	-13	0.0362	AUTH Solution
20071028	12:03:15	35.15	27.06	8	4.9	235	81	-20	0.0227	AUTH Solution
20071029	9:23:17	36.93	29.34	6	5.2	274	57	-100	0.0753	AUTH Solution
20071109	1:43:03	38.81	25.67	10	5.1	246	89	-174	0.0455	AUTH Solution
20071109	7:11:58	38.75	25.77	20	4.8	248	75	-163	0.0167	AUTH Solution
20071230	6:42:39	37.47	20.74	11	5.0	122	80	87	0.042	AUTH Solution
20080106	5:14:24	36.98	21.67	92	6.2	222	41	20	2.3	HRV
20080214	10:09:24	36.51	21.80	34	6.9	290	10	70	12.4	AUTH Solution
20080214	12:09:58	36.36	21.94	34	6.2	292	8	74	1.91	AUTH Solution
20080219	23:15:41	36.23	21.78	12	5.3	341	79	-178	0.10	AUTH Solution
20080220	18:27:07	36.36	21.91	12	6.1	336	85	178	1.5	AUTH Solution
20080226	10:46:10	35.95	21.94	12	5.3	265	52	53	0.11	AUTH Solution
20080226	16:10:42	36.07	21.80	18	5.0	113	59	75	0.45	HRV

Ημ/νία	Ώρα γένεσης	ф([°] в)	λ(° _A)	Βάθος (km)	M	ζ (°)	δ (°)	λ (°)	Mo (dyn∙cm •10 ²⁵)	Αναφορές
20080228	4:54:37	36.27	21.79	12	4.7	248	84	12	0.012	AUTH Solution
20080302	5:41:37	36.19	21.89	12	4.5	160	87	-173	0.55	AUTH
20080304	13:25:31	36.19	21.89	20	4.9	293	40	80	0.03	HRV
20080307	20:28:28	36.25	21.62	12	4.9	262	40	45	0.03	HRV
20080314	7:10:29	36.11	21.85	14	5.1	111	56	82	0.06	HRV
20080323	20:11:12	36.21	21.73	12	5.0	279	31	69	0.04	HRV
20080508	12:26:28	36.26	21.81	14	4.9	115	53	84	0.03	HRV
20080510	20:53:08	36.26	22.05	20	5.4	117	87	88	0.18	HRV
20080608	12:25:37	37.97	21.49	32	6.5	29	89	-178		AUTH Solution
20080612	0:20:49	35.28	26.36	41	5.1	117	40	-151	0.06	HRV
20080618	1:58:44	37.72	22.78	80	5.1	91	56	103		AUTH Solution
20080621	11:36:24	36.06	21.82	5	5.5	286	50	50	0.25	GS
20080621	5:57:21	36.11	21.82	13	5.2	118	57	90	0.08	HRV
20080621	13:43:37	36.17	21.75	16	4.9	292	34	83	0.03	HRV
20080622	0:40:14	36.14	21.81	16	4.8	297	33	91	0.02	HRV
20080715	23:52:39	35.67	27.75	42	4.9	360	63	-169	0.05	HRV
20080715	3:26:40	35.67	27.69	42	6.4	357	55	-169	4.8	HRV
20080730	5:02:57	38.18	20.14	12	5.0	131	87	14		AUTH Solution
20080803	0:39:15	39.61	23.89	14	5.2	243	87	-166		AUTH Solution
20080804	19:38:25	34.10	26.58	43	5.3	227	71	-121	0.08	GS
20080921	14:15:02	35.08	27.60	28	4.9	302	82	-175	0.0262	Pondrelli et al., 2008
20081014	2:06:36	38.84	23.62	8	5.1	126	64	-57		AUTH Solution
20081017	2:17:02	38.75	23.58	9	4.4	106	68	-71		AUTH Solution
20081213	8:27:22	38.52	22.54	19	5.2	261	23	-103	0.07	HRV
20081228	22:59:03	40.33	25.84	12	5.2	78	80	-169	0.08	HRV
2009 0 108	12:04:00	41.78	20.86	22	4.9	93	38	-67	2.67	Global cmt catalog
200 90113	6:12:00	35.70	26.33	29	5.3	159	61	-150	0.107	Global cmt catalog
20090216	23:16:00	37.08	20.75	12	5.5	4	34	158	2.17	Global cmt catalog
20090217	5:28:00	39.11	28.97	17	5.2	262	46	-128	8.14	Global cmt catalog
20090319	14:15:00	35.10	23.44	56	4.9	299	33	79	2.76	Global cmt catalog
20090514	9:13:00	36.02	26.97	120	4.8	18	30	-112	2.28	Global cmt catalog
20090517	11:59:00	38.13	22.69	21	4.9	298	35	-75	2.75	Global cmt catalog
2009052 3	4:47:00	36.51	21.87	23	4.9	349	61	164	2.59	Global cmt catalog
20090524	16:17:00	41.30	22.72	13	5.3	62	45	-123	1.09	Global cmt catalog
20090524	19:37:00	41.28	22.73	17	4.8	78	44	-124	2	Global cmt catalog

Ημ/νία	Ώρα γένεσης	ф(° _в)	λ(° _A)	Βάθος (km)	M	ζ (°)	δ (°)	λ (°)	Mo (dyn∙cm ·10 ²⁵)	Αναφορές
20090618	4:26:00	35.38	28.55	29	5.0	246	34	-58	4.46	Global cmt catalog
20090619	14:05:00	35.32	28.58	22	5.7	248	42	-54	5.07	Global cmt
20090620	8:28:00	37.66	26.84	12	5.1	105	36	-90	5.22	Global cmt
20090701	9:30:00	34.35	25.40	12	6.4	295	32	108	5.85	Global cmt
20090702	19:47:00	34.25	25.22	12	4.8	95	40	43	1.74	Global cmt catalog
20090821	13:39:00	41.86	19.07	21	5.1	312	33	87	4.98	Global cmt catalog
20090906	21:49:00	41.52	20.47	12	5.5	175	39	-118	1.91	Global cmt catalog
20091019	9:34:54	42.35	19.83	15	4.4	249	64	44	0.004	AUTH Solution
20091103	5:25:00	37.35	20.18	16	5.8	325	11	97	6.54	Global cmt catalog
20091111	9:51:00	37.37	20.18	20	5.3	327	17	127	9.94	Global cmt catalog
20091126	15:09:00	35.98	21.32	12	5.0	39	27	163	4.18	Global cmt catalog
20091204	6:02:00	37.95	28.85	14	4.9	269	39	-123	3.31	Global cmt catalog
20091222	6:06:00	35.64	31.47	57	5.3	313	27	90	1.15	Global cmt catalog
20100117	20:16:00	35.27	27.83	22	4.9	229	72	-16	2.71	Global cmt catalog
20100118	15:56:00	38.40	21.96	14	5.5	82	46	-115	1.99	Global cmt catalog
20100122	0:46:00	38.43	22.01	14	5.4	72	48	-123	1.5	Global cmt catalog
20100211	21:56:00	34.32	25.35	12	5.4	282	32	77	1.85	Global cmt catalog
20100424	15:01:00	34.32	26.08	20	5.4	277	33	101	1.36	Global cmt catalog
20100716	18:53:00	39.32	24.05	16	5.0	30	66	-174	3.43	Global cmt catalog
20100716	8:11:00	36.78	27.01	174	5.1	77	53	-8	6.56	Global cmt catalog
20100822	10:23:00	37.39	20.14	17	5.5	325	16	99	2.08	Global cmt catalog
20101003	15:21:00	34.9	26.39	12	5.3	49	7	-124	1.27	Global cmt catalog
20101103	2:51:00	40.40	26.21	24	5.3	254	85	-177	1.23	Global cmt catalog
20101111	20:08:00	37.84	27.35	17	5.0	114	44	-63	3.37	Global cmt catalog
20110228	7:49:00	34.87	25.46	33	5.7	246	6	64	4.44	Global cmt catalog
20110401	13:29:00	35.65	26.57	76	6.1	142	71	5	2.02	Global cmt catalog
20110508	6:50:00	36.71	27.26	13	5.2	60	30	-97	8.99	Global cmt catalog
20110519	20:15:00	39.08	29.11	12	5.9	98	44	-96	8.75	Global cmt catalog
20110519	20:39:00	34.39	23.72	18	5.2	232	56	-24	9.04	Global cmt catalog
20110528	5:47:00	39.09	29.04	14	5.1	314	45	-65	4.78	Global cmt catalog
20110627	21:13:00	39.07	29.13	19	5.0	95	42	-120	4.09	Global cmt catalog
20110719	7:13:00	37.26	20.08	17	5.1	333	30	110	5.97	Global cmt catalog

Ημ/νία	Ώρα γένεσης	ф (° _В)	λ(° _A)	Βάθος (km)	м	ζ (°)	δ (°)	λ (°)	Mo (dyn∙cm ·10 ²⁵)	Αναφορές
20110725	17:57:00	40.83	27.80	12	5.1	346	50	-11	5.36	Global cmt catalog
20110727	9:58:00	38.36	31.87	16	4.8	165	33	-50	2.22	Global cmt catalog
20110807	14:35:00	38.41	21.81	23	5.0	285	39	-54	3.55	Global cmt catalog
20110814	1:05:00	37.23	22.01	12	4.9	175	38	-69	3.29	Global cmt catalog
20110820	2:00:00	37.92	21.71	26	5.1	149	67	-23	5.05	Global cmt catalog
20110913	16:19:00	34.67	23.80	18	5.2	241	57	-11	8.19	Global cmt catalog
20110927	12:08:00	34.40	23.78	17	5.3	235	59	-9	1.29	Global cmt catalog
20111010	19:07:00	37.21	22.03	12	4.8	357	43	-74	2.3	Global cmt catalog
20111106	20:56:00	36.00	26.00	23	4.8	193	40	-79	1.81	Global cmt catalog
20111123	12:17:00	34.15	25.07	15	5.5	238	39	-55	1.9	Global cmt catalog
20120127	1:33:00	35.87	24.86	14	5.3	78	41	-24	1.31	Global cmt catalog

Κεφάλαιο 3. Χωρική κατανομή των μηχανισμών γένεσης σεισμών

Κεφάλαιο 3.

3.1 Λύσεις μηχανισμών γένεσης επιφανειακών σεισμών

Η κατανομή των επιφανειακών σεισμών στον ευρύτερο χώρο του Αιγαίου φαίνεται στο Σχήμα 3.1. Παρά τον μεγάλο αριθμό και την επικάλυψη των προβολών, είναι εύκολο να διαχωριστεί ο ελληνικός χώρος σε επί μέρους περιοχές. Ο διαχωρισμός αυτός γίνεται με βάση τους κοινούς μηχανισμούς γένεσης σε κάθε περιοχή. Για ευκολία στην ανάγνωση, οι μηχανισμοί γένεσης έχουν χωριστεί με βάση το εύρος τιμών του διανύσματος ολίσθησης και κάθε ομάδα απεικονίζεται με διαφορετικό χρώμα. Έτσι, αυτοί που οφείλονται σε ανάστροφα ρήγματα απεικονίζονται με κόκκινο χρώμα και περιλαμβάνουν σεισμούς από +46° μέχρι +135°. Αντίστοιχα, με μαύρο, όσοι συνδέονται με ρήγματα οριζόντιας μετατόπισης και τιμές λ από 0° μέχρι +45°,από +136 έως +180°, 0° έως -45°, από -136° έως -180° και με πράσινο όσοι συνδέονται με κανονικά ρήγματα και λ μεταξύ -46 και -135°.

Τα παραπάνω κριτήρια για το διαχωρισμό των μηχανισμών γένεσης ανάλογα με το είδος του ρήγματος με το οποίο συνδέονται, τηρήθηκαν αυστηρά. Για το λόγο αυτό, σε κάποιες περιοχές ένας μηχανισμός γένεσης με λ=45° εμφανίζεται με διαφορετικό χρώμα από ένα μηχανισμό γένεσης με λ=46°. Παρόλα αυτά, και δεδομένου ότι γίνεται κυρίως ποιοτική ερμηνεία των μηχανισμών γένεσης σε αυτήν την εργασία, τα αποτελέσματα δεν επηρεάζονται από τον καθορισμό των παραπάνω κριτηρίων.

Σχήμα 3.1 Συνοπτική παρουσίαση όλων των μηχανισμών γένεσης επιφανειακών σεισμών.

3.1.1 Ακτές κατά μήκος της Αλβανίας και της βορειοδυτικής ηπειρωτικής Ελλάδας

Κατά μήκος των Αλβανικών ακτών και των ακτών της δυτικής ηπειρωτικής Ελλάδας παρατηρούνται ανάστροφα ρήγματα, με παράταξη παράλληλη προς τις ακτές (Σχήμα 3.2), τα οποία οφείλουν την ύπαρξή τους στο συμπιεστικό πεδίο που δημιουργείται στην περιοχή, λόγω της αριστερόστροφης περιστροφής της πλάκας της Απουλίας σε σχέση με την μικροπλάκα του Αιγαίου (McKenzie, 1972, Ritsema, 1974, Anderson and Jackson, 1987, Papazachos et al., 1998).

Σχήμα 3.2 Κατανομή των σεισμών κατά μήκος των δυτικών ακτών της Ελλάδας και της Αλβανίας.

3.1.2 Κεντρικά Ιόνια νησιά

Στην ευρύτερη περιοχή των νησιών του Ιονίου, παρατηρείται μια ζώνη δεξιόστροφων ρηγμάτων οριζόντιας μετατόπισης. Περιλαμβάνει την Κεφαλονιά, τη Λευκάδα και τη Ζάκυνθο. Από τους μηχανισμούς γένεσης των σεισμών στην περιοχή αυτή, ξεχωρίζουν δυο ομάδες ρηγμάτων. Για πρακτικούς λόγους, η περιοχή απεικονίζεται σε δυο χάρτες. Στον πρώτο χάρτη, στην περιοχή Κεφαλονιάς – Λευκάδας, παρατηρούνται τόσο ρήγματα οριζόντιας μετατόπισης, όσο και ανάστροφα ρήγματα (Σχήμα 3.3). Η ύπαρξη των πρώτων οφείλεται στην νοτιοδυτική κίνηση της μικροπλάκας του Αιγαίου σε σχέση με την Ευρασιατική και την Απουλία. Το σημαντικότερο ρήγμα είναι το δεξιόστροφο ρήγμα μετασχηματισμού της Κεφαλονιάς (CTF), το οποίο παρατηρείται εδώ με μικρή ανάστροφη συνιστώσα (Skordillis et al., 1985). Εκτός όμως, από τη ζώνη των ρηγμάτων οριζόντιας μετατόπισης, παρατηρούνται και ανάστροφα ρήγματα. Αυτά, ουσιαστικά αποτελούν προέκταση προς το νότο, της ζώνης των ανάστροφων ρηγμάτων που υφίσταται κατά μήκος των Αλβανικών ακτών και των ακτών της βορειοδυτικής Ελλάδας (3.1.1).

Σχήμα 3.3 Πρώτη υποζώνη, περιοχή Κεφαλονιάς – Λευκάδας. Επικρατούν τα ρήγματα οριζόντιας μετατόπισης. Στα βόρεια όμως παρατηρούνται και ανάστροφα ρήγματα.

Στην περιοχή της Ζακύνθου, η σεισμικότητα συνδέεται με την έντονη παραμόρφωση των ιζημάτων και του ανώτερου φλοιού στη ζώνη της ηπειρωτικής σύγκρουσης. Τα σεισμοτεκτονικά στοιχεία που τη χαρακτηρίζουν είναι το ρήγμα μετασχηματισμού της Κεφαλονιάς (CTF), η κατάδυση της λιθοσφαιρικής πλάκας της ανατολικής Μεσογείου κάτω από τη μικροπλάκα του Αιγαίου και η επώθηση της Ιονίου ζώνης (Papoulia et al., 2008). Κι εδώ παρατηρούνται οι ίδιες ομάδες ρηγμάτων. Η πρώτη αφορά στα ρήγματα οριζόντιας μετατόπισης, τα οποία δημιουργούνται εξαιτίας της νοτιοδυτικής κίνησης της μικροπλάκας του Αιγαίου σε σχέση με την Ευρασιατική και την Απουλία και η δεύτερη αποδίδεται, όπως και στην περιοχή Κεφαλονιάς – Λευκάδας, στην κατάδυση που συμβαίνει στην περιοχή του νοτιοδυτικού Ελληνικού Τόξου (Σχήμα 3.4).

Σχήμα 3.4 Περιοχή νότια της Ζακύνθου. Παρατηρούνται ρήγματα οριζόντιας μετατόπισης, στο τμήμα τη ζώνης που είναι πιο κοντά στην Κεφαλονιά και ανάστροφα ρήγματα νότια της Ζακύνθου.

3.1.3 Ελληνική Τάφρος

Η ζώνη αυτή ακολουθεί την Ελληνική Τάφρο, κατά μήκος του Ελληνικού Τόξου. Η ζώνη αυτή χωρίζεται για πρακτικούς λόγους, σε τρεις υποζώνες. Η πρώτη περιλαμβάνει την περιοχή νοτιοδυτικά της Πελοποννήσου (Σχήμα 3.5). Η δεύτερη υποζώνη περιλαμβάνει την περιοχή από τα δυτικά της Κρήτης μέχρι την Κάρπαθο (Σχήμα 3.6) και η τρίτη εκτείνεται από την Κάρπαθο μέχρι το άκρο της Τάφρου (Σχήμα 3.7), όπου βρίσκεται το αριστερόστροφο ρήγμα μετασχηματισμού της Ρόδου (RTF) (Papazachos 1961, Papazachos et al., 2001).

Το συμπιεστικό πεδίο τάσεων της Ελληνικής Τάφρου δημιουργείται λόγω της σύγκλισης μεταξύ της Αφρικανικής και της Ευρασιατικής πλάκας και συγκεκριμένα εξαιτίας της εφίππευσης της μικροπλάκας του Αιγαίου επάνω στην Αφρικανική (Papazachos et al., 1998).

Σχήμα 3.5 Συμπιεστικό πεδίο τάσεων στο βορειοδυτικό τμήμα της Ελληνικής Τάφρου.

Ιδιαίτερο ενδιαφέρον παρουσιάζει η μορφοτεκτονική δομή της Κρήτης, η οποία αποτελεί τμήμα του Ελληνικού τόξου, και συγκεκριμένα του ιζηματογενούς. Η ζώνη αυτή ουσιαστικά αποτελεί τη συνέχεια της ζώνης των Δυτικών Ελληνίδων, η οποία, σταματάει να υφίσταται στην περιοχή της Στερεάς Ελλάδας, ξανά εμφανίζεται στην Πελοπόννησο και συνεχίζει μέχρι την Κρήτη, γι' αυτό και περιγράφεται στο Κεφάλαιο 3.1.4. Παρόλα αυτά, τα σεισμοτεκτονικά χαρακτηριστικά της Κρήτης δεν επηρεάζονται μόνο από το εφελκυστικό πεδίο ανατολής – δύσης που εμφανίζεται στις Ελληνίδες. Λόγω της θέσης της στο όριο σύγκλισης της Αφρικανικής λιθόσφαιρας με τη λιθόσφαιρα του Αιγαίου, η περιοχή νότια της Κρήτης επηρεάζεται από το συμπιεστικό πεδίο τάσεων που επικρατεί. Έτσι, τα ανάστροφα ρήγματα, που οφείλονται στην κατάδυση που συμβαίνει στο νότιο όριο της μικροπλάκας του Αιγαίου (Papadimitriou, 1993), περιορίζονται μόνο νότια της Κρήτης, στο Λιβυκό Πέλαγος, χωρίς να λείπουν, βέβαια, και ρήγματα οριζόντιας μετατόπισης (Σχήμα 3.6).

Σχήμα 3.6 Ανάστροφα ρήγματα στο νότιο τμήμα της Κρήτης.

Το ανατολικό άκρο της Ελληνικής Τάφρου χαρακτηρίζεται από το Ρήγμα Μετασχηματισμού της Ρόδου (RTF). Στην περιοχή παρατηρούνται τα ανάστροφα ρήγματα που αναμένονται λόγω της κατάδυσης που συμβαίνει στην Ελληνική Τάφρο. Τέλος, τα ρήγματα οριζόντιας μετατόπισης εκφράζουν τη δράση του ρήγματος μετασχηματισμού της Ρόδου.

Σχήμα 3.7 Κανονικά και ρήγματα οριζόντιας μετατόπισης στα νοτιοανατολικά της Ελληνικής Τάφρου (περιοχή Ρόδου).

3.1.4 Εξωτερικές Ελληνίδες

Η ζώνη αυτή περιλαμβάνει την οροσειρά των Εξωτερικών Ελληνίδων κατά μήκος της οποίας αναπτύσσονται κανονικά ρήγματα με διεύθυνση βορά-νότου (Σχήμα 3.8). Η περιοχή αυτή ανήκει στη ζώνη επέκτασης ανατολής δύσης που παρατηρείται και στην Κρήτη (Κεφάλαιο 3.1.3).

Το εφελκυστικό πεδίο τάσεων οφείλεται στην ορογενετική διεργασία που υφίσταται η περιοχή αυτή. Εμφανίζεται, αρχικά, κατά μήκος των Ελληνίδων οροσειρών, ως συνέχεια του εφελκυστικού πεδίου τάσεων που παρατηρείται στις Αλβανικές οροσειρές (Κεφάλαιο 3.1.1), διακόπτεται στην Κεντρική Ελλάδα, λόγω της ύπαρξης των ρηγμάτων οριζόντιας μετατόπισης δυτικά (Κεφάλαιο 3.1.2), για να επανεμφανιστεί στα νότια της Πελοποννήσου και έπειτα στην Κρήτη και την Κάρπαθο (Κεφάλαιο 3.1.3) (Papazachos et al., 1991).

Σχήμα 3.8 Το εφελκυστικό πεδίο τάσεων κατά μήκος των Αλβανικών οροσειρών, αποτελεί την προέκταση του ίδιου πεδίου τάσεων που επικρατεί κατά μήκος των Ελληνίδων.

Χαρακτηριστικό παράδειγμα του συνόλου των δυνάμεων που δρουν στη νοτιοδυτική Ελλάδα, αποτελεί ο χώρος της Πελοποννήσου. Στο Σχήμα 3.9 απεικονίζεται το διαφορετικό πεδίο τάσεων που επικρατεί σε κάθε τμήμα της Πελοποννήσου. Έτσι, το βορειοδυτικό τμήμα της, το οποίο επηρεάζεται από την προς τα νοτιοδυτικά κίνηση της μικροπλάκας του Αιγαίου σε σχέση με την Ευρασιατική και την Απουλία (Papazachos, 2001), εμφανίζει παρόμοια ρήγματα οριζόντιας μετατόπισης με αυτά που παρατηρούνται στην περιοχή της Κεφαλονιάς - Λευκάδας και της Ζακύνθου (Κεφάλαιο 3.1.2). Αντίστοιχα, στα βόρεια και ανατολικά, τα κανονικά ρήγματα ανατολής-δύσης σχετίζονται με το πεδίο τάσεων που επικρατεί τόσο στη Μακεδονία (Κεφάλαιο 3.1.5) όσο και στην Κεντρική Ελλάδα (Κεφάλαιο 3.1.6). Τέλος, στα νότια, παρατηρείται το ίδιο εφελκυστικό πεδίο τάσεων, στο οποίο οφείλεται η ύπαρξη των κανονικών ρηγμάτων των Ελληνίδων οροσειρών.

Σχήμα 3.9 Πεδίο τάσεων στην Πελοπόννησο.

Αυτός ο εφελκυσμός συνεχίζεται ακόμη πιο νότια και συγκεκριμένα, στην περιοχή της Κρήτης. Έχει ήδη αναφερθεί (Κεφάλαιο 3.1.3), ότι το πεδίο των τάσεων που επικρατεί στην περιοχή αυτή είναι ιδιαίτερα πολύπλοκο. Λόγω της ύπαρξης της ζώνης κατάδυσης στο νότο (Papazachos and Comninakis, 1961, 1971), δημιουργούνται ανάστροφα ρήγματα στο Λιβυκό Πέλαγος.

Το βόρειο τμήμα της Κρήτης, όμως, το οποίο επηρεάζεται από τη γενικότερη εφελκυστική τεκτονική του ελληνικού χώρου, εμφανίζει τόσο κανονικά ρήγματα, τα οποία εντάσσονται στη ζώνη εφελκυσμού ανατολής – δύσης που εμφανίζεται κατά μήκος των Ελληνικών κι Αλβανικών οροσειρών,

όσο και ρήγματα οριζόντιας μετατόπισης με έντονη κανονική συνιστώσα. Όμως, η παρουσία των κανονικών αυτών ρηγμάτων δεν περιορίζεται μόνο στο βόρειο τμήμα, όπως είναι αναμενόμενο, αλλά επεκτείνεται και στο νότιο τμήμα της, εκεί όπου δρα κυρίως συμπιεστικό πεδίο τάσεων (Σχήμα 3.10).

Σχήμα 3.10 Κανονικά ρήγματα και ρήγματα οριζόντιας μετατόπισης βόρεια και νότια της Κρήτης.

3.1.5 Θεσσαλία, Μακεδονία και Θράκη

Λόγω της ταχύτερης κίνησης του νοτίου τμήματος του Αιγαίου, σε σχέση με το βόρειο, προτάθηκε από το McKenzie (1970), η ιδέα της επέκτασης της λιθόσφαιρας του βορείου Αιγαίου κατά διεύθυνση βορά-νότου. Στην επέκταση αυτή αποδίδεται το εφελκυστικό πεδίο τάσεων που παρατηρείται στην εν λόγω περιοχή και εκφράζεται ως κανονικά ρήγματα διεύθυνσης ανατολής-δύσης (Σχήμα 3.11). Η περιοχή αποτελεί τμήμα της οπισθότοξης περιοχής με έντονο εφελκυσμό και διεύθυνση του άξονα Τ περίπου B-N.

Σχήμα 3.11 Εφελκυστικό πεδίο βορά - νότου στη Μακεδονία και τη Θεσσαλία.

3.1.6 Κεντρική Ελλάδα - Νότιο Αιγαίο

Το πεδίο των τάσεων εδώ, είναι όμοιο με αυτό της κεντρικής Μακεδονίας και οφείλεται στα ίδια αίτια γένεσης (Κεφάλαιο 3.1.5). Η επέκταση στη λιθόσφαιρα του Αιγαίου δημιουργεί εφελκυστικό πεδίο τάσεων κατά τη διεύθυνση βορά-νότου (McClusky et al., 2000). Αυτό έχει σαν αποτέλεσμα τη δημιουργία κανονικών ρηγμάτων διεύθυνσης ανατολής-δύσης.

Για πρακτικούς λόγους, η συγκεκριμένη ζώνη χωρίστηκε σε 4 επί μέρους περιοχές. Έτσι, στο Σχήμα 3.12 παρουσιάζεται η εφελκυστική τεκτονική της Στερεάς Ελλάδας και του Κορινθιακού κόλπου. Ο Κορινθιακός κόλπος είναι από τις πλέον ενεργές σεισμικά λεκάνες του ελληνικού χώρου. Αποτελεί νεοτεκτονική λεκάνη με διεύθυνση ΔΒΔ – ΑΝΑ. Η εξέλιξή του συνδέεται με κανονικά ρήγματα και παρουσιάζει έντονο ανάγλυφο, τόσο χερσαίο όσο και υποθαλάσσιο (Philippson 1892, Doutsos et al. 1988, 1992). Κατά μήκος του επικρατούν εφελκυστικές τάσεις διεύθυνσης Β-Ν (McKenzie, 1972),

Σχήμα 3.12 Εφελκυσμός στη Στερεά Ελλάδα.

Η ίδια κατάσταση επικρατεί και στο κεντρικό και νοτιοδυτικό Αιγαίο, με κανονικά ρήγματα ανατολής – δύσης. Ιδιαίτερο ενδιαφέρον παρουσιάζει ο σεισμός που σημειώνεται με βέλος (Σχήμα 3.13). Πρόκειται για το μεγαλύτερο σεισμό που έχει σημειωθεί στον ελληνικό χώρο (9 Ιουλίου 1956, M=7.7), ο οποίος συνοδεύτηκε από τη δημιουργία θαλάσσιου κύματος βαρύτητας (τσουνάμι), του οποίου το ύψος έφτασε έως και 25 m. Ο απολογισμός ήταν 53 νεκροί και 100 τραυματίες. Η σεισμική ροπή 4.9·10²⁷ dγn·cm είναι η μεγαλύτερη που έχει μετρηθεί στη Μεσόγειο τον τελευταίο αιώνα (Papadimitriou et al., 2005).

Σχήμα 3.13 Κανονικά ρήγματα στις Κυκλάδες και τα Δωδεκάνησα.

Οι δομές που εμφανίζονται στην ενδοχώρα της Τουρκίας συμπίπτουν με το εφελκυστικό πεδίο που παρατηρείται και στις άλλες περιοχές (Σχήμα 3.14).

Σχήμα 3.14 Εφελκυστικό πεδίο τάσεων στη δυτική Τουρκία.

Παρόλα αυτά, κατά μήκος των νότιων παραλίων της Μ. Ασίας, το γεωδυναμικό καθεστώς αλλάζει και παρατηρούνται ρήγματα οριζόντιας μετατόπισης (Σχήμα 3.15).

Σχήμα 3.15 Διαφοροποίηση του πεδίου τάσεων στο κεντρικό Αιγαίο.

3.1.7 Βόρειο Αιγαίο

Το κύριο σεισμοτεκτονικό χαρακτηριστικό του Β. Αιγαίου είναι η είσοδος σε αυτό του βόρειου κλάδου του ρήγματος της Ανατολίας. Η προέκταση του ρήγματος είναι υπεύθυνη για το ημι-εκτατικό πεδίο τάσεων που δημιουργείται (Papazachos et al. 1998) κι εμφανίζεται με τη μορφή ρηγμάτων οριζόντιας μετατόπισης (Σχήμα 3.16). Η ύπαρξη των ρηγμάτων αυτών, συνοδεύεται από την επέκταση του χώρου του Β. Αιγαίου, στην περιοχή αυτή. Η επέκταση αυτή συμβαίνει λόγω της μεγαλύτερης ταχύτητας κίνησης του νότιου τμήματος της πλάκας του Αιγαίου, σε σχέση με το βόρειο (Papazachos et al., 2001).

Σχήμα 3.16 Είσοδος στο Β. Αιγαίο, του βόρειου κλάδου του ρήγματος της Ανατολίας, με τη δημιουργία χαρακτηριστικών ρηγμάτων οριζόντιας μετατόπισης.

3.1.8 Θάλασσα Μαρμαρά και Βόρεια Τουρκία

Η περιοχή αυτή συνδέεται τόσο με το ημι-εκτατικό πεδίο που δημιουργείται στο Β. Αιγαίο λόγω του ρήγματος της Ανατολίας (Κεφάλαιο 3.1.7) (Παπαζάχος και Παπαζάχου, 2002), όσο και με τη ζώνη κανονικών ρηγμάτων με διεύθυνση ανατολή – δύση που παρατηρείται στην Κεντρική Ελλάδα (Κεφάλαιο 3.1.6).

Έτσι, στη Θάλασσα του Μαρμαρά και το βορειοανατολικό Αιγαίο κυριαρχούν ρήγματα οριζόντιας μετατόπισης με μικρή ανάστροφη συνιστώσα, ενώ, στη βορειοανατολική Τουρκία, το ίδιο εφελκυστικό πεδίο που δρα στη κεντρική Μακεδονία (Κεφάλαιο 3.1.5), τη Στερεά Ελλάδα, τις Κυκλάδες, τα Δωδεκάνησα (εκτός της περιοχής της Ρόδου) και τα νότια παράλια της Μικράς Ασίας (Κεφάλαιο 3.1.6) είναι υπεύθυνο για τη δημιουργία κανονικών ρηγμάτων ανατολής – δύσης (Σχήμα 3.17).

Σχήμα 3.17 Εφελκυσμός στην ενδοχώρα της Τουρκίας και ρήγματα οριζόντιας μετατόπισης στο ΒΑ Αιγαίο και τη Θάλασσα του Μαρμαρά.

3.2 Λύσεις μηχανισμών γένεσης σεισμών ενδιαμέσου βάθους

Στον κατάλογο που έχει παρατεθεί στο κεφάλαιο 2.2, από τους 536 σεισμούς που έχουν χρησιμοποιηθεί, οι 28 αφορούν σεισμούς ενδιαμέσου βάθους (h≥60 km). Από τους σεισμούς αυτούς 18 έχουν τις εστίες στους στο επιφανειακό τμήμα της ζώνης Benioff με 60≤h≤100 km (Σχήμα 3.18), ενώ οι υπόλοιποι 10 έχουν σχετικά μεγάλα εστιακά βάθη με h>100 km (Σχήμα 3.19).

3.2.1 Σεισμοί που έχουν τις εστίες τους στο επιφανειακό τμήμα της ζώνης Benioff

Η ύπαρξη σεισμών ενδιαμέσου βάθους στην περιοχή του Ν. Αιγαίου μαρτυρά την παρουσία της ζώνης Benioff. Η ανακάλυψη της ζώνης αυτής αποτέλεσε το ισχυρότερο επιστημονικό τεκμήριο για την κατάδυση της Αφρικανικής πλάκας κάτω από τη μικροπλάκα του Αιγαίου. Από έρευνες, έχει βρεθεί η γεωμετρία της ζώνης Benioff και διαπιστώθηκε ότι κλίνει προς το εσωτερικό τμήμα του Ελληνικού Τόξου, φτάνοντας σε βάθος μέχρι τα 200 km περίπου (Hatzfeld & Martin, 1992, Papazachos et al., 2000). Η καταδυόμενη Αφρικανική πλάκα βυθίζεται με 30° περίπου μέχρι το βάθος των 100 km, ενώ σε μεγαλύτερα βάθη η κλίση της γίνεται πιο απότομο (περίπου 45°).

Οι διαθέσιμοι μηχανισμοί γένεσης για σεισμούς ενδιαμέσου βάθους (60≤h≤100 km) συνδέονται με διαρρήξεις διεύθυνσης με εμφανή ανάστροφη συνιστώσα, χωρίς να λείπουν βέβαια και λύσεις μηχανισμών γένεσης που έχουν κανονικές συνιστώσες (Σχήμα 3.18).

Οι διαφορετικοί μηχανισμοί γένεσης που παρατηρούνται, οφείλονται σε διαφορετικές αιτίες. Έτσι, τα ανάστροφα ρήγματα δημιουργούνται λόγω της επαφής μεταξύ των δυο πλακών, τα κανονικά κατά μήκος της καταδυόμενης πλάκας και τα οριζόντιας μετατόπισης λόγω της κάμψης της λιθοσφαιρικής πλάκας καθώς αυτή βυθίζεται για να πάρει αμφιθεατρικό σχήμα (Papazachos et al., 2000).

Σχήμα 3.18 Λύσεις μηχανισμών γένεσης σεισμών που έχουν την εστία τους στο επιφανειακό τμήμα της ζώνης Benioff (60≤h≤100 km).

3.2.2 Σεισμοί που έχουν τις εστίες τους σε μεγάλα βάθη (h>100 km)

Η γένεση σεισμών σε βάθη μεγαλύτερα των 100 km οφείλεται στην καταστροφή του ωκεάνιου φλοιού λόγω της οπισθοκύλισης που πραγματοποιεί η λιθοσφαιρική πλάκα (Nikolintaga et al., 2008). Το πάχος της πλάκας έχει υπολογιστεί ότι είναι περίπου 45 km (Nikolintaga et al., 2008).

Σχήμα 3.19 Λύσεις μηχανισμών γένεσης σεισμών με βάθος h>100 km.

Κεφάλαιο 4. Συμπεράσματα

Κατά τη διαδικασία επεξεργασίας των δεδομένων και δημιουργίας των χαρτών, η πλειονότητα των μηχανισμών γένεσης που προέκυψαν, ήταν σε συμφωνία με τα αποτελέσματα ερευνών που είχαν πραγματοποιηθεί στην ίδια περιοχή (Anderson & Jackson, 1987; Baker et al., 1997; Bernard et al, 1997; Dziewonski et al., 1984; Ekstrom & England, 1989; Eyidogan & Jackson, 1985; Hatzfeld et al., 1993, 1996, 1999; Karakostas et al., 2010; Kiratzi & Langston, 1989; Kiratzi and Louvari, 2003; Kiratzi et al., 1987, 1991, 2007; Kocaefe & Ataman, 1976; Lyon – Caen et al., 1988; McKenzie, 1972, 1978; Messini et al., 2007; Panagiotopoulos et al., 1993; Papadimitriou, 1993; Papazachos, 1975; Papazachos et al., 1983, 1984, 1984c, 1988, 1991, 1998; Ritsema, 1974; Scordilis et al., 1985; Shirokova, 1972; Soufleris & Stewart, 1981; Taγmaz et al., 1990, 1991, 1993; Wright et al., 1999; Yilmazturk & Burton, 1999; Λούβαρη, 2000; Παπαζάχος, 1961). Παρόλα αυτά, σε κάποιες περιπτώσεις παρατηρήθηκε ότι μερικοί μηχανισμοί γένεσης δεν ήταν σε συμφωνία με το πεδίο των τάσεων που έχει προταθεί. Παρακάτω αναφέρονται οι μηχανισμοί γένεσης, οι οποίοι δεν μπορούν να εξηγηθούν με βάση το γνωστό γεωδυναμικό πλαίσιο της περιοχής στην οποία ανήκουν.

Κατά μήκος των δυτικών ακτών της Αλβανίας και της Ελλάδας, ενώ επικρατεί συμπιεστικό πεδίο τάσεων λόγω της σύγκλισης της πλάκας της Απουλίας με το Αιγαίο, έχουν καταγραφεί στο νότιο τμήμα της ζώνης, δυο σεισμοί που οφείλονται σε ρήγματα οριζόντιας μετατόπισης (επισημαίνονται με βέλη) κι ένας που οφείλεται σε κανονικό ρήγμα (Σχήμα 3.2). Οι υπόλοιποι μηχανισμοί γένεσης που υποδηλώνουν ρήγματα οριζόντιας μετατόπισης δεν αναφέρονται γιατί παρουσιάζουν μεγάλη ανάστροφη συνιστώσα, κάτι που είναι σε συμφωνία με τους κυρίαρχους σεισμούς τις περιοχής.

Στο Ιόνιο Πέλαγος παρουσιάζονται εφτά μηχανισμοί γένεσης που υποδεικνύουν τη δράση κανονικών ρηγμάτων (Σχήμα 3.3 και 3.4). Η ύπαρξη αυτών των ρηγμάτων δεν μπορεί να εξηγηθεί ούτε με τη νοτιοδυτική κίνηση της μικροπλάκας του Αιγαίου σε σχέση με την Ευρασιατική και την Απουλία ούτε και με την αριστερόστροφη περιστροφή της Απουλίας πλάκας, σε σχέση με το Αιγαίο.

Μεγάλο ενδιαφέρον παρουσιάζει η κατανομή των τάσεων κατά μήκος της Ελληνικής Τάφρου, η οποία λόγω της θέσης της στο ενεργό περιθώριο κατάδυσης κάτω από τη μικροπλάκα του Αιγαίου, αποτελεί μία από τις πιο ενεργές σεισμικά περιοχές της Ελλάδας. Από έρευνες που έχουν πραγματοποιηθεί, η περιοχή νότια του τόξου χαρακτηρίζεται από την ύπαρξη ανάστροφων ρηγμάτων με σημαντική οριζόντια συνιστώσα (Papazachos et al., 1991). Παρόλα αυτά, οι διαθέσιμοι μηχανισμοί της Ελληνικής Τάφρου (Κεφάλαιο 3.1.3) φανερώνουν και ρήγματα καθαρά οριζόντιας μετατόπισης, αλλά και σε μικρότερο βαθμό, κανονικά ρήγματα.

Συγκεκριμένα, νοτιοδυτικά της Πελοποννήσου, έξι από τους μηχανισμούς γένεσης σχετίζονται με ρήγματα οριζόντιας μετατόπισης κι ένας μηχανισμός γένεσης που υποδηλώνει κανονικό ρήγμα (Σχήμα 3.5).

Μεταξύ Ρόδου και Καρπάθου η κατάσταση είναι πιο περίπλοκη, λόγω του ρήγματος μετασχηματισμού της Ρόδου (RFT). Δεσπόζουν τα ρήγματα οριζόντιας μετατόπισης, όμως, παρατηρούνται έξι μηχανισμοί γένεσης που υποδεικνύουν ανάστροφα ρήγματα, κι εννιά που δηλώνουν κανονικά ρήγματα (Σχήμα 3.7). Μόνο η ύπαρξη των ανάστροφων ρηγμάτων μπορεί να εξηγηθεί λόγω της θέσης της περιοχής αυτής, στην περιοχή σύγκλισης των δυο πλακών.

Στην Κρήτη το πεδίο των τάσεων είναι ακόμη πιο περίπλοκο κι επηρεάζεται από ένα σύνολο γεωδυναμικών φαινομένων. Από τη μια η σύγκλιση της Αφρικανικής πλάκας και η κατάδυσή της κάτω από το νότιο Αιγαίο δημιουργεί συμπιεστικό πεδίο τάσεων κυρίως νότια της Κρήτης, το οποίο

εκφράζεται με τα ανάστροφα ρήγματα (Σχήμα 3.6). Από την άλλη, ο εφελκυσμός της ευρύτερης περιοχής του Αιγαίου αλλά και οι ορογενετικές διεργασίες των Εξωτερικών Ελληνίδων, τμήμα των οποίων αποτελεί και η Κρήτη, αποτυπώνονται ως κανονικά ρήγματα διεύθυνσης βορά-νότου αλλά και ανατολής-δύσης (Σχήμα 3.10). Σημαντική, όμως, είναι και η παρουσία των ρηγμάτων οριζόντιας μετατόπισης. Αυτό συμβαίνει γιατί σε περιοχές τόσο έντονης παραμόρφωσης, οι δομές που παρατηρούνται εμφανίζουν μεγάλη πολυπλοκότητα και ξεφεύγουν από τα στενά όρια των θεωρητικών παρατηρήσεων. Στην προκειμένη περίπτωση, η θεωρία τοποθετεί εξωτερικά του Τόξου ρήγματα ανάστροφα με σημαντική οριζόντια συνιστώσα, ενώ στην πράξη αποδεικνύεται ότι επικρατούν και ρήγματα καθαρά οριζόντιας μετατόπισης.

Στα σύνορα της Αλβανίας με τη Σερβία και στα βόρεια σύνορα της π.Γ.Δ.Μ, παρά το εφελκυστικό πεδίο τάσεων της γύρω περιοχής, εμφανίζονται δυο ρήγματα οριζόντιας μετατόπισης, το πρώτο με σημαντική ανάστροφη συνιστώσα και το δεύτερο με κανονική (Σχήμα 3.8). Κανένα από τα δυο δεν μπορεί να εξηγηθεί από το εφελκυστικό πεδίο τάσεων που παρατηρείται λόγω της ορογενετικής διεργασίας που υφίσταται η περιοχή αυτή.

Στην περιοχή της Πελοποννήσου, όπως έχει ήδη αναφερθεί (Κεφάλαιο 3.1.4) παρουσιάζεται το σύνολο των τάσεων που δρουν στη δυτική Ελλάδα. Παρόλα αυτά, δυο μηχανισμοί γένεσης δεν μπορούν να εξηγηθούν με βάση τα όσα είναι μέχρι τώρα γνωστά. Συγκεκριμένα, στο Σχήμα 3.9, με βέλος επισημαίνεται μηχανισμός γένεσης που οφείλεται σε ρήγμα οριζόντιας μετατόπισης, το οποίο δεν μπορεί να συνδεθεί με κάποιο γνωστό γεωδυναμικό πεδίο στην περιοχή. Επίσης, η ύπαρξη του ανάστροφου ρήγματος στη βόρεια Πελοπόννησο είναι αινιγματική. Το ρήγμα αυτό πιθανόν προέρχεται από την Ιόνιο ζώνη και λόγω του βάθους του σεισμού (h>50 km), το υπόκεντρο βρίσκεται στην περιοχή αυτή. Επομένως, υπάρχει η πιθανότητα το ρήγμα αυτό να οφείλεται σε διαφορετικές δομές.

Βόρεια της Αριδαίας και σε αντίθεση με τη ζώνη των κανονικών ρηγμάτων ανατολής-δύσης, εμφανίζεται ένα ρήγμα οριζόντιας μετατόπισης (Σχήμα 3.11), το οποίο δεν μπορεί να εξηγηθεί από την επέκταση της λιθόσφαιρας του βορείου Αιγαίου στην οποία αποδίδεται το εφελκυστικό πεδίο τάσεων της περιοχής.

Στη Στερεά Ελλάδα, παρά την κυριαρχία κανονικών ρηγμάτων, εμφανίζονται δυο ανάστροφα ρήγματα κι τρία οριζόντιας μετατόπισης (Σχήμα 3.12), η παρουσία των οποίων δεν μπορεί να εξηγηθεί από το εφελκυστικό πεδίο βορά νότου που επικρατεί στην περιοχή. Πιθανόν, λόγω του μεγάλου βάθους του υποκέντρου (h> 40 km) του σεισμού, η δημιουργία των ανάστροφων ρηγμάτων να οφείλεται σε άλλες δομές. Παρόλα αυτά, το ρήγμα οριζόντιας μετατόπισης στα δυτικά μπορεί να αποδοθεί στο γεωδυναμικό καθεστώς που εμφανίζεται στην περιοχή της Κεφαλονιάς και της Λευκάδας.

Η περιοχή των Κυκλάδων και της Δωδεκανήσου, επηρεασμένη από τον εφελκυσμό του Αιγαίου, εκδηλώνει τη σεισμικότητά της με διαρρήξεις σε κανονικά ρήγματα με παράταξη ανατολής – δύσης. Παρόλα αυτά, ένας μηχανισμός γένεσης υποδηλώνει διάρρηξη σε κανονικό ρήγμα με παράταξη βορά -- νότου.

Στην Κεντρική Τουρκία, από τα πέντε ρήγματα οριζόντιας μετατόπισης, τα δυο έχουν μεγάλη κανονική συνιστώσα, επομένως εντάσσονται στην ίδια ομάδα με τα κανονικά ρήγματα της περιοχής. Παρόλα αυτά, οι τρεις μηχανισμοί γένεσης που έχουν σημειωθεί με βέλη (Σχήμα 3.14) έχουν πολύ μικρή κανονική συνιστώσα, με αποτέλεσμα να μην μπορούν να αποτελέσουν μέρος της ίδιας ομάδας. Είναι πιθανόν να επηρεάζονται από το πεδίο τάσεων του ρήγματος της Β. Ανατολίας. Έχει ήδη αναφερθεί η περίπτωση των νότιων παραλίων της Μ. Ασίας (Κεφάλαιο 3.1.6). Στη συγκεκριμένη περιοχή, το πλήθος των μηχανισμών γένεσης μαρτυρά διάρρηξη κατά μήκος μιας ζώνης ρηγμάτων οριζόντιας μετατόπισης (Σχήμα 3.15), κάτι που έρχεται σε αντίθεση με το γενικότερο γεωδυναμικό πλαίσιο, το οποίο διαμορφώνει τα κανονικά ρήγματα της γύρω περιοχής.

Στο Βόρειο Αιγαίο, το κύριο μορφοτεκτονικό γνώρισμα είναι η διάδοση του βόρειου κλάδου του ρήγματος της Ανατολίας στην περιοχή και η δημιουργία της Τάφρου του βορείου Αιγαίου. Επομένως, στην περιοχή κυριαρχούν τα ρήγματα οριζόντιας μετατόπισης. Παρόλα αυτά, παρατηρούνται πέντε κανονικά ρήγματα, ένα βόρεια της Λήμνου, ένα βόρεια της Σκύρου, ένα δυτικά της Λέσβου και δυο στην Εύβοια (Σχήμα 3.16).

Στη βορειοδυτική Τουρκία και τη Θάλασσα του Μαρμαρά, το ρήγμα της Βόρειας Ανατολίας δημιουργεί ρήγματα οριζόντιας μετατόπισης και η επέκταση της λιθόσφαιρας του Αιγαίου κανονικά ρήγματα. Παρατηρείται, όμως, ένα ανάστροφο ρήγμα νότια των νησιών του Μαρμαρά, στην ηπειρωτική Τουρκία (Σχήμα 3.17).

Συμπεραίνεται, λοιπόν, ότι η κατανομή των μηχανισμών γένεσης των επιφανειακών σεισμών του ευρύτερου χώρου του Αιγαίου διακρίνεται από μια κανονικότητα, η οποία, όμως, διακόπτεται σε κάθε ζώνη από την παρουσία ρηγμάτων που δεν αναμένεται να βρίσκονται εκεί, βάσει του γνωστού γεωδυναμικού πλαισίου. Οι μέχρι τώρα έρευνες έχουν επικεντρωθεί στο διαχωρισμό των μηχανισμών γένεσης σε ευρείες ομάδες, λαμβάνοντας υπόψη το κυρίαρχο πεδίο τάσεων κι αντιμετωπίζοντας τους δευτερεύοντες μηχανισμούς γένεσης ως εξαιρέσεις. Παρόλα αυτά, και οι τελευταίοι παίζουν το δικό τους ρόλο στη διαμόρφωση των σεισμοτεκτονικών ιδιοτήτων του ελληνικού χώρου ενώ δεν είναι ακόμα καλά γνωστό κατά πόσο αποτελούν επαναδραστηριοποίηση υπαρχόντων δόμων που οφείλονται στις καλά προσδιορισμένες κινήσεις των λιθοσφαιρικών πλακών ή οφείλονται σε διαφορετικές γεωδυναμικές διεργασίες, οι οποίες και δεν έχουν προσδιοριστεί ακόμα.

Συνεπώς, η παρούσα Διπλωματική Εργασία, έχοντας εκπληρώσει τον πρωταρχικό της στόχο, ο οποίος δεν είναι άλλος από το να παρουσιάσει, όσο εκτενώς γίνεται στα πλαίσια μιας προπτυχιακής εργασίας, τη γενικότερη κατανομή των μηχανισμών γένεσης και το διαχωρισμό της Ελλάδας σε ζώνες, επιχειρεί να αποτελέσει εφαλτήριο για την περαιτέρω μελέτη του ελληνικού χώρου. Η μελέτη αυτή θα συμβάλει στη γνώση σε βάθος του σεισμοτεκτονικού και γεωδυναμικού πλαισίου της Ελλάδας, ιδιαίτερα σε περιοχές, οι οποίες λόγω της πολύπλοκης γεωδυναμικής θέσης στην οποία βρίσκονται, επηρεάζονται από ένα σύνολο λιθοσφαιρικών κινήσεων και τα χαρακτηριστικά τους δεν μπορούν να εξηγηθούν μονομερώς.

Ευχαριστίες

Το πρόγραμμα GMT (Wessel & Smith, 1998) χρησιμοποιήθηκε για τη δημιουργία των χαρτών.

Βιβλιογραφία

Διεθνής

Aktar, M., Karabulut, H., Özalaybey, S. & D. Childs, 2007. A conjugate strike –slip fault system within the extensional tectonics of Western Turkey, Geophys. J. Int., 171, 1363-1375

Ambraseys, N. N., 1981. On the long term seismicity of the Hellenic arc, Boll. Geofis. Teor. Appl., XXIII, 355-359.

Ambraseys, N. N. & Jackson, J. A., 1990. Seismicity and associated strain of central Greece between 1890 and 1988, Geophys. J. Int., 101, 663-709.

Anderson, H. & Jackson J. A., 1987. Active tectonics of the Adriatic Region, Geophys. J. R. Astr. Soc., 91, 937-983.

Angelier, J., 1979. Néotectonique de l'arc égéen, Soc. Geol. Du Nord, 3.

Argus, D. F., Gordon, R. G., DeMets, Ch. & Stein, S., 1989. Closure of the Africa-Eurasia-North America plate motion circuit and tectonics of the Gloria Fault, J. Geophys. Res., 94, 5585-5602.

Armijo, R., Lyon-Caen, H. & Papanastasiou, D., 1991. A possible normal-fault rupture for the 464 BC Sparta Earthquake, Nature, 351, 137-139.

Armijo, R., Lyon-Caen, H. & Papanastasiou, D., 1992. East-west extension and holocene normalfault scraps in the Hellenic arc, Geology, 20, 491-494.

Armijo, R., Meyer, B., King, G. C. P., Rigo, A. & Papanastasiou, D., 1996. Quaternary evolution of the Corinth Rift and its implications for the late Cenozoic evolution of the Aegean, Geophys. J. Int., 126, 11-53.

Baker, C., Hatzfeld, D., Lyon-Caen, H., Papadimitriou, E. & Rigo, A., 1997. Earthquake mechanisms of the Adriatic Sea and western Greece, Geophys. J. Int., 131, 559-594.

Beisser, M., Wyss, M. & Kind, R., 1990. Inversion of source parameters for subcrustal earthquakes in the Hellenic Arc, Geophys. J. Int., 103, 439-450.

Benetatos, C., Kiratzi, A., Papazachos, C. & Karakaisis, G., 2004. Focal mechanisms of shallow and intermediate depth earthquakes along the Hellenic Arc, J. Geodyn., 37, 253-296

Benetatos, C., Kiratzi, A., Ganas, A., Ziazia, M., Plessa, A. & Drakatos, G., 2006. Strike-slip motions in the Gulf of Siğaçik (western Turkey): Properties of the 17 October 2005 earthquake seismic sequence, Tectonophysics, 426, 263-279. Bernard, P. et al., 1997. A low angle normal fault earthquake: the Ms=6.2, June 1995 Aigion earthquake (Greece), J. Seism., 1, 131-150.

Bezzeghoud, M., 1987. Inversion et analyse spectrale des ondes P. Thèse de Doctorat de l' Université Paris VII, 232pp.

Boore, D., Sims, J., Kanamori, H., & Harding, S., 1981. The Montenegro, Yugoslavia, Earthquake of April 15, 1979: Source Orientation and Strength, Phys. Earth Planet. Int., 27, 133-142.

Bozkurt, E., 2001. Neotectonics of Turkey - a synthesis. Geodyn. Acta, 14, 3-30.

Braunmiller, J. & Nábělek, J. 1996. Geometry of continental normal faults: seismological constraints, J. Geophys. Res., 10, 3045-3052.

Briole, P. et al., 2000. Active deformation of the Gulf of Korinthos, Greece: results from repeated GPS surveys between 1990 and 1995, Geophys. J. Int., 105, 25605-25625.

British Petroleum, 1971. The geological results of petroleum exploration in western Greece. Institute for Geology and Surface Research, Athens, No. 10.

Burton, P., Melis, N. & Brooks, M. 1995. Coseismic crustal deformation on a fault zone defined by microseismicity in the Pavliani area, central Greece, Geophys. J. Int., 123, 16-40.

Caputo, R., 1990. Geological and structural study of the Recent and active brittle deformation of the Neogene-Quaternary basins of Thessaly (Central Greece), Sci. Ann. Geol. Dept., Spec. Publ. Aristotle University of Thessaloniki, Greece.

Caputo, R. & Pavlides, S., 1993. Late Cainozoic geodynamic evolution of Thessaly and surroundings (central-northern Greece), Tectonophysics, 223, 339-362.

Chase, P., 1978. Plate kinematics: the Americas east Africa and the rest of the world. Earth Planet. Sci. Lett., 37, 355-368.

Cihan, M., Saraç, G. & Gökçe, O., 2003. Insights into biaxial extensional tectonics: an example from the Sandikli graben, West Anatolia, Turkey, Geological J. 28, 47-66.

Clarke, P. J. et al. 1997. Geodetic estimate of seismic hazard in the Gulf of Korinthos, Geophys. Res. Lett., 24, 1303-1306.

Cocard, M., Kahle, H. G., Yannick, P., Geiger, A., Veis, G., Felekis, S., Paradissis, D & Billiris, H., 1999. New constraints on the rapid crustal motion of the Aegean region: recent results inferred from Global Positioning System measurements (1993-1998) across the West Hellenic Arc, (Greece), Earth Planet. Sci. Lett., 172, 39-47.

Cronin, V., 2004. A Draft Primer on Focal Mechanism Solutions for Geologists, Baylor University.

Davies, R., England, P., Parsons, B., Billiris, H., Paradissis, D. & Veis, G., 1997. Geodetic strain of Greece in the interval 1892-1992, J. Geophys. Res., 102, 24571-24588.

DeChabalier, J. B., Lyon-Caen, H., Zollo, A., Dechamos, A., Bernard, P. & Hatzfeld, D., 1992. A detailed analysis of Microearthquakes in western Crete from digital 3-component seismograms, Geophys. J. Int., 110, 347-360.

Delibasis, N. D., 1968. Focal mechanisms of earthquakes of intermediate focal depth in the arc of Greece and the distribution of their macroseismic intensities, PhD Thesis, Univ. Athens, 105pp.

DeMets, C., Gordon, R. G., Argus, D. F. & Stein, S., 1990. Current plote motions, Geophys. J. Int., 101, 425-478.

Dewey, J. F., 1988. Extensional collapse of Orogens, Tectonics, 7, 1123-1139.

Dewey, J. F. & Sengör, A. M. C., 1979. Aegean and surrounding regions: complex multiple and continuum tectonics in a convergent zone, Geol. Soc. Amer. Bull., 90, 84-92.

Dinter, D. A. & Royden, L., 1993. Late Cenozoic extension in northeostern Greece: Strymon Valley detachment system and Rhodope metamorphic core complex, Geology, 21, 45-48.

Doutsos T., Kontopoulos N. & Poulimenos G., 1988. The Corinth-Patras rift as the initial stage of continental fragmentation behind on active islond orc (Greece). Bosin Res. 1, 177-190.

Doutsos T. & Poulimenos G., 1992. Geometry and kinematics of active faults and their seismotectonic significance in the western Corinth-Potros rift (Greece). J. Str. Geol, 14/6, p. 689-699

Dreger, D., 2002. Monuol of the Time-Domain Moment Tensor Inverse Code (TDMT_INVC), Release 1.1, Berkeley Seismologicol Laboratory, 18pp.

Dreger, D. & Helmberger, D., 1993. Determination of source parameters ot regional distances with single station or space network data, J. Geophys. Res., 98, 8107-8125.

Dziewonski, A., Franzen, J. & Woodhouse, J., 1984. Centroid-moment tensor solutions for July-September, 1983, Phys. Earth Planet. Int., 34, 1-8.

Ekström, G. & Englond P., 1989. Seismic strain rates in regions of distributed continental deformation, J. Geophys. Res., 94, 10,231-10,257.

England, P. & Jackson, J., 1989. Active deformation of the continents, Ann. Rev. Earth Planet. Sci., 17, 197-226.

England, P. & McKenzie, D., 1982 A thin viscous sheet model for continental deformation. Geophys. J. R. Astr. Soc. 70, 295-321.

England, P., Houseman, G. & Sonder, L., 1985. Length scales for continental deformation in convergent, divergent and strike slip environments: analytical and approximate solutions for a thin viscous sheet model, J. Geophys. Res., 90, 3551-3557.

Eyidogan, H. & Jackson, J., 1985. A seismological study of normal faulting in the Demirci, Alasehir and Gediz earthquakes of 1969-70 in western Turkey: implications for the nature and geometry of deformation in the continental crust. Geophys. J. R. Astr. Soc., 81, 569-607.

Ganas, A., Drakatos, G., Pavlides, S. B., Stavrakakis, G. N., Ziazia, M., Sokos, E. & Karastathis, V. K., 2004. The 2001 M_w=6.4 Skyros earthquake, conjugate strike-slip faulting and spatial variation in stress within the central Aegean Sea, J. Geodyn., 39, 61-77.

Hatzfeld, D., Besnard, M., Makropoulos, K. & Hatzidimitriou, P., 1993. Microearthquake seismicity and fault plane solutions in the southern Aegean and its geodynamic implications, Geophys. J. Int., 115, 799-818.

Hatzfeld, D., Karakostas, V., Ziazia, M., Kassaras, I., Papadimitriou, E., Makropoulos, K., Voulgaris, N. & Papaioannou, C., 2000. Microseismicity and faulting geometry in the Gulf of Corinth (Greece), Geophys. J. Int., 141, 438-456.

Hatzfeld, D., Karakostas, V., Ziazia, M., Selvaggi, G., Leborne, S., Berge, C., Guiguet, R., Paul, A., Voidomatis, Ph., Diagourtas, D., Kassaras, J., Koutsikos, J., Makropoulos, K., Azzara, R., Di Bona, M., Becchechi, S., Bernard, P. & Papaioannou, Ch., 1997a. The Kozani-Grevena (Greece) earthquake of May 13, 1995, revisited from a detailed seismological study, Bull. Seism. Soc. Am., 87, 463-473.

Hatzfeld, D., Kementzetzidou, D., Karakostas, V., Ziazia, M., Northard, S., Diagourtas, D., Deschamps, A., Karakaisis G., Papadimitriou P., Scordillis, M., Smith, R., Voulgaris, N. & Bernard, P., 1996. The Galaxidi Earthquake of 18 November 1992: a possible Asperity within the normal fault system of the Gulf of Corinth (Greece), Bull. Seism. Soc. Am., 86, 1987-1991.

Hatzfeld, D. & Martin, Ch., 1992. The Aegean intermediate seismicity defined by ISC data, Earth Planet. Sci. Lett., 113, 267-275.

Hatzfeld, D., Martinod, J., & Bastet, G., 1997. An analog experiment for the Aegean to describe the contribution of gravitational potential energy, J. Geophys. Res., 102, 649-659.

Hatzfeld, D., Pedotti, G., Hatzidimitriou, P. & Makropoulos, K., 1990. The Strain Pattern in the Western Hellenic Arc Deducted from a Microearthquake Survey, Geophys. J. Int., 101, 181-202.

Hatzfeld, D., Pedotti, G., Hatzidimitriou, P., Panagiotopoulos, D., Scordillis, M., Drakopoulos, I., Makropoulos, K., Delibasis, N., Latoussakis, J., Baskoutas, J. & Frogneux, M., 1988. The Hellenic subduction beneath the Peloponnese: first results of a microearthquake study. Earth Planet. Sci. Lett., 93, 283-291.

Hatzfeld, D., Ziazia, M., Kementzetzidou, D., Hatzidimitriou, P., Panagiotopoulos, D., Makropoulos, K., Papadimitriou, P. & Deschamps A., 1999. Microseismicity and focal mechanisms at the western termination of the North Anatolian fault and their implications for continental tectonics, Geophys. J. Int., 137, 891-908.

Hatzidimitriou, P. M., Scordilis, E. M., Papadimitriou, E. E., Hatzfeld, D. & Christodoulou, A. A., 1991. Microearthquake study of the Thessaloniki area (northern Greece). Terra Nova, 3, 648-654.

Hauksson, E., 1990. Earthquakes, faulting, and stress in Los Angeles Basin, J. Geophys. Res. 95, 15365-15394.

Hodgson, J. H. & Allen, J. F. J., 1954. Tables of extended distances for PKP and PcP, Pub. Dom. Obs., Ottowa, 16, 329-348.

Hodgson J. & Cock, J., 1956. Direction of faulting in the Greek earthquakes of August 9-13, 1953, Publ. Dom. Obs., 18, 149-167.

19/2/2015 Ψηφιακή Βιβλιοθήκη Θεόφραστος - Τμήμα Γεωλογίας - Α.Π.Θ.

Hodgson, J. H. & Stroey, R. S., 1953. Tables extending Byerly's fault-plane technique to earthquakes of any focal depth, Bull. Seism. Soc. Am., 43, 46-61.

Huchon, Ph., Lyberis, N., Angelier, J., LePichon, X. & Renard, V., 1982. Tectonics of the Hellenic trench: a synthesis of Sea-Beam and submersible observations, Tectonophysics, 86, 69-112.

Ioannidou, E., 1989. Characteristic parameters of seismic source by the method of body wave inversion: Greece and the surrounding area. Ph. D. Thesis, Athens University, 282pp.

Jackson, J. A., 1987. Active normal faulting and crustal extension, in Continental Extensional Tectonics, eds Coward, M. P., Dewey, J. F. & Hancock, P. L., Geol. Soc. Lond. Spec. Publ., 28, 3-17.

Jackson, J. A., 1994. Active tectonics of the Aegean region. Annu. Rev. Earth Planet. Sci. 22, 239-271.

Jackson, J. A., 1994. The Aegean deformation, Ann. Rev. Geophys., 22, 239-272.

Jackson, J. & McKenzie, D., 1984. Rotational mechanisms of active deformation in Greece and Iran, in the Geological Evolution of the Eastern Mediterranean, eds Dixon, J. E. & Robertson, A. H. F., Geol. Soc. Lond. Spec. Publ., 17, 743-754.

Jackson, J. & McKenzie, D., 1988a. Rates of active deformation in the Aegean Sea and surrounding regions, Basin Res. 1, 121-128.

Jackson, J. & McKenzie, D., 1988b. The relationship between plate motions and seismic moment tensors and the rates of active deformation in the Mediterranean and Middle East, Geophys. J., 93, 45-73.

Jolivey, L., Brun, J-P., Gautier, P., Lallemand, S. & Patriat, M., 1994. 3-D kinematics of extension in the Aegean from early Miocene to the present: insight from ductile crust, Bull. Soc. géol. Fr., 165, 195-209.

Jongsma, D., Wissmann, K., Hinz, K. & Gardé, S., 1977. Seismic studies in the Cretan Sea. 2. The southern Aegean Sea: An extensional marginal basin without sea-floor spreading? In 'Meteor' Forschungsergebnisse, Gebrüder Borntraeger eds, 27, 31-34.

Karakaisis, G. F., Karakostas, B. G., Scordilis, E. M., Kiratzi, A. A., Diagourtas, D., Papadimitriou, P., Voulgaris, N. & Ziazia, M., 1993. The spatial distribution of aftershocks and the focal mechanism of the Galaxidi earthquake (central Greece) of November 18, 1992, In: Proc. 2nd Hell. Geophys. Union, Florina, May 1993, 1, 309-315.

Karakostas, V. G., Papadimitriou, E. E., Tranos, M. D. & Papazachos, C. B., 2010. Active seismotectonic structures in the area of Chios Island, North Aegean Sea, revealed from microseismicity and fault plane solutions, Bull. Geol. Soc. Greece XLIII, 2064-2074.

Kasahara, K., 1981. Earthquake mechanisms, Cambridge University Press, 248pp.

Kastens, K. A., Gilbert, L. E., Hurst, K. J., Veis, G., Paradissis, D., Billiris, H., Schluter, W., & Seeger, H., 1996. GPS evidence for arc-parallel extension along the Hellenic arc, Greece, Tectonophysics. King, G. C. P., Ouyang, Z. K., Papadimitriou, P., Deschamps, A., Gagnepain, J., Houseman, G., Jackson, J. A., Soufleris, C. & Virieux, J., 1985. The evolution of the Gulf of Corinth (Greece): an aftershock study of the 1981thquakes, Geophys. J. R. Astr. Soc., 80, 677-693.

Kiratzi, A., 2002. Stress tensor inversions along the westernmost North Anatolian Fault Zone and its continuation into the North Aegean Sea, Geophys. J. Int., 360-376.

Kiratzi, A., Benetatos, C. & Roumelioti, Z., 2007. Distributed earthquake focal mechanisms in the Aegean Sea, Bull. Geol. Soc. Greece XXXX, 1125-1137.

Kiratzi, A. A. & Langston, C. A., 1989. Estimation of earthquake source parameters of the May 4 1972 event of the Hellenic arc by the inversion of waveform data, Phys. Earth Planet. Int., 57, 225-232.

Kiratzi, A. & Langston, C., 1990. Moment Tensor Inversion of the January 17, 1983 Kefallinia Event of Ionian Islands (Greece), Geophys. J. Int., 105, 529-538.

Kiratzi, A. A. & Langston, C. A., 1991. Moment tensor inversion of the January 17, 1983 Kefallinia event, Ionian islands (Greece), Geophys. J. Int., 105, 529-535.

Kiratzi, A. & Louvari, E., 2003. Focal mechanisms of shallow earthquakes in the Aegean Sea and the surrounding lands determined by waveform modeling: a new database, J. Geodyn., 36, 251-274.

Kiratzi, A. A., Papadimitriou, E. E. & Papazachos B. C., 1987. A microearthquake survey in the Steno dam site in northwestern Greece, Ann. Geophys., 5, 529-535.

Kiratzi, A. A. & Papazachos, C. B., 1995. Active seismic deformation in the southern Aegean Benioff zone, J. Geodyn., 19, 65-78.

Kiratzi, A., Wagner, G. & Langston, C., 1991. Source parameters of some large earthquakes in Northern Aegean determined by body waveform modeling, Pure Appl. Geophys., 105, 515-527.

Kissel, K. & Laj, C., 1988. The tertiary geodynamical evolution of the Aegean arc; a paleomagnetic reconstruction, Tectonophysics, 146, 183-201.

Kissel, K., Laj, C. & Mazaud, A., 1986. Paleomagnetic results from Neogene formations in Evia, Skyros and the Volos region and the deformation of Central Aegean, Geophys. Res. Lett., 13, 1446-1449.

Kocaefe, S & Ataman, G, 1976. Anadula seismotektonik olaylar-1: Antalya – Fethiye – Denizli Ucgeni idinde yeralan bolgenin incellenmesi, IU Yer Bilimleri yayin argani, 2, 55-70.

Koukouvelas, I. K. & Aydin, A., 2002. Fault structure and related basins of the North Aegean Sea and its surroundings, Tectonics, 21(5), 1046, doi: 10.1029/2001TC901037.

Kovachev, S. A., Kuzin, I. P. & Soloviev, S. L., 1992. Microseismicity of the frontal Hellenic arc according to OBS observations, Tectonophysics, 201, 317-327.

Laj, C., Jamet, M., Sorel, D. & Valente, J. P., 1982. First paleomagnetic results from Mio-Pliocene series of the Hellenic sedimentary arc, Tectonophysics, 86, 45-67.

Lemeille, F., 1977. Etudes néotectonique en Grèce centrale nordorientale (Eubée Centrale, Attique, Béotie, Locride) et dans les Sporades du nord (ile de Skiros, These de 3eme cycle de l'Université de Paris XI, France.

LePichon, X. & Angelier, J., 1979. The Hellenic Arc and Trench system: a key to the neotectonic evolution of eastern Mediterranean area. Tectonophysics, 60, 1-42.

LePichon, X. & Angelier, J., 1981. The Aegean, Seam Phil. Trans. Roy. Soc. London, 30, 357-372.

LePichon, X., Lyberis, N. & Alverez, F., 1985. Subsidence history of the North Aegean Trough, in the Geological Evolution of the Eastern Mediterranean, eds Dixon, J. E. & Robertson, A. H. F., Geol. Soc. Lond. Spec. Publ., 17, 727-741.

Leptokaropoulos, K. M., Papadimitriou, E. E., Orlecka-Sikora, B. & Karakostas, V. G., 2012. Seismicity rate changes in association with the evolution of the stress field in northern Aegean Sea area, Greece, Geophys. J. Int., 188, 1322–1338.

LeQuellec, P., Mascle, J., Got, H. & Vittori, J., 1980. Seismic structure of southwestern Peloponnesus continental margin, Am. Assoc. Petrol. Geol. Bull., 64, 242-263.

Liakopoulou, F., Pearce, R. G. & Main, I. G., 1991. Source mechanisms of recent earthquakes in the Hellenic arc from broadband data, Tectonophysics, 200, 233-248.

Liotier, Y., 1989. Modélisation des ondes de volume des séismes de l'arc Égéen. DEA de l' Université Joseph Fourier, Grenoble, France.

Louvari, E., 2000. A Detailed Seismotectonic Analysis of the Aegean and the Surrounding Area, PhD Thesis, Aristotle University of Thessaloniki.

Louvari, E. & Kiratzi A., 1997. Rake: a Window's program to plot earthquake focal mechanisms and stress orientation, Comp. Geosci., 23, 851-857.

Louvari, E. & Kiratzi A., 2001. Source parameters of the Izmit-Bolu 1999 (Turkey) earthquake sequences from teleseismic data. Ann. Geofis., 44, 33-47.

Louvari, E., Kiratzi, A. & Papazachos, B. C., 1999. The Cephalonia transform fault and its continuation to western Lefkada island, Tectonophysics 308, 223-236.

Louvari, E. K., Kiratzi, A. A. & Papazachos, B. C., 1997. Further evidence for strike-slip faulting in the Ionian islands: The Lefkada fault, IASPEI 29th General Assembly, Thessaloniki, 18-29 August 1997, 111.

Louvari, E., Kiratzi, A., Papazachos, B. & Hatzidimitriou, P., 2001. Fault plane solutions determined by waveform modeling confirm tectonic collision in eastern Adriatic, Pure Apll. Geophys., 158 (9-10), 1613-1638.

Lyberis, N., 1984. Tectonic evolution of the North Aegean Trough, in The Geological Evolution of the Eastern Mediterranean, eds Dixon, J. E. & Robertson, A. H. F., Geol. Soc. Lond. Spec. Publ., 17, 708-725. Lyon-Caen, H., Armijo, R., Drakopoulos, J., Baskoutas, J., Delibasis, N., Gaulon, R., Kouskouna, R., Latoussakis, J., Makropoulos, K., Papadimitriou, P., Papanastasiou, D. & Pedotti, G., 1988. The 1986 Kalamata (South Peloponnesus) Earthquake: detailed study of a normal fault, evidences for east-west extension in the Helenic Arc, J. Geophys. Res., 93, 14967-15000.

Makris, J., 1978. The crust and upper mantle structure of the Aegean region from deep seismic soundings, Tectonophysics, 46, 269-284..

Makris, J. & Stobbe, C., 1984. Physical properties and state of the crust and upper mantle of the Eastern Mediterranean sea deducted from geophysical data, Mar. Geol., 55, 347-363

Mascle, J. & Martin, L., 1990. Shallow structure and recent evolution of the Aegean Sea: a synthesis based on continuous reflection profile, Mar. Geol., 94, 271-299.

McCaffrey, R. & Nábelek, J., 1987. Earthquakes, gravity, and the origin of the Bali basin: an example of nascent continental fold-and-thrust-belt, J. Geophys. Res. 92, 441-460.

McClusky S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, J., Gurkan, O., Hamburger, M., Hurst, K., Kahle, H., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadariya, M., Ouzounis, A., Paradissis, D., Peter, Y., Prilepin, M., Reilinger, R., Sanli, I., Seeger, H., Tealeb, A., Tosksöz, N. M. & Veis, G., 2000. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus, J. Geophys. Res., 105, 5695-5719.

McKenzie, D. P., 1970. The plate tectonics of the Mediterranean region, Nature 226, 239-243.

McKenzie, D. P., 1972. Active tectonics of the Mediterranean region. Geophys. J. R. Astr. Soc., 30, 109-185.

McKenzie, D. P., 1978. Active tectonics of the Alpine-Himalayan belt: the Aegean Sea and surrounding regions, Geophys. J. R. Astr. Soc., 55, 217-254.

McKenzie, D. & Jackson, J., 1983. The relationship between strain rates, crustal thickening, paleomagnetism, finite strain and fault movements within a deforming zone. Earth Planet. Sci. Lett., 65, 182-202.

Mercier, J. L., 1981. Extensional-compressional tectonics associated with the Aegean Arc: comparison with the Andean Cordillera of south Peru-North Bolivia, Phil. Trans. R. Soc. Lond., 300, 337-355.

Mercier, J. L., Carey, E., Phillip, H. & Sorel, D., 1976. La néotectonique plio-quaternaire de l'arc égéen externe et de la maire Egée et ses relations avec la sismicité, Bull. Soc. géol. Fr., 7, 355-372.

Messini, A. D., Papadimitriou, E. E., Karakostas, V. G. & Baskoutas, I., 2007. Stress interaction between thrust faults along the SW Hellenic arc (Greece), Bull. Geol. Soc. Greece XXXX, 386-398. 11th International Congress, Athens.

Minster, J. B. & Jordan, T. H., 1978. Present-day plate motions, J. Geophys. Res., 83, 5331-5354.

Morelli, C., Pisani, M. & Gantar, C., 1975. Geophysical studies in the Aegean Sea and in the Eastern Mediterranean, Boll. Geofis. Teor. Appl., 18, 127-167.

Nábelek, J., 1984. Determination of Earthquake Source Parameters from Inversion of Body Waves. PhD Thesis, Mass. Inst. of Tech.

Noomen, R., et al., 1995. Earth rotation and station coordinates computed from SLR and GPS observations: EOP (DUT) 95L02 and SSC (DUT) 95C02 in Earth Orientation, Reference Frames and Atmospheric Excitation Functions Submitted. For the 1994 IERS Annual Rept, ppL13-:20, ed. Charlot, P., IERS Technical Note, 19.

Papadimitriou, E., Sourlas, G. & Karakostas, V., 2005. Seismicity variations in the Southern Aegean, Greece, before and after the large (M7.7) 1956 Amorgos earthquake due to evolving stress., Pure Appl. Geophys., 162, 783-804.

Oral, M. B., 1994. Global Positioning System (GPS) measurements on Turkey (1988-1992): Kinematics of the Africa-Arabia-Eurasia plate collision zone. Dissertation for the Degree of Doctor of Philosophy in Geophysics, Massachusetts Institute of Technology, 344pp.

Panagiotopoulos, D. G. & Papazachos, B. C., 1985. Travel times of Pn-waves in the Aegean and surrounding area, Geophys. J. R. Astr. Soc. 80, 165-176.

Panagiotopoulos, D. G., Papadimitriou, E. E., Papaioannou, Ch. A., Scordilis, E. M. & Papazachos, B. C., 1993. Source properties of the 21st December 1990 Goumenitsa Earthquake in northern Greece, Proc. 2nd Congress Hellenic Geophys. Union, Florina 5 -7 May 1993, 1, 286 – 296.

Panagiotou, M., 2000. Regional stress tensor inversion in central Greece. MSc thesis, Aristotle University of Thessaloniki.

Papadimitriou, E. E., 1993. Focal mechanism along the convex side the Hellenic arc, Boll Geofis. Teor. Appl XXXV, 401-426.

Papadimitriou, E. E. & Karakostas, V. G., 2003. Episodic occurrence of strong ($M_w \ge 6.2$) earthquakes in Thessalia area (Central Greece), Earth Planet. Sci. Lett., 215, 395-409.

Papadimitriou, E, E. & Papazachos, B. C., 1985. Evidence for premonitory patterns in the Ionian islands (Greece). Earthq. Pred. Res., 3, 95-103.

Papadimitriou, P., 1988. Étude de la structure du manteau supérieur de l'Europe et modélisation des ondes de volume engendrées par des séismes Égéens, These de Doctorat de l'Universite Poris VII, 211pp.

Papadopoulos, T., Wyss, M. & Schmerge, D. L., 1988. Earthquake locations in the Western Hellenic arc relative to the plate boundary, Bull. Seism. Soc. Am., 78, 1222-1231.

Papastamatiou, D. & Mouyaris, N., 1986. The earthquake of April 30, 1954, in Sophades (central Greece), Geophys. J. R. Astr. Soc., 87,885-895.

Papazachos, B., 1990. Seismicity of the Aegean and Surrounding Area, Tectonophysics 178, 287-308. Papazachos, B. C., 1961. A contribution to the research on fault plane solutions of earthquakes in Greece, PhD Thesis, University of Athens, 75pp.

Papazachos, B. C., 1975. Seismic activity along the Saronikos-Corinth-Patras gulfs. In: Bulletin of the National Observatory of Athens.

Papazachos, B. C., 1990. A lithospheric model to interpret focal properties of intermediate and shallow shocks in central Greece, Pure Appl. Geophys., 115, 655-666.

Papazachos, B. C. & Comninakis, P. E., 1969. Geophysical features of the Greek island arc and eastern Mediterranean ridge, C. R. Séances de la Conference Réunie a Madrid, 16, 74-75.

Papazachos, B. C. & Comninakis, P.E., 1970. Geophysical features of the Greek island arc and eastern Mediterranean ridge, Com. Ren. Des Sceances de la Conference Réunie a Madrid, 1969, 16, 74-75.

Papazachos, B. C. & Comninakis, P. E., 1971. Geophysical and tectonic features of the Aegean arc. J. Geophys. Res., 76, 8517-8533.

Papazachos, B. C. & Comninakis, P. E., 1982. Long term earthquake prediction in the Hellenic trench arc system, Tectonophysics, 86, 3-16.

Papazachos, B. C., Comninakis, P. E., Scordilis, E. M., Karakaisis, G. F. & Papazachos, C., 2006. A catalogue of earthquakes in the Mediterranean and the surrounding areas for the period 1901-2005, Publication of the Dept. of Geophysics, University of Thessaloniki.

Papazachos, B. C. & Delibasis, N. D., 1969. Tectonic stress field and seismic faulting in the area of Greece, Tectonophysics, 7, 231-255.

Papazachos B., Kiratzi, A., Boidomatis, Ph. & Papaioannou, Ch., 1984. A study of the December 1981-January 1982 seismic activity in northern Aegean Sea, Boll Geofis. Teor. Appl., 26, 101-102.

Papazachos, B. C., Kiratzi, A. A., Hatzidimitriou, P. M. & Karacostas, B. G., 1986. Seismotectonic properties of the Aegean area that restrict valid geodynamic models. In: 2nd Wegener Conf., Dionysos, Greece, 14-16 May 1986, pp. 1-16.

Papazachos, B. C., Kiratzi, A. A., Hatzidimitriou, P. M. & Rocca A. Ch., 1984. Seismic faults in the Aegean area. Tectonophysics, 106, 71-85.

Papazachos, B. C., Kiratzi, A. A. & Karacostas, B. G., 1997. Toward a homogenous momentmagnitude determination for earthquakes in Greece and the surrounding area, Bull. Seism. Soc. Am., 87, 474-483.

Papazachos, B. C., Kiratzi, A. A., Karacostas, B., Panagiotopoulos, D., Scordilis, E. & Mountrakis, D. M., 1988. Surface fault traces, fault plane solution and spatial distribution of the aftershocks of September 13, 1986 earthquake of Kalamata (Southern Greece), Pure Appl. Geophys., 126, 55-68.

Papazachos, B., Kiratzi, A. & Papadimitriou, E., 1991. Regional focal mechanisms for earthquakes in the Aegean area, Pure Appl. Geophys., 136, 407-420. Papazachos, B. C., Kiratzi, A. A. & Papadimitriou, E. E., 1992. Orientation and type of faulting in the Aegean and the surrounding area, Bull. Hellenic Geological Society, 28, 231-241.

Papazachos, B. C., Mountrakis, D. M., Papazachos, C. B., Tranos, M. D., Karakaisis, G. F. & Savaidis, A. S., 2001. The faults that caused the known string earthquakes in Greece and surrounding areas during 5th century B.C. up to present, 2nd Conf. Earthq. Engin. And Engin. Seism., 28-30 September 2001, Thessaloniki, I, 17-26.

Papazachos, B. C., Panagiotopoulos, D. G., Tsapanos, T. M., Mountrakis, D. M. & Dimopoulos G. Ch, 1983. A study of the 1980 summer seismic sequence in the Magnesia region of central Greece, Geophys. J. R. Astr. Soc., 75, 155-168.

Papazachos, B. C., Papadimitriou, E. E., Kiratzi, A. A., Papazachos C. B. & Louvari, E. K., 1998. Fault plane solutions in the Aegean Sea and the surrounding area and their tectonic implications, Boll. Geofis. Teor. Appl., 39, 199-218.

Papazachos, B. C., Papadimitriou, E. E., Kiratzi, A. A., Papazachos, C. B. & Louvari, E. K., 1998. Fault plane solutions in the Aegean Sea and the surrounding area and their tectonic implication, Boll. Geofis. Teor. Apll., 39, 199-218.

Papazachos, B. C. & Papaioannou, Ch. A., 1997. Active tectonics in the area of Cyprus, IASPEI 29th General Assembly, Thessaloniki, August, 18-30, 1997, 25.

Papazachos, C. B., 1999. Seismological and GPS evidence for the Aegean-Anatolia interaction, Geophys. Res. Lett., 26, 2653-2656.

Papazachos, C. B. & Kiratzi, A. A., 1992. A formulation for reliable estimation of active crustal deformation and an application to Central Greece, Geophys. J. Int., 111, 424-432.

Papazachos, C. B. & Kiratzi, A. A., 1996. A detailed study of active crustal in the Aegean and surrounding region, Tectonophysics 253, 129-153.

Papazachos, C. B., Kiratzi, A. A. & Papazachos, B. C., 1992. Rates of crustal deformation in the Aegean and the surrounding area, J. Geodyn., 16, 147-179.

Papazachos, C. B. & Nolet, G., 1997. P and S deep velocity structure of the Hellenic area obtained by robust nonlinear inversion of travel times, J. Geophys. Res., 102, 8349-8367.

Papoulia, J., Makris J., Tsambas A. & Fasoulaka Ch., 2008. Seismic deformation in the south western Hellenic arc: Preliminary results from active and passive seismic observations. Bull. Geol. Soc. Greece (submitted).

Pavlides, S. & Caputo, R., 1994. The North Aegean region: a tectonic paradox?, Terra Nova, 6, 37-44.

Pavlides, S. B. & Mountrakis, D. M., 1987. Extensional tectonics of northwestern Macedonia, Greece, since the late Miocene, J. struct. Geol., 9, 385-392.

Philip, H., 1976. Un épisode de déformation en compression à la base du Quaternaire en Grèce centrale (Locride, Grèce), Bull. Soc. géol. Fr., 28, 287-292.

19/2/2015 Ψηφιακή Βιβλιοθήκη Θεόφραστος - Τμήμα Γεωλογίας - Α.Π.Θ.

Philippson A., 1892. Der Peloponnes, Versuch einer Landeskunde auf geologishe Grundlage. Friedlaender, Berlin.

Pondrelli, S., Morelli, A. & Ekström, G., 2004. European-Mediterranean regional centroid-moment tensor catalog: solutions for years 2001 and 2002, Phys. Earth Planet. Int., 145, 127-147.

Pondrelli, S., Salimbeni, S., Morelli, A., Ekström, G. & Boschi, E., 2007. European-Mediterranean regional centroid moment tensor catalog: solutions for years 2003 and 2004, Phys. Earth Planet. Int., 164, 90-112.

Rigo, A., Lyon-Caen, H., Armijo, R., Deschamps, A., Hatzfeld, D., Makropoulos, K., Papadimitriou, P. & Kassaras, I., 1996. A microseismic study in the western part of the Gulf of Corinth (Greece): implications for large-scale normal faulting mechanisms, Geophys. J. Int., 126, 663-688.

Ritsema, A. R., 1974. Mechanism of the Balkan region, R. Netherl. Meteorol. Inst. Sci. Rep., 74, 36 pp.

Robbins, J. W., Torrence, M. H., Dunn, P. J. & Smith, D. E., 1994. Deformation in the Eastern Mediterranean, 1st Turkish Symp. On Deformations, Istanbul, 5-9 September.

Roberts, G., Gawthorpe, R. & Stewart, I., 1993. Surface faulting within active normal fault zones: examples from the Gulf of Corinth fault system, Central Greece, Z. Geomorph. N. F., 94, 303-328.

Roberts, S. & Jackson, J. A., 1991. Active normal faulting in Central Greece: an overview, in The Geometry of Normal Faults, eds Roberts, A. M., Yielding, G. & Freeman, B., Geol. Sac. Lon. Spec. Publ., 56, 125-142.

Rocca, A., Karakaisis, G., Karakostas, B., Kiratzi, A., Scordilis, E. & Papazachos, B., 1985. Further evidence on the strike slip-faulting of the northern Aegean trough based on properties of the August-November 1983 seismic sequence. Boll Geofis. Teor. Appl., 27, 101-109.

Scholz, C. H., 1990. The mechanics of earthquakes and faulting, Cambridge University press, 439pp.

Scordilis, E., Karakaisis, G., Karacostas, B., Panagiotopoulos, D., Comninakis, P. & Papazachos, B., 1985. Evidence for Transform Faulting in the Ionian Sea: The Cephalonia Island Earthquake Sequence of 1983, Pure Appl. Geophys. 123, 388-397.

Sengör, A., Gorur, N. & Saroglu, F., 1985. Strike slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study, In: Biddle, K. T. and Christe-Blick, N. (eds), Strike slip formation, basin formation and sedimentation, Soc. Economic Paleontologist and mineralogists, Spec. Publ., 37, 227-265.

Seyitoğlu, G. & Scott, B. C., 1996. The cause of N-S extensional tectonics in western Turkey: tectonic escape vs back-arc spreading vs orogenic collapse, J. Geodyn., 22, 145-153.

Shirokova, E., 1972. Stress pattern and probable motion in the earthquake foci of the Asia-Mediterranean seismic belt. In: Balakina, L.M. et al. (Eds.), Elastic Strain Field of the Earth and Mechanics of Earthquake Sources. Nauka, Moscow. Sipkin, S., 1986. Estimation of Earthquake Source Parameters by the Inversion of Waveform Data: Global Seismicity, 1981-1983, Bull. Seism. Soc. Am. 76, 1515-1541.

Sonder, L. & England, P., 1989. Effects of a temperature-dependent rheology on large-scale continental extension, J. Geophys. Res., 94, 7603-7619.

Soufleris, C. & Stewart, G. S., 1981. A source study of the Thessaloniki (northern Greece) 1978 earthquake sequence, Geophys. J. R. Astr. Soc., 67, 343-358.

Taymaz, T.,1993. The source parameters of Cubukdag (Western Turkey) earthquake of 11 October 1986, Geophys. J. Int., 113, 260–267.

Taymaz, T., Jackson, J. A. & McKenzie, D., 1991. Active tectonics of the north and Central Aegean Sea, Geophys. J. Int., 106, 433-490.

Taymaz, T., Jackson, J. & Westaway, R., 1990. Earthquake Mechanisms in the Hellenic Trench Near Crete, Geophys. J. Int. 102, 695-731.

Taymaz, T. & Price, S., 1992. The 1971 May 12 Burdur earthquake sequence, SW Turkey: a synthesis of seismological and geological observations, Geophys. J. Int., 108, 589-603.

Truffert, C., Chamot-Rooke, N., Lallemant, S., De Voogd, B., Huchon, P. & LePichon, X., 1993. The crust of the Western Mediterranean Ridge from deep seismic data and gravity modeling, Geophys. J. Int., 114, 360-372.

Tselentis, G. & Makropoulos, C., 1986. Rates of crustal deformation in the Gulf of Corinth (Central Greece) as determined from seismicity, Tectonophysics, 124, 55-66.

Westaway, R., 1994. Evidence for dynamic coupling of surface processes with isostatic compensation in the lower crust during active extension of western Turkey, J. Geophys. Res., 99, 20203-20233.

Wright, T. J., Parsons, B. E., Jackson, J. A., Haynes, M., England, E. J. & Clarke, P. J., 1999. Source parameters of the 1 October 1995 Dinar (Turkey) earthquake from SAR interferometry and seismic bodywave modeling, Earth Planet. Sci. Lett., 172, 23-37.

Yeats, R. S., Sieh, K.E. & Allen, C. R., 1997. The Geology of Earthquakes, Oxford Univ. Pres, New York.

Yilmazturk, A. & Burton, P. W., 1999. Earthquake source parameters as inferred from body waveform modeling, southern Turkey, J. Geodyn., 27, 469-499.

Zahradnik, J., 2002. The weak-motion modeling of the Skyros island, Aegean Sea, Mw=6.5 earthquake of July 26, 2001, Stud. Geophys. Geod., 46, 753-771.

Zwick, P., McCaffrey, R. & Abers, G., 1995. Earthquake Moment Tensor Analysis of Teleseismic Body Waves-MT5 Program, International Association of Seismology and Physics of the Earth's Interior (IASPEI).

Ελληνική

Αγάλος, Α. & Λέντας, Κ., 2004. Σεισμοτεκτονική μελέτη του δυτικού Κορινθιακού Κόλπου και ιδιαίτερα της ευρύτερης περιοχής του Αιγίου, 1ο Πανελλήνιο Συνέδριο Φοιτητών Γεωλογίας, Αθήνα 17-18 Δεκεμβρίου 2004, Πρακτικά 1ου Πανελληνίου Συνεδρίου Φοιτητών Γεωλογίας, 58, αναλυτική περίληψη ΓΑΙΑ, νούμερο 14, τόμος Α, σελίδες 1-12.

Δούτσος, Θ., 2000. Γεωλογία: Αρχές και Εφαρμογές, Εκδόσεις Leader Books, Αθήνα.

Κυρατζή Α., Μπενετάτος, Χ. & Ρουμελιώτη, Ζ., 2005. Σεισμικότητα και τεκτονικά χαρακτηριστικά του ΒΑ Αιγαίου πελάγους και των γειτονικών περιοχών, Bull. Geol. Soc. Greece XXXVII, 9-18.

Λούβαρη, Ε., 2000. Λεπτομερής σεισμοτεκτονική μελέτη του Αιγαίου και των γειτονικών περιοχών με βάση τους μηχανισμούς γένεσης των μικρών σεισμών, Διδακτορική Διατριβή, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Θεσσαλονίκη, 369 σελ.

Νικολήνταγα, Μ., Καρακώστας, Β., Παπαδημητρίου, Ε. & Βαλλιανάτος, Φ., 2008. Ο σεισμός των Κυθήρων στις 8 Ιανουαρίου 2008 και η μετασεισμική του ακολουθία, 3ο Πανελλήνιο Συνέδριο Αντισεισμικής Μηχανικής και Τεχνικής Σεισμολογίας, 5-7 Νοεμβρίου 2008, Άρθρο 1899.

Παπαζάχος, Β. Κ., 1961. Συμβολή στην έρευνα επί του μηχανισμού γένεσης των σεισμών της Ελλάδας. Διδακτορική Διατριβή, Πανεπιστήμιο Αθηνών, 75 σελ.

Παπαζάχος, Β. Κ., Καρακαΐσης, Γ. Φ. & Χατζηδημητρίου, Π. Μ., 2005. Εισαγωγή στη Σεισμολογία, Εκδόσεις ΖΗΤΗ, Θεσσαλονίκη.

Παπαζάχος, Β. & Παπαζάχου Κ., 2002. Οι σεισμοί της Ελλάδας, Εκδόσεις ΖΗΤΗ, Θεσσαλονίκη. Παπαζάχος, Κ. & Παπαζάχος, Β., 2008. Εισαγωγή στη Γεωφυσική, Εκδόσεις ΖΗΤΗ, Θεσσαλονίκη.

Διαδικτυακή

http://www.diktyoseismos.gr http://www.geerassociation.org/ http://www.geo.auth.gr/ http://www.geophysics.geol.uoa.gr/ http://www.globalcmt.org/ http://www.seismoi.gr/ http://www.topo-europe.eu/ http://www.usgs.gov/