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Forecasting power output of photovoltaic systems using machine learning techniques

ABSTRACT

The subject of this master thesis is the development of machine learning techniques
from meteorological data, in order to accurately predict the value of the power generat-
ed by a photovoltaic park. To achieve this goal, various techniques such as clustering
and classification will be tested to detect current meteorological conditions and to derive
through appropriate correlations the prediction of the generated energy at a specific
time. Our development consists of the following steps: data pre-processing, application
of advanced techniques, and finally evaluation to identify those parameters that affect
the quality of the forecast. Accurate power output forecasting is a critical credibility fac-
tor for both conventional and renewable modern power systems. Renewable power sys-
tems, like photovoltaic (PV) systems, could be severely affected by alternating weather
conditions, which have an important impact the forecast accuracy. In this thesis a com-
parative analysis between contemporary linear and non-linear methods for power output
forecasting is provided. In particular, the Autoregressive Integrated Moving Average
(ARIMA) model is used as a linear method and an Artificial Neural Network (ANN) as
a non-linear one. Moreover, enhanced models that incorporate, apart from energy, me-
teorological variables as explanatory variables in both linear and non-linear models are
presented. Preliminary results, through experimentation on real data from a photovoltaic
park in Crete, Greece have shown that the proposed enhanced methods result in in-
creased forecasting accuracy to the base models.

KEY WORDS

Autoregressive Integrated Moving Average, Artificial Neural Network,
Time Series Forecasting, Photovoltaic Systems, Power Output Forecasting,
Comparative Analysis
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Forecasting power output of photovoltaic systems using machine learning techniques

HEPIAHYH

AvTtikeipevo g TapoHoog SIMAMUATIKNG EPYOCIOG Elval N OVATTVEN TEYVIKMOV UNYOVL-
KNG Habnong and petemporoykd dedopéva, e okomd v axpifn tpdPieyn g evép-
YEWG TOV TOPAYEL £va OTOPoATOIKO TdpKo. o v enitevén ToV GTOYOL AVTOV GTO
mAoiclo VTG TG OUTAMUOTIKNG epYaciog £X0VV SOKIUACTEL OLAUPOPES TEYVIKEG OTMC
QVTEG TNG UNYOVIKNG LABNoNG, aAAG Ko TEXVIKES povtelomoinong ypovooelpmv. I'vetan
aviYvVELON TAOV TPEYOVOOV UETEMPOAOYIKMOV GUVONK®OV Kol od OVTES VO TPOKVYEL, [E-
0® KATOAANA®V GLGYETICEWDY, | TPOPAEYN TNG TOPOUYOUEVG EVEPYELNS GE GLUYKEKPULE-
vo ypovikd opilovta. H avémtuén nepirappdvet ) odaon g npo-enelepyasiog twv og-
OOUEVOV, TNG EQUPUOYNG TOV OVETTUYUEVAOV TEYVIKOV OAAL KOl TNG OOKILOOTIKNG GU-
YKPIONG UE OKOTO TOV EVIOMIGHUO TMOV CNUAVIIKOV TOPAUETP®V TOL EXNPEALOVY TNV
mowdtnTa ™G TPdPAeyns. H akpiPng mpdPreyn g eepyduevng evépyetag givar Evag
KpIoog cLVTEAESTNG a&loMoTiog TOGO Yo GLUPATIKA OGO KOl Y10l OVOVEMDGLUO GUY-
YPOVA GLGTNHOTO EVEPYELNS. T GUOTALATA OVOVEDGIU®V TTNYOV EVEPYELNS, OTMG TO
QeoToPfoATaiKA cuoTAuaTa, €mnpealovior GoPapd omd TIC EVOAAOCGOUEVEG KOLPIKEG
ouvOnkeg, Ko avtd elvarl éva (Nmmua mov emmpedlel v akpifela TV TPoPAEYE®V.
2V TopoHoo SIMAMUOTIKY EPYUCIO TOPEYETOL O GUYKPLTIKY OVOAVOT) LETOED GUY-
YPOVOV YPOUUIKAOV Kol U1 YPOUUKOV HEBOd®V Yo TNV TPOPAEYN TG EVEPYEWG. XV-
YKEKPIUEVO, TO CVTOTOMVIPOUOVUEVO HOVIEAO KIVOUUEVOD HEGOL YPTCLUOTOLEITOL M
yYpoppiky péBodog katl Eva TexvNTod VELPWVIKO dikTLO ™G Eval un ypappikd. Emmiéov,
Tapovctaloviotl PEATIOUEVO LOVIELN TOV EVOOUOTOVOVY, EKTOC amd TNV EVEPYELD, TIG
UETEMPOAOYIKES UETAPANTEG ¢ aveEdptnteg HETAPANTEG TOGO OTNV TEPITTOON TOV
YPOUUK®V 0G0 KOl GTNV TEPIMTMOOT TOV U1 YPOUWKOV povtéAwv. Ta mpokatapkTikd
OTOTEAECATO, LEGM TTEPAUATOV TOV deéyOnoay Thve c€ TPayHaTIKd 0EO0UEVA OO
éva. potoPoAtaikd mapko otnv Kpnt, delyvouv avénuévn axpifela mpoPrieyng tov

Bedtiwpévav peboddwv oe cOyKpLomn Le T Pactkd LOVTELQ.

AEZEEIX KAEIATA

Avtomaldpoptkd Movtédo Kivoopevov Méoov, Texvnto Nevpwvikd Aiktvo, [TpoPie-
ym Xpovocepwv, DotoPortaixo [apko, [IpoPreyn Iopayouevne Evépyetlag, Zuykpt-
TIK1 AvdAvon
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Forecasting power output of Photovoltaic Systems using machine learning techniques

XYNOYH

Koabng o minbuoudg tov mhavitn avéavetor kadnuepvd, avavovtol kot ot ové-
YKEG Y10 Tapay@yn evéPyelag. Ot avaveDoeg TnyEg evépyelag eitval iowg 1o KAEWT Yo
TV Tpaypatoroinon avtg g avaykns. H nlakn evépyeta, mov eivon dpbovn oe moA-
MG onpeia ™ I'mg Ko 1660 LAAAOV 6T XDPO. LOC, OTOTEAEL [iol CNUAVTIKY TTNYN EVEP-
vewg mpog ekuetdAdevorn. H mpofrheyn mapayduevng evépyslog omd omtofoltaikd
TopKO omOTEAEL HLEPOG TOAADV EPELVAOV Kol YO TNV EMITELEN TNG YPNOCLOTOLOVVTOL
OLAPOPES TEYVIKEG OTMOG O YPUUUIKES LEBODOL, O1 UN-YPOLUIKES Kot Ol VPPIOKES. Xe O-
PLOUEVEG OO AVTEG YiveTar AGYOG Yol TN GYECT TOV LETEMPOAOYIKAV GUVONKOV Kot TG
EVEPYELNG OG TAPAYOUEVO TPOTOV, YOPIG OGS VO YPNOUOTOIOVVTOL LETEMPOAOYIKA KO
nepParloviikd dedopéva o¢ emmpdsbeta aroryeio £16000vV ota povtéda TpdPfreyns. H
cvuvnBéotepn TOKTIKY ivol AV TNG OLASOTTOINGNG TOV LETEMPOAOYIKMDY GLVONK®OV Kot
N dnpovpyia SEOPETIKOV HoVTEAV Yo kK0Be mepintwon. [apadelypatog xdpv dio-

QOPETIKO LOVTELO Y10 TIG PPOYEPES LEPES KO SLOUPOPETIKO Y10l TIC NMOAOVGTEG.

H moapodoa petontuyloky] pyacio GTOyELEL GTNV TOPOVGINCT] KOl KOT' ETEKTOCN
GLYKPLON HOVTEAWMV TTOL Oyl LOVO TPOPAETOVY TNV TOPAYOLEVT EVEPYELDL YPTCLOTOLD-
VTOG EVEPYELOKA OEOOUEVO, OAAG EKUETAAAEDOVTOL LETEMPOAOYIKA Kol TEPIPAANOVTIKA
oedopéva. Apyikd emeEepyaoTNKANE TO OPYIKO GOVOAO TV dedopévaV Yepilovtag Tig
Tpég mov mhavov va EAeImay Kol apopdvtag Tig akpaies Tnés. 'Exyovtag mAéov £toua
ta dedopéva cuveyicape Gt OMovpyio YPOVOGEIPAOV TOL Bal ¥PNGUYLOTOIOVGOLLE Y10l VL
TPOYLOTOTOMGOVUE TIG TPOPAEYeLS. Ot TPoPAEYEIS HOG AVIKOVY GE VO KOTNYOpPlEG:
ot PpoyvrpodBeoun tpdPreyn kot T pokpompdOeoun tpoPreymn. o va tpofAéyovpe
TNV TOPAYOLEVT] EVEPYELL YPTCLLOTOWCOLE KOL YPOLLUIKE KOL (1] YPOUUIKE LOVTEAD KO
¢ aveaptnteg petafAntés opicape Tipég evépyetag. Emiong, 0nmg mpoovapépapie, on-
HIOVPYNOOUE KO LOVTELD TTOL MG AvVEEAPTNTES LETAPANTES ElYOV, EKTOC OO EVEPYELOKA,
Kol petewporoyika dedopéva. Emetta ocvykpivovtag ta armoteAéopata pe Paon v a-
kpifeta g mpdPAEYNG KATAANEQUE GTO GUUTEPAGLO TS TO LT YPOUUIKE LOVTELD O-
ONyoldv 6€ KAAVTEPO OMOTEAEGLOTA GE OXECN LE TO YPOUUKE LOVTELD KO OTIG OVO TTE-

pPUTTOGEIS TPOPAEYNG.

Ta dBéoya dedopéva yia ) onpovpyio TpdPAeyng aviiotoyobv oe 380 nué-

PEC. ZVYKEKPIUEVO, avapépovtal 6To dtdotnua ard 1 IovAiov Tov 2013 puéypt ko tig 16
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IovXiov tov 2014. T v k@Be nuépa datiBevtarl peTE®POLOYIKA dedopéva Onme 1 €-
VTao™ TG NAMOKNG akTvoPBoAag Kot dESOUEVO LETPCEWV GYETIKA LLE YOPOKTPLOTIKA
TOV TAVEL, OT®G 1N 1oYVG TOV TTAvEA. O1 HETPNOELS APOPOVYV PMOTOPOATAIKO TAPKO TOL
Bpioketon oy meproyn e Kpntne ko yia ka0e nuépa datiBevror dedopéva yio 6 ma-

veA Tov 1010V TOTOL.

210 TPMOTO UEPOC TNG OWTAMUOTIKNG EPYNCiag TopoLGIAlETOL 1] OVAAVGT OEOOUE-
vov yu 7 pépeg pe okomd 1 depevvnon mbavng emppong g tpoPreyng eEantiog
xPNoNG 0edopévav amd SlapopeTikd mhved. Xe kdbe ypovikd dotnua dudpkelag 15
AeTTOV KOoTd TN S1dpKeELOL Log MUEPOS, OVTIGTOLXEL pio TN TapayOUEVIG EVEPYELNG KO
GLVENAG Yo KABe pépa Exovpe 96 Tipég. Xpnoyomolovpe TES amd TNV avyn HEXPL T
dvom Tov NAMOL Kot KATA GLVETELD OV YPNCILOTOLoVVTOL 6TV avdAvon Kot ta 96 15-
Aemta, oAAG Katd pEGo 0po S5 amd avtd. ‘Emncita and €heyyo twv dedopuévav pog yuo
EMewyn oV kot Thovh dmapén axpoiov TIHOV Kol 6T GUVEXELN OPOIPEST] AVTOV,
ONUIOVPYAGALE TIG YPOVOCELPES TOL Ypelalopacte v v TpdPAeyn. AkorovOnoce N
EMEEEPYACIOL QVTMOV TOV YPOVOGEPAOV Y10 TEPULTEP® OVOAVOT|. XT1 GLVEXELWN, YiveTan
TpOPAEYN UE YPNOT OVTOTAAVOPOUIKADV HOVIEA®Y KIVOUREVOL pécov. [Ma avtd Tto
OKOTO TPAYUATOTOMONKE apyikd EAEYYOC OTAGIUOTNTAS T®V Ypovocelpdv. Ocec and
avTEG KpiOnKov pn GTAGYES, COUPMOVO LE TO OTOTEAEGUOTO TOV GTOTIOTIKOL TEGT
Augmented Dicker Fuller test, petotpdmnkov & GTAGEG YPNOLLOTOLOVIOG TPADTEG
orpopéc. Extdg amd 10 6TaTIoTIKO TEGT Y10 TOV EAEYYXO0 TNG OTAGIUOTNTOS VITOAOYIGALLE
GUVOTITIKA GTOTIOTIKO GTOLXELDL KO TPOYLOTOTO|COUE KO OTTIKO EAEYYO TV YPOPN-
HATOV Yo 106 Ta0PMOT TOV AmOTELECUATOV. Xuveyicape TNV avaALGON LLE TN €VPEOT
™G KOTAAANANG TAENG Y10l TO OWTOTOALVOPOUOVUEVO HOVTEAO Kivovpevoyv pécov. Ta
YPOPNLOTA TNG GLVAPTNONG OVTOCVGYETIONG KOl TNG UEPIKNG GLVAPTNONG OVTOCVLCYE-
Tiong pog Bondncav va emAéEovpe v TéEN TOL CVTOTOAIVOPOUIKOD HOVTEAOL KIVOV-
pevov pécov. Adym tov ypagnudtwv odnyndnkaue ce ypnon tééng 1, dpwg yuo wo

evoeleyn épevva avamtdgape kot povtéda tééemg 2 ko 3.

210 gnduevo Prpo, ONHOVPYNGOUE TEYVINTO VEVPOVIKO SIKTLO YL TNV TPOPAEYT
g mapayopuevng evépyetag. H tomodoyio Tov vEup@VvikoD S1KTHOV TOV YPNGULOTO|GOL-
pe gtvat 1, 2 1 3 vevpmdveg yio v €i60d0 (avtiotorya pe TIc TAEELS TOV YPOUUUKOD Ho-
VIELOV), €va KPLPO OTPOUO e 3 VEVPAOVES Kol EVag VELpOVAS Yo TNV £50d0. [ v

EMA0YT] TOL OPOUOD TOV VELPOVOV GTO KPLEO GTPAOUO dlevepyNOnNKe [ GePa TPo-

12
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COLOIMOEMV KATH TG 0Toieg ONpovpyRonKay veupwvikd dikToo Pe dapopeTIKO aplipod
VELPDOVOV GTO KPVPO CTPOUO, KOl TPOYUATOTOmONKav TpoPfAEyelg Yo Kabe €va amd
avtd. Emléybnke telkd o aptOpdc veupmdvmv Kpupoy GTPMUATOS EKEIVOL TOV OIKTVOV
OV TTAPOLGINCE TO KOAVTEPA amoTeAéspata TpoPAeyns. Ilpayuatomromaoape kol avd-
Aoyn dlEPELYNON GYETIKA LE TIG GLUVOPTIOELS EVEPYOTOINGNG OV YPTGLLOTOLOVVTAL GTO
KPLQPO oTpMUO Kot KotaAn&ape 0Tt 1 GIYHOEWNG GuvdpTnon evepyonoinong divel ta
KaAvtepa amoteléopoto. Eniong ypnoipwonomooaue to otatiotiko teot Wilcoxon yia va

emPePardGOLLE TMOG 1 ETAOYN TOV VEVPOVAOV KATA TNV £16000 dgv NTOV TUYOLA.

Onwc mpoovaeépape, EKTOC omd TIG TPOPAEYELS Yo TV TOPOYOUEVT] EVEPYELL LE
xPNoN LOVO EvEPYEINKMY dEGOUEVOV, £YIVE KOt XPNOT LETEMPOAOYIKDOV Kot TEPPOUAAO-
VIIKOV 0£00UEVOV G €16000V ota povtéda mpdPreyns. Me ) cvufoin avtdv, om-
povpynoape PeAtiopévo poviéda pe okomd t depedvnon g Pertioong 1 un TV
TpoPAEyemV og KAOE TEPITTO®ON. ZVYKEKPIUEVQ, YXPNOIHOTOONKaY Ta akdOAovBa dedo-
péva yuo t ompovpyio Tov PBeATiopévav Hoviédmv: 1 nAakn aktivofoiia, n Beppo-
Kpacio g aTpuoceapag kot 1 Oeppokpacio tov potoPoitaikod tavel. H emloyr av-
TOV TOV TPUOV ETTALOV KOTNYOPLOV Oe00UEVOV Eyve PBdoel Twv cuoyeticemy Pearson
Kot Spearman peto&d avT®V Kot TG METOPANTNG €£000V, TG evépyelog. [Ipdypatt, ot
TIEG TOV GUCYETICEMV TTOV TPOEKLY AV OELYVOLV 1GYLPT GLGYETION, YEYOVOS TOL JKOL-
oloyel v emdoyn| tovc. Omwg Kot ot Pacikd povtéda, £Totl Kot ot BEATiopéva, xpn-
GULOTOMOMNKOV YPOUUIKA KO UN YPOUUIKE povTéAa tng 1dtog Tdéng yio v e€aywyn

TOV OTOTELECUATOV.

Mo v mpaypatoroinomn g TpOPAEYNG EMPENE VO YOPIGOLUE T OEOOUEVOL [LOG
6€ 0VO GUVOAQ, TO GUVOAO EKTOIOEVONG KOl TO GUVOAD EAEYYOV, OOV TO TPMOTO YPNCL-
pomomOnke yoo TNV €kuAONON TOL HOVTEAOL KOl TO OEVTEPO Yo TNV OEOAOYNOT TOL
povtédov. To chvoro gkmaidevong amoteieitan amd 10 80% TV TYW®V TOL apPyKOD GL-
vOLoL dedopévav Kot To cUVOAo AEYYOoL and 0 20%. O TpoPAéyelc Eyvay pe Prpo to
owdotnua 15 Aentav pe ypovikd opilovia 1 wpoac. H dwadikacio emavoinednke kot yio
o 6 eOTOPoATAIKA ThVEL MOTE VO, EMTEVYOEL S1UGTOVPOVUEVT ETIKVPWOGCT TOV OTOTE-
Aeopdtov. TELOG, XPNOLOTOMGAE TO GUUUETPIKO HEGO GOAALN OTOAVTOV TOGOGTOV
(SMAPE) yio. T 60YKPLOT T®V OTOTEAECUATOV TOV BOCIKOV Kol TOV PEATIOUEVOV HO-

VTEA®V.
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Ta amoteléopata Tov GVAAEENUE amd TIG TPOPAEYELG TOL TPOLYLOTOTOWCOLE LLOG
00N YNGOV GTO GLUTEPUCLO TMG TO OVTOTOALVOPOUOVUEVO HOVTEAO TaEews 1 divel ko-
Mtepeg mpoPAéyelg o chykpion pe ta Loviéda TaEemc 2 kat 3. Avtd to Yeyovog emiPe-
Botdvel v Evoelsn ypnong LTOTAAIVOPOUIKOD LOVTEAOL TAENG 1, cOhppwva pe to dto-
yphupata Twv avtocvoyeticemv. Ocov aeopd ta vevpwvikd diktova, kot ekel Ta dikTvo
pe 1 vevpava yio €16060 divouv To. KOADTEPO ATOTEAEGUOTO CUYKPLTIKA LE TOVG OVTOL-
YOVIGTEG TOVG. AVOQOPIKE LLE TN CVUYKPIOT T®V 0V0 HOVTEA®MY, OVTOTUAIVOPOUIKOD KOl
VELP®VIKOD, TO OEVLTEPO TAPOVCIALEL TO LIKPOTEPO COAUALN KoL KOT' EMEKTAOT Oivel Ko~
AOTepa amoteréopata TpOPAEYNS. Zuveyilovtag TV avAALGT| Hog Kot Le T PEATIOUEVA
HOVTEAQ, TOPOTNPOVUE TTMG 1) €16000G EMITALOV HETAPANTNG HEIDVEL TV aKpifela TV

YPOUUK®OV LOVTEL®V, EVA ALEAVEL TV OKPIPELD TOV LN YPOLLLLIK®V.

Me v mpoavagepbeica avdAvon OAOKANPOVETOL TO TPAOTO UEPOG TNG EPYOCTOGC
OV OVOLACTIKA gival pa BpoayvurpdOecun TpoPreyn omddoong evog pmTofoAltaikon
néprov. To dehtepo KoppdTL TG €pyaciag acyoleitor e v pakporpoBeoun TpoPAe-
YN TG LEGNC NUEPNOLOG OmAS00TNG VOGS POTOPOATAIKOV TTépKov. AT tar apyucd dedo-
péva TopnxOn, pe dapopetikn enelepyacio, 1 YPOVOGEPE LE TNV OTTOI0L TPAYUATOTOU -
Onkav ov wpoPréyels. Tlpaypoatomomoape Eovd cCLUTANPOOTN EAEITOVTIOV TIUOV KOl
aQaipecn TOV aKpoim®V TILOV OTwg Kot 61t Ppayvrpddecun mpdPreyn. Encita, yio «d-
O nuépa vroroyicape Tn HECT TN ATOS0oNS TV 6 TAVEL, Kol £TGL OMLLLOVPYNCOLE TN
YPOVOGELPA pac. Xpnowonowmvtag éva giktpo Butterworth taéemg 3, yopicoue ) ypo-
vooelpd og 000 meprodove. H mpadtn mepiodog meprrapPdver tipéc amd v 1" loviiov
2013 péypr v 16" IovAiov 2014, ympic tic Tinég amd v 4" Nogpuppiov 2013 péypt ko
v 13" Maptiov 2014 mov amaptilovv v devtepn mepiodo. Tnv mpdtn mepiodo v
OVOUAGOE «KoLOKOIpL) KO TN 0e0TEPN «retumvay. H mpoPreyn £yive yia kb mepiodo
YOPLOTA Kot OT®G Kol GTO TPMOTO PEPOG TNG EPYOCIOG, £TCL KL €0 OVOTTOENUE VPO
K6, pun Ypoppkd Kot BEATiopéva LOVTEAL. ZTNPYYTNKAUE TOVO TNV 1010 AoYiKn yio )

onuovpyio OA®V TOV HOVTEAWV.

Yyetikd pe to ypopuukd poviého ARIMA axoAiovOncape Tig 101eg pnebodovg pe
TNV TOPOTAVE OVIAVOT| Kol KATOANEAUE GTO CLUUTEPACHA OTL Bo LITOPOvGAE VO XPN)-
oclomocovpe gite Taén 1, gite tdén 2, eite &N 3 ko emdéyape tn PEATIOT ovdAoya

pe ta omoteléopota. IpayuatomomOnke Eavd €heyyog oTacIUOTNTOG TOL HOG E0E1EE
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OTL M YPOVOGEPA OGS NTOV MO CTAGIUN KOl £TGL UTOPOVGOLE VO GLUVEXICOVUE GTN O1-

LoVpYio TOV HOVTEA®V YOPIg TEPUTEP® EMEEEPYACIO TOV OEOOUEVMV LLOGC.

Epdcov énpene va aoyolnbovue pe avtég tic 3 TaEels, KpaTnoape To 1010 OKEMTL-
KO Kot 6T SNUIOVPYIN TOV VELPOVIK®V LOG SIKTVMOV LE OKOTO TNV EXEPYOLUEVT] GLYKPL-
TIKN Tovg perétn. ‘Enerta enovaidfaope to otatiotiko teat Wilcoxon yio to kovovpyta
VEVPOVIKA OlKTLO DOTE VO EMPEPOIDCOVUE TNV UN TVYOLOL ETIAOYT] VELPOVOV KOTE TNV

€16000.

duoikd, and ovtv TV avaivon dev Bo Edeute kol 1 dNUIOVPYIN LOVTEAWV TTPO-
BAeymg pe v TpooHNKN HeTE®POAOYIKOV Kot TEPPAALOVTIKGOV peTaBANTOV. Ommg Kot
ot BpayvmpodBeoun avéivon, £Totl kot €00 dnpovpynnkay tpio Pertiopéva povtéia
OV €KTOC OO EVEPYELOKESG TIUEG TTEPIAAUPAVOLV Kot TIES NAMaKNG akTivoBoriag, Oep-

pokpaciog teptPdAlovtog Kot Oeppokpasciog Tov mhveA.

210 TUMpO TG TPOPAEYN S ywpicape To dedopéva pag emiong Katd Eva cHVOLO
7ov amotelel T0 80% TOL GLVOLOL TV JEFOUEVOV Yo TNV EKTAIOELGT TOV LOVTEAOV
Kot Kot éva 6OVoAo mov amotedeiton amd o vworowro 20% v v agloldynon Tov,
eva emA&yOnie n O petpikr] SMAPE yuo v epunveia Tov amotelecUATOV (oG, XTo.
HOVTEAQ TPOPAEYEMV TTOV YPNGIULOTOMCAUE UOVO EVEPYELNKE OESOUEVA, TOPATNPOVUE
pior piKpn vIePOYN TOV VELPOVIKAOV JIKTO®V, OTmg Kot ot Ppoyvrpddeoun avéivon.
To KaTAAANAO YPOUIKO HOVTELOD Yo TIG TPOPAEYELS Hag fval TO QVTOTAAVOPOUOVLLE-
vo Tééng 2, 1660 Yoo TV mePiodo «KaAoKaipyy, 0G0 KOl Yo TNV TEPIOD0 «YEYLDVOY.
Oocov agopd Ta vevpmvikd diktvo 1 KaToAANAOTEPN Tomo oYl gival avtn pe 1 vevpod-
va Kotd TV €16000, 20 vevpdveg 610 KpLPO oTp®dpa Kot 1 kotd v ££odo. [a v me-
plodo «KoAoKaipL» YPNOIUOTOOVUE TN GLVAPTNOTN LIEPPOMKNG EQPATTOUEVIC O GL-
VAPTNOT EVEPYOTOINONG KOt Yo TNV TEPIOO0 «YEUDVOCH T GLYHOEWN cuvdptnon. H
EMAOYN TOV GLUVOPTNCEWV EVEPYOTOINGNG £yve UETO amd depevvnon, OT®SG KOl GTO

TPAOTO PEPOG TNG EPYACTOG.

H npdéPreyn tov Bertiopévov poviéAwv S100popomoteital ¢ TPOog TIG GLVAPTI-
GELC EVEPYOTOINGTG TOV KPLPOL GTPDOUOTOG TOL VEVPMOVIKOD SIKTOOV, EVD GTO, YPOUUKA
HOVTEAQ TTOPOTNPOVLE TMG KO €0 TO LOVTEAO dEVTEPNG TAENS divel TOL KOADTEPOL OTTO-
tedéopoata. Kabe Bertiopévo poviéro, eivar mo axpiég pe dpopeTIKY] GuVAPTNON

EVEPYOTOINONG KO SLOPOPETIKO aplOUd VEVPOVAOV GTO KPLPO GTPMUO. ZVYKEKPIUEVQ,
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TO HOVTEAD eVEPYELOG-NAOKNG akTVOPBOAlNG Tapovstdlel HIKPOTEPO GOPAALD EXOVTOG
Y10. GLVAPTNOTN EVEPYOTOINGNG TNV GLVAPTNOT AVOPHMUEVNC YPOLUIKNG povadag kot 20
VEVPAOVEC GTO KPLPO GTPOUO Yio TNV Tepiodo «karokaipy. To poviélo evépyelog —
Oeppokpaciag divel akpiPéotepa amoTEAEGHOTO OTAV 1] GLVAPTNON EVEPYOTOINONG Eivar
N ovvaptnon avoplOUEVNG YPOUUIKNG Hovadas, oumc pe 30 vevpmdveg 6to Kpueod
OTPOUO, EVAD TO LOVTEAD gvEPYELNg — Beppokpaciog TAVEL OTAV 1| GLVAPTIOT EVEPYO-
moinong lvatl n olypogdng ko pe 90 vevpmveg 610 EVOLAUEGO CTPMUO. TNV TEPI000
CELDOVO» TO HOVTEAD EVEPYELNG — NAOKNG aKTIVOPOAING VTTEPEYEL TOV AVTAYOVIGTOV
oV pe 20 veEupMOVEG GTO KPLOO GTPAOUO KO GLVAPTNGT EVEPYOMOINOMG TN GLYLOEWN,
eV 10 povtélo evépyelag — Beppokpaciag pe 50 veupmdveg 6T0 KPLPO GTPMLO. KOl GL-
vapINomn evepyomoinomg v cuvaptnor vepPolikng epantopévng. TELOG, T0 HOVTEAD
evépyelog — Beppokpaciog mhved mapéyet LeyoldTepN aKkpifeLa LE TN GLYLOELDT GLVAP-

o kot 90 vevpdveg.

[TopdTt 01 GLVAPTAGELS EVEPYOTOINGNG TOKIAOLY, TOPATNPOVUE TS 1) GLUPOAN
TEPPAALOVTIKOV HETAPANTOV Yo TNV TPOPAEYT TOPAYOUEVIS 1GYVOG EVIGYVEL TO VEV-
poOVIKE dikTva Ko Oivel amoTEAEGHATO LE KPOTEPO GPAALLN, EVD GTNV TEPITTOOT TOV
YPOUUIKAOV HOVTEA®V TPOPAEYNC Tapatnpeitar o pkpr| peimon g axpipelag. 'eyo-
VOG oL 1oYVEL Kot 6TIG 000 SpOpPETIKEG TEPLOSOVS oL avaivovpe. H axpifeia tov
VELPOVIKOV KOl TOV YPOUUIKOV LOVTEADV TNG TEPLOGOVL «YEILOVACH VOl LIKPOTEPT GE
GUYKPION UE TO OMOTEAEGLATO TG TTEPLOOOV «KAAOKOIPLY, 010TL TO TANOOC TV dedopé-

VOV TNG TEPLOOOV «YEWLDVOCH EIVAL APKETA LIKPOTEPO OO TNV TEPTOJ0 KKAAOKAIPLY.
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INTRODUCTION

Nowadays, while the number of global population is increasing, the energy con-
sumption is also growing. The renewable energy sources are being used as power pro-
ducers for many decades now and their contribution to energy economy is an indisputa-
ble fact. For the purpose of fulfilling the increased power demand, renewable power
systems are globally deployed, reducing the negative environmental footprint of the
conventional power systems. Supplementally, this contributes to reducing CO2 emis-
sion gases. Power sources as the solar irradiance, can produce electric power directly
from sunlight without fuel consumption, which is the main reason that photovoltaic sys-
tems (PV) consist one of the most important devices in the field of exploitation of the
renewable energy sources. Solar energy resources are abundant in several places on
earth and as a result the installation of photovoltaic panels have been increased. Among
energy sources, solar energy has the greatest energy potential. Nevertheless, solar radia-
tion is affected by weather conditions and as a fact the power produced of photovoltaic
systems depends on that. Several methods have been proposed in the literature regard-
ing the task of power output forecasting in PV systems, not taking, however, into ac-
count the effect of the alternating weather conditions. Models that take into account the
weather conditions may present interesting results.

Many researchers focus on providing a forecasting tool in order to predict PV
power output with good accuracy. Forecasts are the key to reliable power system stabi-
lization and output estimation. It has been referred that photovoltaic power prediction
consists an important way to guarantee the stability for grid-connected photovoltaic
power generation [[18] ]. Moreover, it is useful for energy storage management and
maintenance [[17] ]. Those who work on time series forecasting and almost everyone in
the forecasting literature agree that no single method is best in every situation, due to
the fact that most of the problems that we are dealing to forecast are complex problems.
Over the years several methods to time series forecasting have been proposed. These
methods can be roughly classified into three major categories: linear, non-linear and hy-
brid. Linear methods, such as the Autoregressive Integrated Moving Average (ARIMA)
models, the Autoregressive Moving Average (ARMA) models, the simple linear regres-
sion and the multiple linear regression models are traditionally used and are the most

popular methods due to their statistical properties. From the opposing point of view, we
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refer to non-linear methods, we allude to Artificial Neural Networks (ANNS), Support
Vector Machines (SVM), k Nearest Neighbour (KNN) etc. Also, noticeable research ac-
tivity has focused on the development of hybrid methods, aiming at consolidating the
favourable attributes of both linear and non-linear methods.

Accurate power output forecasting could increase the reliability and performance
of the PV systems, and also prevent unnecessary operating costs. Therefore, the imple-
mentation of accurate, either linear or non-linear models, is of paramount importance.
This task was implemented with linear models by several researchers such as Hamid
Oudjana et al. [[5] ]. In their study regression is used as a forecasting method because of
short execution time contrary to neural networks. Also, this method requires a mathe-
matical model, instead of neural networks that don’t require one. Jiahao et al. [[6] ] used
linear regression to study power output characteristics. Accurate prediction with multi-
ple linear regression is the aim of Oussama et al. [[1] ] too. Hugo T.C Pedro et al. [[14] ]
who also used ARIMA and Persistent models as forecasting tools in order to achieve
solar power output predictions. They came to the conclusion that no exogenous data
such as solar irradiance telemetry is needed for forecasting. Solar panels themselves are
efficient to be used for forecasting. Multiregression analysis is implemented by Maria
Grazia De Giorgi et al.[[12] ] to obtain a relationship between PV power and weather
parameters.

Many researchers working on power output forecasting utilize models based on
neural networks because of the non-linearity of the meteorological data (Oussama and
Farah [[1] ], Hamid et al. [[5] ] and Mellit et al. [[13] ]). In particular Mellit et al. [[13] ]
used two different ANNSs depending on the classification of the days as cloudy or sunny,
while Jie Shi et al.[[16] ] based their predictions categorizing the weather conditions
into 4 clusters. Preliminary weather classification was used by Chen et al.[[3] ] too and
indicated improvement in the forecasting accuracy. Nevertheless, none of the above
have implemented new, improved models that include meteorological data as explanato-
ry variables. Jiahao et al. [[6] ] and Valerio Lo Brano et al. [[10] ] investigated ANNSs
with different topologies in order to make more accurate forecasts, whereas Anil Rai et
al. [[15] ] analyzed ANNSs accuracy by comparing different test datasets. Leva et al. [[9]
] analyzed the sensitivity of the ANNs in power forecasting and Teo et al. [[17] ] apart
from the accuracy and the sensitivity of the ANNSs, analyzed also the efficiency of dif-
ferent activation functions. Other studies provide comparative results of different mod-
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els such as ANNs, ARIMA, SVM etc. [[1], [5], [16] ]. As mentioned before, Hugo et
al.[[14] ] used linear models while conducted ANNs and kNN methods to compare
them with the linear methods. In their study the methods that belong in the artificial in-
telligence family of methods performed better than other techniques. Hybrid models are
also proposed by several authors indicating increased robustness. [[4] , [20] ].

The main purpose of this study is to forecast the power output of photovoltaic sys-
tems through a comparative analysis between linear and non-linear models and to pro-
duce new and improved models to achieve better accuracy. In particular, the Auto-
regressive Integrated Moving Average (ARIMA) family of models from time series
analysis are the linear evaluated models, and the Artificial Neural Networks (ANN)
with different topologies (i.e. number of neurons at the hidden layer, different activation
functions, etc.) are the non-linear. Both types of models use the energy itself as inde-
pendent (input) variable. Additional, a set of both linear and non-linear models that use
as independent variable not only the energy but also the meteorological variables (e.g.
irradiance, panel temperature, etc.) are implemented and evaluated. These models con-
sist the improved models that we are presenting in this thesis.

The rest of this thesis is organized as follows. Firstly, the thesis is divided into
two parts. In the first part, there is an analysis of the 6 PV panels in a period of 7 days,
which represent a short term forecasting analysis and in the second part follows a long
term forecasting analysis in period of one year. Next section describes the data used for
implementing and evaluating the forecasting models, as well as the pre-processing steps
taken to transform the data into a suitable form. A detailed description of the imple-
mented models and the various processing steps followed throughout the analysis, is
also provided. Section IV presents the evaluation framework through which the various
implemented models were tested, as well as the experimental results. Finally, in conclu-

sion section, main contributions are reviewed and future directions are suggested.
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Forecasting power output of Photovoltaic Systems using machine learning techniques

MAIN PART

1. Time series modeling

Time series modeling and forecasting has fundamental importance to various
practical domains. Time series modeling is a dynamic research area which has attracted
attentions of researchers’ community over the last few decades. The main aim of time
series modeling is to carefully collect and rigorously study the past observations of a
time series to develop an appropriate model which describes the inherent structure of
the series. This model is then used to generate future values for the series, i.e. to make
forecasts. Forecasting is a vital ingredient in the making of both long-term and short-
term plans. When electricity sectors were regulated, utility monopolies used short-term
load forecasts to ensure the reliability of supply and long-term demand forecasts as the
basis for planning and investing in new capacity. Short-term forecasting generally in-
volves horizons up to 1 hour ahead, as Long-term forecasting, with lead times measured
in months, quarters or even years, concentrates on investment profitability analysis and
planning, such as determining the future sites or fuel sources of power plants. In this
study we implement both short term and long term forecasts.

1.1. Short-term forecasting

A forecasting analysis of period of 1 week is presented and the preprocessing of
the data is demonstrated.

1.1.1. Data description

The data used in this study to implement the various forecasting models and eval-
uate their forecasting accuracy, were collected from a photovoltaic plant located in
Crete, Greece. The dataset contains energy values from several panels of a photovoltaic
plant during a total period of 7 days. The analyzed time period is from July 1, 2013, to
July 7, 2013. The data granularity is 15 minutes, meaning that for each quarter of each

day and photovoltaic plant, an energy value was available.
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Figure 1: Daily power output from photovoltaic panel

Apart from the energy values, the dataset also contains values of the variables that
describe the environmental state during the data gathering process. In particular, the da-
taset contains values for the solar irradiance, the ambient temperature and the panel’s
temperature. The granularity of these variables is the same as the one of the energy.
This data is very useful, because, as it will be presented later, the meteorological varia-
bles are strongly correlated with the energy.

In table 1, we present the several variables that exist in the dataset and their

measures.
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Table 1: Data points with their description

Variable Description Measure

Timestamp Local Hour H

IntSollrr Solar Irradiance W/m?

TmpAmb Ambient Temperature L@

TmpMdul Temperature of photovoltaic °C
panel

E-Total Total Energy Output kWh

1.1.2. Data Preprocessing

For the analysis, it was necessary to process the data by filling the missing data
points. The values that are used are from dawn to dusk for each day. Each variable con-
tains measurements for every 15 minutes. As it was already mentioned, the dataset con-
tains values of several variables for each quarter of an overall period of seven days.
Several quarters of the day were missing and we had to fill them using the method of
interpolation. Firstly, the column containing the hour in-formation was completed. In
order to fill the rest missing data points, cubic spline interpolation was used and it was

preferred to linear interpolation due to better results.

Subsequently, another important step before analyzing and extracting results from
the time series, is the outlier detection. Identification of outliers is very important in
many fields that deal with time series analysis since they can contain information that
may lead to an intervention of a process and prevent failures or abnormal operating
conditions. An outlier can be defined as a data point in a time series that is significantly
different from the rest of the data points. In this study two-sided median method for
cleaning data was being used [[2] ]. In this process, a neighborhood of points was de-
fined and then the median of this neighborhood was calculated. If the absolute value of
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the difference between the point and the median is greater than a threshold then the
point is an outlier and is replaced with the median. If it is smaller, then nothing happens.

In regard to make predictions, we had to produce time series from the original da-
tasets. After filling the missing data points and removing the outliers, the next step was
to construct time series from the original data. As already mentioned, the dataset con-
tained energy data from 6 panels with similar characteristics located in the same photo-
voltaic park and meteorological data. We constructed one time series of energy values
for each panel and day. Each time series has 56 values as the data granularity was 15
minutes and we used only the data points from dawn to dusk. In this way we construct-
ed 42 time series in total for all the panels and examined days. Additionally, we con-
structed one time series of size 56 for each meteorological variable and examined day.
Therefore, we had 21 time series in total for all meteorological variables and examined

days.

1.2. Long-term forecasting

Besides the short-term forecasting analysis, a long-term forecasting completes this
thesis. As in the short-term there is a data description and the preprocessing of the data

is presented.

1.2.1. Data description

The data that we used in the second part of this study is a dataset covering a peri-
od of approximately one year. Specifically, from July, 1 2013 to July, 16 2014. The data
granularity is also 15 minutes. As we mention before the dataset contains values for the
solar irradiance, the ambient temperature and the panel’s temperature. These values are

used also in this analysis.

1.2.2. Data Preprocessing

In order to proceed in the analysis, we had to fill the missing dataset and as we al-
ready mentioned we used cubic spline interpolation for this task. It was also necessary
to detect the outliers and remove them. For this reason we implemented the two sided

median method, as previously. For each day we had energy values from 6 PV panels
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and we calculated the mean energy value of each PV panel and then the average of these
6 means. As a result, we had the daily average value of energy of each day and with

these values we constructed a time series as it is shown in figure 2.

Daily Average Efficiency
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Figure 2: Daily Average Efficiency

In the previous figure we observe that our time series is noisy and a filter apart
from helping us removing the noise, it would help us define the periods of “Summer”
and “Winter” for the consequent analysis. As it is shown in Figure 3 the period of “Win-
ter” is from November, 4 2013 to March, 13 2014. The rest of the time series constitutes
the “Summer” period. We can observe the ‘Summer’ and the ‘Winter’ period in figures
4 and 5. The first day of the “Summer” period is July, 01 2013 and the last is July, 16
2014. There are several ways for cleaning a signal. We implemented a FFT filter which
is based on the Fast Fourier Transform. An FFT Filter is a process that involves map-
ping a time signal from time-space to frequency-space in which frequency becomes an
axis. By mapping to this space, we can get a better picture for how much of which fre-
quency is in the original time signal and we can ultimately cut some of these frequen-
cies out to remap back into time-space. Such filter types include low-pass, where lower
frequencies are allowed to pass and higher ones get cut off, high-pass, where higher fre-

quencies pass, and band-pass, which selects only a narrow range or "band" of frequen-
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cies to pass through. We used a low pass filter and specifically an order 3 low pass But-
terworth filter.

Low Pass Filter
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Figure 3: Daily Average Efficient with Butterworth Low Pass Filter of order 3
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Figure 4: "Summer" period of daily average efficiency

26



Forecasting power output of Photovoltaic Systems using machine learning techniques

Winter
70 -

60 -
50 -

0 -

Energy

20 -

«.\'Q)‘ A% O e oY “\,x* “\n.‘* A @ 2%
3 3 b B Ly
N 7,5'\’9 10'\ 7(Q'\, B oY

Figure 5: "Winter" period of daily average efficiency
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2. Methodology

For the purpose of forecasting the power output several methods were implement-
ed in this work for 1, 2, 3 and 4 quarters of time ahead for the analysis of short term
forecasting and 1, 2, 3 and 4 days ahead for the analysis of the long term forecasting.

The methods employed are:
* Autoregressive Integrated Moving Average (ARIMA).
« Artificial Neural Networks (ANNS).
« Improved Models which combine meteorological and power output data.

Time series forecasting can be conducted by several approaches. The more tradi-
tional methods are the linear ones such as moving average models, autoregressive mod-
els and simple linear regression models. Due to their lack of complexity in under-

standing and implementation, obtain the focus of many proposed works.

2.1.Autoregressive Integrated Moving Average (ARIMA)

A time series is a sequence of measurements of the same variable(s) made over
time. Usually the measurements are made at evenly spaced intervals. In this work, the
size of this interval is 15 minutes. ARIMA family is the most general class of linear
models for forecasting a time series. An ARIMA (p, d, gq) model consists of three parts.
The autoregressive part (AR) with order p, the moving average part (MA) with order g
and the integrated part (I) which describes the number of differencing steps (d) that
should be taken in order to stationarize the time series. The model is defined by the fol-

lowing formula.

p q
X =C+¢g +Z¢ixt—i +29i8t—i (1)
i=1 i=1
where & are the error terms that follow normal distribution with 0 mean and c arbitrary
constant.
The auto-regressive part (AR) of the model has its origin in the theory that indi-

vidual values of time series can be described by linear models based on preceding ob-
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servations. The autoregressive processes have, in general, infinite non-zero autocorrela-
tion coefficients that decay with the lag. The AR processes have a relatively “long”
memory, since the current value of a series is correlated with all previous ones, although
with decreasing coefficients. This property means that we can write an AR process as a
linear function of all its innovations, with weights that tend to zero with the lag. The
variables, which represent the new information that is added to the process at each in-
stant, are known as innovations. The AR processes cannot represent short memory se-
ries, where the current value of the series is only correlated with a small number of pre-
vious values.

A family of processes that have this “very short memory” property are the moving
average, or MA processes. The MA processes are a function of a finite, and generally
small, number of its past innovations. The consideration leading to moving average
models (MA models) is that time series values can be expressed as being dependent on
the preceding estimation errors. Past estimation or forecasting errors are taken into ac-

count when estimating the next time series value.

2.1.1. Stationarity

A stationary time series is one whose statistical properties such as mean, variance,
autocorrelation, etc. are all constant over time. The time series forecasting models can
be implemented only on stationary time series. A stationary time series gives meaning-
ful sample statistics such as means, variances, and correlations with other variables. In
order to receive consistent, reliable results, the non-stationary time series needs to be
transformed into stationary, before implementing the time series forecasting models.
Non-stationary data, as a rule, are unpredictable and cannot be modeled or forecasted. In
time series analysis several methods exist in order to check stationarity such as plotting
the time series for visual inspection, calculation of summary statistics, like the mean or
the variance of the observations in order to check for obvious or significant differences
and the implementation of statistical tests to check if the expectations of stationarity are
met or have been violated. For example in Figure 6 we can see the plot of a time series
that it is stationary. Rolling mean does not change dramatically over time and as a result

the time series is considered stationary.

30



Forecasting power output of Photovoltaic Systems using machine learning techniques

There are several statistical tests to detect stationarity such as the Augmented
Dicker Fuller test, the Phillips-Perron test which builds on the Dicker-Fuller test of null
hypothesis, the Kwiatkowski—Phillips—Schmidt—Shin (KPSS) test, the ADF-GLS test
etc. Augmented Dicker-Fuller test is a type of statistical test called a unit root test. The
intuition behind a unit root test is that it determines how strongly a time series is defined
by a trend. Augmented Dicker-Fuller test uses an autoregressive model and optimizes
an information criterion across multiple different lag values. The null hypothesis of the
test is that the time series can be represented by a unit root, which is not stationary, has
some time-dependent structure. The alternate hypothesis (rejecting the null hypothesis)
is that the time series is stationary. Null Hypothesis (HO): If accepted, it suggests the
time series has a unit root, meaning is non-stationary. Alternate Hypothesis (H1): The
null hypothesis is rejected; it suggests the time series does not have a unit root, meaning
it is stationary. The unit root test confirmed the result that we already knew, that the
time series is not stationary. The null hypothesis was not rejected. A non-stationary time
series can be transformed into a stationary by removing trend. In general, a systematic
change in a time series that does not appear to be periodic is known as a trend. Trends

can be applied to the whole time series and to parts or subsequences of a time series too.
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Figure 6: Rolling mean plot of Photovoltaic Panel's Temperature
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Another statistical unit root test that is used, is the Phillips-Perron test which
builds on the Dicker-Fuller test of null hypothesis. Davidson and MacKinnon (2004)
report that the Phillips—Perron test performs worse in finite samples than the augmented
Dickey—Fuller test. The Kwiatkowski—Phillips—Schmidt-Shin (KPSS) test is another
unit root test which is used in econometrics. Contrary to the most unit root tests, the
presence of a unit root is not the null hypothesis but the alternative. Additionally, in the
KPSS test, the absence of a unit root is not a proof of stationarity but, by design, of
trend-stationarity. This is an important distinction since it is possible for a time series to
be non-stationary, have no unit root yet be trend-stationary. KPSS-type tests are intend-
ed to complement unit root tests, such as the Dickey—Fuller tests. ADF-GLS test is a test
for a unit root in an economic time series sample. It is used in statistics and economet-
rics and it was developed by Elliott, Rothenberg and Stock (ERS) in 1992 as a modifi-
cation of the augmented Dickey—Fuller test (ADF).

2.1.2. Removing non-stationarity

For the purpose of making non-stationary time series stationary we conducted all
the aforementioned methods. Through the process of plotting the original data, we de-
tected obvious trend in the inputs values of energy. Trends can be applied to the whole
time series and to parts or subsequences of a time series too. Meteorological variables
showed that the mean and the variance remain constant over time from one period to the
next. Moreover we split the data into two partitions and then we calculated the mean
and the variance of each partition. The comparison of the summary statistics verified
that the time series are non-stationary. As we mentioned before a method to check sta-
tionarity is the implementation of a statistical test. We used the Augmented Dicker-
Fuller test which may be one of the more widely used. Concerning, short term analysis,
as seen in Table 2, the statistical test indicates that the time series is non-stationary, for
the critical values are smaller than the ADF value and hence the null hypothesis was
accepted. One of the procedures in order to transform a time series into stationary time
series, is differencing. Computing the differences between consecutive observations of a
time series, is known as differencing. Occasionally the differenced data will not appear
stationary and it may be necessary to difference the data a second time to obtain a sta-
tionary series. This is known as second order of differencing. In practice, it is almost
never necessary to go beyond second-order differences. We used first and second order
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of differencing to achieve better results and differencing of order one was adequate for
transforming our time series. Consequently, we ran the unit root again and we compared
the critical values with the statistical value of the test and the null hypothesis was reject-
ed and as a result the time series is stationary. Another transformation is the logarithm
transformation. In this method, firstly the logarithm of each observation is calculated
and then, the differences of the consecutive log-observations of a time series are com-
puted. The log transformation for this research did not give us better results and for that

reason it was rejected as a method of making times series stationary.

Table 2: Results of Augmented-Dicker Fuller statistical test

Irradiance Temperature Energy
ADF statistics value -0.878 -3.406 -2.133
Critical Value: 5% -2.918 -2.917 -2.923
Critical Value: 10% -2.597 -2.596 -2.599
Critical Value: 1% -3.560 -3.558 -3.571

The results of ADF test after differencing are shown in Table 3.

Table 3: Results of Augmented-Dicker Fuller statistical test after stationarize the time series

Irradiance Temperature Energy
ADF statistics value -7.934 -7.336 -4.203
Critical Value: 5% -2.918 -2.917 -2.923
Critical Value: 10% -2.597 -2.596 -2.599
Critical Value: 1% -3.560 -3.558 -3.571

On the other hand, in the case of long term analysis, we observe from Table 4 and Table
5 that there is no need of differencing, detrending or log transformation to proceed with

the analysis.

Table 4: Results of Augmented Dicker-Fuller statistical test of the ‘Summer’ period

Summer Irradiance Temperature Energy
ADF statistics value -8.123 -4.119 -7.626
Critical Value: 5% -2.873 -2.874 -2.873
Critical Value: 10% -2.573 -2.571 -2.573
Critical Value: 1% -3.457 -3.458 -3.457
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Table 5:'Results of Augmented Dicker-Fuller statistical test of the ‘Winter’ period

Winter Irradiance Temperature Energy
ADF statistics value -4.276 -3.904 -5.975
Critical Value: 5% -2.885 -2.884 -2.884
Critical Value: 10% -2.579 -2.579 -2.579
Critical Value: 1% -3.483 -3.482 -3.483

2.1.3. ACF and PACF

In order to identify which linear model is suitable for forecasting in our time se-
ries, we use the Autocorrelation Function (ACF) and the Partial Autocorrelation Func-
tion (PACF) plots. Plotting the Autocorrelation function (ACF) plot and the Partial Au-
tocorrelation function plot (PACF) gives an idea of which lag variables may be good
candidates for use in a predictive model. Moreover, gives an idea of how the relation-
ship between the observation and its historic values changes over time and can be used
for the following two purposes: Firstly, to detect non-randomness in data and secondly,
to identify an appropriate time series model if the data are not random. An autocorrela-
tion plot shows the value of the autocorrelation function (acf) on the vertical axis. It can
range from —1 to 1. The horizontal axis of an autocorrelation plot shows the size of the
lag between the elements of the time series. The autocorrelation with lag zero always
equals 1, because this represents the autocorrelation between each term and itself. A
partial autocorrelation is a summary of the relationship between an observation in a time
series with observations at prior time steps with the relationships of intervening obser-
vations removed.

Autocorrelation function is one of the tools used to find patterns in the data. Spe-
cifically, the autocorrelation function tells us the correlation between points separated
by various time lags. In general, if ACF has an exponentially decreasing appearance and
PACF becomes zero at specific lag p, then an Autoregressive model (AR (p)) is suitable
for forecasting. On the other hand, if ACF becomes zero in lag p and PACF decreases
exponentially, a Moving Average (MA (p)) should be used.

The ACF and PACF plots for energy time series that correspond for a specific
photovoltaic panel at July 1, 2013 are shown in Figure 7. From their form we under-
stand that an AR model with order p = 1 (AR(1)) is suitable for representing the data

and therefore for forecasting. The same result applies to all time series of our dataset.
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Figure 7: ACF and PACF plots for model identification

In Figure 8, the ACF and PACEF plots for energy time series from July, 1, 2013 to
July, 16, 2014 are being demonstrated. It is shown that an AR model is appropriate for
our analysis with orders 1, 2 or 3. After experimentation we concluded that the AR

model of order 2 is the one that leads to the best forecast accuracy.
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Figure 8: ACF and PACF plots for model identification of daily average efficiency
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2.1.4. Implementation of ARIMA models

As already mentioned, for short term forecasting, the number of differencing steps
taken to stationarize our time series is 1, i.e. d = 1. Also, as indicated by the ACF and
PACEF plots, the ARIMA model that fits more in our time series has strong autoregres-
sive part with order p = 1, and no moving average part, i.e. ¢ = 0. Consequently, the
specific linear model used for power output forecasting in PV systems was ARIMA
(1,1,0). We also considered the ARIMA (2,1,0) and ARIMA (3,1,0) models for a more
meticulous research and also for detecting if the choice of the order of the autoregres-
sive part through the ACF and PACF was correct. For ARIMA (1,1,0) model (1) be-

comes:
X;=C+ Xy ta(Xiy—X ) )

The training process of an ARIMA model consists of the estimation of the ¢ and &
parameters. Using the available data, a set of equations like (2) are formulated with un-
knowns the ¢ and @ parameters. The number of equations in this set is far greater than
the number of the parameters. Therefore, this over-determined system is not solved ana-
Iytically but in the least-squares way. In this work, we had to estimate 1 parameter for
the ARIMA (1,1,0) model and 2 and 3 parameters for the ARIMA (2,1,0) and ARIMA
(3,1,0) models. We used the Singular Value Decomposition (SVD) method to solve the

formulated overdetermined systems and estimate the corresponding parameters.

Regarding long term forecasting analysis, the linear model for power output fore-
casting in PV systems is an ARIMA (1,0,0). As we considered in short term forecasting
analysis the ARIMA with order 2 and 3 for a more scrupulous research, thus we consid-
ered ARIMA (2,0,0) and ARIMA (3,0,0). For ARIMA (1,0,0) the model equation is:

Xi=C+p Xy (3)
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2.2.Artificial Neural Network (ANN)

Apart from linear methods, extensively studies were conducted using non-linear
methods in time series forecasting. Many real life time series that need to be forecasted
cannot be implemented with linear methods as they are rarely pure linear. One of the
most widely used non-linear models, due to its flexibility in non-linear model capability
[[20] ], is artificial neural networks.

Artificial Neuron is a computational model inspired in the natural neurons. Natu-
ral neurons receive signals and when the signal is strong enough, the neuron is activat-
ed. An artificial neural network consists of several connected layers. Layers are made
up of a number of interconnected 'nodes' which contain an 'activation function'. Patterns
are presented to the network via the 'input layer’, which communicates to one or more
‘hidden layers' where the actual processing is done via a system of weighted ‘connec-
tions'. The hidden layers then link to an ‘output layer' where the answer is output. Figure
9 depicts a general topology of an artificial neural network. The signals travels from
input to output and are real numbers between 0 and 1. A Multilayer Perceptron (MLP)
is a feedforward artificial neural network model that maps sets of input data onto a set
of appropriate outputs. An MLP consists of multiple layers of nodes in a directed graph,

with each layer fully connected to the next one.

A — OQM'
./

// Output Layer

Hidden Layer

Figure 9: General topology of ANN
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Except for the input nodes, each node is a neuron with a nonlinear activation func-
tion. The activation function of a node defines the output of that node given an input or
a set of inputs. Moreover, it is a logistic regressor where instead of feeding the input to
the logistic regression, inserts an intermediate layer, called the hidden layer, that has a
nonlinear activation function, usually hyperbolic tangent or sigmoid.

A sigmoid function is a mathematical function having an "S" shaped curve (sig-
moid curve). Often, sigmoid function refers to the special case of the logistic function

and it is defined by the formula.

1

S = (4)

1+e~t

In addition, sigmoid functions have finite limits at negative infinity and infinity, most

often going either from 0 to 1 or from —1 to 1, depending on convention.

Another activation function, as previously mentioned is the hyperbolic tangent.

Hyperbolic tangent is the solution to the differential equation

fr=1-f ©)
With

f0)=0 (6)

and the nonlinear boundary value problem:

1

L= fP=fi fl() =0 (7)

An identity function is a function that always returns the same value that was used
as its argument and it can also be used as an activation function. In equations, the func-

tion is given by

fix) =x (8)

In the context of artificial neural networks, the rectifier is an activation function

too an it is defined as:

f(x) = max(0,x) (9)
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where X is the input to a neuron. The rectifier is, as of 2015, the most popular activation
function for deep neural networks.

Usually, the ANNs utilize a supervised learning technique called backpropaga-
tion for training, i.e. estimating the values of the weights. Backpropagation is a common
method of training ANNSs and is used in conjunction with optimization methods such as
gradient descent. The algorithm repeats a two phase cycle, propagation and weight up-
date.

The principle of the backpropagation approach is to model a given function by
modifying internal weightings of input signals to produce an expected output signal.
The system is trained using a supervised learning method, where the error between the
system’s output and a known expected output is presented to the system and used to
modify its internal state. The output of the network is compared to the desired output,
using a loss function, and an error value is calculated for each of the neurons in the out-
put layer. The error values are then propagated backwards, starting from the output, un-
til each neuron has an associated error value which roughly represents its contribution to
the original output.

Technically, the backpropagation algorithm is a method for training the weights in
a multilayer feed-forward neural network. As such, it requires a network structure to be
defined of one or more layers where one layer is fully connected to the next layer. A
standard network structure is 1 input layer, 1 hidden layer, and 1 output layer.

The importance of this process is that, as the network is trained, the neurons in the
intermediate layers organize themselves in such a way that the different neurons learn to
recognize different characteristics of the total input space. After training, when an arbi-
trary input pattern is present which contains noise or is incomplete, neurons in the hid-
den layer of the network will respond with an active output if the new input contains a
pattern that resembles a feature that the individual neurons have learned to recognize

during their training.

2.2.1. Implementation of ANN

In the short-term forecasting analysis, we implemented feed-forward ANNs with,
1 input, 1 hidden and 1 output layer for forecasting power output in PV systems. The
number of neurons in the input layer was selected equal to the order of the evaluated
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ARIMA models (i.e. 1, 2 and 3), while in the output layer we had only 1 neuron. Fur-
thermore, Table 6 shows that we can reject the null hypothesis of the Wilcoxon test as
the p-values are not greater than 0.05. Hence, in the choice of the number of the neurons
in the input layer there is a significant difference. In order to select the number of neu-
rons in the hidden layer and the appropriate activation function, we ran simulations with
different numbers of nodes (from 1 to 100) and different activation functions. The acti-
vation functions tested were the logistic sigmoid function, the hyperbolic tangent func-
tion and the rectified linear unit function. At each simulation cycle, we trained a differ-
ent ANN and used it to make forecasts on a specific test time series. The ANN that
yielded the best results in terms of forecasting accuracy was the one with 3 neurons in
the hidden layer and the logistic sigmoid function as activation function for all the neu-
rons, apart from the neuron in the output layer for which the identity function was used.
Three different variations of this ANN (with 1, 2 and 3 neurons in the input layer) were
implemented and compared with the corresponding ARIMA models.

Input Hidden Layer Output
Layer Layer

Input < Output

Figure 10: Topology of implemented ANN with 1 input, 3 hidden and 1 output nodes.

Table 6: Wilcoxon Statistical Test's Results

ANN — 1 neuron | ANN — 2 neurons ANN — 3 neurons
Wilcoxon p-value 1.02e-05 5.50e-06 5.36e-06
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On the other hand, regarding the long-term analysis, we conducted the same sta-
tistical test in order to confirm the significant difference in the input layer’s neurons as
we can observe in the following tables (Table 7 and Table 8) and we ran the same simu-
lations. For the ‘Summer’ period the best ANN topology is the one with 1 neuron in the
input layer, 20 neurons in the hidden layer and the hyperbolic tangent function as acti-
vation function and 1 neuron in the output layer. As for the “Winter’ period is the one
with 1 neuron in the input layer, 20 neurons in the hidden layer and the logistic sigmoid
function as activation function and 1 neuron in the output layer. In the output layer the

identity function was used in both periods.

Table 7: Results of Wilcoxon Statistical Test — ‘Summer’ period

Summer ANN — 1 neuron | ANN — 2 neurons ANN — 3 neurons
Wilcoxon p-value 7.56e-10 1.11e-09 1.63e-09

Table 8: Results of Wilcoxon Statistical Test — ‘Winter’ period

Winter ANN — 1 neuron | ANN — 2 neurons ANN — 3 neurons
Wilcoxon p-value 1.23e-05 1.82e-05 2.70e-05

One very common problem that arises when training ANNSs, and especially ANNs
with large number of layers and neurons, is overfitting. Overfitting is the case where the
ANN performs very well on the training data, but poorly on the previous unseen test
data, in other words fails to generalize well on new data. There are several ways to
overcome overfitting, e.g. increasing the number of training instances or reducing the
number of layers and neurons and thus the number of unknown parameters. These
methods are not usually adopted reluctantly by the researchers because on one hand the
acquisition of more training samples is a costly process, and on the other the reduction
of the number of layers and neurons may lead to less powerful networks. Fortunately,
there is another way for overcoming overfitting which is called regularization. In this,
an extra term, which takes into account the magnitude of the weights of the network, is
added to the cost function of the training algorithm. Usually, this term is the sum of the
squares of all the weights of the network (excluding the biases) multiplied by a constant
called regularization parameter. After training the network using the updated cost func-

tion, we can see that the effect of the overfitting is reduced. As will be seen at the evalu-
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ation framework; in this work we considered only the test error of our implemented
ANN models and not the training error, and therefore we did not examine in depth the

possibility of arising the problem of overfitting.
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2.3.Improved models

Renewable energy sources such as solar energy, are weather dependent and it is
evident that there is a sort of relationship regarding the forecast. In order to measure the
dependency between the meteorological data and the energy production data we calcu-
lated Pearson’s correlation coefficient and Spearman’s correlation coefficient. A major
goal of the examination of the improved models is to evaluate the performance of the
models and to testify the existence of a crucial role in the accuracy by these models.
Oudjana et al. [[5] ] made power predictions based on weather variables correlations
with the PV power output and they achieved better models. The importance of imple-
mentation of improved models for power output forecasting lies in the fact of minimiz-

ing the error and achieving even better results.
2.3.1. Correlations

Correlation is a bivariate analysis that measures the strengths of association be-
tween 2 variables and the direction of the relationship. In terms of the strength of rela-
tionship, the value of the correlation coefficient varies between -1 and +1. When the
value of the correlation coefficient lies around + 1, then it is said to be a perfect degree
of association between the 2 variables. As the correlation coefficient value goes to-
wards 0, the relationship between the 2 variables will be weaker. The direction of the
relationship is simply the + (indicating a positive relationship between the variables) or
- (indicating a negative relationship between the variables) sign of the correlation. In
statistics, there are 4 ordinary, different ways to measure correlation: Pearson correla-
tion, Kendall rank correlation, Spearman correlation, and the Point-Biserial correlation.

Pearson’s correlation coefficient is a statistic measuring the linear interdepend-
ence between 2 variables or two sets of data. The value of the coefficient ranges from -1
to +1, with +1 indicating a perfect positive linear relationship, -1 indicating a perfect
negative relationship and 0 showing none existing relationship. Correlation factor +1
means a perfect correlation between the 2 variables. In other words, a scatter plot of the
2 variables will show that all points fit perfectly into a straight line. Coefficient 0 means
that the points in the spreadsheet are randomly distributed around any straight line de-
signed or are arranged to approach a curve. In general, sign "+" means positive correla-

tion which means the values of one variable increase according to the values of the oth-
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er and sign - 'means negative correlation where the values of a variable decrease ac-
cording to the value of the other. The formula for calculating the coefficient for 2 vari-
ables X and Y is the following:

cov(X,Y)
pP=—" "

(10)
O'XO'y

where cov(X,Y) the covariance and oy, oy the standard deviations of X and Y respective-
ly.

Spearman’s correlation coefficient is a statistical measure of the strength of a
monotonic relationship between paired data. The value of the coefficient ranges from -1
to +1, with +1 or -1 indicating that each of the variables is a perfect monotone function
of the other. If Y tends to increase when X increases, the Spearman correlation coeffi-
cient is positive. If Y tends to decrease when X increases, the Spearman correlation co-
efficient is negative. A zero Spearman correlation shows that there is no tendency for Y
to either increase or decrease when X increases. Spearman's association increases in size
when X and Y are closer to being perfect monotonous functions of each other. When X
and Y have an absolute monotonic relationship, the Spearman correlation coefficient
becomes +1. The Spearman correlation coefficient is defined as the Pearson’s correla-
tion coefficient between the corresponding ranked variables. The formula of Spear-
man’s coefficient is the following.

n
Z(Xi —X)*(y; - ¥)?
p=—F= (11)

\/i(xi %7305 9

=1

where X;, yi are the ranks of X; and Y; respectively.

In cases that there are not equal values, a more simple procedure is used with the use of
the following formula.

65 d2
1=1

n(n2-1) 12

p=1

where d; is the difference between the ranges of each observation of the 2 variables.
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Figure 11: Heatmap of Pearson’s correlation (above) and Spearman ’s correlation (below) between ener-
qy (E-Total), solar irradiance (IntSollrr), ambient temperature (TmpAmb C) and panel’s temperature
(TmpMdul C).

The Pearson’s and Spearman’s coefficient values between the energy and the me-

teorological variables are shown in Figure 11. As shown in the last row of both matri-
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ces, the coefficients values between energy and the solar irradiance and panel’s temper-
ature are very close to 1 (0.98 and 0.96 respectively for Pearson’s coefficient and 0.98
and 0.97 for Spearman’s) and between energy and ambient temperature is approximate-
ly 0.7 (0.71 for Pearson’s coefficient and 0.7 for Spearman’s). These results indicate
strong linear correlation between energy and the meteorological variable. Based on this
conclusion, we enhanced the implemented forecasting models (both ARIMA and ANN)
by adding the meteorological variables as explanatory variables of the models. Specifi-
cally, we implemented one ARIMA model with explanatory variables the energy and
the solar irradiance, one with the energy and the panel’s temperature and one with the
energy and the ambient temperature. Similarly, for the case of the ANN model. Subse-

quently, we have 6 enhanced models in addition to the initial base models.

2.3.2. Improved ARIMA models

As in the case of base models, we implemented enhanced ARIMA models of or-
der 1, 2 and 3 too. The equation that describes the new, enhanced ARIMA(1,1,0) model

is:

Xi=C+ Xy +a (X = Xio) +0,(Y—Yio) (13)

And the improved ARIMA (1,0,0) model, of the long term analysis, is described by the
formula:

Xy =C+a X 4 +0,Y (14)

The equations are not solved analytically but in the least-squares way.

2.3.3. Improved ANN models

The improved ANN models were implemented based on the ANN of Section 2
but they have a different topology with 2 inputs, 3 hidden and 1 output nodes, as shown
in Figure 12. Following the above procedure, different nodes in the hidden layer. In par-
ticular, we ran simulations from 1 to 100 nodes and with also distinct activation func-

tions. The topology of ANN which performs better is the topology shown in Figure 12.
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Figure 12: ANN topology of improved model
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Figure 13: ANN topology order 2 (left) and order 3 (right) of the improved models
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In the case of the long term analysis, we also ran simulations with different (from
1 to 100) nodes in the hidden layer and also distinct activation functions. The topology
of the improved ANN models differs among the enhanced models. The number of input
and output neurons are the same for all the improved models but the number of the neu-
rons in the hidden layer tend to differ. Specifically, in the improved model with explan-
atory variables the energy and the solar irradiance in the “Summer” period the ANN to-
pology is, 2 neurons in the input layer, 20 neurons in the hidden with rectified linear
unit activation function and 1 neuron in the output layer. In the improved model with
explanatory variables the energy and the ambient temperature in the “Summer” period
the ANN topology is, 2 neurons in the input layer, 30 neurons in the hidden with recti-
fied linear unit activation function and 1 neuron in the output layer. As for the improved
model with explanatory variables the energy and the panel’s temperature in the “Sum-
mer” period the ANN topology is, 2 neurons in the input layer, 90 neurons in the hidden
with logistic sigmoid activation function and 1 neuron in the output layer. Regarding the
“Winter” period, in the improved model with explanatory variables the energy and the
solar irradiance the ANN topology is, 2 neurons in the input layer, 20 neurons in the
hidden with logistic sigmoid activation function and 1 neuron in the output layer. In the
improved model with explanatory variables the energy and the ambient temperature the
ANN topology is, 2 neurons in the input layer, 50 neurons in the hidden with logistic
sigmoid activation function and 1 neuron in the output layer. Finally, in the improved
model with explanatory variables the energy and the panel’s temperature the ANN to-
pology is, 2 neurons in the input layer, 50 neurons in the hidden with hyperbolic tangent
activation function and 1 neuron in the output layer. For all the improved models the
identity activation function was used in the output layer. The number of the neurons in
the input layer of the ANN model of order 2, is 4 neurons and in the ANN model of or-

der 3, 6 neurons.
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Input Hidden Layer QOutput

Figure 14: ANN Topology of improved model of order 1 in long term analysis (energy + solar irradiance
as explanatory variables)
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3. Experiments Tools

The presented models were developed in the high-level programming language
Python (version 3). Python was first released in 1991 by Guido van Rossum, who
named the language after the BBC show "Monty Python's Flying Circus". It can be used
for everything from web development to software development and scientific applica-
tions. Python is one of those rare languages which can claim to be
both simple and powerful. Python's elegant syntax and dynamic typing, together with its
interpreted nature, make it an ideal language for scripting and rapid application devel-
opment in many areas on most platforms. With the term interpreted we mean that Py-
thon does not need compilation to binary. You just run the program directly from the
source code. This pseudo-code nature of Python is one of its greatest strengths. It allows
you to concentrate on the solution to the problem rather than the language itself.

Additionally, the Anaconda set of packages for data science was used. Anaconda
is the leading open data science platform powered by Python. The open source version
of Anaconda is a high performance distribution of Python and R and includes over 100
of the most popular Python, R and Scala packages for data science.

The desktop computer that was used has Windows 10 Professional, 64bit operat-

ing system, a 6 core processor at 3.5GHz and also 8GB RAM memory.
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4. Results

In order to implement and evaluate our models, we split the set of our time series
into training and test subsets (80% in the training and 20% in test). We used the training
time series to build our models and the test to make forecasts. The forecasts were made
for 1 to 4 steps (15-minute intervals in case of short term forecasting and 1 day interval
in case of long term forecasting) ahead in time. We repeated this process in all possible
ways for the purpose of cross-validating the results. We used all training and test da-
tasets for each implemented model (both base and enhanced) and we compared the re-
sults in terms of forecasting accuracy using the Symmetric Mean Absolute Percentage

Error (SMAPE) metric, which is defined by the following formula:

100% & |F — Al
n Z|A[+|F

where F; is the forecasted value and A: the actual value. We selected SMAPE over other

SMAPE =

(15)

error metrics because it provides a result between 0% and 100% which is more easily

interpretable. The results of the experiments are presented in the following section.

4.1. Short-Term Forecasting

The original dataset had cumulative power outputs and we made forecasts firstly
in the cumulative data points. In order to make this time series stationary we had to use
the method of detrending instead of the method of differencing as in the rest of the da-
taset. As we can observe in Figure 15 ARIMA(1,1,0) fits the data better than the ANN
model with 1 input. The predicted values are almost equal to the real ones and SMAPE

results, (Table 9), confirms it.

Table 9: SMAPE results of ARIMA and ANN of cumulative time series

ARIMA (1,1,0) | ANN - 1 neuron
SMAPE (%) 0.0006058 0.0010503
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Figure 15: ARIMA and ANN fitting in cumulative time series of energy
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As it is shown in Figure 16, the model that performs better among the linear
models is ARIMA(1,1,0). This result is also demonstrated in Table 10, where we can
see the average forecasting results for all steps ahead of the implemented ARIMA mod-

els that use only the energy as explanatory variable.

AR(1) - 1 step ahead

— r2gl

2.5 - .
- predictions
2.0 -
15 -
e
S 10-
(18]
0.5 -
0.0 -
-0.5 - i
0 10 20 30 40 50
AR(2) - 1 step ahead
— real
2.5 - —— predictions

E-Total

55



T'ewpyio EavBomoviov

AR(3) - 1 step ahead

— real
2.5~ —— predictions
2.0 -
15 -
I
o 10-
i
LL
0.5 -
0.0 -
_DS =
EI} 1.0 ZIO 3IE} 4IE} SIE}
Figure 16: Plots of ARIMA models fitting for one step ahead
Table 10: SMAPE results of ARIMA models
ARIMA (1,1,0) | ARIMA (2,1,0) | ARIMA (3,1,0)
SMAPE (%) 11.5 16.87 21.11

As for the neural networks SMAPE metrics shows better results in ANN model of
order 1 instead of order 2 or 3 that was also implemented. Table 11 and Figure 17 vali-
dates this conclusion presenting results from 1 step ahead, 3 inputs in the hidden layer

and 1 output. The results of 2, 3 and 4 steps ahead are similar.

Table 11: SMAPE results of ANN models

ANN -1 neuron | ANN -2 neurons | ANN — 3 neurons
SMAPE (%) 6.38 13.37 18.11

56



E-Total

Forecasting power output of Photovoltaic Systems using machine learning techniques

ANN (1hid) 1 step ahead

N = 1|

2.5- .
—— predictions

2.0 -
15 -
1.0 -
0.5 -
0.0 -

0.5 -

ANN2 (1hid) 1 step ahead

— real
— predictions

2.5~

2.0 -

1.5 -

1.0 -

E-Total

0.5 -

0.0 -

—0.5 -

57



T'ewpyio EavBomoviov

E-Total

ANN3 (1hid) 1 step ahead

— gl

2.5- —
—— predictions

2.0 -

1.5-

1.0 -

0.5 -

0.0 -

_DS =

Figure 17: ANN models plot for one step ahead

In Figure 18, the fitting of the all the implemented models (ARIMA and ANNS,
base and enhanced) on a test time series is presented. We can see that the forecasting

results of all the implemented models fit very well on the real values. Finally, table 12

presents clearly the forecasting results of all the implemented models. As shown, ANN

models have, in general, better forecasting accuracy compared to ARIMA. Also, we can

see that the introduction of the meteorological data in the models as explanatory varia-

bles (i.e. enhanced models) decrease the forecasting accuracy in the case of the linear

models (ARIMA), while it increases the forecasting accuracy in the case of non-linear

models.

Table 12: Forecasting SMAPE Results of all implemented models

En. + Amb.

En. + Panel’s

SMAPE (%) | Energy | En. + Irr. Temp. Temp. Average
ARIMA 11.51 14.22 13.31 13.67 13.18
ANN 6.38 6.74 5.91 6.66 6.42
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Figure 18: The ARIMA (above) and ANN (below), base and improved, models fitting a test time series.
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Figure 19: ARIMA and ANN best fitting
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4.2. Long-Term Forecasting
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Figure 20: Plots of ARIMA models for 1 step ahead — ‘Summer’ period

In Figure 20 we can observe the ARIMA models fitting for 1 step ahead for the
‘Summer’ period and as we can see the ARIMA(2,0,0) fits better than its competitors.

The results of 2, 3 and 4 steps ahead are similar. As a matter of fact, we confirmed it

from the SMAPE results, as seen in Table 13.

Table 13: SMAPE results of ARIMA models for the ‘Summer’ period

Summer ARIMA (1,0,0) | ARIMA (2,0,0) | ARIMA (3,0,0)
SMAPE (%) 9.42 8.87 9.14
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Figure 21: Plots of ARIMA models for 1 step ahead — ‘Winter” period

In case of the “Winter’ period the ARIMA model that yield the best results is also

the ARIMA (2,0,0) as in the ‘Summer’ period. From Figure 21 and Table 14 we verify

the result.
Table 14: SMAPE results of ARIMA models for the ‘Winter’ period
Winter ARIMA (1,0,0) | ARIMA (2,0,0) | ARIMA (3,0,0)
SMAPE (%) 28.26 22.71 22.85
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Figure 22: ANN plots of one step ahead — ‘Summer’ period

Figure 22 demonstrates the ANN’s model fitting for the period of ‘Summer’. As
we can see from the plots and we can confirm from Table 15 the ANN with 1 neuron in

the input layer gives the better results.

Table 15: SMAPE results of ANN models for the ‘Summer’ period
Summer ANN -1 neuron | ANN -2 neurons | ANN — 3 neurons
SMAPE (%) 8.50 10.91 10.97
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Figure 23: ANN plots for 1 step ahead — ‘Winter’ period

As for the ‘Winter’ period (Figure 23) the ANN with 1 neuron in the input layer

fits better the original data. In Table 16, we can verify the result too.

Table 16: SMAPE results of ANN models for the ‘Winter’ period

Winter

ANN - 1 neuron

ANN - 2 neurons

ANN — 3 neurons

SMAPE (%)

20.12

23.44

25.03
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Figure 23: ARIMA fitting for all the implemented models — ‘Winter’ period
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Table 17: SMAPE results for all the implemented models for the ‘Summer’ period

En. + Amb. En. + Panel’s
0,
SMAPE (%) | Energy | En. + Irr. Temp. Temp. Average
ARIMA 8.87 8.88 8.95 8.94 8.91
ANN 8.50 7.58 7.81 9.37 8.31

Table 18: SMAPE results for all the implemented models for the ‘Winter’ period

En. + Amb. En. + Panel’s
0,
SMAPE (%) | Energy | En.+Irr. Temp. Temp. Average
ARIMA 22.73 20.74 22.78 22.90 22.28
ANN 20.12 18.68 19.86 21.32 19.95

Figures 24 and 25 show the ARIMA maodel fitting for all the implemented models
in both ‘Summer’ and ‘Winter’ periods. In general the period of ‘Summer’ is more ac-
curate than the period of “Winter’. The input of solar radiation, ambient temperature and
panel’s temperature as explanatory variables does not affect the accuracy in a tremen-

dous level. There is a slight decrease in terms of accuracy.

The following Figures 26 and 27, present the ANN model fitting for all the im-
plemented models in the periods ‘Summer’ and ‘Winter’. We observed that the ‘Sum-
mer’ period has better accuracy contrary to the ‘Winter’ period as in the ARIMA model

fitting. The fusion of meteorological values does affect the accuracy.

In general ANN models yielded better results contrary to ARIMA models, espe-
cially in the ‘Winter’ period. In the ‘Summer’ period the ANN models surpass the
ARIMA models too, but with a slight difference. All these conclusions were verified

from Table 17 and Table 18. The best results are represented in Figures 28 and 29.
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Figure 25: ANN fitting for all the implemented models of period 'Winter'
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Figure 27: ARIMA and ANN best fitting of "Winter" period
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CONCLUSIONS

A set of different models for forecasting power output in PV systems were implemented
and evaluated. All steps of time series modelling process were implemented and pre-
sented in detail, along with the corresponding steps for building non-linear models.

Moreover, the models were enhanced with meteorological explanatory variables.

Preliminary results, for experiments conducted on real data from a photovoltaic park in
Crete, Greece, indicated that the ANN non-linear models outperform the linear ARIMA
models in terms of forecasting accuracy. Additionally, the fusion of meteorological data
increases the forecasting accuracy of the ANN models, while decreasing the accuracy of
ARIMA models. The proposed ANN topology, which performs best is an ANN with 1
neuron in the input layer, 3 in the hidden and 1 in the output layer. Furthermore, a long-
term forecast was conducted from the same data and new models for forecasting power
output in PV system were implemented and evaluated. Also in this analysis the ANN
models yielded the best results, contrary to ARIMA. In case of long-term forecasting
analysis there is not a specific proposed topology of the ANN model due to the fact that,
for every implemented model, base and improved, there is a different topology. Future
directions of this work include, the experimentation with more data from different PV
systems, the fusion of new data variables in the implemented models and the implemen-
tation of a hybrid model that will exploit the best characteristics of the ARIMA and
ANN models. The examination of the possibility of arising a problem of overfitting, is

also a recommendation of future work.

73



. g N
“OEOZPAZTOL"

| ._-. r..“'l'|’.|r||.|n Fewhoyiag
L ANe




Forecasting power output of Photovoltaic Systems using machine learning techniques

PUBLICATIONS

Part of this master thesis and specifically the short-term analysis has been accept-
ed for presentation in the International work-conference on Time Series (ITISE) 2017
which was held in Granada, Spain in September 18th-20th, 2017. The paper has the title
‘Forecasting Power Output of Photovoltaic Systems Using Linear, Non-Linear and En-
hanced Models’ and it is included in the ITISE-2017 proceedings.
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