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ABSTRACT 

 
The use and study of networks has become more and more relevant in the recent years. Their 

functionality, as well as their ability to preserve it, is highly important in the world of today. 

This work is an attempt to collect the research on the various methods of measuring network 

robustness to malicious attempts to disconnect them, as well as the effectiveness of such 

attempts. Furthermore, we compare the robustness of four different directed networks both 

in name, using indices of robustness, and in practice, observing the effects of various 

deconstruction attempts on them. This step is performed using the 3.4.3 version of the R 

programming language on a 64-bit windows platform. Our findings agree, in general, with 

previous research, but bring up a few points that require further exploration. 

Chapter 1 contains the introduction. In chapter 2 we provide the necessary background 

definitions on network theory. In chapter 3 we define and classify the various indices of 

network robustness and present some of their properties. In chapter 4 we present the 

methods of attack, as well as tables with the studies they have been tested on. In chapter 5 

we present an example of network analysis on four directed networks. In chapter 6 we 

present a summary of the known results in the literature that has been presented in chapters 

3 and 4, and compare them with our own findings in chapter 5. In chapter 7 we draw our 

conclusions and present the discussion of our work 
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Σύνοψη 

Synopsis in Greek 

Η παρούσα διπλωματική εργασία πραγματεύεται την ανάλυση της αντοχής των 

δικτύων. Αυτό απαιτεί διερεύνηση τριών κυρίως τομέων. Πρώτον, την μελέτη της δομής του 

εκάστοτε δικτύου. Δεύτερον, τον ορισμό κατάλληλων εκτιμητών, οι οποίοι να μπορούν να 

αντιρποσωπεύσουν αριθμητικά την ανθεκτικότητα ενός δικτύου. Τρίτον, την ανάλυση των 

διαφορετικών μεθόδων με τις οποίες μπορεί να επιτεθεί κάποιος στο δίκτυο. 

Σκοπός της εργασίας είναι η παρουσίαση και ταξινόμηση των διαφόρων δεικτών που 

εκτιμούν την ανθεκτικότητα των δικτύων, καθώς και η παρουσίαση των διαφόρων 

μεθόδων επίθεσης σε δίκτυα που έχουν μελετηθεί εώς τώρα. Αυτό γίνεται από την μία 

πλευρά με μία εκτεταμένη βιβλιογραφική ανασκόπηση και από την άλλη με ένα παράδειγμα 

υπολογισμού της αντοχής ορισμένων κατευθυνόμενων δικτύων, και στη συνέχεια μελέτη 

διαφόρων επιθέσεων πάνω σε αυτά. 

Η εργασία είναι δομημένη σε επτά κεφάλαια, τα οποία περιγράφονται αναλυτικά: 

Στο πρώτο κεφάλαιο παρατίθενται οι βασικές ερωτήσεις του κειμένου, οι οποίες είναι  

1. Πως μπορούμε να εκτιμήσουμε την ανθεκτικότητα, η την ευαισθησία ενός δικτύου 

όσον αφορά τις διάφορες μεθόδους επίθεσης; 

2. Πως οι διάφοροι μέθοδοι επίθεσης επηρεάζουν ένα δίκτυο; 

3. Πως ανταποκρίνονται διάφορες δικτυακές δομές απέναντι σε διάφορες επιθέσεις; 

Στη συνέχεια αναλύονται οι λόγοι που αυτές οι ερωτήσεις είναι σημαντικές και ορίζονται οι 

πολύ βασικές έννοιες. Εν συντομία, οι ερωτήσεις αυτές είναι σημαντικές τόσο για την 

καλύτερη προστασία “καλών” δικτύων (όπως κοινωνικά δίκτυα, δίκτυα ηλεκτροδότησης ή 

αερομεταφορών) απέναντι τόσο σε  προβλήματα που μπορεί να προκύψουν τυχαία 

(βλάβες, κακοκαιρία κλπ.) όσο και σε εσκεμμένες επιθέσεις (τρομοκρατία, διάδοση ψευδών 

ειδήσεων κλπ). Έπειτα, παρουσιάζονται οι σχετικές απόπειρες συλλογής και σύγκρισης 

δεικτών αντοχής που έχουν γίνει ως τώρα και τέλος, διατυπώνεται η δομή της υπόλοιπης 

εργασίας. 
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Στο δεύτερο κεφάλαιο διατυπώνονται όλοι οι βασικοί ορισμοί, όπως τι είναι γράφος, 

δίκτυο κλπ. Ορίζονται επίσης οι διάφορες “κλασσικές” δικτυακές δομές (Scale free, Erdos-

Renyi κλπ.) καθώς και κάποιες βασικές δομικές μετρικές (assortativity, συντελεστής 

σύμπλεξης κλπ). Τέλος, διατυπώνονται κάποιοι μηχανισμοί που διέπουν ορισμένα δίκτυα, 

σύμφωνα με τις αντίστοιχες μοντελοποιήσεις που έχουν γίνει, όπως δυνατότητα 

επανασύνδεσης ακμών, ή δευτερεύουσες εξαφανίσεις κόμβων. 

Στο τρίτο κεφάλαιο ορίζονται και ταξινομούνται οι διάφοροι εκτιμητές της 

ανθεκτικότητας των δικτύων, παρουσιάζονται οι συλλογισμοί που τους παρήγαγαν, καθώς 

και κάποιες ιδιότητές τους. Η ταξινόμηση γίνεται σε δύο στάδια. Αρχικά διαχωρίζονται οι 

εκτιμητές που εξαρτώνται από την επίθεση που μελετάται, από τους εκτιμητές που 

εξαρτώνται μόνο από την δομή του δικτύου. Στη συνέχεια, οι πρώτοι διαχωρίζονται 

περεταίρω σε αυτούς που εκτιμούν την χειρότερη δυνατή περίπτωση για το δίκτυο (όπως 

συνδετικότητα ακμών/κόμβων, integrity-ακεραιότητα, isoperimetric number, κλπ.) και σε 

αυτούς που μελετάνε την επίδραση που έχει μία οποιαδήποτε επίθεση στο δίκτυο. Στην 

δεύτερη περίπτωση, αναδιατυπώνουμε και επεκτείνουμε τη χρήση μίας μετρικής που έχει 

χρησιμοποιηθεί υπό τον όρο robustness, ως a-fragmentation threshold (α-κατώφλι 

κατακερματισμού). Αναδιαμορφώνουμε επίσης την μελέτη της γενικής αποδοτικότητας 

(global efficiency) του δικτύου όταν αυτό υπόκειται σε κάποια επίθεση, με τον να την 

απλοποιήσουμε, με σκοπό να χρησιμεύσει ως μέτρο σύγκρισης ανάμεσα στην αντοχή 

διαφορετικών δικτύων στην ίδια μορφή επίθεσης. Η δεύτερη κατηγορία δεικτών 

διαχωρίζεται στους δείκτες που προκύπτουν απ’ ευθείας από το δίκτυο και σε αυτούς που 

προκύπτου από την αλγεβρική επεξεργασία του πίνακα γειτνίασης, ή του αντίστοιχου 

Λαπλασιανού. 

Στο τέταρτο κεφάλαιο ορίζονται οι διάφορες επιθέσεις των δικτύων και 

ταξινομούνται οι έρευνες στις οποίες έχουν μελετηθεί. Η ταξινόμηση των ερευνών γίνεται 

σε πίνακες για κάθε είδος επίθεσης, σύμφωνα με: 

1. Τα δίκτυα που μελετήθηκαν, στα οποία παρατίθενται οι εξής πληροφορίες: 

i. Η δομή τους. 

ii. Η ύπαρξη κατευθυνόμενων ακμών ή/και βαρών. 
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iii. Οι περεταίρω μηχανισμού που τα διέπουν (δομικοί, ή διαχείρησης ροής). 

2. Η προέλευση του δικτύου (αν είναι κατασκευασμένο από κάποιο μοντέλο, ή τι δίκτυο 

είναι, πχ. Αερογραμμών, διακίνησης ναρκοτικών κλπ). 

3. Τα μέτρα που χρησιμοποιήθηκαν για να εκτιμήσουν την αντοχή του δικτύου ή το 

μέγεθος της ζημιάς που δέχτηκε από την επίθεση. 

4. Την σχετική αναφορά της έρευνας που έγινε. 

Στο πέμπτο κεφάλαιο παρουσιάζεται ένα παράδειγμα ανάλυσης αντοχής δικτύων. 

Επιλέγονται τέσσερα κατευθυνόμενα διατροφικά δίκτυα (food webs), τα οποία 

παρουσιάζουν σχέσεις θηρευτή-θηράματος σε οικοσυστήματα της νότιας Φλόριδας. 

Υπολογίζονται κάποιοι δείκτες ανθεκτικότητας οι οποίοι προσαρμόστηκαν από μη 

κατευθυνόμενα δίκτυα. Συγκεκριμένα υπολογίζεται το natural connectivity, το οποίο 

λάβαμε το περεταίρω βήμα να το απλοποιήσουμε ώστε να μπορούμε να συγκρίνουμε δίκτυα 

διαφορετικής τάξης. Η διαφορά μεταξύ των μέτρων της πρώτης και της δεύτερης ιδιοτιμής, 

στηριζόμενοι στην βασική αρχή της απόκλισης του δικτύου από τον βέλτιστο χαρακτήρα 

good expansion (μέτρου ευπάθειας). Καθώς και το assortativity coefficient του δικτύου, 

προς εξέταση των αμφιβολιών για το αν μπορεί όντως να χαρακτηριστεί ως μέτρο 

ανθεκτικότητας, καθώς έχει συσχετιστεί θετικά και αρνητικά με την αντοχή των δικτύων 

σε διαφορετικές έρευνες. Τα μέτρα αυτά υπολογίστηκαν τόσο για το σύνολο του δικτύου, 

όσο και για τις ισχυρά συνδετικές γιγαντιαίες συνιστώσες τους. Σε αυτά τα δίκτυα 

πραγματοποιήθηκαν οκτώ διαφορετικές επιθέσεις. Συγκεκριμένα οι κόμβοι τους 

ταξινομήθηκαν και αφαιρέθηκαν με φθίνουσα σειρά σύμφωνα με τους εξής δείκτες: 

1. Έσω βαθμός. 

2. Έξω βαθμός. 

3. Συνολικός βαθμός. 

4. Ενδιαμεσότητα. 

5. Ιδιοκεντρικότητα. 

6. Συνολική επηροή 2 βημάτων (collective influence). 

7. Συνολική επηροή 3 βημάτων. 

8. Τυχαία (πραγματοποιήθηκαν πέντε διαφορετικές τυχαίες επιθέσεις και παρατίθενται 

οι μέσες τιμές των αποτελεσμάτων). 
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Η αποτίμηση του αποτελέσματος της επίθεσης έγινε υπολογίζοντας το σχετικό μέγεθος της 

ασθενώς και της ισχυρά συνδετικής γιγαντιαίας συνιστώσας και της συνολικής 

αποδοτικότητας (global efficiency), κανονικοποιημένης σύμφωνα με την αρχική τάξη του 

δικτύου. Παρατίθενται επίσης οι τιμές του εμβαδού αυτών των καμπυλών, καθώς και τα α-

κατώφλια κατακερματισμού, για 𝛼 = 0.25, 0.50 και 0.75, για την ισχυρή και την ασθενή 

γιγαντιαία συνιστώσα κάθε δικτύου, που αντιπροσωπεύουν το πλήθος κόμβων που πρέπει 

να αφαιρεθεί για να μειωθεί η εκάστοτε συνιστώσα στο αντίστοιχο ποσοστό (ίσο με α) του 

αρχικού της μεγέθους. Τέλος, δίνονται τα συμπεράσματα του παραδείγματος. Το πιο 

ενδιαφέρον εξ αυτών είναι ότι το natural connectivity προβλέπει σχεδόν ακριβώς την 

διάταξη των δικτύων ως προς την μείωση της αποδοτικότητάς τους για κάθε επίθεση. 

Στο έκτο κεφάλαιο, παρουσιάζονται τα σημαντικότερα συμπεράσματα που έχουν 

εξαχθεί από την βιβλιογραφία, ενώ στη συνέχεια συγκρίνονται με τα αποτελέσματα που 

έδειξε το παράδειγμα του πέμπτου κεφαλαίου. Αναφέρονται ενδεικτικά κάποια από τα πιο 

σημαντικά ή ενδιαφέρονται συμπεράσματα της βιβλιογραφίας.  

• Τα δίκτυα εγκληματιών έχουν δειχθεί ότι είναι εξαιρετικά ανθεκτικά, ειδικά αν 

συνυπολογιστούν δυνατότητες επανασύνδεσης ακμών.  

• Τα αεροπορικά δίκτυα είναι ευάλωτα σε μεγάλης κλίμακας φυσικές καταστροφές. 

• Τα δίκτυα που έχουν εξελιχθεί φυσικά, έμφανίζουν πολύ πιο συχνά χαρακτήρα good 

expander από αυτά που έχουν κατασκευαστεί καθολικά από τον άνθρωπο. 

• Διάφορα μέτρα ανθεκτικότητας ταξινομούν βασικές δικτυακές δομές με πολύ 

διαφορετικούς τρόπους. 

Κατά την σύγκριση των αποτελεσμάτων του παραδείγματος με τα γνωστά 

συμπεράσματα της βιβλιογραφίας βρήκαμε ελάχιστες διαφορές, κυρίως όσον αφορά την 

αποδοτικότητα των μέτρων συνολικής επηροής (collective influence), τα οποία ήταν πολύ 

λιγότερο αποδοτικά από το αναμενόμενο. 

Στο έβδομο κεφάλαιο παρατίθενται τα συμπεράσματα που έχουμε εξάγει από το 

σύνολο της βιβλιογραφικής αναδρομής, καθώς και από την σύγκριση του παραδείγματός 

μας με αυτήν. Τονίζεται η έλλειψη εκτεταμένης έρευνας στους περισσότερους δείκτες, και 

της διερεύνησης του τι αντιμετωπίζει ο κάθε δείκτης ως ανθεκτικότητα, καθώς οι 
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περισσότερες έρευνες γίνονται σε σχετικά λίγες δικτυακές δομές (πολλά δίκτυα, λίγα είδη 

μοντέλων). Ερμηνεύονται επίσης κάποιες αντιφάσεις που έχουν εμφανιστεί, στη 

βιβλιογραφία γενικά, αλλά και σε σχέση με το παράδειγμα του κεφαλαίου πέντε. Έπειτα, 

παρουσιάζονται γενικότερα τα κενά που εμφανίζονται στο σύνολο της έρευνας της 

ανθεκτικότητας των δικτύων. Παρατίθενται επίσης οι καινοτόμες ιδέες και η συμβολή της 

εργασίας. Τέλος, παρουσιάζεται ένα σύνολο ιδεών για περεταίρω έρευνα στον τομέα της 

ανάπτυξης δεικτών ανθεκτικότητας και βελτιστοποιημένων επιθέσεων. 
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1. Introduction 

 

1.1. Questions-Research Subject 

 

There are three questions addressed in this thesis.  

Question 1: How can we measure the robustness or the fragility of a network with respect to 

different kinds of attacks. 

Question 2: How do different methods of attack affect a network? 

Question 3: How do different network structures respond to various attacks. 

 

1.2. Why are these questions important? 

 

Today’s world is a highly networked one, and as such, we can find a lot of important 

reasons to study network robustness. The very structure of every organization, including 

society, is a network. Design of the structure of a corporation requires consideration of 

random failures, such as people falling ill or having accidents. Flow networks, such as public 

transport (Wilkinson et al. 2011, Zhang et al. 2011, Dunn and Wilkinson 2015, Yin et al. 2016, 

Zhang et al. 2018), water and electricity distribution (Motter and Lai 2002, Albert et al. 2004, 

Schneider et al. 2010, Schieber et al. 2015), are a cornerstone of modern life, and as such 

should be, and are, protected by optimizing their robustness to the most common dangers 

they face. For the sake of comprehension, we give some working definitions for the 

robustness and the vulnerability of networks. 

 

Definition 1.2.1: Robustness 

Robustness is the ability of a network to continue fulfilling its objectives adequately, 

when subjected to failures or attacks. 
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Definition 1.2.2: Fragility/Vulnerability 

Fragility or vulnerability is the sensitivity of a network to failures or attacks (The 

opposite of robustness). 

 

Equally important are the reasons to study how to more effectively damage, or 

completely deconstruct a network. For example, in law enforcement (Baker and Faulkner 

1993, Krebs 2002, Raab and Milward 2003, Duijn et al. 2014), operations such as common 

fraud, drug trafficking, arms trafficking and terrorist groups such as Al Qaeda, constitute 

“dark” social networks. “Dark” networks also exist as parts of larger networks in the political 

level via connections to other networks, such as each other, or even legitimate ones.  

Definition 1.2.3: Attack on a network 

Attack on a network is any modification of the network resulting in degradation of its 

performance. For example, adding a node with negative edges or with false beliefs, or 
removing a node with the intent to disconnect parts of the network. 

 

This thesis is concerned with the removal of nodes or edges with the intent to 

disconnect a network. Therefore, when the term “attack on a network” is used, it refers to 

node or link removals. 

 

Definition 1.2.4: Random removals 

Random removals on a network are removals of a set of nodes or links, realized by a 

random distribution. Usually, this distribution is chosen to be the uniform distribution. 

Random removals are simulated by random number generators. 
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Definition 1.2.5: Targeted attacks 

Targeted attacks on a network are removals of a set of nodes or links, resulting from a 

specific strategy. For example, removals of Nodes with high Centrality, articulations 

points or bridges. 

 

Definition 1.2.6: Repeated/Simultaneous/Salvo attacks. 

Attacks are distinguished in two categories. Repeated attacks, where nodes or links are 

removed one by one until a certain number of attacks or a certain result is reached. 

Simultaneous or salvo attacks, where the set of nodes or links is removed once. 

 

Due to the nature of the process of an attack or failure, as well as the way most of the 

studies are conducted, we will refer to both intended attacks and failures as attacks.  

Numerous proposals have been made to assess network robustness. From the simplest 

ones, such as vertex or edge connectivity, to the more complex ones such as the scattering 

number of a graph. Such measures vary highly in many regards. Some are computational 

such as their complexity, others mathematical such as monotonicity, while others differ on 

their intent. Variables like the order of the network and the expected methods of attack 

against it, are paramount in considering a method of measuring its ability to withstand such 

attacks. 

 

1.3. Relevant studies 

 

Research on network robustness and network deconstruction has been carried out by 

several groups from various fields. As a result, many approaches have been proposed. 
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The presently available reviews are mainly focused on comparing few selected 

measures such as effective resistance with a few others (Ellens 2011, Ellens and Kooij 2013), 

or proposing a new, possible improved, measure (Wu et al. 2008, Wu et al. 2010, Schieber et 

al. 2015). 

 

1.4. Methodology of the research 

 

The methodology proposed and used in this paper, is an extensive review of all relative 

literature, and the classification of the methods to study network robustness as well as the 

methods of attack. We define and present some properties for the indices of robustness, and 

the various methods of measuring the impact of an attack on a network. Subsequently, we 

present the methods of attack that have been studied, and order them according to the types 

of networks they have been inflicted upon, as well as by the methods of estimating the 

robustness, or the impact of the attacks on these networks. Finally, we present an example 

of network robustness analysis in directed networks, and we compare our results to the 

known results of the literature. 

The example was performed using the 3.4.3 version of the R programming language, in 

the R-studio software suite, version 1.1.423, and the following packages: igraph, Matrix and 

ggplot2. 

 

1.5. Thesis outline 

 

Chapter 1 contains the introduction. In chapter 2 we provide the necessary background 

definitions on network theory. In chapter 3 we define and classify the various indices of 

network robustness and present some of their properties. In chapter 4 we present the 

methods of attack, as well as tables with the studies they have been tested on. In chapter 5 

we present an example of network analysis on four directed networks. In chapter 6 we 
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present a summary of the known results in the literature that has been presented in chapters 

3 and 4, and compare them with our own findings in chapter 5. In chapter 7 we draw our 

conclusions and present the discussion of our work, as well as its original aspects and draw 

the next steps to be taken. 
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2. Networks 
 

2.1. Introduction 

 

In this chapter we will define the various network structures that have been used and 

studied in the literature, as well as the relevant limitations and properties that the networks 

in these studies have. 

 

2.2. Basic concepts 

 

Definition 2.2.1: Graph, Node/Vertex, Edge, Directed, Undirected, Weighted, Unweighted, 

Simple graph, Size and Order of a graph 

• An undirected, unweighted graph is an ordered pair 𝐺 = (𝑉, 𝐸) comprising a set 𝑉 of 

vertices or nodes or points together with a set 𝐸 of edges or arcs or lines or links, which 

are 2-element subsets of 𝑉 (i.e. an edge is associated with two vertices, and that 

association takes the form of the unordered pair comprising those two vertices). 

• If the set of edges 𝐸 is comprised of ordered pairs, then the graph is a directed graph. 

• If each element of the set of edges 𝐸 has a real number associated to it, then the graph 

along with these values is called a weighted graph. 

• If each edge (𝑢, 𝑣) ∈ 𝐸 is unique in 𝐸 and ∄ 𝑣 ∈ 𝑉 ∶ (𝑣, 𝑣) ∈ 𝐸, then the graph is a simple 

graph. 

• The size of the graph is the number of its edges. 

• The order of the graph is the number of its nodes 
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Definition 2.2.2: Adjacency matrix, Weighted adjacency matrix 

• Let 𝐺 = (𝑉, 𝐸) be a simple graph and with 𝑉 = 𝑣1, 𝑣2, … 𝑣𝑛. Then it can be represented 

by a binary matrix 𝐴𝑖𝑗  with elements 𝑎𝑖𝑗 = 1 if there is an edge between 𝑣𝑖  and 𝑣𝑗  or 

𝑎𝑖𝑗 = 0 if there isn’t. This matrix is the adjacency matrix of the graph. 

• If the graph is weighted, we can replace each 𝑎𝑖𝑗 that equals 1 with the corresponding 

edge weight, thus creating the weighted adjacency matrix. 

 

Definition 2.2.3: Network 

A network is a representation of relations between discrete objects as a graph. If such 

relations are symmetric, then the network is undirected and if they are asymmetric, 

the network is directed. 

 

Definition 2.2.4: Walk, Trail, Path, Length of a path, Distance between nodes, Diameter of a 

graph, Geodesic 

• A walk is an alternating sequence of vertices and edges, starting and ending at a vertex, 

in which each edge is adjacent in the sequence to its two endpoints. In a directed graph 

the ordering of the endpoints of each edge in the sequence must be consistent with the 

direction of the edge. 

• A trail is a walk with no repeated edges. 

• A path is a trail in which all vertices (except possibly the first and last) are distinct. 

• The length of a path is the number of edges it contains. 

• The distance between two nodes of a graph is the length of the shortest path between 

them. 

• Diameter of the graph is the largest distance between two of its nodes inside it. 

• Geodesic between two nodes is the distance of the shortest path between them. 
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Definition 2.2.5: Connected, Weakly/Strongly connected 

• Let 𝐺 = (𝑉, 𝐸) be an undirected graph. If for every pair 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉 there exists a path 

connecting those vertices, then the network is connected. 

• If 𝐺 is directed and there exists a path from 𝑣𝑖  to 𝑣𝑗  or from vj to vi for every 𝑣𝑖 , 𝑣𝑗  ∈ 𝑉, 

then the network is weakly connected. 

• If 𝐺 is directed and there exists a path from 𝑣𝑖  to 𝑣𝑗  and from 𝑣𝑗  to 𝑣𝑖  for every 𝑣𝑖 , 𝑣𝑗  ∈

𝑉, then the network is strongly connected. 

 

Definition 2.2.6: Tree 

An undirected graph is called a tree if there is only one path connecting each pair of 

nodes. 

 

Definition 2.2.7: Density 

The density of a network is the number of existing edges on it, divided by the number 

of possible edges. Alternatively, it is the probability that a possible edge of the network 

exists. 
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Definition 2.2.8: Giant component, Giant bicomponent/biconnected component, Strong giant 

component, Weak giant component 

• The giant component of a network is the largest of its connected components. In the 

cases when there are multiple components of the same order of magnitude as the 

largest one, we can say that the network has more than one giant components.  

• The giant biconnected component or giant bicomponent of the network is the largest 

subgraph where for every pair of nodes 𝑖, 𝑗 there are at least two distinct paths 

connecting them. 

• In the case of directed networks, we can distinguish the strong and the weak giant 

components, as the largest strongly connected and weakly connected components of 

the network. 

 

Definition 2.2.9: Nearest neighbor graph 

The nearest neighbor graph for a set of objects 𝑃 in a metric space is a directed graph 

with 𝑃 being its vertex set and with a directed edge from 𝑝 to 𝑞 where 𝑞, 𝑝 ∈ 𝑃, 

whenever 𝑞 is a nearest neighbor of 𝑝. 

Sometimes the graph is considered as undirected, but it is important to note that the 

property of the nearest neighbor is not a symmetric one. 

 

2.3. Network structure 

 

Here we will define the various notions around a network’s structure. Ordinarily, the 

categorization of networks focuses on their degree distribution and on occasion on other 

elements. 
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Definition 2.3.1: Path/Linear graph, Cycle graph, Star graph, Wheel graph, Gear graph, 

Bipartite Wheel graph, Complete graph 

• A path graph or linear graph is a graph whose vertices can be listed in the order 

𝑣1, 𝑣2, … , 𝑣𝑛 such that all the edges are of the form (𝑣𝑖, 𝑣𝑖+1). 

• A cycle graph is a path graph with the addition of the edge (𝑣1, 𝑣𝑛). 

• A star graph is a tree with one central node and all other nodes connected to it. 

• A wheel graph is a cycle graph with the addition of one node connected to all others. 

• A gear graph, or bipartite wheel graph, is a wheel graph with a node added between 

each pair of adjacent graph vertices of the outer cycle. 

• A complete graph is a graph in which every pair of distinct vertices is connected by an 

edge. 

 

 

Definition 2.3.2: Assortativity coefficient, Assortative/Non-Assortative/Disassortative 

network 

The assortativity coefficient 𝑟 is the Pearson correlation coefficient of the degree 

between pairs of linked nodes (in this calculation, the link of the nodal pair is not 

included). Positive values of r indicate a correlation between nodes of similar degree, 

while negative values indicate relationships between nodes of different degree. When 

𝑟 = 1, the network is said to have perfect assortative mixing patterns, when 𝑟 = 0 the 

network is non-assortative, while at 𝑟 = −1 the network is completely disassortative. 

𝑟 =
∑ 𝑗𝑘(𝑒𝑗𝑘 − 𝑞𝑖𝑞𝑗)𝑗𝑘

∑ [𝑘2𝑞𝑘 − (𝑘𝑞𝑘)2]𝑘

(2.3. 1) 
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Where 𝑗, 𝑘 are the degrees of the adjacent vertices associated with an edge, 𝑒𝑖𝑗 is the 

joint probability distribution of the residual degrees at either of the ends of a randomly 

chosen edge, and 𝑞𝑘 is the normalized degree distribution 

𝑞𝑘 =
(𝑘 + 1)𝑃(𝑘 + 1)

∑ 𝑘𝑃(𝑘)𝑘

(2.3. 2) 

Where 𝑃(𝑘) is the probability a node has degree 𝑘. 

 

Definition 2.3.3: Clustering coefficient 

Clustering coefficient of a network is the number of closed nodal triplets in the network 

divided by the number of all nodal triplets (a triplet being a set of three nodes with at 

least two edges between them). Alternatively: 

𝐶 =
3 ∙ {𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠}

{𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠}
(2.3. 3) 

 

Definition 2.3.4: Erdos-Renyi model 

The Erdos-Renyi model refers to one of two methods of constructing graphs. In the first 

case, originally proposed by Erdos and Renyi 1959, one graph from all possible graphs 

with a fixed number of nodes (𝑁) and edges (𝐸) is picked uniformly at random. While 

in the second case, proposed by Gilbert 1959,  𝑁 nodes are placed, and every edge exists 

with a probability 𝑝, defined in practice as 𝑝 =
𝐸

𝑁(𝑁−1)
. 

 

Definition 2.3.5: Scale free/Scale invariant, Clustered scale free 

• A scale free or scale invariant network is a network whose degree distribution follows 

a power law, at least asymptotically. That is, the fraction 𝑃(𝑑𝑛) of nodes in the network 

having 𝑑𝑛 connections to other nodes goes for large values of 𝑑𝑛 as 𝑃(𝑑𝑛)~𝑑𝑛
−𝛾

 where 

𝛾 is a parameter whose value is usually, but not necessarily, in the range 2 < 𝛾 < 3. 
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• A clustered scale free network is a scale free network modelled with increased 

clustering coefficient. This is achieved by reserving some edges for each node to be 

connected to neighbors of neighbors (Holme and Kim 2002). 

 

Definition 2.3.6: Small world 

A small-world network is a type network in which most nodes are not neighbors of one 

another, but the neighbors of any given node are likely to be neighbors of each other 

and most nodes can be reached from every other node by a small number of steps. 

Specifically, a small-world network is defined to be a network where the average path 

length 𝐿 between two randomly chosen nodes grows proportionally to the logarithm 

of the number of nodes 𝑁 in the network, that is: 𝐿 ∝ log (𝑁). 

 

Definition 2.3.7: Hierarchical network 

A hierarchical network is a subclass of scale-free networks distinguished by the 

behavior of the clustering coefficients: decreasing as the degree increases, and 

remaining invariant as the order of the network. We remind the reader that in most 

scale free networks, the clustering coefficients decrease as the order increases.  

 

Dodds et al. 2003 developed a model that takes as input a “pure hierarchy”, that is, a 

tree with a single node as a root that is connected to b (branching ratio) other nodes, who, 

in turn, are connected to b more nodes. There are L levels (including the root node in the 1st 

level). Afterwards, each edge, between every pair of nodes not already connected with an 

edge, appears with a suitably designed probability. 
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Definition 2.3.8: Bipartite 

A bipartite graph is a graph whose vertices can be divided into two disjoint and 

independent sets 𝑈 and 𝑉 such that every edge connects a vertex in 𝑈 to one in 𝑉. 

Vertex sets 𝑈 and 𝑉 are usually called the parts of the graph. Equivalently, a bipartite 

graph is a graph that does not contain any odd-length cycles. 

 

Definition 2.3.9: L-Expansion (Costa 2004) 

The L-expansion of a given network 𝐺(𝑉, 𝐸) (directed or not) is a graph where 

connections from node 𝑖 to node 𝑗 are established whenever there exists a self-avoiding 

path (i.e. never passing by the same node twice) of length 𝐿 connecting 𝑖 to 𝑗 in 𝐺.  

 

Definition 2.3.10: Q-Augmentation (Costa 2004) 

The Q-augmentation of a network 𝐺(𝑉, 𝐸) (directed or not) is the union of every L-

expansion of 𝐺, ∀ 𝐿 ≤ 𝑄. 
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For example 

 

Figure 2.3.1: A simple graph and its respective 1, 2 and 3-augmentations. The added edges at each step are 
shown with thicker lines. 

(Costa. 2004) 
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2.4. Network functionality 

 

There are several real-world evolutions modeled by networks. For example, a public 

transport network could have values for the number of passengers that go from place to 

place, as well as the maximum number of passengers able to, or a food web might require 

that each species has access to some other species that it feeds upon. 

Real networks usually involve structural and/or processability requirements. The 

structural limitations refer to conditions on the nodes and/or edges. For example, the nodes 

which if disconnected, certain functions will stop. For example, food webs (Allesina and 

Pascual 2009, Dunne et al. 2002) and plant-pollinator networks (Memmott et al. 2004, 

Kaiser-Bundury et al. 2010, Santamaria et al. 2014, Dominguez-Garcia and Munoz 2015 and 

Garcia-Algarra et al. 2017.) 

Examples of processability conditions are:  In flow networks, there is a limit to how 

much flow a node or an edge can handle. For example, there is finite space in a train and thus, 

a finite number of people can travel at any given time, another example is the electrical 

current that a power line can hold before it fails due to overloading. In some cases, like the 

train example, the edge continues functioning, but only up to its capacity. Such cases have 

been studied by Dodds et al. 2003, Wilkinson et al. 2011, Wagner 2015, Dunn and Wilkinson 

2015. While in other cases, like the power line example, the node or edge stops functioning 

entirely, and the respective flow might be lost or redistributed in the network, causing other 

edges or nodes to fail. Such cases have been studied by Motter and Lai 2002, Moreno et al. 

2003 

Examples of networks involving both processability and structural limitations are:  

electricity or water distribution networks. There are certain nodes that any node must be 

connected to at least one of them, such as power distribution stations or water tanks, and 

there is always an upper limit on flow between nodes. Such a case has been studied by Albert 

et al. 2004. 

There are also networks with the ability to rewire the edges whose start or end node 

has failed. For example, air traffic networks, where a plane can land on a different airport 
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than the one it started in. We call such networks self-rewiring networks. Such networks have 

been studied by Kaiser-Bundury et al. 2010, Wilkinson et al. 2011, Duijn et al. 2014 and Dunn 

and Wilkinson 2015.  
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3. Indices for robustness and vulnerability 
 

3.1. Introduction 

 

In this chapter, we will analyze the methods to measure the robustness or the fragility 

of a network. We shall divide these into two categories, with a subcategory each. 

• Measures defined according to an attack. This means picking a strategy to remove 

nodes, and defining the mechanics of the network, and then measuring the impact the 

specific attack strategy has according to these mechanics. 

o Worst scenario measures. Derived by measuring the most effective attack possible 

on a network, according to the mechanics of the network and the variables we are 

interested in. 

Quoting Li et al. 2005: In an analysis of the vulnerability of networks to disruption, 

three important quantities […] are (1) the number of elements that are not functioning, (2) 

the number of remaining connected subnetworks and (3) the order of a largest remaining 

group within which mutual communication can still occur. 

• Measures derived from the networks structure. These measures are dependent only on 

the network itself, and perhaps its mechanics, and are independent of any attack 

method. Such measures are usually obtained by making compromises on their 

accuracy, since the impact of an attack can vary greatly, but are expected to have their 

highest values for complete networks (networks that are the hardest to disconnect). 

o Spectral graph measures. This subcategory includes measures derived from the 

eigenvalues and eigenvectors of the adjacency or the Laplacian matrix, their 

weighted variants, or other matrices derived by them. 

There can be cases of overlapping in these subcategories, as many network measures 

can be calculated both by calculations on the network and by spectral methods. Such cases 

are listed among the spectral measures, since they are usually easier to calculate this way. 
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3.2. Worst case scenario - attack dependent measures 

 

Counterintuitively, the simplest, and historically the first, methods of measuring a 

network’s robustness, are worst case scenario attack dependent measures. Such measures 

are unique for each network and procure a quantitative estimate for the damage a network 

can take while maintaining a specified condition. As such, they have been widely studied for 

a lot of basic graph structures. However, they frequently demand the calculation of every 

possible attack, and they cannot always be adjusted easily for changes in the network. 

Because they are computationally taxing they are not generally used in real world network 

studies. A point to be made, is that most of the following measures can be used to measure 

the course of the impact of a specific, repeated, attack on a network. However, this would not 

necessarily be a decreasing function of removed nodes. 

 

Connectivity indices 

 

Definition 3.2.1: Vertex connectivity, Edge connectivity 

• The vertex connectivity of an undirected and unweighted graph is defined as the 

smallest cardinality of a set of vertices 𝑆 ⊂ 𝑉(𝐺), such that 𝐺 − 𝑆 is a disconnected 

graph. The vertex connectivity is usually denoted by 𝜅𝑣. 

• The edge connectivity of an undirected, unweighted graph is defined as the smallest 

cardinality of a set of edges 𝑆 ⊂ 𝐸(𝐺), such that 𝐺 − 𝑆 is a disconnected graph. The edge 

connectivity is usually denoted by 𝜅𝑒 . 

 

As the removal of a node, entails the removal of all the edges connected to it, the 

following is self-evident. 
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Corollary 3.2.1 

For any undirected, unweighted graph, graph G, where 𝐶𝑑(𝑣) is the degree of node 𝑣, it 

follows that 

𝜅𝑣 ≤ 𝜅𝑒 ≤ 𝑚𝑖𝑛
𝑣∈𝑉(𝐺)

𝐶𝑑(𝑣) (3.2. 1) 

 

Definition 3.2.2: Conditional connectivity (Harary 1983) 

Conditional connectivity of any graph 𝐺, with respect to some specific property 𝑃 is 

defined as the smallest cardinality of a set of vertices 𝑆 ⊂ 𝑉(𝐺), such that every 

component in 𝐺 − 𝑆 has the property 𝑃. The conditional connectivity is usually denoted 

by 𝜅𝑣
𝑃. 

The same definition can be applied for a conditional edge connectivity. It is obvious that both 

edge and vertex connectivity are specific instances of their respective conditional 

connectivity, with the property of being connected to the rest of the nodes in the graph. 

 

The vertex and edge connectivity of the network give answer to the question of how 

many nodes or edges must be removed to create a disconnection. However, it does not 

address the issue of how severe that disconnection is. For example, a complete network 𝐾𝑁 

with an extra node connected with only one other, will have the exact same edge and vertex 

connectivity as any tree.  

 

Isoperimetric number 

 

Expanding on the idea of connectivity, the isoperimetric number is defined, based on 

the notion that smaller graphs will inevitably have small values for their connectivity, yet 

larger graphs with similar values are flawed. 
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Definition 3.2.3: Isoperimetric number/Cheeger constant (Mohar 1989) 

Let 𝐺(𝑉, 𝐸) be a finite graph. If 𝑋 ⊆ 𝑉 then 𝜕𝑋 denotes the edge-border, that is the set 

of edges of 𝐺 that have one end in 𝑋 and the other end in 𝑉\𝑋. The quantity  

𝑖(𝐺) = min
𝑋⊆𝑉

|𝜕𝑋|

|𝑋|
(3.2. 2) 

Where the minimum is taken over all non-empty 𝑋 ⊆ 𝑉 satisfying |𝑋| ≤
1

2
|𝑉|, is called 

the isoperimetric number of 𝐺, also called the Cheeger constant of 𝐺. 

 

Fault diameter 

 

Fault diameter of a network is the greatest damage to its ability to communicate, when 

subjected to an intentional removal of nodes that is not enough to disconnect it. 

 

Definition 3.2.4: Fault diameter (Krishnamoorthy and Krishnamurthy 1987) 

Fault diameter of a graph 𝐺 with vertex connectivity 𝜅𝑣 is defined as the largest 

obtainable diameter of that graph, after the removal of 𝜅𝑣 − 1 vertices. It is symbolized 

as 𝑓𝐺 . 

 

Definition 3.2.5: Strongly resilient, Weakly resilient (Krishnamoorthy and Krishnamurthy 

1987) 

• A graph, or a class of graphs is strongly resilient if there exists a constant 𝑡 such that 

𝑓𝐺 ≤ 𝛿 + 𝑡 (3.2. 3) 

• A graph, or a class of graphs is weakly resilient if there exists a constant 𝑡 such that  

𝑓𝐺 ≤ 𝑡 ∙ 𝛿 (3.2. 4) 
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Toughness 

 

Definition 3.2.6: Toughness (Chvatal 1973) 

Toughness of an undirected graph 𝐺 is the maximum real number 𝑡, such that deletion 

of |𝑆| nodes (can also be defined for edges) from 𝐺 results in a connected graph, or one 

that has at most 𝑠/𝑡 components. 

𝑡(𝐺) = min
∀𝑆⊆𝑉

{
|𝑆|

𝑐(𝐺 − 𝑆)
} (3.2. 5) 

Where 𝑆 denotes the set of deleted vertices and 𝑐(𝐺) the number of components of G. 

 

Theorem 3.2.1 

The toughness of a graph has the following properties 

• Increases (not purely) with edge addition 

• If 𝐺 is not complete, then  

𝑡(𝐺) ≤
1

2
𝜅𝑣(𝐺) (3.2. 6) 

• If 𝐺 is not complete, then  

𝑡(𝐺) ≤
|𝑉 − 𝑀𝐼𝑆|

|𝑀𝐼𝑆|
(3.2. 7) 

where 𝑀𝐼𝑆 denotes the maximal independent set. 

Proof: Chvatal 1973 

 

The toughness of a graph has been studied for gear graphs by Kirlangic 2009 and for 

nearest neighbor graphs by Dunkum and Lanphier 2014. 
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Scattering Number 

 

Definition 3.2.7: Scattering number (Jung 1978) 

Scattering number of a finite graph 𝐺(𝑉, 𝐸) is defined as  

𝑠𝑐(𝐺) = max
∀𝑆⊆𝑉

{𝑐(𝐺 − 𝑆) − |𝑆| ∶ c(G − S) ≠ 1} (3.2. 8) 

Where 𝑐(𝐺) denotes the number of components in 𝐺. 

 

Definition 3.2.8: Edge scattering number (Aslan 2014) 

Scattering number of a finite graph 𝐺(𝑉, 𝐸) is defined as  

𝑠𝑐𝑒(𝐺) = max
∀𝑆⊆𝐸

{𝑐(𝐺 − 𝑆) − |𝑆| ∶ c(G − S) ≠ 1} (3.2. 9) 

Where 𝑐(𝐺) denotes the number of components in 𝐺. 

 

“The scattering number is in a certain sense the ‘additive dual’ for the concept of 

toughness” (Jung 1978). 

 

Its basic properties, along with some parallelisms with toughness have been studied by 

Kirlangic 2002. Some of its properties in Hamiltonian graphs have been observed by Zhang 

and Wang 2001. It has also been studied for split graphs by Li et al. 2008 and nearest 

neighbor graphs by Dunkum and Lanphier 2014.  
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Integrity 

 

Definition 3.2.9: Integrity (Barefoot et al. 1987, as presented by Goddard and Sward 1990) 

The integrity of a graph 𝐺(𝑉, 𝐸) is defined as such 

𝐼(𝐺) ≔ min
S⊂V

{|𝑆| + 𝑚(𝐺 − 𝑆)} (3.2. 10) 

Where 𝑚(𝐺) is the order (number of vertices) of the largest component of 𝐺. 

 

Definition 3.2.10: Edge integrity (Bagga et al. 1992) 

The integrity of a graph 𝐺(𝑉, 𝐸) is defined as such 

𝐼𝑒(𝐺) ≔ min
S⊂E

{|𝑆| + 𝑚(𝐺 − 𝑆)} (3.2. 11) 

Where 𝑚(𝐺) is the order (number of vertices) of the largest component of 𝐺. 

 

 

Integrity is based on the idea that an attacker wants to disconnect a network as much 

as possible, with the least amount of attacks (Bagga et al. 1992). It has the advantage of not 

being oversensitive in local weakness (Goddard and Sward 1990), as for example having a 

relatively small number of isolated nodes connected in a single other node being an obvious 

liability to some of the aforementioned measures. 

 

Theorem 3.2.2 

• 𝐼(𝐺) ≤ 𝑉𝐶(𝐺) + 1 (3.2. 12) 

where 𝑉𝐶(𝐺) is the vertex cover number of 𝐺. 

• 1 ≤ 𝐼(𝐺) ≤ 𝑝 (3.2. 13) 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

42 
 

where p is the order of the network. 

• 𝐼(𝐺) ≥ min(𝑑(𝐺)) + 1 (3.2. 14) 

• If 𝐺 is connected and not trivial, then 

𝐼(𝐺) = 1 + min
𝑣∈𝑉(𝐺)

𝐼(𝐺 − 𝑣) (3.2. 15) 

Proof: Goddard and Sward 1990. 

 

Definition 3.2.11: Integrity family (Goddard 1994) 

The integrity family of measures is the class of measures of the form 

𝛹(𝐺) ≔ min
X⊂V(G) 𝑜𝑟 𝐸(𝐺)

{|𝑋| + 𝜓(𝐺 − 𝑋)} (3.2. 16) 

Where 𝜓(𝐺) is a network parameter.  

 

For example, for 𝜓 being the order of the largest component we get integrity and for 𝜓 

being the number of components we get toughness. 

 

A more general class of measures was also proposed as 

𝛷𝑓(𝐺) ≔ min
X⊂V(G)

𝑓(|𝑋|, 𝜓(𝐺 − 𝑆)) (3.2. 17) 

Where 𝑓 is a given function. 

 

The integrity has further been studied for cubic graphs by Vince 2004, for nearest 

neighbor graphs by Dunkum and Lanphier 2014, for split graphs by Li et al. 2008, for Harary 

graphs by Li et al. 2009 and in general terms by Goddard and Sward 1990, Beineke et al. 

1991, Bagga et al. 1992, Drange et al. 1996 and by Aslan and Bacak-Turan 2016. While the 
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edge-integrity has been studied by Bagga et al. 1992, Laskar et al. 1993, Bagga et al. 1994 

and Moazzami 2011. 

 

Theorem 3.2.3 

• 2 ≤ 𝐼(𝐺) ≤ 𝐼𝑒(𝐺) ≤ 𝑝 (3.2. 18) 

• 𝐼𝑒(𝐺) ≥ [2√𝑝]
+
− 1 (3.2. 19) 

If 𝐺 is connected 

• If 𝜅𝑒 ≥ 2, then 

𝐼𝑒(𝐺) ≥ min {[√2𝑝 ∙ 𝜅𝑣(𝐺)]
+

, 𝑝} (3.2. 20) 

Where 𝑝 is the order of the graph. 

Proof: Bagga et al. 1994. 

 

There are a lot of measures based around the idea of integrity, but most of them have 

not been thoroughly studied, since other, more informative measures have appeared. 

Nevertheless, they are mentioned here in order to complete the list. 

 

Definition 3.2.12: Hub-integrity (Mahde et al. 2010) 

The hub-integrity of a graph is defined as 

𝐼(𝐺) ≔ min
X⊂V(G)

{|𝑋| + 𝑚(𝐺 − 𝑋)} (3.2. 21) 

 

Where 𝑋 is taken such that ∀𝑥, 𝑦 ∈ 𝑉(𝐺) ∃ 𝑋 − path in 𝐺 between 𝑥 and 𝑦.  
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Definition 3.2.13: Mean integrity (Bagga et al. 1992) 

The mean integrity of a graph is defined as 

𝐽(𝐺) ≔ min
X⊂V(G)

{|𝑋| + �̅�(𝐺 − 𝑋)} (3.2. 22) 

Where �̅� the average component order �̅�(𝐺) ≔
1

𝑝
∑ 𝑝𝑣(𝐺)𝑣 ∈𝑉(𝐺) , where 𝑝𝑣 denotes the 

number of vertices of v-th component and 𝑝 the number of vertices in the graph. 

Mean integrity has also been recently studied by Aslan and Bacak-Turan 2016. 

 

Tenacity 

 

Integrity, toughness and scattering number, all take into account the number of nodes 

deleted in an optimal attack on the network. In addition, integrity considers the order of the 

largest component after the attack, where scattering number and toughness consider the 

number of the components remaining. Combining these ideas, we get the next two measures. 

 

Definition 3.2.14: Tenacity (Cozzens et al. 1995, as presented by Li et al. 2008) 

For a noncomplete graph 𝐺, tenacity is defined as 

𝑇(𝐺) = min
S⊂V(G)

{
|𝑆| + 𝑚(𝐺 − 𝑆)

𝑐(𝐺 − 𝑆)
} (3.2. 23) 

Such that 𝜔(𝐺 − 𝑆) ≥ 1. Where 𝑚(𝐺) denotes the order (number of vertices) of the 

largest component in 𝐺, and 𝑐(𝐺) the number of components in 𝐺. 

 

Definition 3.2.15: Mix-tenacity (Moazzami and Salehian 2008) 

For a noncomplete graph 𝐺, mix-tenacity is defined as 
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𝑇𝑚(𝐺) = min
S⊂E(G)

{
|𝑆| + 𝑚𝑒(𝐺 − 𝑆)

𝑐(𝐺 − 𝑆)
} (3.2. 24) 

Such that 𝜔(𝐺 − 𝑆) ≥ 1. Where 𝑚(𝐺) denotes the order (number of vertices) of the 

largest component in 𝐺, and 𝑐(𝐺) the number of components in 𝐺. 

 

Definition 3.2.16: Edge tenacity 

For a noncomplete graph 𝐺, edge tenacity is defined as 

𝑇𝑒(𝐺) = min
S⊂E(G)

{
|𝑆| + 𝑚(𝐺 − 𝑆)

𝑐(𝐺 − 𝑆)
} (3.2. 25) 

Such that 𝜔(𝐺 − 𝑆) ≥ 1. Where 𝑚(𝐺) denotes the size (number of edges) of the largest 

component in 𝐺, and 𝑐(𝐺) the number of components in 𝐺. 

 

It has been shown (Moazzami 1999) that in some cases of graphs, tenacity is more able 

to measure the differences in the vulnerability of graphs than toughness or integrity, 

“between graphs that intuitively should have different levels of vulnerability”. 

 

The various instances of tenacity have further been studied by Li et al. 2008 for split 

graphs, by Moazzami 2010 for n-connected graphs with minimal edges and by Dunkum and 

Lanphier 2014 for nearest neighbor graphs. 

 

Rupture Degree 

 

Following the relationship of scattering number and toughness, rupture degree, the 

additive dual of toughness, is introduced. 
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Definition 3.2.17: Rupture degree (Li et al. 2005) 

The rupture degree of an incomplete connected graph 𝐺 is defined as 

𝑟(𝐺) = max
S⊂V(G)

{𝑐(𝐺 − 𝑆) − |𝑆| − 𝑚(𝐺 − 𝑆)} (3.2. 26) 

Such that 𝜔(𝐺 − 𝑆) ≥ 1. Where 𝑚(𝐺) denotes the order (number of vertices) of the 

largest component in 𝐺, and 𝑐(𝐺) the number of components in 𝐺. 

 

The rupture degree has further been studied by Dunkum and Lanphier for nearest 

neighbor graphs, by Li et al. 2008 for split graphs and by Kirlangic 2009 for gear graphs. 

Finally, by Li and Zhang 2010 the graphs with maximal rupture degree for a given number 

of edges and vertices are calculated, as well as the graphs with maximal number of edges for 

a given number of vertices and rupture degree, but the problem of finding the graph with 

minimal number of edges in the latter case, remains open due to its complexity.  

 

Definition 3.2.18: Mean rupture degree (Aslan and Bacak-Turan 2016) 

The mean rupture degree of an incomplete connected graph 𝐺 is defined by 

�̅�(𝐺) = max
S⊂V(G)

{𝑐(𝐺 − 𝑆) − |𝑆| − �̅�(𝐺 − 𝑆)} (3.2. 27) 

Such that 𝜔(𝐺 − 𝑆) ≥ 1. Where �̅� is the average component order (�̅�(𝐺) ≔

1

𝑝
∑ 𝑝𝑣(𝐺)𝑣 ∈𝑉(𝐺) ), where 𝑝𝑣 denotes the number of vertices of the 𝑣-th component and 

𝑝 the number of vertices in 𝐺 and 𝑐(𝐺) the number of components. 

 

Elasticity of MGG-Robustness 

 

Let 𝑓𝑖𝑗  denote the interaction, or flow, between each pair of nodes 𝑖 and 𝑗, let also 𝛺 

indicate the total node interaction in the network, expressed as 
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𝛺 = ∑ ∑ 𝑓𝑖𝑗
𝑗∈𝑉(𝐺)𝑖∈𝑉(𝐺)

(3.2. 28) 

and let 𝛺𝑋 indicate the total node interaction inhibited by removing 𝑋 ⊂ 𝐸(𝐺) from 𝐺, 

expressed as 

𝛺𝑋 = ∑ ∑ 𝑓𝑖𝑗𝑍𝑖𝑗
𝑋

𝑗∈𝑉(𝐺)𝑖∈𝑉(𝐺)

(3.2. 29) 

Where 𝑍𝑖𝑗
𝑋 = 0, if a path from 𝑖 to 𝑗 exists in 𝐺 − 𝑋, and 1 otherwise. 

 

Definition 3.2.19: MGG-robustness (Matisziw et al. 2012) 

The MGG-robustness of a network, under an attack of magnitude 𝑘, is defined as the 

lowest value for the uninhibited total nodal interactions, expressed as 

Γk = 𝛺 − ( max
𝑋⊂𝐸,   |𝛸|=𝑘

(𝛺𝑋)) (3.2. 30) 

Originally called simply robustness, we call it MGG-robustness for clarification purposes, 

after the initials of the authors of the article. 

 

Definition 3.2.20: MGG-elasticity/Elasticity of MGG-robustness (Matisziw et al. 2012) 

The elasticity of MGG-robustness or MGG-elasticity is defined as the percentage of 

change in the robustness of the network over the percentage of change in the number 

of deleted edges. 

𝐸𝛤𝑘 = |
%𝛥𝛤𝑘

%𝛥𝑝
| (3.2. 31) 

The MGG-elasticity was originally defined in a dynamic environment for each epoch. This has 

been omitted since it only served the purposes of comparing the network at different 

timeframes (essentially comparing different networks) and does not affect the definition. 
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“A large value in MGG-elasticity indicates greater potential for a mechanism to 

efficiently degrade network performance. Conversely, robustness elasticity less than 1.0 

indicates decreasing returns to scale, where changes in network robustness are less sensitive 

to changes in the magnitude of arc deletion” (Matisziw et al. 2012). 

 

 The MGG-elasticity was demonstrated as a measure on the Internet2 backbone 

network. 

 

3.3. General attack dependent measures 

 

In this section, the various measures quantify the impact of a specific attack strategy 

on the network. These types of measures have the advantage of being able to compare the 

resilience of two different networks to a specific attack, as well as the impact of two different 

attacks on a specific network. 

The worst-scenario measures that take into account the values that Li et al. 2005 

proposed (integrity, toughness, rupture degree, scattering number, tenacity and their 

variants), can be adapted to compare any attack pattern, or to find the optimal points in 

them. For example, one can compute and compare the impact of a few attack strategies by 

calculating the values of the tenacity formula,  

|𝑆| + 𝑚(𝐺 − 𝑆)

𝜔(𝐺 − 𝑆)
(3.3. 1) 

without minimizing it over the possible attack, but rather calculating it for a specific attack. 

 

 

 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

49 
 

Critical Threshold 

 

The study of the order of the change in the network’s components leads to the idea of 

considering the specific instance when an attack disintegrates the network into a lot of small, 

disconnected components. 

 

Definition 3.3.1:  Critical threshold (Cohen et al. 2000) 

The critical threshold of a graph subjected to an attack is the critical value 𝑝𝑐  of the 

probability of removal existence of each node, below which the graph contains a 

connected cluster (its giant component) that spans the entire graph (its order is 

proportional to that of the entire graph); while beyond it, there is no such component. 

Other definitions require the giant component to be of the same order of magnitude as the 

whole graph above criticality.  

 

 In simple terms this means that if the nodes that are removed are below this 

percentage, then the network resembles one large network, possibly with a few isolated 

clusters. If more nodes than this percentage are removed, then the network is consisted of 

many small clusters. 

 

Figure 3.3.1: (from left to right) Above the critical threshold. At critical threshold. Below the critical threshold.  

(Albert et al. 2000) 
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This idea was first shown by Albert et al. 2000 for scale free and Erdos-Renyi networks, 

for random and degree-based attacks. It was further studied and used by Albert et al. 2000, 

Paul et al. 2004, Cohen et al. 2000, Valente et al. 2004, Tanizawa et al. 2005, Wu et al. 2007. 

 

Figure 3.3.2: Network fragmentation under random failures and attacks on the nodes with the highest degree. 
Left panel is an Erdos-Renyi network, right panel is a Scale-Free. The relative order of the largest connected 
component S (open symbols) and the average order of the isolated components 〈𝑠〉 (filled symbols) as a 
function of the fraction of removed nodes f. 𝑓𝑐 denotes the instance where the network has no single distinct 
larger component. 

(Albert et al. 2000) 

 

As the definition is dependent on a variable order of a network model, which real 

networks may lack, we propose the following measure. 

 

a-Fragmentation threshold 

 

Definition 3.3.2: a-Fragmentation threshold 

a-Fragmentation threshold, 0 ≤ 𝑎 ≤ 1, of a network 𝐺(𝑉, 𝐸) is the minimal percentage 

of nodes or links to be removed in order to split the giant component into components 
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with maximal order not greater than 𝑎𝑁𝑔𝑖𝑎𝑛𝑡, where 𝑁𝑔𝑖𝑎𝑛𝑡 is the order of the giant 

component. 𝑎 is the percentage of the reduction of the giant component.  

 

For example, 𝑎 = 0.5 means that the resulting giant component contains at most half 

of the nodes of the original giant component, 𝑎 = 0 means that all the nodes or links of the 

network have been removed, 𝑎 = 1 means that no removals have occured. 

This percentage can be calculated exactly in case of a deterministic method of attack, 

or approximated as an expected value in case of probabilistic attacks. 

The amount of damage usually is a percentage of the disconnected, or cascaded nodes 

(Dunne et al. 2002, Buhl et al. 2004, Santamaria et al. 2014) or the time of appearance of 

many small clusters (Xu and Chen 2008).  

 

 

Effect of the attack on the network’s functionality 

 

There is a variety of measures that can be important for a network, but not directly 

related to robustness. For example, a low value of the average path length can indicate a well-

connected and efficient network. However, the average path length of a finite star graph is 

strictly less than 2, showing us that no message has to travel a long distance to reach its 

destination, but a single targeted node removal can shatter the network. It is also important 

to note that the star graph is very robust to edge removals and random node removals. 

Similarly, the wheel graph’s average path length is also strictly lower than 2, but after 

removing the central node it rises to that of a cycle graph. 

The previous examples indicate two things. Firstly, different methods of attack can have 

very different effects on a network and secondly, it can be important to consider the changes 

a network measure undergoes when the network is subject to a specific attack. This can be 

done by plotting the said measure over the number, of nodes or edges removed in the 
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network. The information of this plot can also be further compressed in a single value, by 

studying the area under this curve (AUC), but this is only useful if the measure studied is 

decreasing, not necessarily purely, as nodes or edges are removed. While also taking care to 

fulfill one of the following:   

• Chose an attack that keeps the network connected.  

• Chose a measure that can be defined for disconnected networks. 

• At every disconnection chose only one component of the network to be studied. 

Finally, when studying the area under the curve of a measure, it is more functional if both 

axes of the graph are normalized, so it can be used comparatively with greater ease. 

 

Definition 3.3.3: Area under curve 

Let 𝑘 be a network measure defined for a network 𝐺(𝑉, 𝐸) according to its properties 

(directions, weights, etc.). We define the Area Under the Curve of the metric 𝑘, when 

the network is under 𝑛 distinct node or edge attacks as such 

𝐴𝑈𝐶𝑘(𝐺) =
2∑ 𝑘𝑖 − 𝑘0 − 𝑘𝑛

𝑛
𝑘=0

2 𝑛2
 (3.3. 2) 

Where 𝑛 ≤ |𝑉|  in the case of node attacks, or 𝑛 ≤ |𝐸| in the case of edge attacks. 

This is essentially the normalized average of the measure over the attack. 

 

Change in the diameter or the average distance - Distance vulnerability 

 

It has been noted (Albert et al. 2000, Ellens 2011) that the diameter of a network, and 

its ability to remain unchanged during an attack, is an important indicator for the effect an 

attack has on a network. Similarly, the average distance between nodes in a connected 

network shows us how well connected it is, and is less affected, as a measure, by long tails 

that might exist in the network. These measures are useful for comparing various sequences 
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of attacks, but only for small proportions of large networks, and only in cases where the 

network does not split in two large disconnected components. They do, however, give rise 

to various other measures based on the idea that disconnection is not the only danger a 

network faces when subjected to an attack, but also the increased difficulty on 

communications. Furthermore, the existence of frequently used long paths is a sign of 

vulnerability, because they are harder to protect against intentional attacks, and are more 

probable, to suffer random failures as they contain more nodes and edges. Therefore, a 

measure has been proposed (Ellens 2011) for flow networks whose flow is transferred by 

the shortest available path. 

 

Definition 3.3.4: Distance vulnerability (Ellens 2011) 

The distance vulnerability for a network 𝐺 that has a traffic matrix 𝑇 with entries 𝑡𝑖𝑗  

and 𝑑𝑖𝑗  denoting the distance between nodes 𝑖 and 𝑗, is defined as the average distance 

weighted by traffic. 

�̅�𝑇 =
1

∑ ∑ 𝑡𝑖𝑗
𝑛
𝑗=𝑖+1

𝑛
𝑖=1

∑ ∑ 𝑡𝑖𝑗𝑑𝑖𝑗

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

(3.3. 3) 

The problem of such a measure is that it does not take into account alternative paths, or 

different ways of distributing the traffic of the network. 

 

Change in the order of the giant component 

 

The fundamental concept of networks is interconnectedness. However, simply 

disconnecting one, or even a few nodes, cannot be considered as significant damage for a 

network with a few thousand of them. So, it follows, that the decline the largest component 

of the network undergoes, is an important index in the attempt to understand the impact an 

attack has on it, either by studying the order of the giant component relative to its original 

order, 𝑆′/𝑆 (Albert et al. 2000, Sole and Montoya 2001, Holme et al. 2002, Buhl et al. 2004, 
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Costa 2004, Estrada 2006, Xu and Chen 2008, Zhang et al. 2011, Iyer et al. 2013) or by 

studying the proportion of nodes still connected in the largest component, 𝑆′/𝑁′ (Deng and 

Wu 2015, Deng and Wu 2016), while another approach was to measure the percentage of 

nodes disconnected from the giant component (Albert et al. 2004). For the same network, 

the efficiency of different deconstruction strategies can be compared by examining the area 

under the curve of the relative order of the largest component and the percentage of 

removed nodes (Kasthrinathna and Mahendra 2013, Wagner 2015. This idea was also 

implemented by Schneider et al. 2010, who measured the average giant component order at 

every instance of the attack. 

The order, normalized with respect to the order of the initial giant component, could 

also be used to compare the impact of a specific deconstruction strategy on different 

networks. 

Another view of considering the interconnectedness, is considering the availability on 

alternative paths. Newman and Ghosal 2007 studied the change in the order of the largest 

biconnected component both as it appears in various network models, and as it declines 

when subjected to an attack. It was shown that in most network creation models (Newman 

and Ghosal 2007), the probability of a node to belong in a small bicomponent goes to zero as 

the network increases in order. It is also found that the same phenomenon arises in some 

real-world networks as well. 

Dodds et al. 2003 studied the propagation of failures due to congestion and suggested 

another point of view of the change in the order of the giant component of a network under 

attack, attempting to bridge the simplicity of studying the order of the largest component 

and the importance of the magnitude of the attack. 

 

Definition 3.3.5: Connectivity robustness (Dodds et al. 2003) 

The connectivity robustness of a network is defined as 

𝐶𝑟 =
𝑆

𝑁 − 𝑁𝑎
(3.3. 4) 
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Where 𝑆 is the order of the giant component after the removal of 𝑁𝑎 𝑛𝑜𝑑𝑒𝑠. 

 

The opposite approach has been taken by Dunne et al. 2002 and by Memmot et al. 2004 

for bipartite graphs, where they measured the cumulative indirect removals (caused by the 

mechanics of the network) over the direct removals (caused by the attacker). After taking 

into consideration the percentage of vertices removed to achieve these secondary 

extinctions, this measure contains the same information as the percentage of vertices still in 

the network.  

 

Definition 3.3.6: Extinction area (Allesina and Pascual 2009), Bipartite extinction area 

(Kaiser-Bunbury et al. 2010), Weighted extinction area (Kaiser-Bunbury et al 2010) 

• In networks with mechanics that cause nodes to fail as a result to an attack, extinction 

area is the area under the curve of the normalized cumulative number of indirectly 

removed nodes (nodes that failed due to the mechanics of the network, also called 

secondary extinctions) over the normalized number of directly removed nodes (nodes 

removed during the attack, also called primary extinctions). Extinction area is equal to 

1 if all nodes fail after the first removal and equal to 0.5 if no secondary extinctions 

occur. 

• The bipartite extinction area is defined for attacks only on one group of nodes, where 

only the indirect removals of the other group are calculated. 

• If a value is attached to each node, for example, if the nodes represent species with 

different populations, then then instead of using the normalized number of nodes, one 

could use the normalized population. This is the weighted extinction area or the 

weighted bipartite extinction area, and the same limits apply for its values. 

 

The extinction area was defined and used by Allesina and Pascual 2009.  
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The bipartite extinction area was defined and used by Kaiser-Bunbury et al. 2010, it 

was also used by Dominguez-Garcia and Munoz 2014. 

The weighted variant was defined by Kaiser-Bunbury et al. 2010 

 

SSSK-Elasticity 

 

For the specific case of flow networks, the SSSK-elasticity of a network has been proposed  

 

Definition 3.3.7: SSSK-Elasticity (Sydney et al. 2008) 

The SSSK-elasticity of an undirected, unweighted network in respect to an attack is 

defined as the area under the curve (AUC) of  

𝑇𝑝(𝐺) =
1

𝑓𝑚𝑎𝑥
∑𝑇𝑗𝑘
𝑗𝑘

(3.3. 5) 

over the percentage of the remaining nodes in the network, denoted as 𝐸𝑙(𝐺), where 

𝑇𝑗𝑘 = 0 for 𝑗 = 𝑘 and 𝑇𝑗𝑘 = 1 for 𝑗 ≠ 𝑘 and 𝑓𝑚𝑎𝑥  denoting the maximum number of 

flows through a bottlenecked link. 

Originally called elasticity, we refer to it as SSSK-elasticity, for clarification purposes, after 

the initials of the authors of the article. 

 

SSSK-elasticity can be used to compare various methods of distributing traffic in a network 

as well as comparing the ability of networks to withstand attacks. It has been shown, on 

various networks (Sydney et al. 2008) subjected to highest degree attacks, to be correlated 

positively with assortativity. 
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Change in the efficiency of the network 

 

Following closely the idea that the distance information must travel in the network is 

important, a measure is defined (Latora and Marchiori 2001 called it global efficiency, the 

same measure was called average inverse geodesic length by Holme et al. 2002) that 

encompasses the distance between every set of nodes in a single value. 

 

Definition 3.3.8: Efficiency/Global efficiency 

The efficiency or global efficiency of network is defined as the average inverse geodesic. 

In other words 

𝐸(𝐺) =
1

𝑁(𝑁 − 1)
∑

1

𝑑(𝑖, 𝑗)
𝑖≠𝑗 ∊ 𝑉

(3.3. 6) 

Where 𝑑(𝑖, 𝑗) is the distance between the nodes 𝑖 and 𝑗, and 𝑁 is the number of vertices 

of 𝐺. 

The definition may apply for weighted networks, after exchanging each weight defined in a 

sense of similarity with another, defined in a sense of distance. 

Bocaletti et al. 2006 considered efficiency as an alternative, measure to the average path length. 

 

Definition 3.3.9: Local efficiency 

The local efficiency of a network is defined as  

𝐸𝑙𝑜𝑐(𝐺) =
1

𝑁
∑ 𝐸(𝐺𝑖)

𝑖 ∊ 𝑉

(3.3. 7) 

 

Where 𝐺𝑖 is the subnetwork of 𝐺 containing all the neighbours of node 𝑖 but not 𝑖 itself. 
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Bocaletti et al. 2006 considered local efficiency as an alternative, measure to the clustering 

coefficient. 

The efficiency is not a measure of robustness. On the contrary it has been shown to be 

negatively correlated to it (Figure 3.3.2, Peng et al. 2016). However, studying the way the 

efficiency changes during an attack can help us understand the effect it has on a network. 

The disadvantages of the distance vulnerability carry on, meaning that the efficiency does 

not considered alternate paths unless we study its AUC during an attack. 

 

Figure 3.3.3: The change of the natural connectivity 𝜆̅ (left), and the efficiency E (right), versus iteration of a 
degree-preserving rewiring algorithm optimized to maximize either 𝜆̅ or E, on scale free networks (up) and 
Erdos-Renyi networks (down).  

(Peng et al. 2016) 
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An exceptional advantage of network efficiency as a measure is that instead of the 

geodesic length, it can accept as input the distance travelled, and thus be used to study 

different methods of distributing the network’s traffic, other than the shortest possible path 

(Pu et al. 2012). 

Efficiency has been used by Holme et al. 2002 to compare the impact of various attacks 

on various networks, by Krebs 2002 to detect important actors on the internet and on 

terrorist networks, by Crucciti et al. 2003 to compare actors in criminal and terrorist 

networks, by Buhl et al. 2004 to study ant galleries, by Zhang et al. 2011 to compare attacks 

on the Shanghai subway network, by Yin et al. 2016 to compare attacks on the Beijing 

subway network and by Zhang et al. 2018 to study the subway networks of Beijing, Shanghai 

and Guanzhou when subjected to attacks. 

Local efficiency has not been the subject of much research. It has been studied by 

Crucciti et al. 2003 and by Yin et al. 2016. 

The efficiency is not necessarily decreasing as nodes are removed. If an isolated node 

is removed, then the efficiency of the network increases. However, the removal of a node is 

expected to decrease the efficiency. We propose the approach of treating each removed node, 

as having all his edges removed, but still existing completely isolated in the network, thus, 

normalizing the efficiency after a number of attacks by the number of nodes in the original 

network. This value is strictly decreasing if a non-isolated node is removed even if he belongs 

to an isolated cluster and remains constant on the removals of isolated nodes.  

 

Theorem 3.3.1 

The expected change for the global efficiency of a network if a node is removed is a 

decrease. 
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Proof: 

Let 𝐴 = ∑
1

𝑑(𝑖,𝑗)𝑖≠𝑗  be the sum of the inverse geodesic lengths of all the network, let also 

𝐺 be a network with 𝑁 > 3 nodes and 𝐺′ the same network with an arbitrary node 𝑘 

removed. Then 

𝐸𝑔𝑙𝑜𝑏𝑎𝑙(𝐺) =
𝐴

𝑁(𝑁 − 1)
 𝑎𝑛𝑑 𝐸𝑔𝑙𝑜𝑏𝑎𝑙(𝐺

′) =
𝐴 − 𝑌

(𝑁 − 1)(𝑁 − 2)
 

Where 𝑌 is the sum of the inverse geodesics to and from the node removed plus a value 

for the change of the length of every geodesic 𝑘 was a part of. 

Let 𝑋 be the sum of the inverse geodesics to and from the node removed. Then the 

expected value of 𝑋 is 

𝐸(𝑋)  = 𝐸(𝑋𝑓𝑟𝑜𝑚 + 𝑋𝑡𝑜) = 

= 𝐸(𝑋𝑓𝑟𝑜𝑚) + 𝐸(𝑋𝑡𝑜) = 

= 𝐸 (∑
1

𝑑(𝑘, 𝑖)
𝑖

) + 𝐸 (∑
1

𝑑(𝑗, 𝑘)
𝑗

) = 

=
𝐴

𝑁
+
𝐴

𝑁
= 2

𝐴

𝑁
 

So 

𝐸(𝑋) = 2
𝐴

𝑁
⇔ 

⇔ 𝐸(𝑋)𝑁 = 2𝐴 ⇔ 

⇔ 𝐸(𝑋)𝑁 − 𝐴𝑁 = 2𝐴 − 𝐴𝑁 ⇔ 

⇔ 𝐴𝑁 − 𝐸(𝑋)𝑁 = 𝐴𝑁 − 2𝐴 ⇔ 

 ⇔ (𝐴 − 𝐸(𝑋))𝑁 = 𝐴(𝑁 − 2) ⇔ 

⇔
𝐴− 𝐸(𝑋)

𝑁 − 2
=
𝐴

𝑁
⇔ 
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⇔
𝐴− 𝐸(𝑋)

(𝑁 − 1)(𝑁 − 2)
=

𝐴

𝑁(𝑁 − 1)
 

However, 𝑋 = 𝑌 iff the removal of node 𝑘 does not affect the length of any geodesic 

𝑑(𝑖, 𝑗) with 𝑖, 𝑗 ≠ 𝑘, that does not pass through 𝑘. This, 𝐸(𝑋) < 𝐸(𝑌). Therefore, 

𝐴 − 𝐸(𝑌)

(𝑁 − 1)(𝑁 − 2)
<

𝐴 − 𝐸(𝑋)

(𝑁 − 1)(𝑁 − 2)
=

𝐴

𝑁(𝑁 − 1)
⇔ 

⇔ 𝐸 (𝐸𝑔𝑙𝑜𝑏𝑎𝑙(𝐺
′)) < 𝐸𝑔𝑙𝑜𝑏𝑎𝑙(𝐺) 

 ∎ 

 

The change in the efficiency of a network when under attack can be seen in the 

following example. Note that any form of successful attack is expected to be better (and thus 

create greater drops in the efficiency) than the presented random attacks. 

 

Figure 3.3.4: The drop in the global efficiency in an Erdos-Renyi network with 100 nodes and 400 edges, when 
subjected to a sequence of random node removals. 
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 In order to study the efficiency as a decreasing value over the attack, we propose to consider 

an attack that removes a node as an attack that removes only the adjacent edges. This way the value 

of the efficiency constantly decreases (unless an isolated node is removed, when it remains 

constant) as seen in the following example. 

 

Figure 3.3.5:The drop in the global efficiency according to the initial network order on the same network as in 
figure 3.3.4 when subjected to the same sequence of random node removals. 

 

JS-robustness 

 

“Quantification of network robustness could be thought as the distance that a given 

topology is apart from itself after a failure” (Schieber et al. 2015). 

 

Definition 3.3.10: Shannon entropy, Jensen-Shannon divergence 

• The Shannon entropy of a probability distribution is defined as 
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𝐻(𝑃) = −∑𝑝𝑖 log(𝑝𝑖)

𝑖

 (3.3. 8) 

• The Jensen-Shannon divergence between two probability distributions is defined as 

𝐽𝐻(𝑃, 𝑄) = 𝐻 (
𝑃 + 𝑄

2
) −

𝐻(𝑃) + 𝐻(𝑄)

2
(3.3. 9) 

The Jensen-Shannon divergence is the square of a distance between probability distributions 

(Lin 1991). 

 

The Jensen-Shannon divergence makes it possible to use the Jensen-Shannon 

divergence to compare the difference in the probability distribution of any measure in the 

nodes or edges of the network, for any given sequence of 𝑛 failures. 

 

Definition 3.3.11: JS-robustness (Schieber et al. 2015) 

The info-theoretic robustness of a network is defined as 

𝑅𝑃(𝐺 |(𝐺𝑡)𝑡∈[1,2,…,𝑛]) =∏[1 − 𝐽𝐻(𝑃(𝐺𝑡), 𝑃(𝐺𝑡−1))]

𝑛

𝑡=1

=∏𝑅𝑝(𝐺𝑡−1|𝐺𝑡)

𝑛

𝑡=1

(3.3. 10) 

Where 𝑃 is a probability distribution of a network measure, 𝐺 is the original network 

and 𝐺𝑡 is the network after 𝑡 failures. 

Originally called simply “robustness”, we will call it JS-robustness for clarification purposes. 

 

It is worthy of note that this measure can be used along any probability distribution, 

whether it is from a nodal measure such as degree, or an edge measure such as edge-

betweenness. It can even be used with other types of distributions, as is demonstrated by 

Schieber et al. 2015, where the distance distribution is also used along with the degree. 
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Resilience Factor 

 

We can consider the capability of a network to remain connected when vertices or 

edges fail in a combinatorial way, by looking at the number of possible connected networks 

as a result of a number of attacks over the number of all possible resulted networks. 

 

Definition 3.3.12: Resilience factor (Salles and Marino 2011) 

The resilience factor of a network 𝐺 is defined as the average of all the fractions of 

connected subgraphs of 𝐺, where 1 up to 𝑁 − 1 vertices have been removed, over the 

number of all possible subgraphs after removal. Specifically 

𝑅𝐹 =
∑ 𝑘(𝑖)𝑁−2
𝑖=1

(𝑁 − 2)
∈ [0,1] (3.3. 11) 

Where 𝑘(𝑖) =
|𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 𝑎𝑓𝑡𝑒𝑟 𝑖 𝑎𝑡𝑡𝑎𝑐𝑘𝑠|

|𝑎𝑙𝑙 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 𝑎𝑓𝑡𝑒𝑟 𝑖 𝑎𝑡𝑡𝑎𝑐𝑘𝑠|
, the denominator of which is equal to 

(
𝑛
𝑖
) =

𝑁!

𝑖!(𝑁−𝑖)!
. 

 

The resilience factor can be used as a measure independent of the attack but has also 

been demonstrated (Salles and Marino 2011) to be a workable measure to detect changes 

on a network over an attack and has been compared alongside the average shortest path 

length and the diameter in such a case. However, this comparison has been implemented 

only in small networks and only for attacks that don’t disconnect them, and thus, some more 

thorough examination is required to verify its usefulness, perhaps alongside other, more 

sophisticated measures. 
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3.4. Robustness measures dependent only on the network 

 

Density 

 

The density of the network (called connectance in the article) has been shown to be 

highly correlated with the number of nodes needed to be removed in a food web to achieve 

a 50% nodal cascade by Dunne et al. 2002. 

 

Bounding network measures 

 

A very simple and intuitive, yet sometimes effective way, to judge the robustness of a 

network, is to check the extremes of some of its key measures. We have already seen the 

minimal degree bounding various measures of robustness. Another example can be the 

nodes with high betweenness centrality being crucial to distributing information. In fact, it 

is around such ideas that the deconstruction strategies are based on. The maximal 

congestion centrality has been used as a measure of robustness by Dodds et al. 2003.  

 

Definition 3.4.1: Congestion centrality 

The congestion centrality of a node 𝑖 is defined as the probability that any message sent 

between a pair of nodes (𝑎, 𝑏) will pass through node 𝑖. 

The congestion centrality depends on the method of distributing traffic in a network, and can 

be used to rank such methods for a specific network. 

 

Assortativity coefficient 

 

Newman 2002 showed that the assortativity of a network is negatively correlated to 

its robustness against random attacks, but positively correlated to its robustness against 
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targeted attacks. On the contrary, Vazquez and Moreno 2003 showed that power law 

networks are more robust when they are assortative even to random failures. Sydney et al. 

2008 showed a positive correlation between assortativity and sssk-elasticity. Finally, Iyer et 

al. 2013 found assortative networks to be more vulnerable to degree attacks. 

 

Reliability polynomial 

 

In order to create more robust to random failure communications, the following 

measure has been proposed. 

 

Definition 3.4.2: Reliability polynomial (Moore and Shannon 1956, as presented by Ellens 

2011) 

The reliability polynomial 𝑅𝑒𝑙(𝐺) of a graph 𝐺 is equal to the probability that the graph 

is connected when each edge is (independently of the others) present with probability 

𝑝 = 1 − 𝑞, in other words 

𝑅𝑒𝑙(𝐺) =∑𝐹𝑖(1 − 𝑝)
𝑖𝑝𝑚−𝑖

𝑚

𝑖=0

(3.4. 1) 

Where 𝐹𝑖  denotes the number of sets of 𝑖 edges whose removal leaves 𝐺 connected. 

 

Theorem 3.4.1 (Kelmans et al. 1981, as presented by Ellens 2011) 

For a graph with given size and order, there is no guarantee that a uniformly (for all 𝑝) 

optimal graph exists.  

Proof: Kelmans 1981 
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The reliability polynomial has been used (Page and Perry 1994) to compare the 

criticality of two edges, by considering the inequalities 𝑅𝑒𝑙(𝐺 − 𝑒1) ≥ 𝑅𝑒𝑙(𝐺 − 𝑒2) and 

𝑅𝑒𝑙(𝐺 ∗ 𝑒1) ≤ 𝑅𝑒𝑙(𝐺 ∗ 𝑒2), where 𝑅𝑒𝑙(𝐺 ∗ 𝑒) is the reliability polynomial given edge 𝑒 has not 

failed and 𝑅𝑒𝑙(𝐺 − 𝑒) is the reliability polynomial given edge e has failed. If the above 

inequations stand for all 𝑝, then it is safe to assume that edge 𝑒2 is more critical than edge 𝑒1. 

Such inequalities do not always stand, and in fact, reliability polynomials can cross each 

other more than once (Colbourn et al. 1993), or they might have the same direction (Page 

and Perry 1994). 

 

Theorem 3.4.2 (Moore and Shannon 1956) 

The relation between the reliability polynomial 𝑅𝑒𝑙(𝐺) of a graph and the edge 

connectivity 𝜅𝑒(𝐺) satisfies the following two properties 

1. If 𝜅𝑒(𝐺1) < 𝜅𝑒(𝐺2) then, for 𝑝 close enough to one 𝑅𝑒𝑙(𝐺1) < 𝑅𝑒𝑙(𝐺2). 

2. Let 𝑑𝑠(𝐺) be the number of subsets of 𝜅𝑒(𝐺) edges whose removal disconnects 

𝐺. If 𝜅𝑒(𝐺1) = 𝜅𝑒(𝐺2) and 𝑑𝑠(𝐺1) < 𝑑𝑠(𝐺2) then for 𝑝 close to one 𝑅𝑒𝑙(𝐺1) <

𝑅𝑒𝑙(𝐺2). 

Proof: Moore and Shannon 1956. Another proof given by Ellens 2011. 

 

Graph diversity 

 

For any pair of vertices in a graph, all different paths can be calculated and quantify the 

extent to which they diverge from the shortest path and each other. 

 

Definition 3.4.3: Path diversity Effective path diversity, Total graph diversity, Compensated 

total graph diversity (Rohrer and Sterbenz 2011) 

• The path diversity between paths 𝑎 and 𝑏 is defined as  
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𝐷(𝑃𝑎,𝑏) = 1 −
|𝑃𝑎 ∩ 𝑃𝑏|

min(|𝑃𝑎|, |𝑃𝑏|)
(3.4. 2) 

Where |𝑃𝛾| = 2𝑙 + 1, where 𝑙 is the length of the path 𝛾. 

• The effective path diversity between nodes 𝑖 and 𝑗 is defined as 

𝐸𝑃𝐷𝑖𝑗 = 1 − 𝑒𝜆∑ 𝐷𝑚𝑖𝑛(𝑃𝑖)
𝑘
𝑖=1 (3.4. 3) 

Where 𝜆 is an experimentally determined constant that scales the impact of the 

diversity between paths 𝑎 and 𝑏 based on its utility. 

• The total graph diversity is defined as the average of all effective path diversities. 

• The compensated total graph diversity, (TGD) is defined in order to compensate for 

various path lengths as 

𝑐𝑇𝐺𝐷 = 𝑒𝑇𝐺𝐷−1 × ℎ−𝑎 (3.4. 4) 

Where ℎ is the average hop-count and 𝑎 is an experimentally tuned parameter. (In 

Rohrer and Sterbenz 2011 it is suggested that 𝑎 = 1.125 gives the best correlation to 

the simulation results). 

 

 Rohrer and Sterbenz 2011 ordered various networks by their TGD and cTGD along 

with other simpler measures. 

 

3.5. Spectral Measures of Robustness 

 

A network can be studied either directly, as we have seen until now, or through the 

matrices associated with it. Specifically, its adjacency matrix and its Laplacian. 
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Definition 3.5.1: Laplacian matrix, Weighted Laplacian matrix 

• The Laplacian 𝐿 is the difference 𝛥 − 𝐴 of the degree matrix 𝛥 (𝛥𝑖𝑖 = 𝑑(𝑣𝑖), 𝛥𝑖𝑗 = 0, 𝑖 ≠

𝑗) and the adjacency matrix 𝐴, i.e. 

𝐿𝑖𝑗 = {
𝑑(𝑣𝑖), 𝑖 = 𝑗
−1, 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3.5. 1) 

• The weighted Laplacian 𝐿𝑊, for a weighted graph 𝐺 with non-negative weights 𝑤𝑖𝑗, is 

defined similarly as 

𝐿𝑖𝑗
𝑊 =

{
 
 

 
 𝑠(𝑣𝑖) =∑𝑤𝑖𝑗

𝑗

, 𝑖 = 𝑗

−𝑤𝑖𝑗, 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3.5. 2) 

 

From the eigenvalues of the Laplacian of a graph, it is possible to determine the number 

of connected components it has. 

 

Theorem 3.5.1 

For the Laplacian of a graph 𝐺(𝑉, 𝐸), the multiplicity of the eigenvalue zero 

corresponds to the number of connected components of 𝐺. 

Proof: Ellens 2011. 

 

Theorem 3.5.2: Weyl’s Theorem (as presented by Ellens 2011) 

Let a weighted graph 𝐺 be given and let 𝐺′ be obtained by increasing the weight of an 

edge, the Laplacian eigenvalues of the new graph satisfy 

𝜆𝑖
𝑊(𝐺′) ≥ 𝜆𝑖

𝑊(𝐺) (3.5. 3) 

This means that the algebraic connectivity increases (not purely) with edge addition. 
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Proof: Ellens 2011. 

 

Algebraic Connectivity 

 

Definition 3.5.2: Algebraic connectivity (Fiedler 1972) 

The second smallest eigenvalue 𝜆2 of the Laplacian is called the algebraic connectivity. 

 

Corollary 3.5.1: (to theorem 8) 

The algebraic connectivity is equal to zero iff the graph is unconnected. 

 

Lemma 3.5.1 (Fiedler 1973) 

Removing 𝑘 vertices, reduces the algebraic connectivity by at most 𝑘. More formally, 

let 𝐺 be a graph and 𝐺𝑘 a graph obtained by deleting 𝑘 vertices from 𝐺, then 

𝜆2(𝐺𝑘) ≥ 𝜆2(𝐺) − 𝑘 (3.5. 4) 

Proof: Fiedler 1973. 

 

Lemma 3.5.2  (Fiedler 1973) 

The algebraic connectivity is bound by its vertex and edge connectivity. 

𝜆2 ≤ 𝜅𝑣 ≤ 𝜅𝑒 ≤ min(𝑑(𝐺)) (3.5. 5) 

Proof: Fiedler 1973. 
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Theorem 3.5.3 (Fiedler 1973) 

The algebraic connectivity can be bound using the independent sets of 𝐺(𝑉, 𝐸).  

𝜆2 ≤ |𝑉| − |𝑀𝐼𝑆| (3.5. 6) 

Where 𝑀𝐼𝑆 is a maximal independent set of 𝐺. 

Proof: Fiedler 1973. 

 

Definition 3.5.3: Fiedler vector 

The Fiedler vector of a graph 𝐺 is the eigenvector corresponding to the second smallest 

eigenvalue (i.e the algebraic connectivity). 

 

Theorem 3.5.4 (Maas 1987 as presented by Wang and Van Mighem 2008) 

Let 𝐺 be a graph and 𝐺𝑒 be the same graph after the addition of an edge 𝑒 between 

nodes 𝑖 and 𝑗. The upper and lower bounds of the algebraic connectivity λ2(𝐺𝑒) are 

min {𝜆2(𝐺) +
𝜀𝑎2

𝜀 + (2 − 𝑎2)
, 𝜆2(𝐺) − 𝜀} ≤𝜆2(𝐺𝑒) ≤ min{𝑎

2 + 𝜆2(𝐺), 𝜆2(𝐺)} (3.5. 7) 

 

Where 𝑎 = |𝑢𝑖 − 𝑢𝑗|, 𝑢𝑖  being the i-th element of the Fiedler vector. 

In the lower bound the first term increases with increasing 𝜀, whereas the second one 

decreases. 

The highest lower bound can be achieved by a choice of ε that makes both terms equal: 

𝜀 =
𝛽 − 2

2
+ (

(𝛽 − 2)2

4
+ 𝛽(2 − 𝛼)2)

1
2

≥ 0 (3.5. 8) 
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Where 𝛽 = 𝜆3(𝐺) − 𝜆2(𝐺) ≥ 0. 

The higher a is, the higher is ε, and the higher the highest lower bound is. Higher a also 

contributes possible to a higher upper bound. Hence 𝜆2(𝐺𝑒) tends to be large if a is large. 

Proof: Maas 1987. 

 

The lower bound for vertex and edge connectivity that the algebraic connectivity 

presents, has been shown on various graph models, especially by Watts-Strogatz small world 

graphs (Figures 3.5.1 & 3.5.2), to be rather loose and their difference increases as the order 

of the network increases (Figure 3.5.3, Jamakovic and Uhlig 2007).  

 

Figure 3.5.1: The mean as well as the standard deviation (error bars) of the algebraic connectivity as a function 
of the node and the link connectivity in the random graph of Erdos-Renyi, the small-world of Watts-Strogatz 
and scale-free graph of Barabási-Albert. All graphs have 𝑁 = 500 nodes.  
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(Jamakovic and Uhlig 2007) 

 

 

Figure 3.5.2: The mean as well as the standard deviation (error bars) of the algebraic connectivity as a function 
of the node and the link connectivity in the Erdos-Renyi random graphs, Watts-Strogatz small world graphs 
and Barabasi-Albert scale-free graphs with 𝑁 = 50, 100 𝑎𝑛𝑑 500 nodes.  

(Jamakovic and Uhlig 2007) 
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Figure 3.5.3: The mean over 10^3 graphs of the node connectivity 𝜅𝑁 , the link (edge) connectivity 𝜅𝐿 , and the 
algebraic connectivity 𝜇𝛮−1 as a function of the number of nodes. Left for The Erdos-Renyi random graph with 

a given link density 𝑞 =
𝐿

𝐿𝑚𝑎𝑥
= 𝑝. 𝑝𝑐  is the critical value where the giant component appears. Right for the 

Watts-Strogatz small world model, with a given link density 𝑞 = 0.04. 

(Jamakovic and Uhlig 2007) 

 

Nevertheless, the algebraic connectivity serves as a stepping stone and a baseline to 

compare other measures. Ghosh and Boyd 2006 showed that optimizing the algebraic 

connectivity requires relatively few edge additions, and a greedy algorithm is presented for 

such optimization. Wang and Van Mighem 2008 discussed two edge addition strategies, 

simpler to compute, but close to optimal values, for increasing the algebraic connectivity of 

a graph. Specifically, they study the increase in the algebraic connectivity in two cases. After 

connecting the lowest degree nodes, and after connecting the nodes with the highest value 

for 𝑎 = |𝑢𝑖 − 𝑢𝑗| (𝑢𝑖  being the 𝑖-th element of the Fiedler vector), in Erdos-Renyi, Scale-Free 

and k-ary tree networks. The effectiveness of this increase is proved algebraically, but it is 

not tested with the network under attack. 

 

Theorem 3.5.5 

Adding an edge does not necessarily affect the first 𝑛 − 2 Laplacian eigenvalues. 

Proof: Ellens 2011 via example of a star graph. 
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Figure 3.5.4: Two graphs with identical algebraic connectivity equal to 0.7369. 
(Wu et al. 2008) 

 

Under this light, an interesting topic of research would be to study how the rest of the 
eigenvalues of the Laplacian project the robustness of the network. 

 

In Wu 2005, the properties of the algebraic connectivity on directed, weighted and 

singed graphs are explored, showing that most properties still stand for directed graphs, and 

some of them stand for weighted and even singed ones. This is the only attempt so far to 

obtain a robustness measure in a signed graph, without altering the weights to positive 

values. 

 

Theorem 3.5.6: (Wu 2005) 

Let 𝐺 be a directed graph 

• If 𝐺 has two vertices with 0 out-degree, then 𝑎(𝐺) ≤ 0. 

• If 𝐺 is unconnected 𝑎(𝐺) ≤ 0. 

• If 𝐺 has non-negative weights, 𝑎(𝐺) ≥ 0, if it is also connected 𝑎(𝐺) > 0. 
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• If 𝐺 has non-negative weights 𝑎(𝐺) ≤ 𝜅𝑣(𝐺) ≤ 𝜅𝑒(𝐺). 

Proof: Wu 2005. 

  

However, while adding undirected edges cannot decrease the algebraic connectivity of 

a graph, adding directed edges might, as shown in the following example by Wu 2005. 

 

 

Figure 3.5.5: The empty graph has an algebraic connectivity of 0, However, the graph in this image has an 
algebraic connectivity of -0.0774. 
Wu 2005. 

 

Theorem 3.5.7: Relating isoperimetric number and algebraic connectivity (Wu 2005) 

𝑖(𝐺) ≥
𝑎(𝐺) −

|𝑉|
2

|𝑉|
2

(3.5. 9) 

Proof: Wu 2005. 

 

Theorem 3.5.8: (Wu 2005) 

Let 𝐻 be a set of vertices with zero in-degree in a graph 𝐺 with non-negative weights.  

Then 𝑎(𝐺 − 𝐻) ≥ 𝑎(𝐺). 

Proof: Wu 2005. 
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Natural Connectivity 

 

Based on the principle that the number of alternate paths between each pair of nodes 

in a network plays a critical role in its robustness, but also on the notion that identifying the 

number of all alternative paths of different lengths between each node, the natural 

connectivity is proposed as a measure based on closed walks. To avoid repeated back-and-

forths on an edge, the cycles are weighted by the factorial of their length. Let 𝑁 = |𝑉| and 

𝑆 = ∑
𝑛𝑘

𝑘!

∞
𝑘=0 , where 𝑛𝑘 is the number of closed walks in the network with length 𝑘. From 

matrix theory, we know that for symmetric matrices 

𝑛𝑘 = 𝑡𝑟𝑎𝑐𝑒(𝐴
𝑘) =∑𝜆𝑖

𝑘

𝑁

𝑖=1

(3.5. 10) 

Therefore, 

𝑆 = ∑
𝑛𝑘
𝑘!

∞

𝑘=0

=∑∑
𝜆𝑖
𝑘

𝑘!

𝑁

𝑖=1

∞

𝑘=0

=∑∑
𝜆𝑖
𝑘

𝑘!

∞

𝑘=0

𝑁

𝑖=1

=∑𝑒𝜆𝑖

𝑁

𝑖=1

(3.5. 11) 

Where S is equal to the sum of the subgraph centralities (see Estrada 2006). 

 

Finally, noting that 𝑆 increases with 𝑁 it is scaled, and the natural connectivity is derived. 

 

Definition 3.5.4: Natural connectivity/Natural eigenvalue (Wu et al. 2008) 

The natural connectivity or natural eigenvalue of an undirected network is defined as 

the scaled sum of all closed walks in the network. 

�̅� = ln (
𝑆

𝑁
) = ln (

∑ 𝑒𝜆𝑖𝑁
𝑖=1

𝑁
) (3.5. 12) 

 

 We note that there is another approach to defining the natural connectivity applicable 

to asymmetric matrices (and thus to directed graphs). Let 𝑎𝑖𝑗
𝑘  denote the elements of 𝐴𝑘 
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𝑛𝑘 = 𝑡𝑟𝑎𝑐𝑒(𝐴𝑘) =∑𝑎𝑖𝑖
𝑘

𝑁

𝑖=1

(3.5. 13) 

𝑆 = ∑
𝑛𝑘
𝑘!

∞

𝑘=0

=∑(
1

𝑘!
∑𝑎𝑖𝑖

𝑘

𝑁

𝑖=1

)

∞

𝑘=0

=∑∑
𝑎𝑖𝑖
𝑘

𝑘!

𝑁

𝑖=1

∞

𝑘=0

=∑∑
𝑎𝑖𝑖
𝑘

𝑘!

∞

𝑘=0

𝑁

𝑖=1

= 𝑡𝑟𝑎𝑐𝑒(𝑒𝐴) (3.5. 14) 

 

Theorem 3.5.9 (Wu et al. 2008) 

• �̅� increases purely with edge addition 

• �̅� ≤ 𝑁 − ln𝑁 (3.5. 15) 

Proof: Wu et al. 2008. 

 

The natural connectivity has been shown to produce better judgement than other 

measures, namely, edge connectivity, algebraic connectivity and critical threshold, on four 

different edge attack strategies (random, rich-rich, rich-poor, poor-poor (see chapter 4) on 

a scale free network (Wu et al. 2008, Wu et al. 2010, Wu et al. 2011) and on the Chinese 

internet (Wu et al. 2011). It has also been used to show that the efficiency as a single value 

is not a measure of robustness (Peng et al. 2016). 

 

Number of spanning trees 

 

Definition 3.5.5: Spanning tree 

Spanning tree of a connected undirected graph, is a tree subgraph that contains (spans 

through) all vertices. In other words, for an undirected graph 𝐺, a spanning tree is a 

connected subgraph that contains 𝑁 vertices and 𝑁 − 1 edges.  

This definition is not exclusive. A graph can have multiple different spanning trees indicating 
alternate pathways in the network, and thus their number can be considered as a measure 
of robustness. 

 

 Although the number of spanning trees in a graph is a structural element, we consider 

it in this section as it is possible to determine it by the eigenvalues of the Laplacian. 
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Theorem 3.5.10 (Van Mieghem 2010, as presented by Ellens 2011) 

The number of spanning trees in a simple graph 𝐺 with Laplacian 𝐿 and Laplacian 

eigenvalues 𝜆𝑖, 𝑖 = 1,2, … , 𝑛 is  

𝜉(𝐺) =
1

𝑛
∏𝜆𝑖

𝑛

𝑖=2

(3.5. 16) 

Proof: Van Mieghem 2010. 

 

Theorem 3.5.11 (Ellens 2011) 

The reliability polynomial of a simple graph 𝐺, satisfies 

𝑅𝑒𝑙(𝐺) = 𝜉(𝐺)𝑝𝑛−1 + 𝑜(𝑝𝑛−1),   𝑝 → 0 (3.5. 17) 

Proof: Ellens 2011. 

 

 According to Ellens 2011, this indicates that the number of spanning trees is not a good 

measure of robustness to failure for real world networks, since, in such networks, random 

failures are generally scarce. In these cases, it is reasonable to assume that 𝑝 will be close to 

one rather than zero. 

 An algorithm has been proposed (Tsen et al. 1994) that identifies the most important 

edge to be deleted according to the number of spanning trees with complexity 𝑂(𝑁2.376). The 

reversal of this algorithm can indicate edges to be added to strengthen the network. Another 

algorithm for optimizing the number of spanning trees by edge addition has been proposed 

by Baras and Hovareshti 2009. 

 

Theorem 3.5.12 (Baras and Hovareshti 2009) 

In a simple graph, the optimal edge to be added in order to maximize the number of 

spanning trees is between two nodes with maximal effective resistance distance (see 

below). 

Proof: Baras and Hovareshti 2009. 
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Effective Resistance 

 

Definition 3.5.6: Effective resistance/Resistance distance 

By considering an undirected graph 𝐺 as an electrical circuit, we can treat each edge 

(𝑖, 𝑗) as a resistor of 𝑟𝑖𝑗 = 1 𝑂ℎ𝑚 for unweighted graphs, or 𝑟𝑖𝑗 = 𝑤𝑖𝑗
−1 for weighted 

ones, effectively treating the weight of an edge as its conductance. The resistance 

between a pair of nodes in the graph is called resistance distance, or effective 

resistance. 

 

Theorem 3.5.13 (Klein and Randic 1993) 

The effective resistance between two nodes of a simple graph 𝑖, 𝑗 is a metric. 

Proof: Klein and Randic 1993. 

 

Theorem 3.5.14 (Klein and Randic 1993) 

The effective resistance between two nodes of a simple graph 𝑖, 𝑗 is non-increasing with 

edge addition. 

Proof: Klein and Randic 1993. 

 

 This alone suggests that it can be used instead of the geodesic length in the various 

measures that depend on it. In addition, as we have already seen, minimizing the effective 
resistance is the best way to increase the number of spanning trees.  

 The effective resistance also agrees with some very basic intuitive ideas about the 

robustness of communications between two nodes. Specifically:  

• Long paths offer greater resistance (𝑛 resistors in series give 𝑅𝑖𝑗 = 𝑟1 + 𝑟2 +⋯+ 𝑟𝑛) 

• Alternate paths decrease the resistance (𝑛 resistors in parallel give 𝑅𝑖𝑗 =

1

𝑟1
−1+𝑟2

−1+⋯+𝑟𝑛
−1) 

• Increasing the number of alternate paths has diminishing returns (similarly with b, e.g. 

for one, two and three 1-ohm resistors we get effective resistance of 𝑅1 = 1, 𝑅2 =
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1

2
, 𝑅3 = 1/3. Essentially, to halve the effective resistance we must double the 

conductivity.) 

 This way we can study both basic ideas of network robustness. Namely, the idea that 

shorter paths are more reliable since they are less prone to failure, and the idea that having 

alternative paths can keep a network connected even after certain parts of it have failed.  

 Although the effective resistance does not initially appear to be a spectral measure of 

the graph, it has been shown that it can be calculated from the Laplacian. 

 

Theorem 3.5.15 (Klein and Randic 1993) 

 For a [weighted] undirected graph 𝐺(𝑉, 𝐸) with edge weights 𝑤𝑖𝑗, the effective 

resistance between vertices 𝑖 and 𝑗 is 

𝑅𝑖𝑗 = (𝑒𝑖 − 𝑒𝑗)
𝑇
𝐿+(𝑒𝑖 − 𝑒𝑗) = 𝐿𝑖𝑖

+ − 2𝐿𝑖𝑗
+ + 𝐿𝑗𝑗

+ (3.5. 18) 

Where 𝐿𝑖𝑗
+  is the (𝑖, 𝑗) element in the Laplacian pseudoinverse matrix and 𝑒𝑖 is the vector with 

1 on the 𝑖-th element and 0 on all others. 

Proof: Klein and Randic 1993. 

 

Definition 3.5.7: Effective graph resistance/Total effective resistance 

The effective graph resistance or total effective resistance of an undirected graph 𝐺 

with 𝑁 vertices is the sum of the effective resistances over all pairs of vertices. 

𝑅(𝐺) =∑ ∑ 𝑅𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

(3.5. 19) 

The total effective resistance is also called Kirchhoff index. 

 

Theorem 3.5.16 (Klein and Randic 1993) 

The total effective resistance of a connected weighted undirected graph 𝐺, satisfies 
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𝑅(𝐺) = 𝑁∑
1

𝜆𝑖
𝑊

𝑁

𝑖=2

(3.5. 20) 

Proof: Klein and Randic 1993. 

 

Corollary 3.5.2 (Ellens 2011) 

The total effective resistance of an undirected, unweighted graph can be bounded by 
functions of 𝜆2

𝑊 in the following way 

𝑁

𝜆2
𝑊 ≤ 𝑅(𝐺) ≤

𝑁(𝑁 − 1)

𝜆2
𝑊

(3.5. 21) 

 

Theorem 3.5.17 (Ellens 2011) 

• The total effective resistance of an undirected graph strictly decreases when edges are 

added, or weights are increased. 

• Let 𝐷(𝑖, 𝑗) be the ordinary (shortest path) distance between nodes 𝑖 and 𝑗. 

Then 𝑅𝑖𝑗 ≤ 𝐷(𝑖, 𝑗), with the equality holding iff there is only one path between 𝑖 and 𝑗. 

Proof: Ellens et al. 2011 

 

 The effective resistant can also be defined via a random walk on an undirected graph 

with transition probabilities 𝑝𝑖𝑗 =
𝑤𝑖𝑗

𝑠𝑖
, where 𝑠𝑖 stands for the strength of node 𝑖. 

 

Theorem 3.5.18 (Chandra et al. 1989, as presented by Ellens 2011) 

Let 𝐺 be a weighted, undirected graph. First, we define an electrical circuit by setting 

𝑟𝑖𝑗 =
1

𝑤𝑖𝑗
. Second, we define a random walk on 𝐺 with transition probabilities 𝑝𝑖𝑗 =

𝑤𝑖𝑗

𝑠𝑖
 

and the expected travel time between nodes 𝑖 and 𝑗 denoted by 𝑬(𝑇𝑖𝑗). It holds that 

𝑅𝑖𝑗 =
1

∑ 𝑠𝑖
𝑁
𝑖=1

(𝑬(𝑇𝑖𝑗) + 𝑬(𝑇𝑗𝑖)) (3.5. 22) 

For all 𝑖, 𝑗 ∈ 𝑉(𝐺). 
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Proof: Ellens 2011. 

 

Corollary 3.5.3 

𝑅(𝐺) =
1

∑ 𝑠𝑖
𝑁
𝑖=1

∑∑𝑬(𝑇𝑖𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

(3.5. 23) 

 

 Following the approach of a random walk, and by studying the expected number of 

visits on every node, network criticality was defined by Tizghadam and Leon-Garcia 2008 in 

a way that it equals twice the total effective resistance, and thus we did not consider it as a 
separate measure. 

 

Definition 3.5.8: Normalized total effective resistance (Ellens 2011) 

The normalized effective resistance of an undirected graph is defined as 

𝑅𝑛𝑜𝑟𝑚(𝐺) =
𝑁 − 1

𝑅(𝐺)
=

𝑁 − 1

𝑁∑
1
𝜆𝑖

𝑁
𝑖=2

∈ [0,1] (3.5. 24) 

The benefits of such a measure are twofold. First, it’s a measure of robustness instead of 
vulnerability, and second, its values lie in [0,1] thus making it easier to handle and to be used 
comparatively. 

 

Corollary 3.5.4  

1

𝑁
𝜆2
𝑊 ≤ 𝑅𝑛𝑜𝑟𝑚(𝐺) ≤

𝑁 − 1

𝑁
𝜆2
𝑊 (3.5. 25) 

With this modification, the algebraic connectivity can be used to approximate the robustness 
of a network better than by itself alone. 

 

Theorem 3.5.19 (Ellens 2011) 

Let 𝐺 be an undirected and unweighted graph with a given maximum degree and 

number of nodes. Then its normalized effective resistance is bound by that achieved 
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within the class of clique chain graphs 𝐺(𝑛1 = 1, 𝑛2, … , 𝑛𝑑𝑚𝑎𝑥 , 𝑛𝑑𝑚𝑎𝑥+1 = 1) with 

∑ 𝑛𝑖 = 𝑁
𝑑𝑚𝑎𝑥+1
𝑖=1 . 

Proof: Ellens 2011. 

 

Corollary 3.5.5 

If the number of isolated nodes of a graph is known, it can be used to further bound its 

normalized effective resistance by lowering the maximal one possible in its 
corresponding clique chain family. 

 

Figure 3.5.6 Bounds for the 𝑅𝑛𝑜𝑟𝑚  of the clique chains over their number of nodes, by their maximum degree.  

(Ellens 2011) 

 

Young et al. 2016a and Young et al. 2016b generalized the effective resistance for 

directed graphs. This attempt aims for uses in control theory and does not care for 

algorithms to calculate the total effective resistance, or any comparisons with other 

robustness measures, but it opens a large field for further research. 
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Deviation from the ideal good expansion character 

 

Definition 3.5.9: Good expander 

A network is a good expander or is said to have good expansion properties if every 

subset of nodes 𝑆 (up to 50% of the nodes) has a neighborhood that is larger than some 

“expansion factor” 𝛷 multiplied by the number of nodes in 𝑆. In other words, a network 

is a good expander if it has a sufficiently large vertex isoperimetric number. 

Note: In general, a graph is considered to be a good expander if it has a sufficiently large 

vertex isoperimetric number and relatively low degree centralities. 

 

Estrada 2006 noted that a necessary condition for a network to be a good expander is 

that the gap between the first and second eigenvalues of the adjacency matrix 𝛥𝜆 = 𝜆1 − 𝜆2 

is sufficiently large. The problem of determining how large is “sufficiently large” is solved by 

assessing the degree of correlation between the largest eigenvector of the adjacency matrix 

(the eigencentralities) and the weighted sum of all odd-length walks that start and end at 

each node. 
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Figure 3.5.7: Illustration of the differences between entworks with and without good expansion properties.  

(Estrada 2006) 

 

Definition 3.5.10: Subgraph centrality, Odd subgraph centrality, Even subgaph centrality 
(Estrada and Rodriguez-Velazquez 2005) 

• Subgraph centrality is defined as the weighted by their length number of closed circles 

leading to a node 

𝐶𝑆(𝑖) = ∑
𝑛𝑘(𝑖)

𝑘!

∞

𝑘=0

(3.5. 26) 
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Where 𝑛𝑘(𝑖) is the number of closed walks of length 𝑘 beginning and ending at vertex 

𝑖. 

• We can similarly define the odd-subgraph centrality and even-subgraph centrality as 

the number of closed walks of odd or even length. 

𝐶𝑆𝑜𝑑𝑑 =∑
𝑛2𝑘+1(𝑖)

(2𝑘 + 1)!

∞

𝑘=0

       𝐶𝑆𝑒𝑣𝑒𝑛 =∑
𝑛2𝑘(𝑖)

(2𝑘)!

∞

𝑘=0

(3.5. 27) 

 

Theorem 3.5.20 (Estrada and Rodriguez-Velazquez 2005) 

Let 𝐺 be a simple undirected graph of order N. Let 𝑣1, 𝑣2, … , 𝑣𝑁 be an orthonormal basis 

of 𝑅𝑁 composed by eigenvectors of the adjacency matrix 𝐴, associated to the eigenvalues 

𝜆1, 𝜆2, … 𝜆𝑁. Let 𝑣𝑗
𝑖  denote the i-th component of 𝑣𝑗 . For all 𝑖 ∈ 𝑉 the subgraph centrality may 

be expressed as follows: 

𝐶𝑆(𝑖) =∑𝑣𝑗
𝑖𝑒𝜆𝑗

𝑁

𝑗=1

(3.5. 28) 

Proof: Estrada and Rodrigues-Velazquez 2005. 

 

Theorem 3.5.21 (Rodriquez et al. 2007) 

Let 𝐺 be a simple undirected graph of order N. Let 𝑣1, 𝑣2, … , 𝑣𝑁 be an orthonormal basis 

of 𝑅𝑁 composed by eigenvectors of the adjacency matrix 𝐴, associated to the eigenvalues 

𝜆1, 𝜆2, … 𝜆𝑁. Let 𝑣𝑗
𝑖  denote the i-th component of 𝑣𝑗 . For all 𝑖 ∈ 𝑉 the odd and even subgraph 

centrality may be expressed as follows: 

𝐶𝑆𝑜𝑑𝑑 =∑(𝑣𝑗
𝑖)
2
sinh(𝜆𝑗)

𝑁

𝑗=1

          𝐶𝑆𝑒𝑣𝑒𝑛 =∑(𝑣𝑗
𝑖)
2
cosh(𝜆𝑗)

𝑁

𝑗=1

(3.5. 29) 

Proof: Rodriquez et al. 2007. 

 

Definition 3.5.11: Deviation from the good expansion character (Estrada 2006) 

Deviation from the good expansion character of a simple undirected graph is defined 

in such a way that perfect good expander networks will have 𝜉(𝐺) = 0, specifically 
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𝜉(𝐺) = √
1

𝑁
∑{log[𝑣1(𝑖)] − [log(𝛼) + 𝜂 log[𝑆𝐶𝑜𝑑𝑑(𝑖)]]}

2

𝑁

𝑖=1

(3.5. 30) 

Where 𝛼 ≈ [sinh(𝜆1)]
−0.5, 𝜂 ≈ 0.5 and 𝑣1 is the eigenvector for the largest eigenvalue 

𝜆1. 

The above values are derived from the properties of good expander graphs by Estrada 2006. 

 

The deviation from the good expansion character is shown to be a measure of 
vulnerability of a network by Estrada 2006 and Estrada 2007. 

 

3.6. Combined Robustness 

 

The idea of measuring a networks robustness in general has been studied by Van 
Mieghem et al. 2010, where a linear model for defining robustness is proposed as such 

 

Definition 3.6.1: Combined robustness (Van Mieghem et al. 2010) 

The combined robustness of a network is defined as 

𝑅 =∑𝑠𝑘𝑅𝑘

𝑚

𝑘=1

(3.6. 1) 

Where 𝑅𝑘 are measures of robustness, or other network topological measures, 

preferably normalized, and 𝑠𝑘 is a variable defining the importance of the 

corresponding measure of each measure of robustness or topological measure. 

 

It is also noted, that such measures are frequently correlated and should be chosen in 

such a way that they are as independent as possible, but such a choice depends on the 
network being studied. 

“The dependence between metrics in a graph seems a hard, inherent challenge of the 
robustness problem” (Van Mieghem et al. 2010). 

It would, therefore, be an interesting point of research to study the correlation of the 

various measures according to the topology of a graph. Such correlations have, only partly, 

been explored by Kasthurinathna et al. 2013. 

 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

89 
 

4. Network deconstruction 
 

4.1. Introduction 

 

In this chapter we will define the various methods of attack that have been used. We will 

present selected methods of attack with respect to robustness according to: 

• The networks that have been studied, providing: 

o Structural information 

o Information on direction and/or weights 

o Network functionalities 

• The origin of the network 

• The measure used to assess the impact of each attack 

• The relative reference 

 

In this chapter some of the strategies of removing nodes from a network, are defined 

and presented according to the networks they have been tested on, the indices of robustness 

that have been used and finally the reference on where each study can be found. 

 

Definition 4.1.1: Instantaneous/Salvo attacks, Repeated attacks, Cascading attacks 

• Instantaneous or salvo attack on a network is multiple modifications performed at the 

same time in the network with no difference taking place in the network in-between 

them. 

• Repeated attack on a network is any sequence of modifications where the mechanisms 

of the network, such as its limitations any self-rewiring capabilities, occur in-between 

the attacks. 

• Cascading attack on a network is a special case of repeated attacks, or repeated salvos 

that start on a node or link and radiate from it. For example, the removal of a node 
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causes its neighbors to be removed as well in the next instance, either one by one or all 

together. 

 

It is important to note that in the case of no limitations, self-rewiring capabilities or 

other such mechanics existing in a network, and in the case of a single node or link attack, 

there is no difference in the effects of repeated or instantaneous removals. 

 

4.2. Random removals 

 

We have already defined the notion of random removals of nodes or links in a network 

(definition 1.2.4). They have been widely studied, since almost any network is designed with 

the possibility of parts of it failing randomly, because such mishaps are present in any 

undertaking, e.g. transport networks and harsh weather, road networks and traffic 

accidents, power grids and distribution station malfunctions etc. In general, random 

removals are studied as a method of attack, either to check the ability of a network to cope 

with accidents, or as a baseline for other methods of attack on a network. 

 

Table 4.2.1: Repeated, random node removals ordered by network structure, measure used and network type. 

Network Structure Network Origin Measure of assessment Reference 
Single value degree 
distribution (all degrees 
equal to 3) 
 
Undirected and 
unweighted 
 
Processability 
limitations 

Artificial Change in the order of 
the giant component 

Motter and Lai 2002 
Removal of a single node 

2-Peak and 3-Peak 
degree distribution 
 
Undirected and 
unweighted 

Artificial Critical Threshold Valente et al. 2004 

Exponential degree 
distribution  

Artificial Change in the order of 
the giant component 

Newman and Ghosal 
2007 
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Undirected and 
unweighted 

Change in the order of 
the giant bicomponent 

Newman and Ghosal 
2007 

Exponential degree 
distribution 
 
Undirected and 
unweighted 
 
Processability 
limitations 

North American Power 
Grid 

Percentage of nodes 
disconnected from the 
giant component 

Albert et al. 2004 

US power grid Change in the order of 
the giant component 

Motter and Lai 2002 
Removal of a single node 

Erdos-Renyi 
 
Undirected and 
unweighted 
 

Artificial 
 

Critical Threshold Albert et al. 2000 
Change in the diameter Albert et al. 2000 
Change in the efficiency Crucitti et al. 2003 
Change in the local 
efficiency 

Crucitti et al. 2003 

Change in the order of 
the giant component 

Albert et al. 2000 

Erdos Renyi 
 
Undirected and 
unweighted 
 
Processability 
limitations 

Artificial Change in the order of 
the giant component 

Motter and Lai 2002 
Removal of a single node 

Erdos Renyi 
 
Directed and 
unweighted 

Artificial AUC of the order of the 
giant component 
 

Wagner 2015 

2-dimentional 
exponential degree 
distribution 
 
 
Undirected and 
unweighted 

Ant Galleries, their 
minimal spanning trees 
and their triangulated 
graphs  

Fragmentation 
Threshold 
(𝑎 = 0.5) 

Buhl et al. 2004 

Change in the efficiency Buhl et al. 2004 
Change in the order of 
the giant component 

Buhl et al. 2004 

2-dimentional 
exponential degree 
distribution 
 
Undirected and 
weighted 

Ant Galleries, their 
minimal spanning trees 
and their triangulated 
graphs  

Fragmentation 
Threshold 
(𝑎 = 0.5) 

Buhl et al. 2004 

Change in the efficiency Buhl et al. 2004 
Change in the order of 
the giant component 

Buhl et al. 2004 

Poisson degree 
distribution 
 
Undirected and 
unweighted 

Artificial Change in the order of 
the giant component 

Newman and Ghosal 
2007 

Change in the order of 
the giant bicomponent 

Newman and Ghosal 
2007 

Scale Free 
 
Undirected and 
unweighted 

Artificial 
 

Critical Threshold Albert et al. 2000 
Cohen et al. 2000 

Change in the order of 
the giant component 

Albert et al. 2000 
Cohen et al. 2000 

Change in the diameter Albert et al. 2000 
Change in the efficiency Crucitti et al. 2003 
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Change in the local 
efficiency 

Crucitti et al. 2003 

Scale Free 
 
Undirected and 
unweighted 
 
Processability 
limitations 

Artificial Change in the order of 
the giant component 

Motter and Lai 2002 
Removal of a single node 

Scale Free 
 
Undirected and 
unweighted 
 
Self-rewiring 

Cannabis distribution 
network 

Change in the efficiency Duijn et al. 2014 
Change in the network 
density 

Duijn et al. 2014 

Scale Free 
 
Directed and 
unweighted 

Artificial AUC of the order of the 
giant component 

Wagner 2015 

Small World 
 
Directed and 
unweighted 

Artificial AUC of the order of the 
giant component 

Wagner 2015 

Unspecified structure 
 
Undirected and 
unweighted 

Shanghai Subway 
 

Change in the efficiency Zhang et al. 2011 
Functionality loss Zhang et al. 2011 
Change in the order of 
the giant component 

Zhang et al. 2011 

Various real-world 
networks 

Change in the order of 
the giant bicomponent 

Newman and Ghosal 
2007 

Western Power Grid of 
the US 

JS-robustness and its 
change over the attack 

Schieber et al. 2015 

Various artificial and 
real 

Compensated total 
graph diversity 

Rohrer and Sterbenz 
2011 

Unspecified structure 
 
Undirected and 
weighted 

Beijing Subway Change in the efficiency Yin et al. 2016 
 

Change in the local 
efficiency 

Yin et al. 2016 
 

Dolphin Social Network JS-robustness and its 
change over the attack 

Schieber et al. 2015 

Unspecified structure 
 
Directed and 
unweighted 
 
Structural limitations 

Food Webs 
 

Fragmentation 
Threshold 
(𝑎 = 0.5) 

Dunne et al. 2002 

Secondary extinctions 
and extinction area 

Dunne et al. 2002 

Network density Dunne et al. 2002 
Unspecified structure 
 
Directed and weighted 

Food Webs Change in the order of 
the giant component 

Sole and Montoya 2001 
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Bipartite with 
unspecified structure 
 
Undirected and 
unweighted 
 
Structural limitations 

Pollinator networks Fragmentation 
Threshold 
(𝑎 ≃ 0.5) 

Santamaria et al. 2014 

Bipartite with 
unspecified structure 
 
Undirected and 
unweighted 
 
Structural limitations 

Pollinator networks % of nodes of the 
opposite type remaining 

Kaiser-Bundury et al. 
2010 

 

Table 4.2.2: Repeated random edge removals ordered by network structure, measure used and network type. 

Network Structure Network Origin Measure of assessment Reference 

Erdos Renyi 
 
Directed and 
unweighted 

Artificial AUC of the order of the 
giant component 

Wagner 2015 

Scale Free 
 
Undirected and 
unweighted 

Artificial Natural Connectivity Wu et al. 2010 
Wu et al. 2011 

Change in the order of 
the giant component 

Wu et al. 2010 
Wu et al. 2011 

Chinese Internet Natural Connectivity Wu et al. 2011 

Change in the order of 
the giant component 

Wu et al. 2011 

Scale Free 
 
Undirected and 
unweighted 
 
Processability 
limitations 

Artificial Change in the 
probability the largest 
component has an order 
of the network’s order of 
magnitude 

Moreno et al. 2003 
Removal of a single edge 

Scale Free  
 
Directed and 
unweighted 

Artificial AUC of the order of the 
giant component 

Wagner 2015 

Small World  
 
Directed and 
unweighted 

Artificial AUC of the order of the 
giant component 

Wagner 2015 

Unspecified structure 
 
Undirected and 
unweighted 

Western Power Grid of 
the US 

JS-robustness and its 
change over the attack 

Schieber et al. 2015 

Various artificial and 
real 

Compensated total 
graph diversity 

Rohrer and Sterbenz 
2011 

Unspecified structure 
 

Beijing Subway Change in the efficiency Yin et al. 2016 

Change in the local 
efficiency 

Yin et al. 2016 
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Undirected and 
weighted 

Dolphin Social Network JS-robustness and its 
change over the attack 

Schieber et al. 2015 

 

 

Table 4.2.3: Repeated random mixed node and link removals ordered by network structure, measure used and 
network type. 

Network Structure Network Origin Measure of assessment Reference 

Unspecified structure 
 
Undirected and 
unweighted 

Various artificial and 
real 

Compensated total 
graph diversity 

Rohrer and Sterbenz 
2011 

 

 

4.3. Ranking 

 

By ranking all the nodes or links in a network according to some measure that indicates 

their importance to the structure, we can get a sequence of nodes or links to remove that 

should be more effective according to the assumption that more important nodes play a 

larger role on the structure of a network. 

A very important factor in such attack methods is whether these measures are 

calculated only on the initial network, or on every instance of a repeated removal attack (i.e. 

after the removal of each node). Calculating each instance separately can be more 

informative, as each removal targets the most important node or link, according to the 

selected ranking. However, it can also be very taxing to re-estimate such values in larger 

networks for every instance, and sometimes inefficient, as for example, the degree 

distribution of the network does not change significantly after each attack, although it has 

been shown to be more efficient (Holme et al. 2002, Chen et al. 2008, Morone and Makse 

2015, Morone et al. 2016). 

 

Definition 4.3.1: Initial measure attacks, adaptive attacks 

An attack that targets edges or nodes according to a network measure such as the 

degree, can be formed either according to the initial values of the network, or to the 
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ones adapted to the new network created after the previous attacks. We call attacks 

that target nodes or edges according to the original ranking initial measure attacks (for 

example initial degree attacks) and attacks that target the recalculated values adaptive 

measure attacks. 

 

Targeted attacks will be referred to in a format following the order, measure and target 

of the attack. For example, high degree node attacks target the nodes of the network in 

according to their degree in decreasing order. Furthermore, when a removal strategy is 

based on the measure re-estimated at every step, this will be noted. 

For clarification purposes, let it be noted that when referring to a measure (e.g. the 

degree) that has a corresponding centrality, the centrality is considered to be the measure 

divided by the largest possible value for a node or edge in a graph of the same order (as 

defined in Freeman 1979) 

 

Degree based node attacks 

 

The most common, and perhaps most intuitive method studied in this regard is the 

degree centrality of each node.  

 

Definition 4.3.2: Degree, In-degree, Out-degree 

The degree of a node is defined as the number of neighbors it is connected to. In 

directed graphs this can be further analyzed to the in-degree and out-degree that are 

defined as the number of incoming and outgoing links respectively. 

Removing the most connected node of the network should logically correspond to the largest 

possible disconnection. 
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Table 4.3.1: Repeated attacks on the nodes with the highest degree, by network structure, measure used and 
network type. 

Network Structure Network Origin Measure of assessment Reference 
Exponential degree 
distribution 
 
Undirected and 
unweighted 
 
Processability 
limitations 

Artificial Change in the order of 
the giant component 

Motter and Lai 2002 
Removal of a single node 

2-Peak and 3-Peak 
 
Undirected and 
unweighted 

Artificial Critical Threshold Valente et al. 2004 

Uniform 
 
Undirected and 
Unweighted 

Artificial and various 
real-world 

Change in the order of 
the giant component 

Estrada 2006 

Food Webs Change in the order of 
the giant component 

Estrada 2007 

Erdos Renyi 
 
Undirected and 
unweighted 
 

Artificial 
 

Critical Threshold Albert et al. 2000 
Change in the efficiency Holme et al. 2002 

Initial and adaptive 
 
Crucitti et al. 2003 

Average order of the 
giant component 

Schneider et al. 2010 
Adaptive only 

Change in the diameter Albert et al. 2000 
Change in the local 
efficiency 

Crucitti et al. 2003 

Change in the order of 
the giant component 

Albert et al. 2000 
 
Holme et al. 2002 
Initial and adaptive 
 
Chen et al. 2008 
 
Morone and Makse 2015 
Initial and adaptive 
 
Morone et al. 2016 
Adaptive only 

Erdos Renyi  
(Q-augmented) 
 
Undirected and 
unweighted 
 

Artificial 
 

Change in the order of 
the giant component 

Costa 2004 
 

Erdos Renyi 
 
Directed and weighted 

Artificial AUC of the order of the 
giant component 

Wagner 2015 

Random Regular 
 

Artificial Change in the order of 
the giant component 

Chen et al. 2008 
Initial and adaptive 
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Undirected and 
unweighted 

AUC of the order of the 
giant component 

Morone et al. 2016 
Adaptive only 

Random with 
exponential degree 
distribution 
 
Undirected and 
unweighted 

Artificial Change in the order of 
the giant component 

Iyer et al. 2013 
Initial and adaptive 

AUC of the order of the 
giant component 

Iyer et al. 2013 
Initial and adaptive 
 

Exponential degree 
distribution 
 
Undirected and 
Unweighted 

Artificial and various 
real-world 

Change in the order of 
the giant component 

Estrada 2006 

Food Webs Change in the order of 
the giant component 

Estrada 2007 

Exponential degree 
distribution 
 
Undirected and 
unweighted 
 
Processability 
limitations 

US power grid Change in the order of 
the giant component 

Motter and Lai 2002 
Removal of a single node 

North American Power 
Grid 

% of disconnected nodes Albert et al. 2004 

2-dimentional with 
exponential degree 
distribution 
 
Undirected and 
unweighted 

Ant Galleries, their 
minimal spanning trees 
and their triangulated 
graphs 

Change in the order of 
the giant component 

Buhl et al. 2004 

Fragmentation 
Threshold 
(𝑎 = 0.5) 

Buhl et al. 2004 

Change in the efficiency Buhl et al. 2004 
2-dimentional with 
exponential degree 
distribution 
 
Undirected and 
weighted 

Ant Galleries, their 
minimal spanning trees 
and their triangulated 
graphs 

Change in the order of 
the giant component 

Buhl et al. 2004 

Fragmentation 
Threshold 
(𝑎 = 0.5) 

Buhl et al. 2004 

Change in the efficiency Buhl et al. 2004 
Scale Free 
 
Undirected and 
unweighted 

Artificial 
 

Critical Threshold Albert et al. 2000 
 
Cohen et al. 2001 

Average order of the 
giant component 

Schneider et al. 2010 
Adaptive only 

Change in the efficiency Holme et al. 2002 
Initial and adaptive 
 
Crucitti et al. 2003 

Change in the diameter Albert et al. 2000 
Change in the local 
efficiency 

Crucitti et al. 2003 

Change in the order of 
the giant component 

Albert et al. 2000 
 
Cohen et al. 2000 
 
Holme et al. 2002 
Initial and adaptive 
 
Chen et al. 2008 
Initial and adaptive 
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Iyer et al. 2013 
Initial and adaptive 
 
Morone and Makse 2015 
Initial and adaptive 

AUC of the order of the 
giant component 

Iyer et al. 2013 
Initial and adaptive 

SSSK-elasticity Sydney et al. 2008 
European Electricity 
system (power grid) 
 
Internet 

Average order of the 
giant component 

Schneider et al. 2010 
Adaptive only 

Scale Free 
(Q-augmented) 
 
Undirected and 
unweighted 
 

Artificial 
 

Change in the order of 
the giant component 

Costa 2004 
 

Scale Free 
 
Undirected and 
unweighted 
 
Processability 
limitations 

Artificial Change in the order of 
the giant component 

Motter and Lai 2002 
Removal of a single node 

Scale Free 
 
Undirected and 
unweighted 
 
Self-rewiring 

Cannabis distribution 
network 

Change in the efficiency Duijn et al. 2014 
Change in the network 
density 

Duijn et al. 2014 

Scale Free 
 
Directed and 
unweighted 

Artificial AUC of the order of the 
giant component 

Wagner 2015 
 
Kasthrinathna and 
Mahendra 2013 

Scale Free 
 
Undirected and 
unweighted 

Food Webs Change in the order of 
the giant component 

Estrada 2007 

Artificial and various 
real-world 

Change in the order of 
the giant component 

Estrada 2006 

Clustered Scale Free 
 
Undirected and 
unweighted 

Artificial 
 

Change in the efficiency Holme et al. 2002 
Initial and adaptive 

Change in the order of 
the giant component 

Holme et al. 2002 
Initial and adaptive 

Scale-Free (power law 
with exponential tail 
degree distribution) 
 
Undirected and 
unweighted 

Food Webs Change in the order of 
the giant component 

Estrada 2007 

Artificial and various 
real-world 

Change in the order of 
the giant component 

Estrada 2006 

Small World 
 
Undirected and 
unweighted 

Artificial 
 

Change in the efficiency Holme et al. 2002 
Initial and adaptive 

Change in the order of 
the giant component 

Holme et al. 2002 
Initial and adaptive 
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Small World 
 
Directed and 
unweighted 

Artificial AUC of the order of the 
giant component 

Wagner 2015 

Unspecified structure 
 
Undirected and 
unweighted 
 

Mexican 
telecommunications 
network 
 
Twitter network 

Change in the order of 
the giant component 

Morone and Makse 2015 
Initial and adaptive 

Bipartite with 
unspecified structure 
 
Undirected and 
unweighted 

Networks from the web 
of life collection 

Fragmentation 
Threshold 
(𝑎 = 0.5) 

Garcia-Algarra et al. 
2017 

AUC of the order of the 
giant component 

Garcia-Algarra et al. 
2017 

Extinction area of the 
second nodal group 

Garcia-Algarra et al. 
2017 

Unspecified structure 
 
Undirected and 
weighted 
 

Metro networks 
(Beijing, Shanghai, 
Guangzhou) 

Change in the efficiency Zhang et al. 2018 
Functionality loss Zhang et al. 2018 

Shanghai Subway 
 

Connectivity of a line Zhang et al. 2011 
Change in the efficiency Zhang et al. 2011 
Functionality loss Zhang et al. 2011 
Change in the order of 
the giant component 

Zhang et al. 2011 

Colaboration Network 
 
Computer Network from 
internet traffic 

Change in the efficiency Holme et al. 2002 
Initial and adaptive 

Change in the order of 
the giant component 

Holme et al. 2002 
Initial and adaptive 

Beijing Subway 
 

Change in the efficiency Yin et al. 2016 
Change in the local 
efficiency 

Yin et al. 2016 

Global Salafi Jihad 
terrorist network 
(provided by third 
party) 
 
Meth World, 
Gang-related criminals 
(Xu and Chen 2003) 
 
Terrorist web site 
network (created by the 
authors, government 
data sources) 

Change in the order of 
the giant component 

Xu and Chen 2008 

Critical Threshold Xu and Chen 2008 

Various Real-World Change in the order of 
the giant component 

Iyer et al. 2013 
Initial and adaptive 

AUC of the order of the 
giant component 

Iyer et al. 2013 
Initial and adaptive 

Workplace network 
 
Internet (Autonomous 
System) 
 

Change in the order of 
the giant component 

Chen et al. 2008 
Initial and adaptive 
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High energy particle 
physics station network 
 
Metabolic network 

Unspecified structure 
 
Directed and 
Unweighted 

Food Webs 
 

Change in the order of 
the giant component 

Sole and Montoya 2001 

Unspecified structure 
 
Directed and weighted 
 
Structural limitations 

Food Webs Extinction Area Allesina and Pascual 
2009 

Fragmentation 
Threshold 
(𝑎 = 0.5) 

Dunne et al. 2002* 

Secondary extinctions 
and extinction area 

Dunne et al. 2002* 

Network density Dunne et al. 2002* 
Bipartite with 
unspecified structure 
 
Undirected and 
weighted 

Networks from the web 
of life collection 

Fragmentation 
Threshold 
(𝑎 = 0.5) 

Garcia-Algarra et al. 
2017 

AUC of the order of the 
giant component 

Garcia-Algarra et al. 
2017 

Extinction area of the 
second nodal group 

Garcia-Algarra et al. 
2017 

Bipartite with 
unspecified structure 
 
Undirected and 
unweighted 
 
Structural limitations 

Pollinator networks Fragmentation 
Threshold 
(𝑎 = 0.5) 

Santamaria et al. 2014 

Secondary extinctions 
and extinction area 

Memmott et al. 2004 

Various real world and 
artificial 

Extinction area of the 
second nodal group 

Dominguez-Garcia and 
Munoz 2015 

Bipartite with 
unspecified structure 
 
Undirected and 
unweighted 
 
Structural limitations 
 
Self-rewiring 

Pollinator networks Percentage of nodes of 
the opposite group 
remaining 

Kaiser-Bundury et al. 
2010 

HOT for SSSK-elasticity 
(Heuristically Optimal 
Topology) 
(Sydney et al. 2008) 
 
Undirected and 
unweighted 

Artificial SSSK-elasticity Sydney et al. 2008 

*In the study by Dunne et al. 2002, the attack was run twice. The second time, basal species 

(species with predators but no prey) were not included in the ranking.  
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Table 4.3.2: Repeated attacks on the nodes with the lowest degree, by network structure, measure used and 
network type. 

Network Class Network Origin Robustness Index Reference 
Bipartite with 
unspecified structure 
 
Undirected and 
unweighted 
 
Structural limitations 

Pollinator networks Fragmentation 
Threshold 
(𝑎 = 0.5) 

Santamaria et al. 2014 

Secondary extinctions 
and extinction area 

Memmott et al. 2004 

Bipartite with 
unspecified structure 
 
Undirected and 
unweighted 
 
Structural limitations 
Self-rewiring 

Pollinator networks Percentage of nodes of 
the opposite type 
remaining 

Kaiser-Bundury et al. 
2010 

 

 

Edge attacks based on the degrees of the neighboring vertices 

 

Holme et al.2002 ranked both vertex and edge attacks under similar terms. The 

measure for edge ranking corresponding to the vertex degree that was proposed is the edge-

degree. 

 

Definition 4.3.3: Edge-degree (Holme et al. 2002) 

The edge-degree of an edge is defined as the product of the vertex degree of the vertices 

it connects. 

 

Additionaly, Wu et al. 2010 and Wu et al. 2011 studied the edge attacks based on the 

possible combinations of the vertices they connect. Specifically, three such attacks were 

studied;  

• Rich-Rich, meaning edges that connect high degree nodes with high degree nodes are 

removed first, equating to descending edge degree. 
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• Rich-Poor, meaning edges that connect high degree nodes with low degree nodes are 

removed first, edges in descending order of the difference of the degrees of the nodes 

they connect |𝑑(𝑣) − 𝑑(𝑢)|. 

• Poor-Poor, meaning edges that connect low degree nodes with low degree nodes are 

removed first, equating to ascending edge degree. 

 

Table 4.3.3: Repeated attacks on the edges with the highest edge-degree, by network structure, measure used 
and network type. 

Network Structure Network Origin Measure of assessment Reference 
Scale Free 
 
Undirected and 
unweighted 

Artificial Change in the efficiency Holme et al. 2002 
Initial and adaptive 

Natural Connectivity Wu et al. 2010 
Unspecified 
 
Wu et al. 2011 
Unspecified 

Chinese internet Natural Connectivity Wu et al. 2011 
Unspecified 

Erdos Renyi 
 
Undirected and 
unweighted 

Artificial Change in the efficiency Holme et al. 2002 
Initial and adaptive 

Small World 
 
Undirected and 
unweighted 

Artificial Change in the efficiency Holme et al. 2002 
Initial and adaptive 

Clustered Scale Free 
 
Undirected and 
unweighted 

Artificial Change in the efficiency Holme et al. 2002 
Initial and adaptive 

Unspecified structure 
 
Undirected and 
unweighted 

Colaboration Network 
 
Computer Network from 
Internet traffic 

Change in the efficiency Holme et al. 2002  
Initial and adaptive 
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Table 4.3.4: Repeated attacks on the edges connecting rich to poor or poor to poor nodes, by network structure, 
measure used and network type. 

Network Structure Network Origin Measure of 
assessment 

Reference 

Scale Free  
 
Undirected and 
unweighted 

Artificial Natural Connectivity Wu et al. 2010 
Unspecified 
 
Wu et al. 2011 
Unspecified 

Chinese internet Natural Connectivity Wu et al. 2011 
Unspecified 

 

Betweenness based vertex and edge attacks 

 

A notion for the importance of a vertex can be the amount of information that flows 

through it, and a very good index for it is the number of shortest paths that flow through it, 

since that’s the most logical way for information routing. 

 

Definition 4.3.4: Betweenness 

The betweenness of a vertex or an edge is defined as the number of shortest paths in 

the network that it is included in.  

 

It is a rational thought that removing the most well-traversed vertex or edge in a 

network will cause a large perturbation in its information flow. Intuitively, one only has to 

think of the traffic jams occurring when a central rode in a city closes down. This thought 

becomes even more appealing when we consider that a bottleneck (a small set of nodes 

connecting to large parts of the network) will always have high betweenness, and thus will 

be found faster via this method, increasing the chance to create large disconnections. 
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Table 4.3.5: Repeated attacks on the nodes with the highest betweenness, by network structure, measure used 
and network type. 

Network Structure Network Origin Measure of assessment Reference 
Erdos Renyi 
 
Undirected and 
unweighted 

Artificial 
 

Change in the order of 
the giant component 

Holme et al. 2002 
Initial and adaptive 
 
Chen et al. 2008 
 
Morone and Makse 2015 

Change in the efficiency Holme et al. 2002 
Initial and adaptive 

Erdos Renyi 
 
Directed and 
unweighted 

Artificial AUC of the order of the 
giant component 

Wagner 2015 

Random Regular 
 
Undirected and 
unweighted 

Artificial Change in the order of 
the giant component 

Chen et al. 2008 

Exponential 
 
Undirected and 
unweighted 

Artificial and various 
real-world 

Change in the order of 
the giant component 

Estrada 2006 

Artificial Change in the order of 
the giant component 

Iyer et al. 2013 
Initial and adaptive 

AUC of the order of the 
giant component 

Iyer et al. 2013 
Initial and adaptive 

Scale Free 
 
Undirected and 
unweighted 

Artificial Change in the order of 
the giant component 

Holme et al. 2002 
Initial and adaptive 
 
Chen et al. 2008 
Iyer et al. 2013 
Morone and Makse 2015 

AUC of the order of the 
giant component 

Iyer et al. 2013 
Initial and adaptive 

Change in the efficiency Holme et al. 2002 
Initial and adaptive 

Scale Free 
 
Undirected and 
Unweighted 
 
Self-rewiring 

Cannabis distribution 
network 

Change in the efficiency Duijn et al. 2014 
Change in the network 
density 

Duijn et al. 2014 

Scale Free 
 
Directed and 
unweighted 

Artificial AUC of the order of the 
giant component 

Wagner 2015 

Clustered Scale Free 
 
Undirected and 
unweighted 
 

Artificial Change in the order of 
the giant component 

Holme et al. 2002 
Initial and adaptive 

Change in the efficiency Holme et al. 2002 
Initial and adaptive 

Scale-Free (power law 
with exponential tail 
degree distribution) 

Artificial and various 
real-world 

Change in the order of 
the giant component 

Estrada 2006 
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Undirected and 
Unweigted 
Small World 
 
Undirected and 
unweighted 

Artificial 
 

Change in the order of 
the giant component 

Holme et al. 2002 
Initial and adaptive 

Change in the efficiency Holme et al. 2002 
Initial and adaptive 

Small World 
 
Directed and 
unweighted 

Artificial AUC of the order of the 
giant component 

Wagner 2015 

Uniform degree 
distribution 
 
Undirected and 
unweighted 

Artificial and various 
real-world 

Change in the order of 
the giant component 

Estrada 2006 

Unspecified structure 
 
Undirected and 
unweighted 

Colaboration Network 
 
Computer Network from 
Internet traffic 

Change in the efficiency Holme et al. 2002 
Initial and adaptive 

Change in the order of 
the giant component 

Holme et al. 2002  
Initial and adaptive 

Shanghai Subway Change in the efficiency Zhang et al. 2011 
Functionality loss Zhang et al. 2011 
Change in the order of 
the giant component 

Zhang et al. 2011 

Metro networks 
(Beijing, Shanghai, 
Guangzhou) 

Change in the efficiency Zhang et al. 2018 
 

Functionality loss Zhang et al. 2018 
 

Mexican 
telecommunications 
network 
 
Twitter network 

Change in the order of 
the giant component 

Morone and Makse 2015 

Workplace network 
 
Internet (Autonomous 
System) 
 
High energy particle 
physics station network 
 
Metabolic network 

Change in the order of 
the giant component 

Chen et al. 2008 

Various real world Change in the order of 
the giant component 

Iyer et al. 2013 
Initial and adaptive 

AUC of the order of the 
giant component 

Iyer et al. 2013 
Initial and adaptive 

Unspecified structure 
 
Undirected and 
weighted 

Beijing Subway Change in the efficiency Yin et al. 2016 
Change in the local 
efficiency 

Yin et al. 2016 

Unspecified structure 
 
Directed and weighted 
 

Food Webs Extinction Area Allesina and Pascual 
2009 
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Structural limitations 
Bipartite with 
unspecified structure 
 
Undirected and 
unweighted 
 
Structural limitations 

Various real world and 
artificial 

Extinction area of the 
second nodal group 

Dominguez-Garcia and 
Munoz 2015 

 

  

Table 4.3.6: Repeated attacks on the edges with the highest betweenness, by network structure, measure used 
and network type. 

Network Structure Network Origin Measure of assessment Reference 
Erdos Renyi 
 
Undirected and 
unweighted 

Artificial 
 

Change in the order of 
the giant component 

Holme et al. 2002 
Initial and adaptive 

Change in the efficiency Holme et al. 2002 
Initial and adaptive 

Erdos Renyi 
 
Directed and 
unweighted 

Artificial AUC of the order of the 
giant component 

Wagner 2015 

Scale Free 
 
Undirected and 
unweighted 

Artificial Change in the order of 
the giant component 

Holme et al. 2002  
Initial and adaptive 

Change in the efficiency Holme et al. 2002 
Initial and adaptive 

Scale Free 
 
Directed and 
unweighted 

Artificial AUC of the order of the 
giant component 

Wagner 2015 

Clustered Scale Free 
 
Undirected and 
unweighted 
 

Artificial Change in the order of 
the giant component 

Holme et al. 2002 
Initial and adaptive 

Change in the efficiency Holme et al. 2002 
Initial and adaptive 

Small World 
 
Undirected and 
unweighted 

Artificial 
 

Change in the order of 
the giant component 

Holme et al. 2002 
Initial and adaptive 

Change in the efficiency Holme et al. 2002 
Initial and adaptive 

Small World 
 
Directed and 
unweighted 

Artificial AUC of the order of the 
giant component 

Wagner 2015 

Unspecified structure 
 
Undirected and 
unweighted 

Colaboration Network 
 
Computer Network from 
Internet traffic 

Change in the efficiency Holme et al. 2002 
Initial and adaptive 

Change in the order of 
the giant component 

Holme et al. 2002 
Initial and adaptive 

Unspecified structure 
 
Undirected and 
weighted 

Beijing Subway Change in the efficiency Yin et al. 2016 
Change in the local 
efficiency 

Yin et al. 2016 
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Eigencentrality (and other similar measures) based vertex attacks 

 

Eigencentrality as a centrality measure has evolved as a more elaborate measure to 

assess the importance of a node not only by how many neighbors he has but by how 

important its neighbors are. 

 

Definition 4.3.5: Eigenvector centrality/Eigencentrality (Bonacich 1987) 

For a given graph, with an adjacency matrix 𝐴 = (𝑎𝑖,𝑗) the eigencentrality or 

eigenvector centrality is defined as 

𝐶𝑒𝑖𝑔(𝑣) =
1

𝜆
∑ 𝑎𝑣,𝑗𝑥𝑗

𝑗∈𝑉(𝐺)

(4.3. 1) 

In general, there will be many different eigenvalues 𝜆 for which a non-zero eigenvector 

solution exists. However, the additional requirement that all the entries in the 

eigenvector be non-negative implies (by the Perron–Frobenius theorem) that only the 

greatest eigenvalue results in the desired centrality measure. 

 

Table 4.3.7: Repeated attacks on the nodes with the highest eigencentrality, by network structure, measure 
used and network type. 

Network Class Network Origin Robustness Index Reference 
Erdos Renyi 
 
Undirected and 
unweighted 

Artificial Change in the order of 
the giant component 

Morone and Makse 
2015 

Exponential 
 
Undirected and 
unweighted 

Artificial Change in the order of 
the giant component 

Iyer et al. 2013 

AUC of the order of the 
giant component 

Iyer et al. 2013 

Scale Free 
 
Undirected and 
unweighted 

Artificial Change in the order of 
the giant component 

Iyer et al. 2013 
Morone and Makse 
2015 

AUC of the order of the 
giant component 

Iyer et al. 2013 

Unspecified structure 
 
Undirected and 
unweighted 

Mexican 
telecommunications 
network 
 

Change in the order of 
the giant component 

Morone and Makse 
2015 
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Twitter network 
Various real world Change in the order of 

the giant component 
Iyer et al. 2013 

AUC of the order of the 
giant component 

Iyer et al. 2013 

Bipartite 
 
Unspecified structure 
 
Undirected and 
unweighted 
 
Structural limitations 

Various real world and 
artificial 

Extinction area of the 
second nodal group 

Dominguez-Garcia and 
Munoz 2015 

Networks from the web 
of life collection 

Fragmentation 
Threshold 
(𝑎 = 0.5) 

Garcia-Algarra et al. 
2017 

AUC of the order of the 
giant component 

Garcia-Algarra et al. 
2017 

Extinction area of the 
second nodal group 

Garcia-Algarra et al. 
2017 

Bipartite 
 
Unspecified structure 
 
Undirected and 
weighted 
 
Structural limitations 

Networks from the web 
of life collection 

Fragmentation 
Threshold 
(𝑎 = 0.5) 

Garcia-Algarra et al. 
2017 

AUC of the order of the 
giant component 

Garcia-Algarra et al. 
2017 

Extinction area of the 
second nodal group 

Garcia-Algarra et al. 
2017 

 

 

 Definition 4.3.6: PageRank 

𝑃𝑅(𝑖) =
1 − 𝑑

𝑁
+ 𝑑 ∑

𝑃𝑅(𝑖)

𝐸𝑜𝑢𝑡(𝑖)
𝑖∈𝑁𝑡𝑜(𝑖)

(4.3. 2) 

Where 0 < 𝑑 < 1 is a dampening factor, 𝑁 is the number of nodes, 𝑁𝑡𝑜(𝑖) are the nodes that 

point to 𝑖 and 𝐸𝑜𝑢𝑡(𝑖) is the number of outgoing edges of node 𝑖. 

 

 

Table 4.3.8: Repeated attacks on the nodes with the highest PageRank, by network structure, measure used and 
network type. 

Network Class Network Origin Robustness Index Reference 
Erdos Renyi 
 
Undirected and 
unweighted 

Artificial Change in the order of 
the giant component 

Morone and Makse 2015 

Scale Free 
 
Undirected and 
unweighted 

Artificial Change in the order of 
the giant component 

Morone and Makse 2015 
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Unspecified structure 
 
Undirected and 
unweighted 

Mexican 
telecommunications 
network 
 
Twitter network 

Change in the order of 
the giant component 

Morone and Makse 2015 

Unspecified structure 
 
Directed and weighted 
 
Structural limitations 

Food Webs Extinction Area Allesina and Pascual 
2009 
(out-pagerank) 

Bipartite with 
unspecified structure 
 
Undirected and 
unweighted 
 
Structural limitations 

Various real world and 
artificial 

Extinction area of the 
second nodal group 

Dominguez-Garcia and 
Munoz 2015 

*Note that in the study by Allesina and Pascual 2009, the PageRank algorithm was modified 

to consider important the outgoing instead of the incoming connections, meaning that 𝑁𝑡𝑜 

and 𝐸𝑜𝑢𝑡 are replaced with 𝑁𝑓𝑟𝑜𝑚 and 𝐸𝑖𝑛. 

 

Highest collective influence vertex attacks 

 

The collective influence of a node is a measure designed to find important actors in fake 

news spreading. These models usually account for probabilistic transitions and do not 

generally study complete disconnections, thus they are not directly relevant to this work. 

Nevertheless, there have been some simulations related to our work that seem to imply that 

the collective influence might be an excellent ranking method for our purposes. 

 

Definition 4.3.7: Collective influence 

Collective influence of a node 𝑣 at 𝑙 steps is defined as follows. 

𝐶𝐼𝑙(𝑣) = (𝐶𝑑(𝑣) − 1)∑(𝐶𝑑(𝑢) − 1)

𝑢∈𝑆

, 𝑆 = {𝑢 ∈ 𝑉(𝐺)|𝑑(𝑣, 𝑢) = 𝑙} (4.3. 3) 

Where 𝑑(𝑣, 𝑢) is the distance between 𝑣 and 𝑢 
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Table 4.3.9: Repeated attacks on the nodes with the highest collective influence, by network structure, measure 
used and network type. 

Network Class Network Origin Robustness Index Reference 
Erdos Renyi 
 
Undirected and 
unweighted 

Artificial Change in the order of 
the giant component 

Morone and Makse 
2015 
Adaptive only 
 
Morone et al. 2016 
Adaptive only 

Random Regular 
 
Undirected and 
Unweighted 

Artificial AUC of the order of the 
giant component 

Morone et al. 2016 
Adaptive only 
 

Scale Free 
 
Undirected and 
unweighted 

Artificial Change in the order of 
the giant component 

Morone and Makse 
2015 
Adaptive only 

Unspecified structure 
 
Undirected and 
unweighted 

Mexican 
telecommunications 
network 
 
Twitter network 

Change in the order of 
the giant component 

Morone and Makse 
2015 
Adaptive only 

 

Highest MusRank vertex attacks 

 

Dominguez-Garcia and Munoz 2015 proposed a method of measuring and ranking the 

complexity of products and the fitness of countries to produce them, proposed by Tacchella 

et al. 2012, was adapted for biological bipartite networks by considering plants, seeds and 

anemones as products and pollinators, dispersers and fishes. The algorithm was also tested 

by reversing those roles. 

 

 

Definition 4.3.8: MusRank (Tacchella et al. 2012, modified by Dominguez-Garcia and Munoz 
2015) 

Let 𝐴𝑐𝑝 be the binary country-product matrix with elements 1 if country 𝑐 produces 

product 𝑝 and 0 otherwise. Let also 𝐹𝑐  symbolize the fitness of a country and 𝑄𝑝 the 

complexity of a product. The iterative method of calculating these values starts by 

assigning them values of 𝐹�̃�
(0)
= �̃�𝑝

(0) = 1, and then calculating the complexity of each 

product by the inverse of the sum of the number of countries exporting said product 
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weighted by their fitness, and the fitness of each country by the number of products 

they export weighted by their complexity. 

{
 
 

 
 𝐹�̃�

(𝑛)
=∑𝐴𝑐𝑝𝑄𝑝

(𝑛−1)

𝑝

�̃�𝑝
(𝑛) =

1

∑ 𝐴𝑐𝑝
1

𝐹𝑐
(𝑛−1) 𝑐

(4.3. 4) 

We call MusRank (Mutualistic Species Rank) the application of this complexity index 

to mutualistic passive-active ecosystem networks. For example, plant-pollinator 

networks.  

Products are replaced by plants, seeds, anemones etc. (passive) while countries are replaced 

by pollinators, birds, fish etc. (active), although research has been done with these roles 

(passive-active) reversed as well. 

 

Table 4.3.10: Repeated attacks on the nodes with the highest MusRank, by network structure, measure used 
and network type. 

Network Class Network Origin Robustness Index Reference 
Bipartite with 
unspecified structure 
 
Undirected and 
unweighted 
 
Structural limitations 

Various real world 
and artificial 

Extinction area of the 
second nodal group 

Dominguez-Garcia 
and Munoz 2015 

Networks from the 
web of life collection 

Fragmentation 
Threshold 
(𝑎 = 0.5) 

Garcia-Algarra et al. 
2017 

AUC of the order of 
the giant component 

Garcia-Algarra et al. 
2017 

Extinction area of the 
second nodal group 

Garcia-Algarra et al. 
2017 

Bipartite with 
unspecified structure 
 
Undirected and 
weighted 
 
Structural limitations 

Networks from the 
web of life collection 

Fragmentation 
Threshold 
(𝑎 = 0.5) 

Garcia-Algarra et al. 
2017 

AUC of the order of 
the giant component 

Garcia-Algarra et al. 
2017 

Extinction area of the 
second nodal group 

Garcia-Algarra et al. 
2017 

 

It is noteworthy, that the MusRank ranking, provides a near-optimal attack strategy in 

such networks.  
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Figure 4.3.1: Extinction areas for three different mutualistic networks as obtained employing the different 
ranking schemes. The upper dashed line shows the optimal performance according to a genetic algorithm, the 
lower dashed line shows the null-expectation, that is the averaged area obtained when targeting nodes in 
random order. The different algorithms are respectively: Closeness, Eigencentrality, Betweenness, Degree, 
Nestedness, PageRank, MusRank and reversed MusRank (meaning the active-passive indexing is reversed).  

(Domingues-Garcia and Munoz 2015) 

 

Highest closeness centrality attacks 

 

Definition 4.3.9: Closeness centrality 

In a connected graph, closeness centrality or closeness of a node is defined as the 

inverse of the sum of the length of the shortest paths between the node and all other 

nodes, multiplied by the number of nodes in order to be defined in [0,1]. 

𝐶𝑐(𝑣) =
|𝑉(𝐺)|

∑ 𝑑(𝑣, 𝑥)𝑥∈𝑉(𝐺)
(4.3. 5) 

 

Removing the nodes with the highest closeness centrality leads to larger travel times 

for information in the network, since in theory it is the optimal spreading point. These nodes 

are considered very important in news and disease spreading models, but this is out of the 

scope of this work. Nevertheless, some studies concerning the capacity of an attack method 

to disconnect the network have been conducting and are presented below. 
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Table 4.3.11: Repeated attacks on the nodes with the highest closeness centrality, by network structure, 
measure used and network type. 

Network Class Network Origin Robustness Index Reference 
Exponential degree 
distribution 
 
Undirected and 
unweighted 

Artificial Change in the order of 
the giant component 

Iyer et al. 2013 
Initial and adaptive 

AUC of the order of the 
giant component 

Iyer et al. 2013 
Initial and adaptive 

Erdos Renyi 
 
Undirected and 
unweighted 

Artificial Change in the order of 
the giant component 

Morone and Makse 2015 

Scale Free 
 
Undirected and 
unweighted 

Artificial Change in the order of 
the giant component 

Iyer et al. 2013 
Initial and adaptive 
 
Morone and Makse 2015 

AUC of the order of the 
giant component 

Iyer et al. 2013 
Initial and adaptive 

Unspecified structure 
 
Undirected and 
unweighted 

Various real world Change in the order of 
the giant component 

Iyer et al. 2013 
Initial and adaptive 

AUC of the order of the 
giant component 

Iyer et al. 2013 
Initial and adaptive 

Unspecified structure 
 
Directed and weighted 
 
Structural limitations 

Food Webs Extinction Area Allesina and Pascual 
2009 

Bipartite with 
unspecified structure 
 
Undirected and 
unweighted 
 
Structural limitations 

Various real world and 
artificial 

Extinction area of the 
second nodal group 

Dominguez-Garcia and 
Munoz 2015 

 

Attacks based on number of dominations 

 

Definition 4.3.10: Food web 

A food web is a network created by ordaining creatures or sets of creatures from an 

environment as nodes and connecting them with directed edges representing the 

relationship 𝐴 is eaten or consumed by 𝐵 as 𝐴 → 𝐵. 
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Definition 4.3.11: Root of a food web (Allesina and Pascual 2009) 

The root in a food web is an artificially induced node that represents the environment 

and has outgoing links towards all primary producers. Also, every species has an 

intrinsic loss of matter which is represented as an edge connecting it to the root. 

 

Definition 4.3.12: Dominating node (Allesina and Pascual 2009) 

A node 𝑥 is said to dominate node 𝑦 (𝑥 is a dominating node of 𝑦) if all the paths from 

the root towards 𝑦 pass through 𝑥. 

 

Allesina and Pascual 2009 also studied the removal of the node that dominates the 

most nodes in food webs. 

 

Table 4.3.12: Repeated attacks on the nodes that dominate the highest number of nodes, by network structure, 
measure used and network type. 

Network Class Network Origin Robustness Index Reference 
Unspecified structure 
 
Directed and weighted 
 
Structural limitations 

Food Webs Extinction Area Allesina and Pascual 
2009 

 

 

Lowest nestedness vertex attacks 

 

A bipartite network is said to be nested when the nodes of group A that are connected 

to a few nodes of group B (locations with few species, species with few interactions) have a 

subset of the group A nodes with more connections to group B. 

 

Definition 4.3.13: Nestedness (Bastolla et al. 2009) 
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 (A measure of) Nestedness of a network is defined locally for each nodal pair as 

𝜂𝑖𝑗 =
(𝐴2)𝑖𝑗

𝑑(𝑖) 𝑑(𝑗)
(4.3. 6) 

With 𝐴 being the adjacency matrix, and 𝑑(𝑣) the degree of node 𝑣. 

The same measure is defined per node as a centrality measure 

𝜂(𝑗) =
1

𝑁
∑ 𝜂𝑖𝑗
𝑖∈𝑉(𝐺)

(4.3. 7) 

And globally as the average 

𝜂(𝐺) =
1

𝑁2
∑ 𝜂𝑖𝑗

𝑖,𝑗∈𝑉(𝐺)

(4.3. 8) 

 

Table 4.3.13: Repeated attacks on the nodes with the lowest nestedness, by network structure, measure used 
and network type. 

Network Class Network Origin Robustness Index Reference 
Bipartite with 
unspecified structure 
 
Undirected and 
unweighted 
 
Structural limitations 

Various real world 
and artificial 

Extinction area of the 
second nodal group 

Dominguez-Garcia 
and Munoz 2015 

 

Attacks based on the flow that goes through each node 

 

Albert et al. 2004 studied the removal of the nodes, in the north American power grid, 

that the largest amount of electricity flow passes through, both based on the initial values, 

and by recalculating the flow in the network every 10 removals. In their model, any node 

above his capacity is considered to fail. 
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Table 4.3.14: Repeated attacks on the nodes through which the largest amount of flow passes through, by 
network structure, measure used and network type. 

Network Class Network Origin Robustness Index Reference 
Exponential degree 
distribution 
 
Undirected and 
unweighted 
 
Processability and 
structural limitations 

North American 
Power Grid 

% of disconnected 
nodes 

Albert et al. 2004 
Initial and adaptive 
every 10 iterations 

 

Vertex removals based on the edges that connect to or from them 

Highest bottleneck ratio edges 

 

Wagner 2015 proposed bottleneck ratio as a measure to assess the importance of an 

edge in a flow network by the traffic that flows through it. Two different attacks were then 

proposed, the first was ranking the nodes by the average bottleneck ratio of their edges, and 

the second was ranking the nodes by the sum of their edges’ bottleneck ratio. 

 

Definition 4.3.14: Minimum (edge) cut set between a source-destination pair 

Minimum (edge) cut set between a source-destination pair 𝑖, 𝑗 is defined as a set of 

nodes that if removed disconnects the pair 𝑖, 𝑗 and has the minimum sum of capacity 

over all such edges. 

 

 

Definition 4.3.15: Bottleneck ratio (Wagner 2015) 

If we identify the flow and minimum edge cut set for every possible nodal pair 𝑖, 𝑗 in the 

network, the bottleneck ratio of an edge is defined as the sum of the fraction of flow 

that was routed across it over the total amount of flow between every pair 𝑖, 𝑗. Formally, 
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𝐵𝑅(𝑒) = ∑
𝑓(𝑒)

∑ 𝑓(𝑀𝐶)∀𝑀𝐶
𝑒∈𝑀𝐶

(4.3. 9) 

 

Table 4.3.15: Repeated attacks on the nodes with the highest initial average or sum of bottleneck ratios, by 
network structure, measure used and network type. 

Network Class Network Origin Robustness Index Reference 
Erdos Renyi 
 
Directed and weighted 
 
Processability 
limitations 

Artificial Change in the order of 
the giant component 

Wagner 2015 
 

Scale free 
 
Directed and weighted 
 
Processability 
limitations 
 

Artificial Change in the order of 
the giant component 

Wagner 2015 
 

Small World 
 
Directed and weighted 
 
Processability 
limitations 

Artificial Change in the order of 
the giant component 

Wagner 2015 
 

 

 

k-shell decomposition 

 

Definition 4.3.16: k-core 

The k-core of a network is a maximal connected sub-network of degree greater or equal 

than 𝑘. that means that each node in the subnetwork is tied to at least 𝑘 other nodes in the 

same subnetwork. The k-shell of a network is the set of nodes that belong to the k-core but 

do not belong to the (k+1)-core. 
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Figure 4.3.2 k-core decomposition of a fictional network. Green nodes are removed during the first iteration, 
orange during the second and blue during the last one. 

(Garcia-Algarra et al. 2017) 

 

The simplest algorithm for the k-shell decomposition is by recursively removing all nodes of 

degree equal to or less than𝑘, starting with 𝑘 = 1 and increasing it. The remaining nodes for each 𝑘 

compose each k-core. 

 

Table 4.3.16: Repeated attacks on the vertices of a network in decreasing k-shell order, by network structure, 
measure used and network type. 

Network Class Network Origin Robustness Index Reference 
Unspecified 
 
Undirected and 
unweighted 

Mexican 
telecommunications 
network 
 
Twitter network 
 

Change in the order of 
the giant component 

Morone and Makse 
2015 

 

Garcia-Algarra et al. 2017 proposed two measures for ranking vertices in bipartite 

graphs, namely, the k-degree and k-risk. 
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Definition 4.3.17: k-radius, k-degree, k-risk (Garcia-Algarra et al. 2017) 

• In a bipartite network, the k-radius of a vertex is defined as the average distance of 

node j (group A) towards each of the species of the innermost k-shell of group B nodes. 

𝑘𝑟𝑎𝑑𝑖𝑢𝑠
𝐴 (𝑣) =

1

|𝑉𝐵(𝐺)|
∑ 𝑑(𝑣, 𝑗)

𝑗∈𝑉𝐵(𝐺)

, 𝑣 ∈ 𝑉𝐴(𝐺) (4.3. 10) 

• The k-degree of a vertex is defined as 

𝑘𝑑
𝐴(𝑣) =∑

𝑎𝑣𝑗

𝑘𝑟𝑎𝑑𝑖𝑢𝑠
𝐵 (𝑗)

𝑗

(4.3. 11) 

Where 𝑎𝑣𝑗  are the elements of the binary adjacency matrix. 

• The k-risk of a vertex is defined as 

𝑘𝑟𝑖𝑠𝑘
𝐴 (𝑣) =∑(𝑘𝑠ℎ𝑒𝑙𝑙

𝐴 (𝑣) − 𝑘𝑠ℎ𝑒𝑙𝑙
𝐵 (𝑗))

𝑗

+ 𝜀𝑘𝑠ℎ𝑒𝑙𝑙
𝐴 (𝑣) (4.3. 12) 

The last part of the equation is meant to solve ties and ε equals a very small value. 

 

Table 4.3.17: Repeated attacks on the nodes with the highest k-degree and k-risk, by network structure, 
measure used and network type. 

Network Class Network Origin Robustness Index Reference 
Bipartite with 
unspecified structure 
 
Undirected and 
unweighted 
 
Structural limitations 

Networks from the web 
of life collection 

Fragmentation 
Threshold 
(𝑎 = 0.5) 

Garcia-Algarra et al. 
2017 

AUC of the order of the 
giant component 

Garcia-Algarra et al. 
2017 

Extinction area of the 
second nodal group 

Garcia-Algarra et al. 
2017 

Bipartite with 
unspecified structure 
 
Undirected and 
weighted 
 
Structural limitations 

Networks from the web 
of life collection 

Fragmentation 
Threshold 
(𝑎 = 0.5) 

Garcia-Algarra et al. 
2017 

AUC of the order of the 
giant component 

Garcia-Algarra et al. 
2017 

Extinction area of the 
second nodal group 

Garcia-Algarra et al. 
2017 
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4.4. Optimized attack methods 
 

Few studies have calculated the absolutely optimal attack strategy for some specified 

concept. Latora and Marchiori 2004 studied the reduction of the efficiency in the network 

caused by the deletion of each node. It would also be interesting to see the efficiency 

reduction caused by the removal of sets of nodes and compare the results. Matisziw et al. 

2012 studied the removal of nodes that causes the maximal flow disruption. Schieber et al. 

2015 attacked the network by targeting the nodes and edges whose removal causes the 

largest disturbance in the JS-robustness are chosen for deletion. 

Another attempt for a heuristic algorithm to create the most damaging attack in the 

network has been proposed by Arulselvan et al. 2008. Their approach is to find a maximal 

independent set of nodes in the network and start recreating the network by adding nodes, 

until the nodes remaining to be added are equal to the order of the attack we intended to 

make. Nodes are added whilst minimizing ∑
𝜎ℎ(𝜎ℎ−1)

2ℎ∈𝑀𝑗
, where 𝜎ℎ is the number of 

connected nodes and 𝑀𝑗  is the set of all maximal connected components in the subgraph that 

has been recreated to this point. 

An interesting approach was taken by Chen et al. 2008, where they modified a nested 

dissection algorithm and created the equal graph partitioning algorithm. The nested 

dissection algorithm separates the network into two components of equal order with a 

minimum number of nodes removed. The equal graph partitioning algorithm is designed to 

separate the network into two components of arbitrary relative orders, thus one can use it 

to separate the network into many small components by applying the algorithm iteratively. 

This approach has been shown to be less effective for heterogenous networks by Morone 

and Makse 2015. 
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Table 4.4.1: Repeated optimized attacks on the nodes of a network, by attack method network structure, 
measure used and network type. 

Attack target Network Class Network Origin Robustness Index Reference 
Maximal efficiency 
reduction if 
removed from the 
original network 

Unspecified 
structure 
 
Undirected and 
weighted 
 

Infonet internet 
backbone (US) 
 
Infonet internet 
backbone (EU) 
 
9/11 terrorist 
network 

Change in the 
efficiency 

Latora and 
Marchiori 2004 

Maximal total flow 
disruption 

Unspecified 
structure 
 
Undirected and 
weighted 

US Internet Traffic Elasticity of MGG-
Robustness 

Matisziw et al. 
2012 

Maximal criticality 
according to the JS-
robustness 

Unspecified 
structure 
 
Undirected and 
unweighted 

Western Power 
Grid of the US 

JS-robustness and 
its change over the 
attack  

Schieber et al. 
2015 
 

Unspecified 
structure 
 
Undirected and 
weighted 

Dolphin Social 
Network 

JS-robustness and 
its change over the 
attack  

Schieber et al. 
2015 
 

Maximal 
Independent Set 
optimization 

Unspecified 
structure 
 
Undirected and 
weighted 

Terrorist network JS-robustness and 
its change over the 
attack  

Arulselvan et al. 
2008 

Equal Graph 
Partitioning 

Erdos Renyi 
 
Undirected and 
unweighted 

Artificial Change in the 
order of the giant 
component 

Chen et al. 2008 

Scale Free 
 
Undirected and 
unweighted 

Artificial Change in the 
order of the giant 
component 

Chen et al. 2008 
Morone and Makse 
2015 
 

Random Regular 
 
Undirected and 
unweighted 

Artificial Change in the 
order of the giant 
component 

Chen et al. 2008 
Morone and Makse 
2015 
 

Unspecified 
structure 
 
Undirected and 
unweighted 

Workplace 
network 
 
Internet 
(Autonomous 
System) 
 
High energy 
particle physics 
station network 

Change in the 
order of the giant 
component 

Chen et al. 2008 
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Metabolic network 

Optimization via 
genetic algorithm 

Unspecified 
structure 
 
Directed and 
weighted 
 
Structural 
limitations 

Food Webs 
 

Extinction Area Allesina and 
Pascual 2009 

 

Table 4.4.2: Repeated optimized attacks on the links of a network, by attack method network structure, 
measure used and network type. 

Attack target Network Class Network Origin Robustness Index Reference 
Maximal 
criticality 
according to the 
JS-robustness 

Unspecified 
structure 
 
Undirected and 
unweighted 

Western Power 
Grid of the US 

JS-robustness 
and its change 
over the attack  

Schieber et al. 
2015 
 

Unspecified 
structure 
 
Undirected and 
weighted 

Dolphin Social 
Network 

JS-robustness 
and its change 
over the attack  

Schieber et al. 
2015 
 

 

4.5. Mixed attack strategies 
 

In this category belongs any type of attack that combines in some way two other (e.g. 

removing some of the highest degree nodes first, then targeting the ones with the highest 

betweenness). 

Tanizawa et al. 2005 studied the behavior of scale free networks when subjected to 

both highest degree and random attacks. A 2-value degree distribution was proposed as the 

most robust when subjected to both types of attacks.  

Wu et al. 2007 took a different approach, with the idea that the attacker will not know 

perfectly the structure of the network, but he will remove the highest degree nodes of the 

known structure and then follow with random attacks. Results were given for the various 

level of knowledge of the attacker. 
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Table 4.5.1: Repeated mixed-strategy attacks on the nodes of a network, by attack combination, network 
structure and origin, and measure used. 

Attack target Network Class Network Origin Robustness 
Index 

Reference 

Degree then 
random 

Scale Free 
 
Undirected and 
weighted 

Artificial Critical 
Threshold 

Tanizawa et al. 
2005 

Bimodal degree 
distribution 
 
Undirected and 
weighted 

Artificial Critical 
Threshold 

Tanizawa et al. 
2005 

Degree then 
random based on 
incomplete 
information on 
the network 

Scale Free 
 
Undirected and 
weighted 

Artificial Change in the 
order of the giant 
component 

Wu et al. 2007 

Critical 
Threshold 

Wu et al. 2007 

 

4.6. Probabilistic models with limited cost 
 

Instead of comparing the damage inflicted on a network against the removals made on 

it, it might be more realistic to consider the inequality on the level of difficulty for each attack. 

Deng and Wu 2015 and Deng and Wu 2016 proposed a method to adjust the cost of removing 

a node by a network measure (in their examples they used the degree of each node).  

 Simultaneously, they proposed a probabilistic method of attack. Specifically, an attack 

strategy where they determine the nodes to be removed by turning it into an unequal 

probability sampling problem without replacement. The selection probability that a node 𝑣𝑖  

is sampled to attack in each sample is defined as 

𝛻𝑖 =
𝑝𝑖
𝑥

∑ 𝑝𝑖
𝑥𝑁

𝑖=1

=
𝑝
𝑖

tan(
𝜋
2
𝛿)

∑ 𝑝
𝑖

tan(
𝜋
2
𝛿)

𝑁
𝑖=1

, 𝛿 ∈ [−1,1] (4.6. 1) 

With 𝑝𝑖 being a certain property of the node 𝑣𝑖  (e.g. degree).  

For 𝛿 = 1 the nodes are removed with descending property value while for 𝛿 = −1 

with descending and for 𝛿 = 0 they are removed uniformly at random. 

In their results, in a limited cost model for various exponents to the cost of removal, it 

was shown that in scale free networks with varying exponents, the optimal values for 𝛿 are 
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usually close to the extremes. Specifically, as the exponent of the scale free model drops and 

as the cost of removal rises, optimal 𝛿 drops to −1. 

 

Table 4.6.1: Repeated probabilistic node attacks with limited cost based on the degree, by network structure 
and origin, and measure used. 

Network Class Network Origin Robustness Index Reference 
Scale Free 
 
Undirected and 
unweighted 

Artificial Proportion of nodes in 
the largest component 

Deng and Wu 2015 
Deng and Wu 2016 

 

4.7. Attacks unrelated to the network structure 
 

Another very important factor to be considered when studying network functionality 

is the context of the network’s existence. Bad weather may be considered as random failures 

of edges or vertices for transportation networks, but there is always the question of scale. 

For example, the explosion of Eyjafjallajökull in 2010 caused great perturbations in the 

European air traffic network, and it has been shown (Wilkinson et al. 2011, Dunn and 

Wilkinson 2015) that this network is vulnerable when subjected to spatial hazards. 

This type of attack can be modelled by a different variable, unrelated to the network 

structure, such as geographical location or ranking in an organization. It is reasonable to 

assume that an interloper will not be able to acquire access to every one of his targets in the 

network, at least not with the same ease. It is thus a promising idea, although case specific, 

to consider weighing the removal cost in limited cost models, in respect to geographical, or 

hierarchical data as well. 

Another concept that might not be related immediately to the network, is the 

interconnection of the roles that the actors (vertices) have. Duijn et al. 2014 recreated not 

only the network with the actors as nodes, but the hierarchical structure of the cannabis 

distribution network as well. Then they attempt, among others, two attacks based on the 

second structure. The first is attacking the role that needs the highest/rarest expertise, while 

the second is attacking actors based on their degree in the role network 
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Table 4.7.1: Repeated attacks on the nodes of a network, unrelated to the structure. 

Method of attack Network Class Network Origin Robustness 
Index 

Reference 

Specific role Scale Free 
 
Undirected and 
Unweighted 
 
Self-rewiring 

Cannabis 
distribution 
network 

Change in the 
efficiency 

Duijn et al. 2014 

Change in the 
network density 

Duijn et al. 2014 

Highest degree in 
role network 

Scale Free 
 
Undirected and 
Unweighted 
 
Self-rewiring 

Cannabis 
distribution 
network 

Change in the 
efficiency 

Duijn et al. 2014 

Change in the 
network density 

Duijn et al. 2014 

Spatial Hazard Truncated power 
law degree 
distribution 
 
Undirected and 
Unweighted 
 
Structural 
limitations 
 
Self-rewiring 

European air 
traffic and 
similar artificial 

Percentage of 
destroyed air-
routes 

Wilkinson et al. 
2011 
Dunn and 
Wilkinson 2015  
 

Change in the 
order of the giant 
component 

Wilkinson et al. 
2011 
Dunn and 
Wilkinson 2015  
 

Top-down on the 
hierarchy 
ranking 

Hierarchy 
 
Undirected and 
unweighted 
 
Structural 
limitations? 

Artificial Connectivity 
Robustness 

Dodds et al. 2003 

Maximal 
congestion 
centrality 

Dodds et al. 2003 
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5. Example 
 

 

5.1. Methods 
 

In this chapter we will measure the robustness of four different directed networks, and 

subsequently we shall test these measurements by attacking these networks in various ways 

and comparing the results of these attacks. 

The networks we have used are four different food webs, specifically the dry season of: 

the Florida bay ecosystem (Ulanowicz et al. 1998), the Cypress wetland ecosystem 

(Ulanowicz et al. 1997), the Mangrove ecosystem (Ulanowicz et al. 1999) and the Graminoid 

ecosystem (Ulanowicz et al. 2000). The data was obtained by Batagelj and Mrvar 2006 and 

they are licensed under a Creative Commons-NonCommercial-ShareAlike 2.5 License 

https://creativecommons.org/licenses/by-nc-sa/2.5/. 

We are interested only in the network properties; therefore, we did not account for the 

weights or other properties (such as the biomass of the various species) of the network as 

they represent elements irrelevant to our binary approach of the components of the network 

being connected or not.  

Furthermore, we have arbitrarily considered the networks without self-loops (we have 

removed five self-loops from the Mangrove ecosystem). This is done because the existence 

of such edges does not affect any of our evaluation methods, but can affect both the methods 

of attack and the measures of robustness. 

 

We use three different measures of robustness: 

• The normalized natural connectivity of the network (definition 3.5.4). As the natural 

connectivity strictly increases as edges are added, we can normalize it by dividing the 

natural connectivity of a network with that of a complete network without self-loops 

of equal order. 

https://creativecommons.org/licenses/by-nc-sa/2.5/
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• The difference between the absolute value of the first two largest eigenvalues. We wish 

to check if the principle behind the deviation from the ideal good expander (definition 

3.5.9), holds for directed networks. Specifically, that if the gap between the first two 

eigenvalues is sufficiently large the network has good expansion properties and is, 

thus, more robust.  

• The assortativity coefficient (definition 2.3.2) based on the degrees of the network, as 

defined by Newman 2003. We wish to check if in these networks the assortativity 

coefficient is positively or negatively correlated with the robustness to disconnection. 

All three of the robustness measures are calculated both for the whole network and for its 

largest strongly connected component. However, the difference of the eigenvalues was the 

same for both components across all three networks. 

 

We measure eight different methods of attack. 

• Random attacks: We create five different random enumerations of the vertices of the 

network and we remove them sequentially. In the end we take the average of all 5 

measurements and treat it as the result of a single attack. This is done in order to avoid 

one lucky hit, or a large series of unlucky ones, producing skewed results. This method 

should be used as a baseline in order to judge the effectiveness of the rest of the attacks, 

as for any method of attack to be successful it should perform better than random. 

• Degree attacks: We remove the nodes of the network in descending order of degree. In 

case of ties the order is determined randomly. This method is performed in three 

different ways: 

o Total degree: Where the number of all edges starting from and ending to each 

node is used. 

o In-degree: Where the number of all edges ending to each node is used. 

o Out-degree: Where the number of all edges starting from each node is used. 

• Betweenness attacks: We remove the nodes of the network in descending order of 

betweenness. In case of ties the order is determined randomly. 
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• Collective influence attacks: We remove the nodes of the network in descending order 

of collective influence. In case of ties the order is determined randomly. This method is 

performed in two different ways: 

o 2-step collective influence 

o 3-step collective influence 

• Eigencentrality: We remove the nodes of the network in descending order of 

eigencentrality. In case of ties the order is determined randomly. 

 

The evaluation of the attacks is performed by their ability to disconnect the network. 

This can be seen in the change of the order of the giant component (both the weakly and the 

strongly connected) over the attack and further quantified by the area under the curve of 

these plots. It can also be observed as the a-fragmentation threshold (definition 3.3.2) of the 

network both for the weakly and strongly connected giant components, for the various 

values of a and the different attacks. We present the values for the .75, .50 and .25-

fragmentation thresholds of the networks. The thresholds of the giant strongly connected 

component are in proportion of the whole network.  In presenting these a-fragmentation 

thresholds, we have reduced the values exceeding 1 − 𝑎 due to not being divisible by 100, to 

be equal to 1 − 𝑎. However, there is an interesting case, for the .75-fragmentation threshold 

on the 2-steps collective influence attack in the Mangrove food web, where more than 25% 

of the nodes have to be removed to reduce the giant strongly connected component bellow 

75% of its original size, this is unexpected, due to the fact that a targeted attack is expected 

to destroy the network faster, and thus, one would expect it should destroy both the strongly 

and the weakly connected giant component faster. 

We make a further evaluation of the ability of the attacks to break down the 

communicability in the network by measuring the change of the global efficiency 

(normalized by the initial order of the network (definition 3.3.8, theorem 3.3.1.) over the 

attack and its area under the curve. 
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5.2. Results 
 

Robustness indices 

 

Table 5.2.1: Measures of robustness for the four different networks. Weak and strong indicate if the 
measurement is for the giant weakly or strongly connected component. Highlighted in grey are the largest 
values in every category, and the smallest ones in the assortativity coefficient as its positive or negative 
correlation to robustness is under evaluation. 

 Density 
(weak) 

Density 
(strong) 

Assortativit
y coefficient 
(weak) 

Assortativity 
coefficient 
(strong) 

Natural 
connectivit
y 
normalized 
(weak) 

Natural 
connectivity 
normalized 
(strong)   

Spectral 
gap  

Florida bay 0.131 0.153 -0.234 -0.300 0.050 0.066 3.644 
Cypress 
wetlands 

0.129 0.162 -0.334 -0.339 0.043 0.065 3.107 

Everglades 
graminoids 

0.194 0.203 -0.408 -0.421 0.107 0.127 5.049 

Mangrove 
estuary 

0.160 0.171 -0.311 -0.227 0.105 0.120 5.952 

 

Table 5.2.1 shows that the graminoids food web should be most robust according to 

density, while the Cypress wetlands should be the least robust according to the density of its 

weak giant component (with Florida bay being a very close second), and the Florida bay 

according to the density of the strong giant component.  The Natural connectivity suggests, 

both for the weak and the strong giant components, that the Cypress is the least robust 

network, again with the Florida bay being a very close second, while the most robust seems 

to be the Graminoids network with the Mangrove being close. According to the natural 

connectivity there should be a distinct difference between these two pairs of networks. The 

gap between the first and second eigenvalues of the adjacency suggests that the Cypress 

network should be the least robust and the Mangrove should be the most. The assortativity 

coefficient points on the one hand to the graminoids ecosystem (both its weak and strong 

giant components) and to the other hand the weak giant component of the Florida bay 
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network and the strong giant component of the Mangrove network, to be most and least 

robust. 

In summary, the robustness indices point in general towards the Cypress wetlands and 

the Florida bay to be the least robust of the four networks and to the Everglades graminoids 

or the Mangrove estuary to be the most robust. 

 

Weak giant component 

 

 

Figure 5.2.1: Giant weakly connected component order of the Florida bay food web when subjected to eight 
different attacks. The attacks are made on the nodes of the network descending on the ranking provided by 2 
and 3 steps collective influence, betweenness, eigencentrality, total, in and out degree. We also present the 
average impact of five random attacks. 
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Figure 5.2.2: Giant weakly connected component order of the Cypress wetlands food web when subjected to 
eight different attacks, as in Figure 5.2.1. 

 

Figure 5.2.3: Giant weakly connected component order of the Everglades graminoids food web when subjected 
to eight different attacks, as in Figure 5.2.1. 
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Figure 5.2.4: Giant weakly connected component order of the Mangrove estuary food web when subjected to 
eight different attacks, as in Figure 5.2.1. 

 

• In Figure 5.2.1. we can see that all methods of attack have a low impact on the weak 

giant component of the Florida bay food web, with the total degree attack and the 

eigencentrality attack showing a better performance towards the end. 

• In Figure 5.2.2 we can see that the weak giant component of the Cypress wetlands is 

far more vulnerable to total degree attacks than the other kinds, with eigencentrality 

and in-degree being second and third, unclear on the order. 

• In Figure 5.2.3 we can see that the weak giant component of the Everglades graminoids 

is also far more vulnerable to total degree attacks than the other kinds, but they stop 

being effective towards the end of the attack (when almost three quarters of the 

network have been removed). 

• In Figure 5.2.4 we can see that the weak giant component of the Mangrove estuary is 

more vulnerable to total degree attacks and eigencentrality attacks than the other 

kinds. 
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These results can be further explored in table 5.2.2 where we can see that the weak 

giant component of the Florida bay food web is robust to all attacks (has area under the 

curve close to 0.5) and all other networks have their minimal area occur when the network 

is subjected to total degree attacks.  

 

Table 5.2.2: Area under the curve of the normalized giant weakly connected component (rounded to three 
decimal digits) of four networks when subjected to eight different attacks. Networks are food webs during the 
dry season of the Florida bay, the Cypress wetlands, the Everglades graminoids and the Mangrove estuary. 
Attacks are as in Figure 1. Highlighted in grey are the highest areas for each attack. Highlighted in black with 
white letters are the lowest areas for each attack. 

Weak GC 
AUC 

Degree attacks Betweenness 
attacks 

Collective 
influence attacks 

Eigenvector 
centrality 
attacks 

Random 
attacks 

 Total In Out  2-
steps 

3-steps  Mean of 5 

Florida bay 0.49
0 

0.49
8 

0.491 0.497 0.491 0.499 0.486 0.497 

Cypress 
Wetlands 

0.36
6 

0.45
0 

0.483 0.490 0.490 0.499 0.446 0.490 

Everglades 
graminoid
s 

0.44
1 

0.49
2 

0.493 0.493 0.500 0.499 0.492 0.498 

Mangrove 
estuary 

0.46
6 

0.49
7 

0.498 0.497 0.500 0.500 0.471 0.499 

 

 We can see that the Cypress wetlands is the most vulnerable network to damage to its 

weak giant component in every instance, while the Mangrove estuary and the Florida bay 

are the most robust with the Everglades graminoids being close in terms of robustness.  
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Table 5.2.3: a-fragmentation threshold (rounded to the second decimal digit) of the weakly connected giant 
component of four networks when subjected to eight different attacks. Networks and attacks are as in Figure 
5.2.1. Highlighted in grey are the cases where the threshold is equal to a (no disconnections occur). 
Highlighted in black and written in white are the lowest values for each attack, unless all are equal.  

Weak GC  
.75 
Threshold 

Degree attacks Betweenness 
attacks 

Collective 
influence attacks 

Eigenvector 
centrality 
attacks 

Random 
attacks 

 Total In Out  2-steps 3-steps  Mean of 5 

Florida bay 0.25 0.25 0.25 0.25 0.24 0.25 0.25 0.25 

Cypress 
Wetlands 

0.21 0.24 0.25 0.25 0.25 0.25 0.21 0.25 

Everglades 
graminoids 

0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

Mangrove 
estuary 

0.25 0.25 0.25 0.25 0.25 0.25 0.24 0.25 

Weak GC  
.50 
Threshold 

Degree attacks Betweenness 
attacks 

Collective 
influence attacks 

Eigenvector 
centrality 
attacks 

Random 
attacks 

 Total In Out  2-steps 3-steps  Mean of 5 

Florida bay 0.50 0.50 0.49 0.50 0.49 0.50 0.48 0.50 

Cypress 
Wetlands 

0.41 0.45 0.49 0.50 0.49 0.50 0.45 0.50 

Everglades 
graminoids 

0.46 0.50 0.49 0.50 0.50 0.50 0.50 0.50 

Mangrove 
estuary 

0.50 0.50 0.50 0.50 0.50 0.50 0.48 0.50 

Weak GC  
.25 
Threshold 

Degree attacks Betweenness 
attacks 

Collective 
influence attacks 

Eigenvector 
centrality 
attacks 

Random 
attacks 

 Total In Out  2-steps 3-steps  Mean of 5 

Florida bay 0.73 0.74 0.73 0.74 0.74 0.75 0.73 0.75 

Cypress 
Wetlands 

0.44 0.68 0.70 0.73 0.75 0.75 0.65 0.73 

Everglades 
graminoids 

0.62 0.74 0.74 0.74 0.75 0.75 0.74 0.75 

Mangrove 
estuary 

0.64 0.75 0.75 0.75 0.75 0.75 0.71 0.75 

 

 The a-fragmentation thresholds of the weak giant component indicate that the actual 

damage done to the network with most methods of attack is menial before more than 70% 

of its nodes have been removed. Apart from the Cypress wetlands network, which as 

indicated by the robustness indices was the least robust, all other networks’ weak giant 

components had very few, if any, secondary disconnections. The only exception in this is 

that the Everglades graminoids and the Mangrove estuary networks sustained some 

disconnections (a little more than a tenth of their nodes) were disconnected from the weak 

giant component) when the 62 and 64 percent of their nodes being removed. 
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In summary, the only deviation from the expectations provided by the robustness 

indices, is the Florida bay network, which was expected to be vulnerable, but was very 

robust to the disconnection of its weak giant component. The Cypress wetlands network 

was indeed the least robust in almost every case, while in general the Mangrove estuary 

was more robust than the everglades graminoids in terms of their weak giant component. 

 

Strong giant component 

 

 

Figure 5.2.5: Giant strongly connected component order of the Florida bay food web when subjected to eight 
different attacks, as in figure 5.2.1. 
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Figure 5.2.6: Giant strongly connected component order of the Cypress wetlands food web when subjected to 
eight different attacks, as in figure 5.2.1. 

 

 

Figure 5.2.7: Giant strongly connected component order of the Everglades graminoids food web when 
subjected to eight different attacks, as in figure 5.2.1. 
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Figure 5.2.8: Giant strongly connected component order of the Mangrove estuary food web when subjected to 
eight different attacks, as in figure 5.2.1. 

 

• In figure 5.2.5 we can see that the giant strongly connected component of the Florida 

bay network is very vulnerable to total degree, in-degree, eigencentrality and 

betweenness attacks, as it breaks down to less than 10% of the network’s order with 

less than 10% of the nodes in the network being removed. 2-steps collective influence 

is also a relatively successful attack that breaks it down to less than half its order with 

less than 10% nodes removed and at less than 10% of the network’s order at a bit less 

than 25% of the nodes being removed. 

• In figure 5.2.6 we can see that the giant strongly connected component of the Cypress 

wetlands network breaks down even faster under eigencentrality and betweenness 

attacks, but to a lesser extent, also more methods of attack seem to be effective 

against it, even though some of them are less effective than in the Florida bay 

network. 
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• In figure 5.2.7 we can see that the giant strongly connected component of the 

Everglades graminoids network also breaks down very fast, specifically, less than 

12.5% of the network needs to be removed to achieve a less than 12.5% participation 

in the strong giant component for total degree, in-degree, eigencentrality, 

betweenness and 2-steps collective influence. Also, out-degree and random attacks 

seem to be effective as well. 

• In figure 5.2.8 we can see that the giant strongly connected component of the 

Mangrove estuary network we can see a similar great effectiveness for total degree, 

in-degree and betweenness, and an only slightly less effectiveness for eigencentrality 

and out-degree attacks. 

 

These results can be further explored in table 5.2.4 where we can see that total degree, 

in-degree and betweenness attacks are the best methods to shatter the strong giant 

component of most of the networks, with eigencentrality being followed by the rest, while 

performing very well on the Florida bay network. We note that neither of the two collective 

influence measures show promising results, especially in the Mangrove estuary network. We 

believe the cause of this to be the size of the networks.  

 

Table 5.2.4: Area under the curve of the normalized giant weakly connected component (rounded to three 
decimal digits) of four networks when subjected to eight different attacks. Networks and attacks are as in 
figure 5.2.1. Highlighted in grey are the highest areas for each attack. Highlighted in black with white letters 
are the lowest areas for each attack. 

Strong GC 
AUC 

Degree attacks Betweenness 
attacks 

Collective 
influence attacks 

Eigenvector 
centrality 
attacks 

Random 
attacks 

 Total In Out  2-
steps 

3-steps  Mean of 
5 

Florida bay 0.049 0.043 0.277 0.027 0.103 0.354 0.066 0.299 

Cypress 
Wetlands 

0.050 0.052 0.198 0.046 0.118 0.314 0.180 0.201 

Everglades 
graminoids 

0.054 0.073 0.211 0.112 0.133 0.418 0.118 0.283 

Mangrove 
estuary 

0.036 0.037 0.129 0.041 0.427 0.432 0.116 0.338 
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 We can see that, surprisingly, the strong giant component of the Mangrove estuary 

network is the most vulnerable to degree attacks, but the most robust to collective 

influence and random attacks. Also surprising is the fact that the strong giant component of 

the Cypress wetlands network is slightly more robust than most other networks (except 

the Everglades graminoids) in almost all efficient methods of attack. Finally, the Everglades 

graminoids network is shown to be the most, or second most, robust under all attacks. 
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Table 5.2.5: a-fragmentation threshold (rounded to the second decimal digit) of the strongly connected giant 
component of four networks when subjected to eight different attacks. Networks and attacks are as in figure 
5.2.1. Highlighted in grey are the cases where the threshold is equal to a (no disconnections occur). 
Highlighted in black and written in white are the lowest values for each attack, unless all are equal. 
Highlighted in light grey are the largest values for each attack. Highlighted in orange is the only case where 
more than 1-a is smaller than the a-fragmentation threshold. 

Weak GC  
.75 Threshold 

Degree attacks Betweennes
s attacks 

Collective 
influence attacks 

Eigenvector 
centrality 
attacks 

Random 
attacks 

 Total In Out  2-steps 3-steps  Mean of 
5 

Florida bay 0.02 0.02 0.21 0.01 0.05 0.021 0.02 0.16 

Cypress 
Wetlands 

0.03 0.03 0.03 0.01 0.08 0.23 0.21 0.11 

Everglades 
graminoids 

0.03 0.04 0.01 0.01 0.12 0.25 0.09 0.23 

Mangrove 
estuary 

0.03 0.03 0.13 0.03 0.27 0.25 0.12 0.22 

Weak GC  
.50 Threshold 

Degree attacks Betweennes
s attacks 

Collective 
influence attacks 

Eigenvector 
centrality 
attacks 

Random 
attacks 

 Total In Out  2-steps 3-steps  Mean of 
5 

Florida bay 0.02 0.02 0.34 0.01 0.05 0.42 0.02 0.34 

Cypress 
Wetlands 

0.03 0.03 0.31 0.01 0.08 0.42 0.21 0.23 

Everglades 
graminoids 

0.03 0.04 0.24 0.10 0.12 0.48 0.09 0.28 

Mangrove 
estuary 

0.03 0.03 0.13 0.03 0.46 0.49 0.12 0.34 

Weak GC  
.25 Threshold 

Degree attacks Betweennes
s attacks 

Collective 
influence attacks 

Eigenvector 
centrality 
attacks 

Random 
attacks 

 Total In Out  2-steps 3-steps  Mean of 
5 

Florida bay 0.05 0.02 0.55 0.03 0.23 0.70 0.02 0.56 

Cypress 
Wetlands 

0.03 0.03 0.45 0.01 0.08 0.61 0.21 0.30 

Everglades 
graminoids 

0.03 0.04 0.32 0.10 0.12 0.71 0.09 0.38 

Mangrove 
estuary 

0.03 0.03 0.13 0.03 0.71 0.72 0.12 0.57 

 

Table 5.2.5 agrees with our previous observations, namely that degree attacks are 

extremely effective and that most attacks (excluding collective influence and random) are 

very effective against all strong giant components. However, 2-steps collective influence is 

a very effective method on the Florida bay and Cypress wetlands networks. Furthermore, 
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we observe that most of the damage on the strong giant components is achieved early on, 

as in many cases the a-fragmentation threshold is equal, or almost equal for 𝑎 = 0.75, 0.50 

and 0.25. This shows that there are a few key nodes holding the strong giant component 

together, and most attack methods disconnect them very efficiently. 

 Another thing to point out, is that the .25-threshold, in most cases of attack, agrees 

with our expectations of the Cypress wetlands being the least robust network followed by 

the Florida bay, and that the Everglades graminods and the Mangrove estuary are the most 

robust networks (excluding out-degree and eigencentrality). The .50 and .75 thresholds 

also somewhat agree, although the Florida bay is shown to be less robust than the Cypress 

wetlands, the differences are very small in most cases. 

 

 In summary, according to the a-fragmentation thresholds there are small deviations 

to the effect the various attacks have on the networks, from the expected effects provided 

by the robustness indices, but the ordering seems to be following the same patterns, the 

two networks shown to be less robust, are less robust and the two networks shown to be 

more robust, are indeed more robust. These results disagree somewhat with the AUC of the 

graphs, but the differences in the areas under the curves are very small; small enough to be 

affected by very small strongly connected clusters surviving for a long period of time in the 

network and biasing the results. 
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Global efficiency 

 

 

Figure 5.2.9: Global efficiency normalized by the initial network order of the Florida bay food web when 
subjected to eight different attacks, as in figure 5.2.1. 

 

Figure 5.2.10: Global efficiency normalized by the initial network order of the Cypress wetlands food web 
when subjected to eight different attacks, as in figure 5.2.1. 
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Figure 5.2.11: Global efficiency normalized by the initial network order of the Everglades graminoids food 
web when subjected to eight different attacks, as in figure 5.2.1. 

 

Figure 5.2.12: Global efficiency normalized by the initial network order of the Mangrove estuary food web 
when subjected to eight different attacks, as in figure 5.2.1. 
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• In figure 5.2.9 we can see that the global efficiency of the Florida bay network is most 

vulnerable to total degree attacks, but all of the methods of attack perform in a similar 

way. 

• In figure 5.2.10we can see that the global efficiency of the Cypress wetlands 

ndetowork is most vulnerable to total degree attacks, followed by in-degree and 

eigencentrality attacks. Furthermore, they seem to be more effective than in the rest 

of the networks. 

• In figure 5.2.11 we can see that the global efficiency of the Everglades graminoids 

network is most vulnerable to total degree and in-degree attacks. 

• In figure 5.2.12 we can see that the global efficiency of the Mangrove estuary network 

is most vulnerable to total degree and eigencentrality attacks. 

 

Table 5.2.6: Area under the curve of the global efficiency normalized by the initial network order (rounded to 
three decimal digits) of four networks when subjected to eight different attacks. Networks and attacks are as 
in table 5.2.1. Highlighted in grey are the highest areas for each attack. Highlighted in black with white letters 
are the lowest areas for each attack. 

Global 
efficiency 
(normalized) 
AUC 

Degree attacks Betweenness 
attacks 

Collective 
influence attacks 

Eigenvector 
centrality 
attacks 

Random 
attacks 

 Total In Out  2-
steps 

3-steps  Mean of 
5 

Florida bay 0.178 0.191 0.192 0.201 0.208 0.209 0.201 0.206 

Cypress 
Wetlands 

0.129 0.156 0.186 0.192 0.206 0.214 0.178 0.201 

Everglades 
graminoids 

0172 0.193 0.217 0.217 0.230 0.236 0.215 0.226 

Mangrove 
estuary 

0.178 0.191 0.204 0.210 0.221 0.229 0.200 0.219 

 

 Table 5.2.6 confirms the observations from the plots. In summary, all networks seem 

more vulnerable to total degree, in-degree and eigencentrality attacks, with the Cypress 

wetlands seemingly losing efficiency faster than the others. Furthermore, we see that it 

agrees almost entirely with the robustness indices. Specifically, the Cypress wetlands 

network seems to be the most vulnerable in every attack except one, the Florida bay 

network is in most cases the second or first least robust network, the mangrove estuary is 
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in most cases the second most robust, and the Everglades graminoids is in all cases except 

one the most robust network. 

 

5.3. Conclusions 
 

We note that neither of the two collective influence measures show promising results, 

especially in the Mangrove estuary network.  

The anomalies in the ranking of the networks according to their robustness compared 

to the rankings provided by the impact on the attacks on their strong giant components, 

lead us to assume that the robustness indices, whether they are calculated for the strong 

giant component or the weak, do not necessarily encompass the robustness of the strong 

giant component to attacks on the whole of the network. On the one hand, a more thorough 

research is required to verify if this is true in general and not for only a few networks, and 

on the other, research is also required to explore the degree that the property of strong 

connection affects such indices. 

The very low values for the AUCs of the strong giant component for all networks 

under most attacks, suggest that there are a few key nodes holding the strong giant 

components together, and most attack methods detect them very efficiently, breaking the 

network very early on. Furthermore, the ranking of the AUCs and the a-fragmentation 

thresholds disagree somewhat, but the differences in the areas under the curves are very 

small; small enough to be affected by tiny strongly connected clusters surviving for a long 

period of time in the network and biasing the results. Because of this, we find the more 

direct approach of the a-fragmentation threshold to be a better criterion than the change in 

the size of the giant component. Our belief is enhanced by the fact that it agrees with the 

selected indices of robustness. 

Moreover, the fact that the strong giant component of the Cypress wetlands network 

is slightly more robust than most other networks (except the Everglades graminoids) in 

almost all efficient methods of attack, leads us to assume that the robustness indices, 

whether they are calculated for the strong giant component or the weak, do not necessarily 
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encompass the robustness of the strong giant component to attacks on the whole of the 

network. On the one hand, a more thorough research is required to verify if this is true in 

general and not for only a few networks, and on the other, research is also required to 

explore the degree that the property of strong connection affects such indices. 

Finally, the fact that the AUC of the global efficiency shows a near perfect agreement 

on the ranking of the networks according to their robustness. This leads us to assume that 

the robustness indices we have studied are correlated more with the ability of the network 

to maintain efficient communications, rather than with its ability to remain strongly, or 

weakly connected when subjected to a variety of attacks. 

 

Concerning the methods of attack, we have seen that the total degree method is 

consistently the most efficient, followed by the in-degree, eigencentrality and sometimes 

betweenness attacks. This is in general expected, as attacks based on the initial degree have 

been shown to be more effective than those based on the initial betweenness on undirected 

networks.  

Surprisingly, the collective influence methods were heavily outperformed by the rest. 

This might have to do with one of two things. One possibility is that they perform better on 

larger networks, as they have been demonstrated to work to networks of with nodes 

numbering in the order of 107. Or it might have to do that it is related as a measure by 

definition to the out-degree, which in these networks has been shown to not be an efficient 

method of attack. This requires further investigation. 
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6. Results 
 

6.1. Introduction 
 

In this chapter we will present the most important of the known results, as well as compare 

them to our findings in chapter 5.  

 

6.2. Summary of known results 
 

In this chapter we will present a summary of the known results in the literature, as well as 

point out the issues that have been observed in the literature. 

 

Network structure 

 

Intuitively, star graphs or similar structures are the most robust networks against 

random removals of edges or nodes, because a very small proportion (in a pure star graph, 

only one) of its nodes is vital, and thus, for any removal, the probability of it being picked is 

1/𝑁′. 

Scale free networks have similar structure to star graphs. They have a few central 

(core) nodes, and many peripheral nodes. Scale free networks have been shown to be 

robust to random attacks (Albert et al. 2000, Cohen et al. 2000, Cruciti et al. 2003), to the 

point that the changes in their global and local efficiency are barely detectable for a few 

removals (Cruciti et al. 2003). However, they are vulnerable to targeted degree attacks 

(Albert et al. 2000, Cohen et al. 2001, Cruciti et al. 2003).  

Furthermore, for attacks with incomplete information on the network, very small 

increases in the knowledge of the network can increase the effectiveness of the attack a lot 

(Wu et al. 2007). However, hiding just a small fraction of nodes can prevent the network to 

break down under an intentional attack to the hubs. This is a surprising result, as randomly 

hiding a fraction of nodes in a scale-free network, should correspond to hiding 
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preferentially low-degree nodes, and thus, one should expect an attack targeting the hubs 

to still be able to detect most of them. It can be explained that for scale-free networks with 

inhomogeneous degree distributions, there are few highly connected hubs which dominate 

a network, so even hiding a few of them can protect the whole network (Wu et al. 2007). 

Core-periphery hierarchies and multiscale (high connectivity both at local and at 

global scale) hierarchies are more robust to congestion, but as the size of the network 

grows, layered hierarchies (the layers are well connected communities and the 

communities form a hierarchical network) get more robust (Dodds et al. 2003). 

Erdos-Renyi networks have been shown to be among the most robust models as they 

have no structural bias (Holme et al. 2002). This agrees with Albert et al. 2000, who 

showed that random attacks and degree targeting attacks have similar effects on these 

networks, as well as Wagner 2015 who showed that they are more robust than scale free or 

small world networks against targeted attacks.  

Networks with homogeneous degree distributions, are very robust against cascades 

caused by a single attack in networks with processability limitations (Motter and Lai 

2002). They are also more robust against combinations of degree and random attacks, as 

according to Valente et al. 2004, the configurations that maximize the percolation threshold 

under such combined attacks have at most three distinct node degrees (𝑑1, 𝑑2 and 𝑑∗, with 

𝑑∗ being the largest degree a node may have after a fraction 𝑓𝑎  of the most connected nodes 

in the network has been removed). This agrees with Tanizawa et al. 2005, who showed that 

a 2-value degree distribution is the most robust to combined degree and random attacks. 

2-peak and 3-peak degree distribution networks get the robustness similar to scale-

free networks against random attacks, while lacking large structural biases against random 

attacks. However, they have not been tested under other methods of attack, especially 

recalculated measures. 

 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

151 
 

Estrada et al. 2006 pointed out that networks with good expansion properties are 

more robust as they have less bottlenecks. Later, Estrada 2007, ranked networks having 

and lacking either a good expansion or a non-skewed degree distribution as follows: 

 

 

Figure 6.2.1: A simplified representation of the robustness in undirected food webs. At the bottom are the 
networks with power law or exponential degree distributions which lack good expansion property, they are 
the most vulnerable of the networks. In the middle, the networks are either skewed good expanders, or non-
skewed non-good expanders. At the top are the networks with both non-skewed degree distribution and good 
expansion properties, these are the most robust. 
Estrada et al. 2007. 

 

Real world networks come from all backgrounds, but they are usually shown to be 

robust. Buhl et al. 2004 showed ant galleries to be robust to random failures. Estrada 2006 

showed that naturally evolving networks have good expansion properties more frequently 

than technological networks. Newman and Goshal 2007 observed that real world networks 

appear to have large, and usually exceptionally robust giant bicomponents. Memmott et al. 

2004 showed that bipartite plant-pollinator networks are generally robust, but Santamaria 

et al. 2014 showed that they span a wide range of robustness and are not all robust. 
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Criminal networks have been shown to be vulnerable to the removal of links that 

connect communities (attacks that target betweenness) (Xu and Chen 2008). Duijn et al. 

2014 also studied such networks, with the addition of self-rewiring properties. In this 

study, criminal networks were shown to be more robust than expected, and even got more 

efficient when subjected to attacks that left their value chain (role structure) intact. 

 

Air traffic networks, studied with structural limitations and rewiring properties, have 

been shown to be vulnerable to natural hazards due to many hub airports being close 

together in the geographical center, thus making them vulnerable to disproportionately 

small spatial hazards (they are technically core-periphery networks, not on their 

connectivity, but on the geography of the physical world) (Wilkinson et al. 2012). The 

possibility of a re-wiring algorithm is suggested as a solution as most structural changes 

are unrealistic due to the nature of the networks, as countries both need and want hub 

airports (Wilkinson et al. 2012). However, a well-designed network with the same 

limitations can be more robust than a network with a good rewiring mechanism (Dunn and 

Wilkinson 2015). 

 

Subway networks have been shown to be robust to random failures and most 

vulnerable to betweenness and degree attacks (Zhang et al. 2011, Yin et al. 2016, Zhang et 

al. 2018). This is expected as they generally are sets of path and cycle graphs with a few 

common nodes spread around. This turns them to low-connectivity bimodal-like 

structures, where betweenness and degree attacks target exactly these common nodes, or 

their bridge neighbors. 

 

Finally, two very interesting results for real world networks are that they do not 

behave very similarly to modelled networks (Holme et al. 2002), and that, in weighted 

networks, taking the weights into account when attacking the network, might reduce the 

effectiveness of the attack (Kaiser-Bunbury et al. 2010). 
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Robustness indices 

 

Change in the efficiency and change in the giant component give similar results in 

ranking attacks in most cases (Holme et al. 2002).  

Vertex and edge connectivity are very loos bounds to algebraic connectivity, 

especially for large networks, as can be seen from (figures 3.5.1, 3.5.2 and 3.5.3, Jamakovic 

and Uhlig 2007). This is generally expected, as the addition of a node with equal to or 

slightly larger than average vertex and edge connectivity, does not reduce these values but 

might reduce the total average robustness of the network.  

Although [undirected] algebraic connectivity is unable to consistently capture the 

robustness of networks, it provides an avenue to easily capture the robustness of networks 

with non-aparent elements utilizing key components of the Laplacian spectrum (Sydney et 

al. 2008). 

Natural connectivity is negatively correlated with efficiency (Peng et al. 2016). 

Schieber et al. 2015 noted that although JS-robustness can be used with any 

probability distribution, the use of distances has shown to be more consistent in capturing 

structural deviations. In addition, the distance probability distribution is able to 

acknowledge disconnected pairs of nodes. Heuristic algorithms are proposed, but the 

errors of these algorithms can be important as for 𝑁 = 107 the changes in the info-

theoretic robustness are of the order of 10−15 (Schieber et al. 2015). 

SSSK-elasticity and degree assortativity are positively correlated (Sydney et al. 2008). 

Newman 2002 pointed out that degree assortativity is negatively corelated with network 

robustness against random attacks, but positively correlated against degree attacks. This 

agrees with Iyer et al. 2013 who showed that high values of negative degree assortativity 

seem to indicate vulnerability to degree attacks. This comes in contrast to Vazquez and 

Moreno 2003, who found assortative power law networks to be more robust than non-
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assortative even at random failures. It also comes in contrast with Zhou et al. 2012 who 

found degree assortativity to be negatively correlated with robustness overall. 

 Another important remark, although not directly relevant to this work is by Scala and 

D’Agostino 2012, who claimed that disassortative networks are more robust since they 

have a higher failure threshold, but in assortative networks there is more time for 

intervention before total breakdown. 

There is disagreement on whether degree assortativity is positively or negatively 

correlated with the robustness of networks. This requires further extensive research. 

Further research is also called to examine other forms of degree assortativity. 

Ellens 2011 showed that a variety of measures (vertex/edge/algebraic connectivity, 

reliability polynomial, clustering coefficient and number of spanning trees) do not detect 

all edge additions/deletions. Furthermore, maximum betweenness may increase with edge 

addition, thus making the network seem more vulnerable. This final observation can be 

extended to congestion centrality and other flow measures.  

Ellens 2011 and Ellens et al. 2011 showed that normalized effective resistance gives 

the same information as ER, but is a measure of robustness instead of vulnerability. Also, as 

its values are in [0,1], it can be used comparatively between networks. 

Finally, Van der Meer 2012 showed that many robustness indices will order various 

graph structures differently in terms of how robust they are (edge connectivity, average 

distance, efficiency, clustering coefficient, algebraic connectivity, number of spanning trees, 

effective resistance, natural connectivity, percolation limit, resilience factor, graph 

diversity).  
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Methods of attack 

Random attacks are very ineffective against scale free networks (Albert et al. 2000, 

Cohen et al. 2000). They have also been found to be less effective than degree attacks in 

many real-world networks (Sole and Montoya 2001, Buhl et al. 2004). 

Attacks targeting the highest degree nodes are very effective against scale free 

networks (Albert et al. 2000). In real networks (NA power grid, targeting specific nodes) 

they are very effective for relatively large (larger than 8% of the nodes) attacks.  

However, some cases of plant-pollinator bipartite networks, with structural 

limitations, have been found to be more vulnerable to attacks that target degree in 

ascending order, as such nodes are more specialized and can cause secondary extinctions. 

Nevertheless, they found high degree attacks to also be very effective (Memmott et al. 

2004, Santamaria et al. 2014). Similar results have been shown by Dunne et al. 2002 in 

food webs, where they ranked node attacks generally as such: high degree > random > low 

degree, with the low degree strategy sometimes being very effective. 

Allesina and Pascual 2009 found eigencentrality attacks to be better than degree 

attacks in various food webs. 

Attacks targeting the highest betweenness nodes have been shown to be effective 

against Criminal networks (Xu and Chen 2008). They are less effective (on scale free, 

exponential degree distribution and some real-world networks) than degree attacks, 

although in assortative networks, for the first part of the attack (approximately 25% 

nodes) betweenness is better than degree (Iyer et al. 2013). Also, (in scale free and 

exponential degree distribution networks) re-estimated betweenness is similar to re-

estimated closeness attacks and slightly better than re-estimated degree or eigenvector 

attacks, and in real world networks it is significantly better. This agrees with Holme et al 

2002, who ranked the effectiveness of nodal attacks as such: re-estimated betweenness > 

re-estimated degree > initial degree > initial betweenness. 

 Attacks targeting the highest betweenness edges, are in most cases more effective 

over those targeting the highest edge-degree edges, both for their initial and recalculated 

values (Holme et al. 2002). 
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Albert et al. 2004 showed that removing transmission stations (nodes, detected by 

high voltage transferring) in the NA power grid, in descending order of the load that passes 

through them is more effective than degree initially (<8% nodes removed). But it is by far 

the most effective method when the measures are recalculated (every 10 steps). Load 

attacks where also found to be very effective in causing cascades in scale free, 

homogeneous and some real-world networks (Motter and Lai 2002). 

Garcia-Algarra et al. 2017 showed in plant-pollinator, bipartite networks that the k-

risk and k-degree attacks are better than other traditionally used ranking methods (degree, 

betweenness eigenvector). Furthermore, K-degree is exceptionally good at destroying the 

giant component of the network. 

Dominguez-Garcia and Munoz 2015 showed in mutualistic species bipartite networks 

that MusRank attacks approach near optimality (compared to attacks generated via genetic 

algorithm) and far better than closeness, eigenvector, betweenness, degree, nestedness and 

pagerank. It also has the smallest variance in its effectiveness. This aggrees with Garcia-

Algarra et al. 2017 who showed it to be the most effective method at ranking pollinators to 

cause secondary extinctions to plants. 

Morone and Makse 2015 found that the best results for collective influence are found 

at 3 and 4 steps. Targeting high collective influence nodes appears to be a more efficient 

than re-estimated degree in the Mexican telecommunications network (scale free) and 

twitter network (unspecified structure). 

Chen et al. 2008 showed the equal graph partitioning attack strategy to be better than high 

degree attacks (both initial and re-estimated) in scale free and Erdos-Renyi networks. 

 

 

6.3. Comparison with our findings 
 

 In our own example, we have found food webs to be vulnerable to degree attacks. 

More specifically, as we studied them as directed networks, they were vulnerable to total 
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degree and in-degree attacks. Our results agree with Dunne et al. 2002, in that high degree 

attacks are better than random. However, they disagree with Allesina and Pascual 2009, as 

we found two out of the three degree-based attacks to be more effective than the 

eigencentrality attacks, although eigencentrality attacks are, in general, effective as well. 

We also found the principles suggested by Estrada 2006 and Estrada 2007 to hold 

true; networks with a larger difference between their first two larger eigenvalues were 

indeed more robust in general. In addition, the natural connectivity proposed by Wu et al 

2008 to provide a near-identical ranking of the networks according to their robustness 

when the impact of the attacks was measured on their global efficiency. 

 Attacks based on collective influence where not as effective as was expected, 

especially in the fourth network tested, given their effectiveness shown in Morone and 

Makse 2015. 
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7. Conclusions 

 

A lot of effort has been invested in researching methods to measure a networks 

robustness, and every approach has advantages and disadvantages.  

Studying measures derived only from the network is a general approach that can give 

a direct insight for a networks robustness, as well as being able to compare different 

networks. On the other hand, different methods of attack can have extremely different 

effects on a network. Thus, such a measure will always be a generalization, containing less 

information than any study that actually tests the impact of various attack methods on the 

network. 

The disadvantages of studying attack-dependent measures outline the advantages of 

studying network-based measures. The tradeoff comes firstly from the computational 

complexity of attack dependent measures, as a lot of instances of the network have to be 

measured, while network-dependent measures only need to be computed once. Secondly, 

attacks on a network can be unpredictable. There are many efficient ways to disconnect a 

network, and many of them are very different to one another, it is nigh impossible to 

predict all the possibilities.  

The advantages and disadvantages of attack-dependent measures are amplified in the 

class of worst case scenario measures (excluding simplistic measures as the vertex and 

edge connectivity). On one hand, they give a very informative estimate of the impact an 

attack can have on the network, but on the other, calculating all possible attacks that create 

disconnections is a very difficult task for large networks. Moreover, they omit an aspect of 

the problem; how many different worst-case (or near-worst case) attacks are there, as 

finding a close to perfect attack when there are very few good ones can be a very difficult 

task, while finding it among a much greater set heuristically may not be as hard. 

 The computational complexity is not a problem only in this kind of measure. Total 

graph diversity for example, requires the calculation of every possible path between every 
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pair of nodes in the network, and the proportion of non-overlapping paths. Something 

which would yield a probably ideal measure, but is extremely taxing computationally. 

 An important problem is the lack of consistent testing. The ability of a lot of measures 

to portray the robustness of networks, have been tested only in specific sets of networks, 

and under specific attacks. For example, the result that hiding a small part of a scale free 

network can protect it very effectively (Wu et al. 2007), might be biased by the existence of 

a few low degree nodes linking a lot of high degree ones, which is not necessarily a 

property for scale free networks. Furthermore, some indices of robustness, such as 

effective resistance, or results concerning such indices, are not tested at all. For example, 

Ghosh and Boyd 2006 showed that optimizing the algebraic connectivity requires relatively 

few edge additions, but never showed if these edge additions affect the rate that the 

network degrades under attack. 

Peng et al. 2016, showed that natural connectivity is negatively correlated with 

efficiency. We consider the cause of this to be that the most efficient structures are star-like 

or core-periphery like networks, while natural connectivity is a measure based on the 

closed walks of all nodes, thus preferring more homogeneous networks. 

 The findings of Van der Meer 2012 show that different robustness indices measure 

different aspects of the networks. This shows that there is a lot of research needed in order 

to identify what are the different elements these indices measure. The results in chapter 5 

agree with this, as we found some variation in the rankings of the networks according to 

the effects of the attacks, but the natural connectivity seemed to predict almost exactly the 

ranking of the effect on the efficiency of the network of almost all methods of attack. 

Finally, concerning the rankings of collective influence as an attack method, our 

findings were greatly contrasted by those of Morone and Makse 2015. We believe the cause 

of this to be either the order of the networks, as collective influence was shown to be 

extremely effective by Morone and Makse 2015, but in networks with a number of vertices 

in the order of 107, or the structure of the networks, as they were shown to be that effective 

mostly in scale free networks. This is another point that require further research.  
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7.1.  Discussion 
 

We would like to draw attention to the lack of attack-independent indices of network 

robustness. In fact, algebraic connectivity seems to be the only directly available measure, 

and it has issues with networks that are not strongly connected. The other measures that 

were available were the natural connectivity, after we modified its method of calculation and 

assortativity, which requires further research before it can be used individually as a measure 

of robustness. Total effective resistance has not been tested in undirected networks, 

although theoretically it shows promise, the work done by Young et al. 2016a and Young et 

al. 2016b, opens another field of research here. 

Another critical issue is that the results on network robustness lack coherence. 

Findings that are widely accepted are sometimes disregarded, while a variety of avenues 

remains unexplored due to most of the research being specifically targeted on other projects, 

or because of conflicting findings. Most studies refer to few real networks and to a handful 

of models. This may lead to bias. For this reason, we believe the creation of a large enough 

database of networks, with various combinations of properties, is required, in order for most 

of the knowledge in the robustness of networks to be thoroughly tested. 

Beside the lack of testing in networks of various structures, there is a lack of 

consideration in the choosing of most methods of attack. Ranking correlations (such as 

centrality correlations) are an important aspect that has been widely ignored in the planning 

of network attacks. We believe that in order to find an efficient method of attack, one needs 

to know how similar the methods of attack are. It would, therefore, be an interesting point 

of research to study the correlation of the various measures according to the topology of a 

graph. Such correlations have, only partly, been explored by Kasthurinathna et al. 2013. 

In conclusion, the answer that can be given to our original questions, is that further 

research is required, and that, currently, it seems more informative to examine the impact 

various attacks have on a network, than to attempt to quantify its robustness. 
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Originality 
 

There have been some overviews of network robustness indices before, but they 

usually focus to specific measures, or groups of measures. Our work is the most complete 

collection of indices of robustness and methods of attack. Furthermore, it contains one of the 

very few attempts to study a robustness measure for directed networks, as well as to 

understand which aspect of robustness of the network it represents. Our study of the global 

efficiency normalized by the order of the initial network, allows us to compare networks of 

different orders, and mitigates the increasing impact of node removals on the network as the 

attack progresses. 

 

Further research 

 

 This work is a survey of robustness indices and methods of attack, with respect to 

network structure. A logical next step is to create a thorough database, containing many 

networks that have as many combinations of properties as possible, in order to create a set 

of samples big and diverse enough to enable more thorough network studies. 

 In terms of methods of attack, the next steps would be (a) to examine the correlations 

in the various methods of vertex and edge rankings. (b) To investigate probabilistic attacks 

and attacks with incomplete information individually and more thoroughly, following the 

work of Wu et al. 2007. (c) Double down on the research of combined attacks, especially by 

studying the correlations previously mentioned. 

 In terms of indices of robustness, the next steps would likely be (a) a thorough 

sensitivity analysis of the existing ones in undirected networks. (b) Exploring the 

correlations of the various robustness indices further in an attempt to understand the type 

of structures and resistance to attacks they represent, especially in comparison with the 

various methods of attacks. (c) The generalization of those indices to directed, weighted and 

eventually signed networks, both in and out of the various possible contexts. 
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 Finally, the transition of everything contained in this research, as well as the further 

research proposed, in belief propagation, knowledge transferring, or disease spreading 

networks, generalizing the ideas of robustness to true disconnection, to robustness to real-

world changes. 
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INDEX 
A   G  
a-fragmentation threshold 50  Gear graph 27 
Algebraic connectivity 70  Graph 23 
Area under curve (AUC) 52  Geodesic 24 
Assortativity coefficient 27  Giant component 26 
Assortative network 27  Giant bicomponent 26 
Attack on a network 18  Global efficiency 57 
Adjacency matrix 24  Good expander 85 
B   H  
Betweenness 103  Hierarchical network 29 
Bipartite 30  Hub Integrity 43 
Bottleneck ratio 116  I  
C   Integrity 41 
Closeness 112  Integrity family 42 
Clustered scale free 29  Isoperimetric number 38 
Clustering coefficient 28  J  
Collective influence 109  Jensen-Shannon divergence 63 
Combined robustness 88  JS-robustness 63 
Complete graph 27  K  
Conditional connectivity 37  k-core 117 
Congestion centrality 65  k-degree 119 
Connected 25  k-radius 119 
Connectivity robustness 54  k-risk 119 
Critical threshold 49  L  
Cycle graph 27  L-expanstion 30 
D   Laplacian matrix 69 
Degree 95  Local efficiency 57 
Density 25  M  
Diameter 24  Mean integrity 44 
Directed graph 23  Mean rupture degree 46 
Disassortative network 27  MGG-robustness 47 
Distance 24  MGG-elasticity 47 
Distance vulnerability 53  Minimum cut set 116 
Diameter 24  Mix-tenacity 44 
Dominating node 114  MusRank 110 
E   N  
Edge connectivity 36  Natural connectivity 77 
Edge degree 101  Nearest neighbor graph 26 
Edge Integrity 41  Nestedness 114 
Edge scattering number 40  Network 24 
Edge tenacity 45  Nodes 23 
Effective resistance 80  O  
Eigencentrality 107  Order 23 
Erdos-Renyi graph 28  P  
Extinction area 55  PageRank 108 
F   Path 24 
Fault diameter 38  Path diversity 67 
Fiedler vector 71  Path length 24 
Food Web 113  Path graph 27 
Fragility 18    
     
Q     
Q-augmentation 30    
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R     
Random removals 18    
Reliability polynomial 66    
Repeated Attacks 19    
Resilience factor 64    
Robustness 17    
Root of a food web 113    
Rupture degree 46    
S     
Scale free graph 28    
Scattering number 40    
Shannon Entropy 62    
Simple graph 23    
Size 23    
Small world graph 29    
Spanning tree 78    
SSSK-Elasticity 56    
Star graph 27    
Strong giant component 26    
Strongly connected 25    
Strongly resilient 38    
Subgraph centrality 86    
T     
Targeted attacks 19    
Tenacity 44    
Toughness 39    
Trail 24    
Tree 25    
U     
V     
Vulnerability 18    
Vertex connectivity 36    
Vertex 23    
W     
Walk 24    
Weak giant component 26    
Weakly connected 25    
Weakly resilient 38    
Weighted graph 23    
Wheel graph 27    
X     
Y     
Z     

 

 


