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Abstract

The purpose of this thesis is to present both a comprehensive study and a practical
example of methods and tools used for word and document embeddings. Embeddings or
vector representations are the necessary first step before natural language data are fed
into any neural network for processing. Having vectors whose parameters capture real
world properties of the corresponding words or documents has been known to be pivotal
for the success of natural language processing tasks such as classification,
summarization and translation amongst others. Following the detailed presentation of
the most popular methods; experiments and their implementations are conducted using
Python programming language in the Greek language and their results are discussed.

Keywords

Machine Learning, Deep Learning, Word Embeddings, Document Embeddings, Python,
Gensim, Greek Language
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Hepiinyn

2KOTOG NG TOPOVG UG OIMAMUATIKNG EPYOACING Elval va TapovslaeTohV ot pébodot kot
T pYAAELD TOV YPNOLOTOIOVVTOL Y10 T OIVUGHATIKT AVATOPAoTOoT AEEEMV Kot
eyypapwv. H dtovuopatiky) avamoapdotaon Tov AEEemV amoTeAE OmapaitnTO TPMTO
Brina Yo Ty Tpo@odOTNoN SEG0UEVOV PLGIKNG YAMGOHG GE OTOL0ONTOTE VEVPMOVIKO
OikTLO HE okomd TV emeCepyacio TV AEEewv kol TV eaywyn poviéAwv. H
aVaTOPACTAOT TV AEEEMV MG SIOVOGLATO TOV OTOIMV Ol TOPAUETPOL CKLOLYPOPOVY TNV
TANOOPO TOV W0THTOV TOVG £xEl Tapatnpndel 6Tt eivar KaBoploTikn yio TNV enttuyio
dlepyast®V eneEepyasiog PLGIKNG YAMGGOS OTTMG Elval 1 KOt yoplonoinon
(classification), mepidnym (summarization) kot petd@poon (translation) Kelpévay,
petalh ALV, Apyikd TopovstdlovIot Ol O YVMGTEG TEYVIKES TTOV YPNCULOTOI0VVTOL
Yol TNV OVATOPAoTaoT] AEEEMV Kol EYYPAPOV KOl GTNV GUVEXELL LECH TNG YADCGOG
TpoypoppatTicpod Python pedetdton n avaropdotaon AéEewv Kot yypaem®v otV
EAMNVIKY YADOGGO.

AéEerc-Kerod

Mnyavikn pdonon, S10voGHATIKY avaTopdoToc AEEEMY, OUVUGLLOTIKY
avaropdotaot gyypdemv, Python, Gensim, EAAnvikn yA®coa
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Machine learning algorithms for big data

Synopsis

[Tépa amd ™ pnyovikn padnon, n omoia £xel edpatmwbel ko ypnoyonoteitor og whpa
TOALOVG TOUEIC, Ta TEAEVLTAIO XPOVIOL TO EPEVVNTIKO EVOLAPEPOV EXEL EMKEVTPMOEL OTIG
TeYViIkEG Pabidg pabnong (deep learning) ot omoieg vdoyovror Acelg e TpoPApaTa
pdonong yopic emifreyn katd xOplo AdGY0, OvVAAOYEC HE OVTEC TOL TAPEXEL O
avBpomvog eyképarog. Ilapamnpeitonr axoun, o GLVOVACUOG TEYVIKAOV HNYOVIKNG

puéOnong ko Pabdiic pabnong.

H moapovoa epyacio emikevipdveTon o€ TEYVIKEG HAONONG 7OV aPOpPovV GE
mpoPAquato enegepyaciog PUOIKNG YADMCGOS Kol TO GLYKEKPIUEVO OTY) OLOVUGLOTIKN
avaropdotaon Aéewv Ko gyypaewv. H dtovoopotikn avamopdotaon AéEewmv kot
eyyphowv 0Béter véeg Paoelg ywo TNV TPOYUATOTOINON  TEXVIKOV  avAALGoNG
cuvatsOnudtov, 6mov yivetor aviAnmToc o OeTikOg 1| apvNTIKOG YOPOKTNPAG EVOG
KEWWEVOD, LUNYOVIKNG HETAPPAOTG OOV €lval OLVATH N CLTOUATN UETAPPOUCT KEWLEVOU,
™G avVayvOPIong QNG Katavonomng KEWEVOL QULOIKNG YAMGOOG Kol TOPOY®OYNG

(QULOIKNG YADGGOC.

M AéEn (M éva €yypago) pmopel va. avamopactadel e Tov mo anid TpOTO amd
éva d1dvoopa pe Baon v mapovsio ¢ og va Keipevo (1 TNV Tapovcic TOL GE Ui
oLALOYY| eyypdowv avtictotya). [a mopdderypo av 10 Keipuevo amoteleiton povo amod
v tpodtacn “H punyovikn pabnon amookonet otnv npoPfieym.” kabe AéEN Ba pmopovoe

va avoaropactadel og eENG:
H=(1,0,0,0,0,0)

unyaviki= (0,1,0,0,0,0)
péaénon = (0,0,1,0,0,0)
anockonei = (0,0,0,1,0,0)
omv = (0,0,0,0,1,0)
poPreyn = (0,0,0,0,0,1)

oOmov M vVrapEn ™G AEENG otV TPOTACT] LIOSNADVETOL OO TV VLIOPEN LOVAdAS GTO
dudvocpa kot  Béon g povadog etvar avtiotoryn g 0éong g AEENG otV TPOTOOT).

H avamopdotacn avt) g AEENG 0oTOG0 TaPOTL dIVEL GTOV £PELVNTH TNV dSLVOTOHTNTO.
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VO TNV €1GAYEL GTOV DTOAOYIGTN KOL EV GUVEXELD VO TNV YPNOLLOTOMGEL GE SLAPOPOVS
aAyopiBovs, voTEPEl GTO VO OMOTVITAMGCEL TIG CNUOGIOAOYIKES GYECELS TOL VILAPYOVV

UETOED TV AEEEMV Kol TTOL 0 AVOPOTIVOS EYKEPAAOG LITOPEL EDKOAN VO OVOYVOPICEL.

IMa tov Adyo avtd, dtdpopot tpodmot £xovv Tpotabel oty Tpootadela Yo feAtimon
™G ovomapdoToons Tov AEEemv Kol KAt EMEKTOON TGV €YYpaemv. Ot avotépm

alyopiBuol yopiCovtar oe 600 Pacikéc katnyopies:

1. Aly6piBpot cuyvoOTNTOGS TOL APOPOLY TNV GLYVOTNTO UE TNV oToi vTomileTon

po AEEN e TIG YEITOVIKEG TNG O £VOL KEIEVO.

2. AkyopiBuor mpdPreyng mov tpoctabovv va tpofréyouv pia AEEN yvopilovtag

T1G Yertovikég AEEELS.

"Evoc alyopiBpog mov aviumpocsonevel v tpmdtn kornyopia givor o TH-Idf (Term
Frequency-Inverse Document Frequency) o omoiog ypnoytomotetl évav cuvdvacud g
ovyvoTNTOG pe TV omoia pio AEEN epeavileTol og €val KEILEVO KOl TNG GLYVOTNTOG e
Vv omoia N AEEN eppaviletor oe éva COVOAO EYYPAP®V KO EKTIUG TOGO CNUOVTIKEG
elvar ov AéEeig oe kdbe kelpevo. 'Etol mold ovyvég AéEeic oe €vo kelpevo mov
eppaviCouv g&icov peydin cvyvotnta o v GOVOAO €YYPAQ®V omokAgiovtal HEGOV
OV aAyopiBuov OTmg Yo Tapddetypo Ta ApBpa kabmg AEEelg o omoieg eppaviCovtal oe
HEYAAN cuYvOTNTO GE £vol KEILEVO OAAG e LIKPY] GUYVOTNTO GE £V GUVOAO EYYPAP®V

EKTILOVVTOL WG ONUAVTIKES Kot AoUPAvouy peyalhTepn TIun.

A&iler va onuewwBel o0t &rovv mpotabel SAPOPES TPOTOMOUCELS TOV
GLYKEKPIUEVOL aAyopiBpov, ot omoieg Topovstaloviatl avaAVTIKA 0TO 20 KEPAANLO TNG

gpyaciog avTng.

H dg0vtepn koatnyopio adyopiBumv amotéhece peydan e£EMEN g TpOTNG Kot
Baciletor oty moapadoyr OtL AéEelg mov eppaviovtolr kovid Ppiokovior Kovtd
onposctoroyikd. O akydpBpog mov sonyaye TV Katnyopio avtr ovopaletor word2vec
Kot ypnotponotel £va vEupwvikd diKTvo Yoo TV mopaymyn davvoudtov AéEewmv. O

aAyop1Opog avtdg amoteleitonl amd 0VO TEXVIKES:

e bag of words, dmov vroroyileton 1 TOAVOTNTA p10G AEENG SOGUEVODV TV

YETOVIK®V TG AéEemv

10
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e skip gram, 6mov vroroyiloviar ot TOAVOTNTEG TOV YEITOVIK®OV AEEEWMV

doopévng pio AéEng.

"Eto1, 01 010vUGLOTIKEG TOPACTAGELS TOV AEEEWV LOG EMLTPETOVY VO GLYKPIVOVLLLE
olapopec AéEelc onuactoroyikd. o mapdadetypo, n €OPEC AVOAOYIDV OVAUECH GE
Mg elvan pio Aettovpyia wov moapovotdlel Wiaitepo evolapépov. O Tpdmog pe Tov
omoio emtvyydvetal, TepLopPavel ToV VTOAOYICUO AAYERPIKOV TPA&ewV avapueco ota.
otavoopota tov Aéemv. Me dedopévec tpelg AEEELG Ko TNV eKTEAESN OAYERPIKOV
TPALEMV OVAUESO GTO, SLOVOGLLOTA TOVG TOPAYETOL £val VEO O1AVLGHO Kot pe Baon avtd
0 aAyopBuog vroroyilel v mo Kovtivy AEEN. AkOun, péco amd Tn CVLYKPIoN TOV
SVUGUATOV, VTTAPYEL N SLVATOTNTO VO EVIOTIGTEL 1| AlydTepo Opota AEEN dedopévng
pag Aotag Aécewv. Enéktacn tov avotépm amoteAovv ot alyoptOpot yio S10VUGHOTIKT
avamopaoTaot eYYpaewv. Me v Bondeia tov adyopibumv avtdv pmopovue TALoV vo
VTOAOYIGOVUE NV  OMHOOTNTO  €YYPAQMOV KOODC Kol VO TPOYWPTNOOVLUE GE

KOTIYOPlOTOINGn avTdV pe BAon Tn GNUAGIOAOYIKT OVOTOPAGTOGCT TOVG.

Y10 KepdAowo Tov aKkoAovBodv, apyiKa YiveTol Lo TaPOLGiaoT TG 1oTopiog Kol
TOV PACIKOV TEYVIKOV UNYXOVIKNG pabnong kot Pabdiag pabnong kot mapotifetor to
voPabpo mov amarteital vo €xel o avayvootng Yo ) ovvéyewn (Kepdiowo 1 & 2).
Kotémv mapovcidloviar ot cvyypoveg néBodol yio tov vToAOYIGHO OLOVUGUOTIKAOV
AVATOPACTAGE®V, apyikd AEEemVv Kot KoTomy oAOKANpov eyypdonv (Kepdiawo 3 & 4).
2N CLVEYEWD, YIVETOL O EKTEVIG AVAPOPE GTN YADOGGO TPOoYpappatiopov Python m
omoia TePIEXEL VAOTOMGELS Y10 OAEG OVTEG TIG LeBOOOLGS, e Eupaon oto makéto Gensim
oV  oLYKeEVIpOVEL TIG Teplocotepes (Kepdhiawo 5). Téhog, odlvetar éva mpaxtTiKod
TOPAdELYHO  €Qaployne tov pebddowv oto keipevo ¢ EAAnvikng  ehedBepng
eykvklomaioeiag Wikipedia, apywkd ywo v edpeorn davuopdtov AEEEMV Kol oTn

oULVEKELN Yo TN cLYKpPLom apBpwv peta&d tovg (Kepdrato 6).

11
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1. Machine Learning & Deep Learning Background

Machine learning

What if a problem could be solved not by listing the required commands and procedures
but by instructing a computer to learn how to solve it? Is this even feasible and if so, is
this artificial intelligence? These are some of the questions posed when one attempts to

define machine learning.

As the term suggests, this scientific field is related to machines (i.e., computers)
progressively improving their performance by learning without being explicitly told
how (i.e. programmed) but by observing shifts in their performance (i.e., by gaining
experience). This very broad description has been defined more formally by Tom M.
Mitchell, a professor at the Carnegie Mellon University, in his book entitled “Machine

Learning” where he stated the following:

“A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T, as

measured by P, improves with experience E.”

This formal definition cites the key components/ concepts of machine learning

which are:

e There is a set of tasks T that the computer/ software must perform.

e The outcome of the software execution can be evaluated (measurable
performance — P). E.g. if the software reaches a decision, it could be right or
wrong.

e There is a dataset with potential for teaching/ learning (E).

In a practical example, a machine learning application could be requested to
identify if a particular animal is found inside a set of pictures (T). In contrast to a more
procedural approach where the software will be given the features of the animal as
input, in a machine learning approach, the input (E) could be a set of pictures where the
animal is found. After the software makes each decision (found/ not found) it can be

informed of its success rate (P) and thereby use this information in future decisions.

The following sections are an overview of the history and the evolution of
machine learning, its practical applications, the types of problems it can solve and its

relation to deep learning. This high-level introduction of basic concepts, without

15
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mathematics will serve as a theoretical basis for the more technical sections that will

follow.

A brief history of machine learning

The term machine learning was coined in 1959 by Arthur Samuel, a pioneer in the field
of computer gaming and artificial intelligence in his paper entitled “Some studies in
machine learning using the game of checkers” [33] where he discussed an application of
such techniques in the context of a popular board game. In this seminal paper, Samuel
essentially attempts to get the computer to improve in checkers by learning in a way that
is similar to the way humans learn (i.e. not only from the data at hand). This constitutes
his work a more literal machine learning application in which a machine learns using
both the rules of the game and the feedback on its performance, much like we do in real
life. Indeed, in its first steps and up until machine learning was nearly abandoned in
favor of expert systems and other relevant tools, it was thought of as being very closely

related to the computer science field of artificial intelligence.

Machine learning resurfaced in the 1990s when its goals shifted from the more or
less theoretical pursuit of artificial intelligence to providing solutions for practical
problems whose complexity did not allow for satisfactory procedural/ conventional
solutions. A decisive contributing factor for this paradigm shift was the abundance of
digital data, easily circulated via the newly born Internet. In the new context, machine
learning is more closely related to data mining than artificial intelligence and borrows
concepts from statistics and probability theory with prediction being a key aspect. The
main difference between the two fields lies in the kind of knowledge that is utilized. In
machine learning, the goal is to utilize previously acquired knowledge for problem
solving where as in data mining the goal is to discover new knowledge hidden in the

data.

Key concepts & Types of learning

In this section, the broadest categorization of machine learning tasks is presented,
focusing on the way the actual learning takes place. Before presenting the various
learning modes, we will take a look at some basic terminology that will be used

throughout this thesis.

16
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As it was mentioned previously machine learning in each current format is
essentially a set of computational methods that solve problems/ improve performance
based on experience. Therefore, we are dealing with data driven tasks and use statistics,
probability theory and optimization to learn from them. In a machine learning
algorithm/ application, an example is an instance of the available data, also referred to
as an item. This item has a set of features/ attributes which are of interest to the given
problem. A vector format is often selected for the representation of these features as it is
suitable for high speed computations. Items are also assigned labels which are either

indicative of categories or of actual data values.

Labeled data (i.e. data whose value or categorization is known) are typically used
for training whereas data whose labels are known but hidden are used as test data to
check the machine performance. The set of training data may become available to the
learner in batches or one at a time (on-line). Queries on the data labels (output) can be
either active (the learner can explicit request the label for a given point) or passive
where the learner receives a set of labeled points. In all cases, the learner is required to
provide predictions for point labels. The fundamental distinction between the types of

learning is based on the availability/ use of labeled or unlabeled data.

In supervised learning, much like in a classroom, there is a teacher entity that
feeds the computer with sample inputs and their desired outputs. The computer needs to
come up with a general rule that maps inputs to outputs as fast and as accurately as
possible. In this mode of learning labeled data are utilized to come up with predictions

on unseen points.

In unsupervised learning, no labeled data is available, i.e., the learner cannot
utilize examples of correct outputs to infer rules. Therefore, the machine is typically
requested to uncover (hidden) relations in its input data or discover patterns in the input

data structure.

Semi-supervised learning falls between the two types mentioned above. In this
scenario, both labeled and unlabeled data are available and are used as a basis for
predictions on unseen points. The volume of unlabeled data is typically significantly
larger. Active learning is a special case of semi supervised learning in which the
labeled data used for training can be selected by the machine itself. By optimizing the
selection of objects whose labels are unveiled the machine can acquire more usable
labels while sticking to a prespecified budget.
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Lastly, reinforcement learning is based on the notions of rewards and
punishments provided as feedback by the environment in response to machine actions.
Unlike supervised learning which has a set of current input/ output pairs and rules to be
discovered, the machine is required to discover new knowledge (explore the

environment) while exploiting existing knowledge.

Machine learning tasks categorization
In broad terms, machine learning tasks or problems suitable for machine learning

solutions can be classified in the following categories:

Classification: input items are thought of as belonging to a specific set of classes/
categories (often but not always to two classes) and the machine learning application is
asked to assign a category to each item. Each item can belong to a single class or

multiple classes. A popular example is classifying an e-mail as spam or not spam.

Regression: in this type of tasks the algorithm needs to predict the actual values
of items as accurately as possible. A real-life example is predicting the values of stocks

based on past data.

Ranking: in such applications items need to be order based on a given criterion.
For example, on an e-commerce site, related products need to be presented to the visitor
browsing a particular product in an order that maximizes the likelihood of additional

purchases.

Clustering: in this category of tasks the machine is requested to partition data into
similar or homogenous regions based on prespecified criteria. Typically, this involves

large data sets that would be very difficult to manipulate without some form of
grouping.

Dimensionality reduction: in such applications, complex data are reduced to
simpler representations by preserving only some of their properties (dimensions). This

lower-dimensional space is easier to navigate.
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Machine learning popular applications
In this section, popular applications of machine learning are presented in general
categories. The applications related to natural language processing will be presented in

more detail following the chapter on deep learning.

Text: this category refers to applications related to the analysis of text-based input.

Popular examples include document classification and spam detection.

Language: this typically involves natural language processing tasks in which a
computer is required to analyze natural language inputs. Early and popular examples

include machine translation, parsing and morphological analysis.

Speech: this class of applications is related to parsing speech inputs. Popular examples

include speech recognition and automatic synthesis.

Image: machine learning applications have long been used for image tagging/
annotation, face recognition/ pattern matching, character recognition (in print or

handwritten) and others.

Gaming: this can refer both to improving gaming tactics/ performance in classical

board games but also to more advanced computer games.

Automation: this refers generally to unassisted control of machines typically in a
dynamic environment. A popular example is self-driving cars that are becoming more
and more independent, but it could also refer to the control of unmanned aerial vehicles

such as drones or robots.

Other types of more specialized application focus on inferring knowledge for medical

diagnoses or assessing the probability of intrusion in a network.

Machine learning challenges and limitations

Most limitations related to machine learning are primarily linked with the quality and
quantity of training data. When the volume of data available for training (and therefore
also testing) is small, it may be difficult or even impossible for the algorithm to find

patterns and infer a relationship between the input and output. In this direction,
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incorrectly posed goals/ questions or unsuitable algorithms may also prove detrimental

to the accuracy of the solution.

Apart from lack of data, another very serious issue that degrades the outcome is
bias inherent in the data that the algorithm will almost certainly pick up on and
perpetuate to unseen cases output. In order to get accurate output predictions for specific
inputs, these have to be present in the training data. In a highly publicized example of
image recognition software failure, Google’s image tagging software would tag black
people as gorillas. This was reportedly due to the lack of good quality training photos
with people of color and it was not the only mix between species that would occur.
What is interesting is the way the company opted to “fix” the issue which was by
removing all pictures of gorillas from the training set, thus preferring no categorization

to offensive mis-categorization [38].

Accidents involving self-driving vehicles are also a very unfortunate example of

failure with devastating consequences.

Machine learning algorithms

The number of machine learning algorithms available is so large that it does not make
much sense to present specific algorithms. Instead, an overview of the algorithm
categories will be presented where categorization is based on the way the algorithm
tackles the problem and represents data. It must be noted that an algorithm may belong
to more than one categories and that not all identified categories will be included in this

thesis.

Statistics-based algorithms/ Regression Algorithms: algorithms of this category
seek to model the relationship between input and output using statistical tools such as

regression (linear/ stepwise/ logistic).

Decision Tree Algorithms: this type of algorithms construct a decision model
that predicts the value of the output variable based on the actual values/ attributes of
multiple inputs. The input data is organized in the branches of the tree and the output
values are represented by the leaves. Speed and accuracy are often observed in this

category of methods, thus making them a popular choice.

Bayesian algorithms: algorithms in this category apply Bayes’ theorem to infer

the probabilities of output values. Data is typically mapped using a direct acyclic graph
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in which the presence of an edge connecting two nodes represents a conditional

dependency.

Clustering algorithms: clustering based machine learning algorithms, like the
category of problems with the same name, aim at grouping the data in sets with the

maximum features in common.

Rule-based learning algorithms: instead of identifying a model that will make
an accurate prediction of the output for a given input, algorithms in this category aim at
constructing a set of rules that describe the entire knowledge of the system. A popular

subgroup in this category are association rule learning algorithms.

Artificial neural networks: artificial neural networks are data structures inspired
by neurons found in human and animal brains and algorithms using such structures
attempt to solve problems like a human brain would. In an artificial neural network
connections between neurons function like the synapses of the brain, i.e. they receive
and transmit signals from/ to other connected neurons. Using such tools, complex
relationships between inputs and outputs can be modeled, patterns in data can be
discovered, and unknown joint probability distributions between inputs can be

observed.

Deep learning: deep learning methods and algorithms are an evolution of
artificial neural networks made feasible by the size of the available data and the cheap
price of processing power. In such methods, the algorithm focuses on learning data
representations rather than a specific task. More complex neural networks are
constructed, with each level offering a slightly more abstract and composite

representation of the data.

Deep learning techniques and algorithms essentially form a separate discipline
and are the topic of this thesis. As such, they are discussed separately in the following

chapter.

Deep learning
As discussed in the previous section, deep learning is a subsector of machine learning.

This section presents the history and main techniques/ applications of the field.

21



Machine learning algorithms for big data

The main feature that distinguishes deep learning methods from traditional
machine learning methods is the focus on data representations which are now the
learning goal rather than specific tasks. By using multiple levels of non-linear abstract
information processing, deep learning algorithms facilitate feature learning,
representation, classification and pattern recognition [1807.08169.pdf]. Each processing

and extraction layer uses the output from the previous layer as input.

History

The term Deep Learning (DL) first appears on a conference paper by Rita Dechter in
1986 [Learning While Searching in Constraint] and around 2000 it was first used in
the context of artificial neural networks. Since then, the popularity of deep learning has
exploded along with the number of applications in various industry sectors and
associated research. Advances in hardware and in particular in the processing power of
graphical processing units (GPUs) have improved the speed/ performance of DL
networks by many factors thus enabling their use in a variety of popular applications.
More recent developments and demonstrations of effective use of DL techniques in
areas such as image recognition and bioinformatics are thought of as paving the way for

a deep learning revolution [7].

Evolution of architectures

Artificial neural networks

As it was previously mentioned, artificial neural networks (ANN) draw terminology and
inspiration from the biological neural networks found in animal brains and can process
complex data inputs without necessarily being task driven. While the first generation of
ANNSs used simple neural layers that were limited to simple computations, the advent of

the mechanism of backpropagation enabled a much powerful second generation.

Backpropagation allows the weights of neurons to be recalculated according to
error rates (gradient of the loss function), thus allowing for multiple hidden layers that
use feedback (backwards propagated correction information) to readjust their output.

Backpropagation, along with other techniques that surpassed its limitations significantly
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improved ANNs and enabled them to be designed in various ways and for various

purposes.

Deep learning networks

Deep Learning (DL) networks are neural networks characterized by a significant
number of hidden layers which are used for input feature extraction and calculations.
Variations of methods/ tools/ data structures in this category include auto-encoders,

convolutional deep neural networks and recurrent neural networks, among others.

In DL networks, learning can be supervised, unsupervised or semi-supervised and

even reinforcement learning is applicable.

Autoencoders
An autoencoder is a special type of artificial neural network that can be used for
learning efficient encodings by reconstructing its own inputs instead of predicting some

target value Y given inputs X.

mput & code q reconstructio&
> encoder > decoder >

Vv

Figure 1: Basic process of an autoencoder [14]

Figure 1 illustrates the operation of an autoencoder where the corresponding code
is the learned feature and optimization is minimizing the input reconstruction error. A
single layer is generally not able to effectively capture the features of raw data, hence,
in deep learning networks the principle of autoencoders is extended to enable deep
autoencoders. In an autoencoder, a compressed form of the input (dimensionality
reduction) is decoded to reconstruct the input. In a deep autoencoder, lower hidden

layers are used for encoding and higher ones for decoding, with error back-propagation
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is used for training and multiple hidden layers connecting input and output. This is a
form of unsupervised learning network with a multilayer feed forward artificial neural

network whose purpose is to reconstruct its own inputs.

Convolutional deep neural networks

Convolutional neural networks (CNNs) are based on four pillars:

e Connections are local between neurons of adjacent layers.

e There are pooling layers, i.e. layers in which outputs from multiple neurons are
combined to a single one.

e Weights of features are shared across all neurons of the same layer.

e Multiple hidden layers exist between input and output layers.

In a CNN, there are four separate types of layers: convolutional layers, pooling layers,
fully connected layers and normalization layers. Convolutional layers detect local
conjunctions from features use convolutions instead of matrix multiplications.
Convolutional neural networks were designed to be suitable for vision related

applications such as image recognition and video analysis.
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Figure 2: Layer-by-layer architecture of a convolutional neural network (practical application: image classification)
[Guo et al., 2016]

Figure 2 depicts the layer-by-layer architecture of a convolutional neural network,
designed for image classification. The network is trained in two stages, a forward and a
backward one [14]. In each layer of the forward stage, the input image is represented

with the current weight and bias parameters. Based on the loss cost computed with the
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ground truth labels, the backward stages computes the gradients of each parameter and
the results are then used to update the parameters and feed them to the next forward
computation. Learning continues after a sufficient number of iterations of the forward

and backward stages is complete.

Recurrent neural networks

Recurrent Neural Networks (RNNs) are better suited for applications involving
sequential inputs such as speech and text because they are designed to process
sequences of inputs by using the internal memory. Their main distinguishing feature are
recurrent hidden units that are can be considered as very deep feedforward network with

same weights when unfolded in time [1807.08169].

Deep Belief Networks

A deep belief network (DBN) is a probabilistic generative model which provides a joint
probability distribution over observable data and labels [14]. DBNs are formed by
“stacking” Restricted Boltzmann Machines, i.e. neural networks that can learn a
probability distribution over their inputs. In a DBN, the deep network is first initialized
with an efficient layer-by-layer greedy learning strategy. The computed weights are then
fine-tuned jointly with the desired outputs. This approach resolves the issue with
selecting initial parameters which potentially lead to poor local optima and does not
require labeled data for training. This, however, is a computationally expensive task that

may involve training several Restricted Boltzmann Machines.

Main applications of deep learning networks

Deep learning network applications can be summarized in the phrase signal processing
where both the terms signal and processing are properly extended [8]. In DL
applications, a signal can be audio/ speech, image/ video, but also text/ language and
document/ information. Accordingly, processing is not only limited to traditional
applications such as coding, analysis, and recognition but also includes interpretation/

understanding, retrieval/ mining, and user interface/ recreation.

The main groups of applications for deep learning networks are as follows:
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Speech & audio: includes applications such as speech recognition (e.g.,
speaker and language) and speech synthesis, music signal processing and
music information retrieval.

Image & video: includes applications such as image classification (discovery/
labelling of main theme for each image and determining a set of additional
labels based on probabilities), object detection (detecting the presence of a
given class and estimating the position of the instance), image retrieval
(discovery of visually similar images or images containing the same object),
human pose estimation (recognizing people in images, detecting and
describing human body parts and their spatial configuration) and many others.
Natural language processing: includes applications such as text recognition
and semantic parsing, machine translation, automatic text summarization,
automatic paraphrasing, information retrieval, sentiment analysis and many
more. These applications will be presented in more detail in the following
chapter.

Bioinformatics: the power of deep learning networks has been harvested in
many diverse fields related to bioinformatics such as protein structure
prediction, gene patterns associations with functions, biomolecular target

prediction in drug design and synthesis and others.

Challenges of deep learning networks
The previous paragraphs focused on the incredible properties and applications of deep
learning networks. This paragraph will highlight, in brief, some challenges faced by

deep learning networks that either limit their applicability or have delayed their advent.

Computation time/ hardware requirements: deep learning network based solutions
were only made feasible following dramatically increased chip processing abilities and
particularly Graphics Processing Units (GPUs) improvements and significantly lowered

cost, as these units are the most suitable ones for matrix and vector computations.

Initial parameterization: refers to the difficulty in determining optimal values of initial

training parameters, e.g., size (number of layers and number of units per layer), learning
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rate, and weights. Exhaustive search solutions for optimal solutions may not be feasible

due to the computational cost which results in unrealistic durations.

Overfitting/ underfitting: the overfitting problem, which is often observed in models
with millions of parameters such as deep belief networks refers to the discovery of rare
and weak dependencies in training data. This issue can be effectively addressed by

generative pretraining steps such as regularization or data augmentation [34].

Lack of theoretical explanation/ convergence proof: this criticism concerns some
more complex deep learning architectures where the exact nature of learning and the
probability of convergence and the time it will occur are unclear and the networks more

closely resemble empirical solutions or black boxes.
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2. Natural Language Processing — Background

The term refers to any task of automated processing of natural language (written and
spoken) such as machine translation, automatic summarization, paraphrasing and many
others. Natural language processing (NLP) techniques can, for instance, be used for
practical applications such as opinion mining and trend detection based on information
available of the web. The entire World Wide Web can be thought of as a large
collection of linguistic information that can be search, processed and classified. This
approach referred to as the “Web as Corpus” has inherent caveats such as the limited or
non-existent semantic structure and metadata. Over the last decade, deep learning has
become the core of modern NLP and has practically replaced rule based and statistical

methods, especially for language understanding.

Main applications
This section summarizes key tasks in natural language processing, emphasizing those

related to machine learning/ deep learning techniques.

Text & Document classification

As the number of documents available online and the size of each document constantly
increase, properly classifying them becomes more difficult but also more imperative.
Text classification is the process of identifying the category in which a document
belongs (selected from a specified set of categories). Very often, text classification is
seen as a supervised learning task in which labeled documents are given as input to the
classifier in order for it to accurately identify the categories of new documents. It is
obvious that the volume of training data impacts the precision of the process. Typically,
the classification problem assumes categorical values for the labels, though it is also

possible to use continuous values as labels [1].

The problem of text classification finds applications in a wide variety of domains
and such algorithms are at the heart of many software systems that process text data at

scale. It is commonly used in areas as follows:
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o Email classification and spam filtering: email software uses text
classification to determine whether incoming mail will be put in the user
inbox or filtered into the spam folder. Similarly, discussion forums use
text classification to spot comments that need to be flagged as
inappropriate, abusive, or commercial.

e News filtering: online news services deal with a large volume of articles
created daily. The sheer volume makes manual organization very hard.
Therefore, automated classification methods can be very useful for news
categorization in web portals.

e Opinion Mining/ Sentiment Analysis: Customer reviews or opinions are
often short text documents which can be mined to determine useful
information such as whether the reviewer is positively or negatively
inclined and even his emotional state.

o Document Organization and Retrieval: This refers to large digital libraries

of documents, web collections, scientific literature, or even social feeds.

Techniques for classification that have been proposed in literature include
decision trees, rule-based classifiers, state vector machines, neural networks, Bayesian
and others. An important issue in text classification is feature selection. This refers to
determining the features which are most relevant to the classification process which is
very important because some of the words are much more likely to be correlated to the

class distribution than others.

Machine translation

Machine translation as an NLP application refers to finding the most probable target
language sentence for the source language sentence, i.e., the sentence that shares the
most similar meaning. Essentially, machine translation is a sequence-to-sequence
prediction task [43]. Statistical models dominate the machine translation community but
they face severe difficulties in obtaining accurate word alignments, in determining the
optimum translation for a given source phrase because a source phrase can have many

translations, and different contexts lead to different translations, and in predicting the
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translation ‘derivation structure because phrase partition and phrase reordering for a

source sentence can be arbitrary.

Overall, with statistical machine translation, it is difficult to learn a good language

model and this is where deep learning models and networks come into play.

Native Language Identification

When someone speaks in a given language it is easy for the listeners to identify whether
he is a native speaker of that language or even identify the speaker’s native language
based on the accent. Native Language Identification (NLI) is the task of identifying the
native language of authors of texts written in a (potentially) foreign language. NLI is
modeled as a text classification task with labels corresponding to native languages. The
basis of NLI is the assumption that one’s mother tongue influences the way they acquire
and produce second languages (Second Language Acquisition — SLA) and that traits

easily identifiable in speech production should be identifiable in written texts as well.

The motivation for NLI is twofold. First, there is a linguistic motivation related to
the interference between languages learnt and the degree of difficulty based on their
similarities and secondly the task has a practical relevance and can be integrated to a
number of computational applications. Interesting practical applications include forensic
linguistics and in particular authorship profiling which is the process of discovering and
asserting information about the writer of a given text, such as age, gender and native

language.

The authors of [11] design and develop an NLI system based on linear classifiers
which uses TF-IDF weighting for terms. They split the task in three stages. In the first
stage, the exact mode in which training and development data will be used is
determined. In the second stage, the features that will be extracted are selected and in
the third stage the machine learning algorithms that will be applied are chosen along

with their parameters considering the time and memory restrictions.

The dataset selected for training and testing consisted of around 12000 essays
(300-400 words) written by authors of 11 different native languages whose English was
evaluated (by humans) in 3 different levels. Several options were considered for

features such as word unigrams, bigrams or n-grams present in essays, part-of-speech
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tags, character n-grams and spelling errors. All features, were mapped into normalized
numbers using TF-IDF and features that occurred in less than 5% or more than 50% of
the essays were removed. For Term Frequency, a logarithmic relationship was chosen
(sublinear TF scaling). Differences in essay lengths, were counterbalanced by
normalizing each feature vector. After normalization, the resulting essay feature vectors
were fed into classifiers. Three types of linear classifiers were used, i.e., linear support

vector machines, logistic regression and perceptrons.

It was noted that for several languages, the features that were most active and
separated native languages included names of countries or languages. These were
labeled stop-words and removed from the corpus using TF-IDF. Authors reported a
success rate ranging between 95% and 72% with the confusion matrix suggesting that

languages of geographically closer languages were more often mistaken for one another.

Text similarity

Estimating the similarity between two texts of arbitrary length (not necessarily of
similar lengths, e.g., a search query and a document) is defined as computing a metric of
the semantic distance between the two texts that reflects their actual relatedness.
Although it can be thought of as a standalone natural language processing application it
is most commonly considered part of other application such as paraphrasing, plagiarism
detection, summarization, translation and, of course, indexing & classification, among

others.

Determining similarity is a complex and fundamental issue as evidenced by issues
in trying to match queries with documents (e.g., in search engines results retrieval).
Users want to retrieve conceptually similar content even when they do not use the exact
words as the documents and the words they use may not even exist in relevant
document. Conversely, because words have multiple meanings, the match of a term in a

document does not guarantee that it is of interest to the user.

Latent Semantic Analysis (LSA) [Deerwester et al., 1990] was proposed in an
effort to overcome these problems by mapping documents and terms into a
representation in the space referred to latent semantic space. This is accomplished by

starting with the vector space representations of documents based on term frequencies
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(typically a high dimensional vector) and applying a mapping based on a Singular Value
Decomposition (SVD) of the corresponding term/document matrix resulting in a
reduced space representation. The underlying premise is that document with terms that
frequently co-occur will be represented similarly in this space even if the terms are not
in the exact same words. This is a form of noise reduction and LSA can detect
synonyms as well as words that refer. The corresponding similarity measure is referred

to as Latent Semantic Index (LSI).

In [Hoffmann, 2017] a novel approach to LSA and factor analysis is presented
that unlike the original LSA has a solid statistical foundation since it applies standard
techniques from statistics for questions like model fitting, model combination.
Probabilistic Latent Semantic Analysis (PLSA) defines a proper generative model of the
data and can deal with polysemous words and distinguish between different meanings/

usages of the same words.

Foundation/ Key concepts
This section briefly covers the foundations needed in order for the rest of the work to
follow. Basic notions of natural language processing are presented and terminology

used throughout the thesis.

Preprocessing and parsing

This paragraph summarizes a set of processing tasks that need to be performed before
the “native text” is handed over for computational handling as they transform the
original sequence of characters to a cleaner form. Preprocessing typically encompasses

the following tasks:

o Tokenization: this is typically the first step in a natural language processing
solution and it refers to splitting the text into meaningful character sequences/
self-contained semantic units, e.g. words or sentences. A naive tokenization
solution involves removing punctuation and splitting the text by blank spaces.

e Normalization: this involves removing morphological variations from words

such as capitalization, plural number or tenses, in order to grasp similarities
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between them (e.g., the same word in singular and plural), obviously with a loss
of information. Two types of techniques are used, stemming and lemmatization.
In the former, language specific patterns are recognized, using for example the
rules for converting words from singular to plural or verb tenses. This technique
is simple, fast and applicable for large volumes of text. Lemmatization involves
using a dictionary (such as WordNet that is both a dictionary and a thesaurus) to
extract the roots of common words. This approach can be more accurate
compared to stemming, but it is more resource intensive and dictionaries may be
incomplete for certain languages. The two methods can complement each other
and they are often used in conjunction.

e Parsing: this involves a group of functions that are used after term isolation and
document cleanup, i.e., after normalization and parsing, which facilitate working
in higher abstraction layers. Typically, parsing includes morphological and
syntactical analysis of tokens in order to identify their role within sentences (e.g.
noun, verb, adjective or object-verb-subject), which is referred to as Part-of-

Speech (POS) tagging.

Word senses

A word sense is the meaning of a word. As several words have multiple meanings when
used in different contexts (polysemy) and words can often have the same meaning
(synonyms), there is not a 1-to-1 mapping between words and senses. Word-sense
disambiguation is the process of identifying the particular meaning of a word based on
the way it is used in a sentence and its context. Part of speech tagging is the first step in
the disambiguation process. A more advanced task is Named Entity Recognition (NER)
which involves identifying and tagging among others, people’s names, organizations

and geographical locations within the text.

Word embeddings
Word embedding is the collective name for a set of language modeling and feature
learning techniques in natural language processing (NLP) where words or phrases from

the vocabulary are mapped to vectors of real numbers. Conceptually it involves a
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mathematical embedding from a space with one dimension per word to a continuous

vector space with a much lower dimension.

Word and phrase embeddings, when used as the underlying input representation,
have been shown to boost the performance in NLP tasks such as syntactic parsing and

sentiment analysis.

Word representations in vector space

As it was previously mentioned, machine learning algorithms cannot work with raw text
directly but can work with vectors of numbers. If these vectors are derived from textual
data in a mode that captures various linguistic properties of the text, the process is
called feature extraction or feature encoding. The following sections present popular
approaches. It must be noted that all these approaches are in line with the distributional
hypothesis as portrayed by Harris in 1954 “Words that occur in similar contexts tend to
have similar meanings” [16] and later on by J.R. Firth in 1957 “You shall know a word

by the company it keeps” [10].

Bag-of-words

A popular and simple method of feature extraction with text data is the bag-of-words
(BoW) model of text. As the name suggests, this model treats documents like bags of
words, i.e. as containers where the order of items does not matter. Bags are essentially
sets that are allowed to have more than one instances of the same item, meaning that a
word may be found in the bag (document) multiple times. This is referred to as
multiplicity and it is maintained in this model. The idea behind BoW is that documents
are similar if they have similar content and that we can learn something about the
meaning of the document from its content. A bag-of-words implementation can be
simple or complex depending on decisions regarding the design of the vocabulary of

known words (tokens) and the scoring system for known words [5].

The mode in which this model represents individual documents and the entire
corpus is best illustrated via an example [9]. Let’s consider the following corpus where

each sentence represents a separate document:
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It was the best of times
It was the worst of times
It was the age of wisdom

It was the age of foolishness

The distinct words that appear in the corpus are:

‘It’, ‘was’, ‘the’, ‘best’, ‘of’, ‘times’, ‘worst’, ‘age’, ‘wisdom’, ‘foolishness’

In order to map documents to vectors, we count the frequencies for all terms (even
those that are not present). These vectors can then be fed into machine learning
algorithms. For instance, the first document (“It was the best of times”) has the

following frequencies for each of the 10 unique words.
“it” =1
“was” =1
“the” =1
“best” =
“of’=1
“times” = 1
“worst” =0
“age” =0
“wisdom” =0
“foolishness” =0

Therefore, the vector corresponding to this documentis [1, 1,1, 1,1, 1,0, 0, 0, 0]

Similarly, the remaining documents will be:
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“It was the worst of times” =[1,1,1,0,1,1, 1,0, 0, 0]
“It was the age of wisdom”=[1,1,1,0,1,0,0, 1, 1, 0]

“It was the age of foolishness” =[1,1,1,0,1,0,0, 1,0, 1]

The process of converting natural language text into numbers is called
vectorization in machine learning and different ways to convert text into vectors have
been proposed (presented in detail in the sections that follow). Indicative approaches

include:
e Considering the number of times each word appears in a document.

e (Considering the frequency that each word appears in a document relative to

all the words in the document.

As the vocabulary size increases, so does the vector representation of documents
since the length of the document vector is equal to the number of known words. For a
large corpus this could amount to thousands or millions of words whose positions must
be tracked. If certain words are relatively rare (i.e. few documents contain them), this
results in a vector with lots of frequencies equal to 0, namely a sparse vector. Sparse
vectors take up memory and computational resources when modeling while not actually
containing useful information. The size of the vocabulary is a serious challenge for
modeling algorithms and text cleaning techniques need to be applied to reduce it in a

bag-of-words model.

Simple text cleaning techniques that can be used to reduce the size of the

vocabulary include:
e (ase-insensitivity (case is ignored)
e Ignoring punctuation

e Removing stop words (i.e. too frequent words that don’t contain actual

information, like articles)

e Correcting spelling errors
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e Reducing/ replacing words to/ with their stem (e.g. “play” from “playing”)

with suitable stemming algorithms.

n-grams and skip-grams

In the bag-of-words model, each word or token is referred to as a “gram” and the model
can be extended to consider more than single words. For example, creating a vocabulary
of two-word pairs (consecutive words) would result in the following pairs for the first

document “It was the best of times”:
“it was”
“was the”
“the best”
“best of”

“of times”

These tokens are called bigrams and the concept can be extended to trigrams and
generally n-grams. Using multiple consecutive words as tokens both changes the size of
the vocabulary and allows the bag-of-words to capture a little bit more meaning from
the document. N-gram models can be used to calculate probabilities for words based on
the words already encountered. When using n-grams for language modeling, it is
assumed that each word depends only on the last n-1 words which means that the model
is considered a good approximation of the true underlying language. This principal is
summed up in the phrase “language is its own best model” by some scientists [15] and it
implies that sufficient data can be gathered to depict typical (or atypical) language use
accurately. In the effort to solve the data sparsity problem presented in the previous

section, researchers have proposed the concept of skip-grams.

Skip-grams [15] are a technique in which n-grams are formed (for various values
of n) but in addition to tracking adjacent sequences of words, tokens are allowed to be
“skipped”. Skip-grams for a certain skip distance k allow a total of k or fewer words to

be omitted when constructing the n-gram which means that, for example, a 4-skip-n-
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gram includes 4 skips, 3 skips, 2 skips, 1 skip, and 0 skips (typical n-grams with

adjacent words). For instance, for the sentence
“Insurgents killed in ongoing fighting.”
the following sets of skip-grams can be constructed for k=2:

2-skip-bi-grams = {insurgents killed, insurgents in, insurgents ongoing, killed in, killed

ongoing, killed fighting, in ongoing, in fighting, ongoing fighting}

2-skip-tri-grams = {insurgents killed in, insurgents killed ongoing, insurgents killed
fighting, insurgents in ongoing, insurgents in fighting, insurgents ongoing fighting,

killed in ongoing, killed in fighting, killed ongoing fighting, in ongoing fighting}.

The importance and versatility of n-gram models is illustrated by the fact that
Google has created a tool that allows users to track the use of a particular phrase in
books through time. The corpus is large and contains books scanned from public
libraries in several languages (Greek unfortunately is not included). Google Books
Ngram Viewer, which is available in https://books.google.com/ngrams will output a
graph that represents the use of a particular phrase in books through time. An example
for the phrases machine learning, deep learning and natural language processing for a
date range from 1978-2008 (the latest available year) is shown in Figure 3. Case

insensitivity and smoothing options are also available.
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Google Books Ngram Viewer

Graph these comma-separated machine learning,deep laaming,natural language procassing + case-insensitive
phrasas:

between 1978 and 2008 from the corpus | Englsh with smoothing of| 2

0.000120%~

Figure 3: Output of Google’s Ngram viewer for the phrases machine learning, deep learning, natural language
processing

Information retrieval with TF-IDF
Information retrieval techniques described in this section are primarily used for
document representation and classification. The goal is to provide a simplified

representation of documents while preserving their features.

Term Frequency-Inverse Document Frequency or TF-IDF is a numerical statistic
used very often in information retrieval applications to estimate the importance of a
term in a document, a collection or an entire corpus. The idea behind TF-IDF is simple
and straightforward and relies on the two factors included in its name. The combination
of these two factors tends to correspond to the way human minds tend to evaluate search
relevance [os connections bm25]. Term Frequency (TF) is a value that represents how
often a given word appears in a document. Words appearing many times are considered
important for the document. However, a very high frequency of the word in the entire
corpus means that it is a common word for the given topic therefore its score should be
penalized. It must be noted that a word can be rare in general but frequent in a collection
of documents for a given topic. For instance, the word “atom” is relatively rare
generally but very common in a corpus discussing physics. In TF-IDF, this is adjusted
using the second component, i.e. Inverse Document Frequency (IDF). Document
Frequency is obtained by counting the number of documents that contain a term and

computing a ratio of the total number of documents divided by this value. Inverting this
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score yields the IDF. A high TF-IDF score/ weight is reached by a high term frequency
and a low document frequency of the term in the entire corpus. Hence, common terms
tend to have low weights and are filtered out. In this direction, TF-IDF is often used for
stop-words filtering in various subject fields and for various applications such as text

summarization and classification.

TF-IDF measures the relative concentration of a term in a given set of documents/
articles. If a word is common in a given item but relatively rare elsewhere then the score
should and will be high, i.e. the document is very relevant to the search term. Inversely,
if a word occurs few times in one document and many times in other documents the TF-

IDF score will be relatively low.

Document length is an additional measure that should be taken into account. A
term occurring twice in a 400 page book does not mean that the book is about the term
while a word contained twice in a short post implies that the post is indeed about the
word. This additional bias is “fieldNorms” and favors significantly shorter documents
matching a term over longer ones. Term concentration in the shorter document is
thought to be an important weighing factor on the relevance of the document with the

term and thus should be scored higher.

In the simplest implementation of TF-IDF the weight of a term that occurs in a
document is simply proportional to the term frequency, i.e. the number of occurrences
of the term in the document. The IDF component is a bit more tricky. The requirement
is not to overestimate the importance of documents containing the common words more
frequently and downplay the weight of terms with very high frequencies. Karen Sparck
Jones in her 1972 paper entitled “A statistical interpretation of term specificity and its
application in retrieval” [36] elaborated on the concepts of specificity and exhaustivity
and introduced the key concept of Inverse Document Frequency which is now pivotal in
term weighting. Spérck Jones argued that specificity should be interpreted as a
statistical and not a semantic property of index terms. Then, the exhaustivity of a
document description is the number of terms it contains, and the specificity of a term is
the number of documents to which it pertains. Thus, the specificity of a term can be
quantified as an inverse function of the number of documents in which it occurs. In the

simplest implementation, the IDF for a given term is computed by diving the total
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number of documents by the number of documents containing the term and then scaling

it logarithmically. Finally TF-IDF is the product of the two statistics.

TF —IDF =TF X IDF

Various formulae have been proposed both for computing the TF and the IDF

component. These are summarized in the tables that follow:

Frequency Weighting Scheme Term Frequency Values

Binary, i.e. term found or not in the 0.1

document ’

Raw count, i.e. number of times term t

found in document d fea

Term frequency, i.e. document length D | fed . fed

taken into account R

Log normalization lo g(l + ft'd)

Double normalization with factor K. This f,

scheme is a remedy for the bias against K+(1-K) Ld

longer documents. max{t’ € d}fv,q
g

Table 1: Variants of Term Frequency (TF) computation

Weighting Scheme IDF formula

Basic formula (number of documents that < ID| )
contain the term over the total number of log

documents — logarithmically scaled) [{deD [te d}|
Unary 1(ifthetermisfound)

Inverse document frequency (problematic
if term not found in any documents)

—log

log (121 =
gnt

Inverse document frequency (smooth)

lo 1+@
) n,

Inverse document frequency (max)

l max{t' € diny
o9 1+n,

Table 2: Variants of Inverse Document Frequency (IDF) computation

Applications of TF-IDF

In [39] the authors propose a document classification scheme using TF-IDF and a naive

Bayes classifier to tag unstructured data either as true or false, where the two Boolean

values may correspond to safe/ dangerous, spam/ not spam, etc. The authors emphasize
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the fact that the classifier must be able to work fast with a large volume of data
collected at a tremendous rate. The proposed classifier works in two phases (training
and testing) with the training phase split further in stages. The first stage is the
morphological analysis of the input document during which linguistic units are
identified while the second one consists of using TF-IDF to extract features used as
input in the Bayes classifier which progressively computes conditional probabilities of
the document belonging to each class. The classifier which is implemented using
Python libraries is trained with two sets of sample data (one for each category) in a

supervised learning mode

Additional variations of TF-IDF

Variations of the basic idea of TF-IDF focus on addressing shortcomings related to how
the values/scores it provides relate to human intuition of relevance. For instance, a term
occurring two times more in a document does not mean that this document is twice
more relevant to this term or a term appearing in two times more documents does not

mean that its importance is half the importance of another term found half the times.

Apache Lucene, the free and open-source information retrieval software library
supported by the Apache foundation (http://lucene.apache.org/) addressed these issues
by modifying the basic scoring formula both in terms of the term frequency and the
inverse document frequency components. Specifically, instead of the actual term
frequency, its square root is used in the formula. This means that, for example, a
document with 16 matches is roughly twice as relevant as a document with 4. The IDF
component is also modified to reflect the fact that the score of a term appearing in 100
documents should not be 10 times more than the score of one appearing in 1000. The

new formula for the IDF is [37]:

numDocs )

IDF =1 <—+ 1
°9 docFreq + 1

In this formula numDocs is the total number of documents in the corpus. The
logarithmic weighing means that the IDF component grows more slowly, for instance a

term found in only 4 documents is roughly twice as special as a term found in 64.
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In order to take document length into account in the scoring, the inverse of its

square root is included in the final formula as fieldNorms, i.e. the final score is

( numDocs
0

—+1)><\/TF><
g docFreq + 1

1
JdocLength

BM 25

BM 25, with BM standing for Best Matching is a variation/ improvement on TF-IDF
which focuses on assessing the relevance of a document to a query and is widely used
for results ranking in search engines. It is often referred to as Okapi BM 25 as it was
developed in the context of the Okapi information retrieval system at London's City
University in the 1980s and 1990s [31]. BM 25 combined previous variants BM 11 and
BM 15 into a single weighting function. In this function, the IDF component is
preserved while the TF component is redefined and based on two new parameters (ki
and b). The formula for the relevance (score) of a document D for a query Q (that

contains n keywords, labeled gi with i ranging from 1 to n) is as follows:

f(qi. D) (ks +1)

. . 1Dl
f(ql',D)-l-kl (1—b+b W)

score(D,Q) = z IDF(q;) -
i=1

Where IDF(g;) is equal to

N —n(q;) + 0.5

l
°9 n(q;) + 0.5

where n(q;) is the number of documents that contain the term ¢;.

Suggested values for ki range between 1.2 and 2.0 and for b is equal to 0.75.

Additional extensions of BM25 focus on addressing specific deficiencies or
enhancing semantics. BM25+ was proposed to resolve an issue with the lower bound on

the term frequency component [22]. Authors observed and proved that the process of
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normalization by document length is not properly lower-bounded and as a result, very
long documents tend to be overly penalized. They proposed a solution based on an

additional parameter 0 whose value must satisfy the following formula:

6=

ky + 2

The new parameter o is added in the TF component in the scoring formula which

becomes:

score(D,Q) = Z IDF(q;) - /D) - (ks + 1) D )
i=1

£(q D) +ky - (1 —b+b-ang)

BM25F differs from other approaches in the sense that it does not consider the
document as a single body of text, unstructured and undifferentiated. The lack of
structure is not compatible with most search systems which assume at least some
minimal structure in documents [42]. BM25F considers a single flat stream structure,
common to all documents, i.e., that the text of each document is split between a global
set of labelled streams, for example, a title-abstract-body structure. The ranking function
is then applied separately to each stream, and the results are linearly combined (with
stream weights) to yield the final document score [32]. Intuitively, the presence of a
keyword in the document title will be given a higher weight and will thus contribute to a
higher score and the document that contains the keyword in its title will be considered

more important.
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3. Word embedding algorithms
This section presents algorithms that given a text of variable length as input, provide

vector representations for the words it contains.

Word2vec
Word2vec is a tool for computing continuous distributed representations of words that
was created by a team of researchers led by Tomas Mikolov at Google in 2013 [26] and

is distributed as open source software with an Apache License(https://www.apache.org).

Word2vec is essentially a group of related models that provides an efficient
implementation of the continuous bag-of-words and skip-gram model architectures to
compute distributed vector representations of words from very large data sets.
Following this transformation, the vector representations can be fed into many natural

language processing applications such as text classification or machine translation.

The input of word2vec is a large corpus of text (in the range of more than 1 billion
words with millions of distinct words) and produces a vector space with each word
corresponding to a vector positioned in such a way that words that share common

contexts in the corpus are close to one another.

In their seminal 2013 paper the researchers from Google report that their models
result in high quality vector representations. The quality is tested by feeding the output
into a word similarity task, and the results are compared to previously best performing
techniques based on different types of neural networks. Significant improvements are
observed both in accuracy and computational cost with a state-of-the-art performance

on a test set used for measuring syntactic and semantic word similarities.

This section presents the motivation and rationale behind word2vec, its mode of
operation and its output. Furthermore, example applications and variations that have

been proposed in literature are also included.
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Motivation / Rationale for word2vec

The main assumption that word2Vec is based on is that words with similar contexts
have similar meaning. Up to then, most NLP systems and techniques treated words as
atomic units disregarding the notion of similarity between them. This approach was

justified

since simple models trained on large volumes of data outperformed complex systems
trained on smaller data sets. The researchers behind word2vec initially observed that in
the vector representations, similar words not only tend to be close to each other, but also
words can have multiple degrees of similarity but were then surprised to discover that
similarity of word representations goes beyond simple syntactic regularities. In a well-

known example of simple algebraic operations on word vectors, they showed that
vector(“King”) - vector(“Man”) + vector(“Woman”)
results in a vector that is closest to vector(“Queen”).

The learned vectors explicitly encode many linguistic regularities and patterns and
many of these patterns can be represented as linear translations, something that
originally surprised researchers. In fact, using word2vec, both syntactic and semantic
regularities can be learned with high accuracy that depends on the dimensionality of
word vectors and on the volume of training data. It must be noted that although many
different models for estimating continuous representations of words had been proposed,
such as Latent Semantic Analysis and Latent Dirichlet Allocation, the creators of
word2vec focused on distributed representations of words learned by neural networks,
as they were superior in preserving linear regularities among words and computationally

affordable for large data sets.

Nevertheless, the question of why it works has baffled researchers and several

efforts have focused on making the intuition more precise [13].

Word2vec Operation
The tool first constructs a vocabulary from the training text data and then learns vector

representation of words. The simplest way to explore the learned representations is to
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use the distance tool to find the closest words for a given one. For example, the closest,
i.e., most similar words to france are shown in the following table along with their

distances (https://code.google.com/archive/p/word2vec/).

Word Cosine distance

Spain 0.678515

Belgium 0.665923

netherlands | 0.652428

Italy 0.633130

switzerland | 0.622323

luxembourg | 0.610033

Portugal 0.577154

Russia 0.571507

germany 0.563291

catalonia 0.534176

Architecture
For all the models investigated in the context of word2vec, the complexity was defined
as the number of parameters that had to be computed in order to complete its training

according to the following formula:
O=EXTXQ

where E is number of the training epochs (passes), T is the number of the words in
the training set and Q depends on the particular model architecture. Common choices

for E include values between 3 and 50 and for T values approaching one billion.

Previously proposed model architectures that were considered in word2vec were
the probabilistic feedforward neural network language model (NNLM) which consists
of input, projection, hidden and output layers and the Recurrent Neural Network
Language Model (RNNLM) which had been proposed to overcome certain limitations
of NNLM and only has input, hidden and output layer. In NNLM, the hidden layer (of
size H) is used to compute probability distribution over all the words in the vocabulary,
resulting in an output layer with dimensionality V. The complexity is dominated by the

dimensionality of the projection layer (typically between 500 and 2000) and that of the
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hidden layer. The complexity in RNNLM is dominated by the square of the size of the
hidden layer.

The new log-linear models that were proposed in the context of word2vec in order
to reduce computational complexity by partly sacrificing precision of data

representation could be trained on much more data efficiently. These were:

Continuous Bag-of-Words (CBOW) Model: this is essentially a feedforward
NNLM, where the non-linear hidden layer has been removed and the projection layer is
shared for all words (whereas previously only the projection matrix was shared). This
architecture is a type of bag-of-words model as the order of words in the history does
not influence the projection. Not only words from recent history but also from the future
are used. For example, a log-linear classifier for a given word could consider the four

previous and the 4 next words. The computational complexity Q of the model is:
Q=NXxD+D xlog,V,

where V is the size of the vocabulary, N is the size of the context window and

N X D is the size of the projection layer.

Unlike standard bag-of-words model, this model uses continuous distributed
representation of the context, hence its name. CBOW predicts the current word based on

the context and its architecture is shown in Figure 4.
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Figure 4: CBOW model architecture [20]
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Continuous Skip-gram Model: this is a similar architecture to CBOW but
instead of predicting the current word based on the context, it tries to predict
surrounding words given the current word. Each word encountered is fed as input to a
log-linear classifier with a continuous projection layer, and words within a certain range
before and after the current word are predicted. The size of the range is a tradeoff
between the quality of the resulting vectors and the computational complexity. Distant
words are typically assigned lowered weights and are sampled less often given that they

are generally less related to the current one.
The training complexity of this architecture is:
Q=Cx(D+Dxlog,V),

where C is the maximum distance of the words considered. For example, for C=5,
for each training word, a random number R between 1 and 5 is selected and R past and
R future words are used as correct labels. This results in 2 X R classifications and
outputs. A typical value for C is 10. The architecture for the continuous skip-gram
model is shown in Figure 5 where it is evident that it predicts surrounding words based

on the current word.
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Figure 5: Continuous skip-gram model architecture in word2vec (Mikolov et al., 2013)
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Word2Vec example applications

Machine translation

The models proposed in the context of word2vec can be used to automate the process of
generating dictionaries and phrase tables which are fundamental in machine translation,
thus complementing mainstream techniques that rely primarily on raw word counts used
in statistical machine translation. The authors of [24] propose achieving this by learning

a linear projection between vector spaces that represent the two languages.

Figure 6 illustrates the basic principle behind the idea. Vectors for two groups of
related words (numbers and animals) are visualized for the two languages that will be
translated (English and Spanish). As it is evident in the figure, concepts have similar
geometric arrangements in both languages due to the fact that they are grounded in the
real world. This similarity is the key reason why the proposed method works well.
Typically, morphological features such as edit distance between word spellings are used
to improve performance in translations between related languages (such as the two in
the example, English and Spanish). The method based on word2vec can be used for
translation between languages that are substantially different (for example, English and

Chinese).

il oo cuatro (four)
o i mf uno (one)
e fye il cinco (five)
: one
o
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three
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Figure 6: Distributed word representations of numbers and animals in English and Spanish [21]
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To obtain the representations as they are shown in Figure 6, the vectors in each
language are projected down to two dimensions using principal component analysis,
and then manually rotated to accentuate similarities. The similar geometric
arrangements suggest that is it is possible to learn an accurate linear mapping from one
space to another. To put this to action, first, monolingual models of languages are built
using large amounts of text. Next, a small bilingual dictionary is used to learn a linear
projection between the languages. During the test phase, any word present in the single
language corpora can be translated by projecting its vector representation from the
source language space to the target language space. The translated word is selected as

the most similar word vector in the target language space.

Text classification

Word2vec brings extra semantic features that can help in text classification which is
becoming more difficult as the volume of online documents increases [21].
Classification is traditionally based on document representation using information
retrieval techniques, for example continuous bag-of-words or tf-idf, that provide a
simplified representation of documents through various features. CBOW disregards
grammar and word order but keeps multiplicity while tf-idf reflects the importance of a

word to a particular document in a collection of documents or corpus.

On the contrary, word2vec is unable to distinguish the importance of each word
within the document being classified and treats each word equally. This makes it
difficult to extract which words hold higher value over others. The authors of [21]

combined word2vec with tf-idf to get the best of both methods in a classification task.

Mathematically speaking, the first step was getting a vector representation using
word2vec. Following that, they applied weights using tf-idf weighting with word2vec
and then concatenated tf-idf with word2vec weighted by tf-idf. The concatenation
operation was in fact vector merging. By adding weights to each word corresponding to
its frequency within the document in word2vec, they created weighted sums of word
vectors. Stop words were omitted to improve accuracy and skip-gram was used for

higher semantic accuracy (at the cost of time efficiency).
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Reported results show that the combination of word2vec weighted by tf-idf
without stop words and tf-idf without stop words can outperform either word2vec
weighted by tf-idf without stop words or tf-idf with or without stop words. Although,
the difference in performance is relatively marginal, the performance is consistent (i.e.,
the combination is reliable) and as the number of different categories increases, the
difference in scores becomes even smaller which means that the addition of categories

does not offer new information.

Extensions/ Variations of word2vec

The research team behind word2vec published a later paper where they presented
several extensions (particularly to the continuous skip-gram model) that improve both
the quality of the vectors and the training speed [24]. The first two extensions are
essentially additional parameters that are related to subsampling and rare-word pruning.
Words appearing fewer than min-count times are not taken into account neither as
words nor as contexts. Conversely, words appearing more frequently than sample times
are down-sampled and removed from the text before generating the contexts. This
increases the effective window size for some words as more distant words are actually
considered and these words are indeed meaningful and not, for example, stop words.
This subsampling not only improves the accuracy of representations of less frequent

words but also speeds up the process by several orders of magnitude.

Another important extension is a simplified variant of Noise Contrastive
Estimation (NCE) for training the Skip-gram model that results in faster training and
better vector representations for frequent words, compared to more complex

hierarchical Softmax that was used in the original proposal.

Paragraph vector

This extension was proposed by the creator of the original word2vec and another
researcher in a 2014 paper [20] in order to counteract drawbacks of bag-of-words
methods such as their disregard for word order and their little sense of semantics.
Paragraph vector provides continuous distributed vector representations for variable-

length pieces of texts (such as sentences and paragraphs). Since it was proposed,
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however, its potential to provide vector representations for entire documents has
received a lot of attention and it is mostly referred to as doc2vec. Doc2vec is presented

in detail in the following chapter entitled Document embedding algorithms.

GloVe

GloVe is an acronym that stands for Global Vectors for Word Representation. Glove is
a model for obtaining vector representations for words that features a different take on
the task compared to word2vec. It is developed as an open-source project at Stanford

University [29].

The creators of GloVe distinguish between two model families for learning word
vectors: global matrix factorization methods, such as latent semantic analysis and local
(shallow) context window methods, such as the skip-gram model proposed in the
context of word2vec. Global matrix factorization methods utilize low-rank
approximations to decompose large matrices that capture statistical information
(varying by application) about a corpus. For example, matrices of type “term-term”
could be used where the rows and columns correspond to words and the entries
correspond to the number of times a given word occurs in the context of another word.
The main problem with such methods is that the most frequent words contribute a
disproportionate amount to the similarity measure because of their frequent co-
occurrence despite the fact that this does not necessarily mean much about their
semantic relatedness. As a result, methods of this category perform relatively poorly on
word analogy tasks, indicating a sub-optimal vector space structure, despite the fact that

they efficiently leverage statistical information.

Shallow window-based methods are another approach in which representation
learning is accomplished by making predictions within local context windows. Methods
like skip-gram and continuous bag-of-words have the capacity to learn linguistic
patterns as linear relationships between the word vectors and this is demonstrated
through evaluation on a word analogy task. Scanning local context windows across the
entire corpus fails to take advantage of the vast amount of repetition in the data and
these methods do not operate directly on the co-occurrence statistics of the entire

corpus.
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The statistics of word occurrences in a corpus is the primary source of information
available to all unsupervised methods for learning word representations and these
methods try to generate word vectors that represent the meaning of these statistics. The

GloVe model directly captures the global corpus statistics.

GloVe uses a matrix X of word-word co-occurrence counts, whose elements Xj;
tabulate the number of times word j occurs in the context of word i. The sum of the
elements in a row i is noted by X; and is equal to the number of times any word appears
in the context of word i. The ratio Xij/Xi denoted by P; is the probability that word j
appears in the context of word i. In GloVe, the starting point for word vector learning is
computing the ratios of co-occurrence probabilities rather than the probabilities

themselves. This is better illustrated with an example.

Consider two words 7 and j that exhibit a particular aspect of interest, e.g., take i =
ice and j = steam in a corpus related to physics. The relationship of these words can be
examined by studying the ratio of their co-occurrence probabilities with various probe
words, k. For words related to ice but not steam (for example the word solid), the ratio
Pi/Pj is expected to be large while for words related to steam but not ice (say k = gas)
the ratio should be small. Similarly, for words either related to both ice and steam (e.g.,
water) or to neither of them (e.g., fashion) the ratio will be close to one. Compared to
the raw probabilities, the ratio is better able to distinguish relevant words (solid and gas)
from irrelevant words (water and fashion). The target optimization problem in GloVe is

formalized with the following equation:

P
F(Wi, w;, Wk) = P;
j

where w are word vectors and w are separate context word vectors.

The function F should be applied to the word vectors and its output should
approximate the probability ratio. Analysis of the properties of the optimization
function and the characteristics of the vector space formulate the end equation. The

result is a new global logbilinear regression model.

wlwy + by + b, = log(1 + Xy)
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The weighting function is pivotal in the equation and should not overweight rare
co-occurrences and very frequent ones. The selected function was:

f(x) — {(x/xmax)alfx < xmax}

1 otherwise

Optimal values for parameters were set to X« = 100 and a=3/4.

Results from experiments [29] indicate that GloVe and word2vec perform
similarly and this is justified by the fact that they are essentially optimizing the same
objective, i.e., they share a common base assumption that words with similar contexts
have similar meanings. Despite the fact that word2vec does not explicitly utilize global
statistics, its mode of operation by sequentially scanning the corpus does implicitly
capture them. Regarding the computational complexity, GloVe scales on vocabulary
size V because training is based on the co-occurrence matrix with contains all word
pairs. Therefore, a simple upper bound to complexity would be O(¥?). This is very

practical as the vocabulary size does not grow with the size of the corpus.

FastText

FastText is an open-source, free, lightweight library for learning text representations
created and maintained by researchers in Facebook’s Al Research (FAIR) lab [3]. The
inspiration for fastText was the observation that previous techniques represent each
word by a distinct vector without parameter sharing which is a serious limitation for
morphologically rich languages, such as Finnish which has, for example, fifteen
inflected cases for nouns. This means that many word forms may occur rarely or not at
all in the training corpus and thus learning good word representations is hard. FastText
uses character level information to improve vector representations which is beneficial

for morphologically rich languages as many word formation follow rules.

The original paper on fastText [4] proposed an extension of the continuous skip
gram model in which character n-grams are used and words are represented as the sum
of n-gram vectors. This approach with subword information is shown to have good
performance for nine languages of different morphologies. fastText differs from

previous efforts on morphological word representations as it does not rely on the
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morphological decomposition of words. Specifically, fastText tries to take into account
the internal structure of words which the continuous skip gram model ignores by using a
different scoring function s. Each word w is now represented as a bag of character n-
gram. Special boundary symbols < and > indicate the beginning and end of words, thus
allowing the distinction between prefixes and suffixes and other character sequences.
For example, if we consider the word “where” and n=3, the resulting character trigrams

will be:
< whe, her, ere>
and the special sequence (entire word) will be
<where>

In practice, all the n-grams for n greater or equal to 3 and smaller or equal to 6
(word length) are extracted. It must be noted that the sequence <her> as found in the
word “where” is considered different from the sequence <her> as found in the word

“her,’.

Given a word w and a dictionary of n-grams with size G, the set of n-grams

appearing in w is denoted by:
G,C{1,...,G}

Each n-gram g is associated with a vector representation ze,.and each word is

represented by the sum of the vector representation of its n-grams. Thus, the scoring

s(w,c) = Z 25V,

gEGy

function becomes:

In this simple model, representations can be shared across words, thus allowing to
learn reliable representations for rare words. Model memory requirements are upper
bound using a hashing function that maps n-grams to integers in the range 1 to K.
Ultimately, a word is represented by its index in the word dictionary and the set of

hashed n-grams it contains.

Regarding the performance of fastText, in several tasks, it is on par with methods

inspired by deep learning, while being much faster. For classification problems in
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particular, fastText can be trained on more than one billion words in less than ten
minutes using a standard multicore CPU, and it can classify half a million sentences

among 312K classes in less than a minute [18].

The computational complexity of FastText is effectively the same as the
complexity of the skip-gram variant of word2vec as the learning procedure is effectively
the same. The added cost of fastText is the cost of splitting each word into its
components, fetching their corresponding embedding vectors and compose them into
the final word embedding. This is only a linear increase in cost so the complexity class
remains the same. Regarding the memory complexity of fastText which is expected to
be quite high, extensions to the library have been published that specifically address the
issue for classifiers [19]. This is achieved by applying discriminative pruning which
aims to keep only important features in the trained model, and by performing

quantization of the weight matrices and hashing of the dictionary.

WordRank

The researchers behind WordRank [18] take a different approach compared to the
methods described in the previous sections, in the sense that they do not consider word-
context co-occurrence counts as the basis for word embeddings. In WordRank the word
embedding task is approached from a different perspective by formulating it as a
ranking problem. That is, given a word w, the aim is to output an ordered list of context
words such that words that co-occur with w appear at the top of the list. In other words,
the importance does not lie in the particular scores but rather in the order between the

context words.

Casting word embedding as ranking has two distinctive advantages. First, the
method is discriminative rather than generative, so, instead of modeling the (potentially
normalized) co-occurrence count directly, the aim is to only model the relative order of
its values in each row. This fits naturally to popular word embedding tasks such as word
similarity and analogy since instead of the likelihood of each word, we are interested in
finding the most relevant words in a given context. The second advantage is the inherent

robustness of the method to noise.
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Both issues are very critical in the domain of word embeddings since the co-
occurrence matrix might be noisy due to grammatical errors or unconventional use of
language. This is particularly important in smaller document corpora collected from
diverse sources. Additionally, WordRank enables sorting out the few most relevant
words from very large vocabularies and thus works like a kind of attention mechanism.
Experiments show that with 17 million tokens WordRank performs almost as well as

existing methods using 7.2 billion tokens on a popular word similarity benchmark [17].
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4. Document embedding algorithms

Extending on the notion of word embeddings, document embeddings provide numerical
vector representations for texts of variable length, even entire documents. These
representations are then fed as input in methods/ algorithms for classification, similarity
queries and other natural language processing tasks. This section presents the extension

of word2vec for documents, appropriately named doc2ve.

Doc2vec

Despite their popularity, bag-of-words features have two major weaknesses: they
disregard the order of words and thus different sentences can have exactly the same
representation, as long as they contain the same words. Furthermore, they have very
little sense about the semantics of words or more formally the distances between words.
As a result, for example, the words “powerful,” “strong” and “Paris” are equally distant

despite the fact that semantically, “powerful” should be closer to “strong” than “Paris.”

Following the success of word embedding methods such as word2vec, researchers
have pursued extensions to go beyond word level to phrase-level or sentence-level
representations. Example of simple approaches were using a weighted average of all the
words in a document or combining the word vectors in an order given by a sentence
parse tree using matrix-vector operations. Both simple approaches mentioned have
weaknesses. The first one loses the word order much like the standard bag-of-words

models do while the second one that relies on parsing works only for sentences.

To counteract these drawbacks, the authors of [20] propose Paragraph Vector, an
unsupervised framework that learns continuous distributed vector representations for
variable-length pieces of texts (from single phrase/sentences to entire documents). The
original name they suggested (Paragraph Vector) illustrates the variability in text length.
However, the method has since become known as Doc2vec, in the sense that it can
provide vector embeddings for entire documents. Unlike some of the previous
approaches, it is general, applicable to texts of any length and does not require task-
specific tuning of the word weighting function or parse trees. Two separate models are
proposed, in a mode analogous to word2vec, Distributed Memory Model of Paragraph

Vectors (PV-DM) and Paragraph Vector with Distributed Bag of Words (PV-DBOW).
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Paragraph Vector: A Distributed Memory model (PV-DM)

This approach for learning paragraph vector is based on the one for learning word
vectors. More specifically, much like word vectors are asked to contribute to a
prediction task about the next word in a sentence, the paragraph vectors are asked to
contribute to the prediction task of the next word given many contexts sampled from the
paragraph. The prediction learning task is the reason why word vectors eventually
capture semantics despite the fact that they are randomly initialized. Accordingly,
paragraphs and words are mapped to unique vectors (columns in matrix D and in matrix

W, respectively).

Classifier m

Average/Concatenate T

N

OImn [T OIram

Paragraph Matrix----- > $ w | |W |W |

| | |
Paragraph the cat sat

id

Figure 7: The operation of PV-DM. The word vectors along with the paragraph vector are used to predict the
Jfollowing word [Le & Mikolov, 2014].

The resulting paragraph vector representation is trained to be useful for predicting
the following words in a paragraph by concatenating it with several word vectors from
the same paragraph (Figure 7). Both word vectors and paragraph vectors are trained
using stochastic gradient descent and backpropagation. Paragraph vectors are unique for
each paragraph but shared across all contexts generated from the same paragraph while
word vectors are shared, i.e., the vector for “powerful” is the same for all paragraphs.

Contexts are fixed-length and sampled from a sliding window over the paragraph.

The operation of the algorithm that generates the vectors can be summed up in
two stages: the first is training to get word vectors W, softmax weights and parameters
and paragraph vectors D on already seen paragraphs and the second one is the inference

stage where vectors for unseen paragraphs are computed by adding more columns to the
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matrix D while holding all else fixed. For this purpose, a standard classifier is used

(e.g., logistic regression).

Paragraph Vector without word ordering: Distributed bag of words (PV-DBOW)

PV-DM concatenates the paragraph vector with the word vectors in order to predict the
next word in a text window. In contrast, Distributed Bag of Words (DBOW) ignores the
context words in the input, but forces the model to predict words randomly sampled
from the paragraph in the output. The operation of the model is illustrated in Figure 8.
At each iteration of stochastic gradient descent, a random word is sampled from the also
randomly selected text window and a classification task is formed given the Paragraph

Vector.

Classifier | the|] [cat] [sat] [on |

Paragraph Matrix --------- >

Paragraph
id

Figure 8: The operation of PV-DBOW. The paragraph vector is trained to predict the words in a small window [Le
& Mikolov, 2014]

This model is conceptually simple and similar to the Skip-gram model in word
vectors. Compared to PV-DM it stores less data and while it can work well alone, the
combination of both paragraph vectors (one learned with PV-DM and one with PV-

DBOW) is usually more consistent across many tasks.

Paragraph vectors generated with the methods described in the previous two
sections have several advantages. Firstly, they do not require labeled data and thus can
work well for tasks that do not have enough such data. Most importantly, they address

the weaknesses of bag-of-words models. Paragraph vectors retain the semantics of the
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words (i.e., in this space, “powerful” is closer to “strong” than to “Paris”) and they
consider the order of words (albeit in a small context) in the same way that an n-gram
model with a large n would do. Compared to a theoretical bag-of-n-grams model, Le
and Mikolov [20] note that their paragraph vectors are superior in the sense that a bag of
n-grams model would create a very high-dimensional representation that tends to

generalize poorly.
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5. Python toolkits and libraries for natural language processing

Python is a very popular programming language and natural language processing is one
of the primary ways it is used. This section provides an overview of several well-known
and used toolkits and libraries written in Python that relate to natural language

processing.

Natural Language Toolkit (NLTK)

The Natural Language Toolkit [27], also referred to as NLTK is a platform for building
programs that work with human language data, written in Python. NLTK is a suite of
libraries for symbolic and statistical natural language processing that was developed by
Steven Bird and Edward Loper in the Department of Computer and Information Science
at the University of Pennsylvania. It is free and open source software distributed under
the Apache License and hosted on Github. NLTK is suitable for students and
professionals alike and is available for Windows, Mac OS X, and Linux. It is also
accompanied by a free book written by NLTK creators [2], which introduces new

comers to natural language processing with Python.

According to the creators of NTLT, they chose Python as the programming
language for implementation because of its simplicity, its syntax transparency and its
abilities in string handling. Python combines multiple programming paradigms and has
a shallow learning curve. Its standard library is very extensive and includes powerful
tools for graphical programming, numerical processing, and web connectivity. NLTK

contains the following components:

1. Code: libraries/ modules for all functions required in natural language
processing (50,000 lines of code). Popular functions include corpus
readers, tokenizers, stemmers, taggers, parsers, semantic interpretation,
clusterers, evaluation metrics, etc.

2. Corpora: more than 30 annotated data sets widely used in NLP.

3. Documentation: a 400-page book, articles, reviews, API documentation.

Basic functions of NLTK include:

65



Machine learning algorithms for big data

o nltk.-word tokenize(): outputs a list of strings/tokens appearing in the
argument text.

e nltk.pos_tag(): outputs a list of word/ part of speech tuples.

e nltk.corpus.stopwords.words(‘english’): outputs a list of stop words for the

English language.

NLTK also includes dictionaries and a thesaurus, directly accessible via the
command line and can output word definitions, synonyms, antonyms and sample

usages. It also includes functions that estimate if two words are related.

Apart from working with words, NLTK can analyze and visualize sentence
structure. With the corresponding modules, NLTK provides answers to the following

questions:

1. How can we use a formal grammar to describe the structure of an
unlimited set of sentences?
2. How do we represent the structure of sentences using syntax trees?

3. How do parsers analyze a sentence and automatically build a syntax tree?

Indeed, systematic aspects of meaning are much easier to capture once the
structure of sentences has been identified. Parse trees automatically generated by NLTK
are an excellent tool for sentence structure visualization and ambiguity management. A

well-known example is the analysis of the sentence:
While hunting in Africa, I shot an elephant in my pajamas.

By using NLTK and defining a simple grammar, the sentence can be analyzed in

its parts.

= nltk.CFG. fromstring ("""

Based on this grammar, the sentence can be analyzed in one of two ways, depending on
whether the prepositional phrase “in my pajamas” describes the elephant or the shooting

event.
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53> groucho_grammar = nltk.CFG. fromstring(”""
S -» NP VP

neR | 1

The corresponding parse trees are shown in Figure 9 as they are generated by NLTK.

S
/\
N|P VP
/\
| VP PP
i e NG
Vv NP P NP
shot DTt I"{I in DTI IT
an elephant my pajamas
S
/\
N|P VP
/\
| Vv NP
shot Det N PP
| 1 7N
an elephant P NP
/\

in Det l\ll

my pajamas

Figure 9: Parse trees generated by NLTK for the two interpretations of the sentence [Bird et al.,
2009]

Pattern for Python

Pattern is a Python package for web mining, natural language processing, machine
learning and network analysis which offers a collection of tools commonly used in
applications that harness the Web. Pattern is free and open source software licensed
under BSD and is organized in separate modules/ packages that can be chained. Pattern

is written in pure Python, mainly for readability. The main packages in Pattern are [35]:

e pattern.web: this package includes tools for web data mining, i.e. tools for
downloading content and using web services such as the ones offered by
search engines and Wikipedia. It also includes an HTML parser, a parser for

PDF documents, a web crawler, and a webmail interface.
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pattern.en: this package is essentially a fast, regular expressions-based
shallow parser for English that can identify sentence constituents such as
verbs, nouns and adjectives. The original implementation included a parser

for the Dutch language and developers can add support for other languages.

pattern.search: this module includes an N-gram pattern matching algorithm
for objects of the Sentence class. Search queries can include a mixture of
words, phrases, part-of-speech-tags, taxonomy terms (e.g., pet = dog, cat or

goldfish) and operators (such as +, *, ()) to extract relevant information.

pattern.vector: this module includes the tools that compute TF-IDF, distance
metrics and perform dimension reduction. It also includes a hierarchical and
a k-means clustering algorithm, some simple classifiers and tools for feature

selection and K-fold cross validation.

pattern.graph: this module supports graph data structures useful for example
for modeling semantic networks. The module has algorithms for shortest
path computation, subgraph partitioning, eigenvector centrality and

betweenness centrality.

pattern.metrics: this module supports descriptive statistics functions, such as

functions for accuracy, precision and recall.

pattern.db: this module includes the tools for working with CSV files and
SQLITE/ MYSQL databases.

LibShortText

Short texts include titles, questions, sentences and short messages. The approaches to

classification and analysis must consider the special properties related to their small

length for instance the fact that words in them are most likely distinct. Existing

procedures may need to be altered to apply in shorter texts which are generally easier

for investigation and experimentation. The authors of [39] developed an open source

tool licensed under BSD called LibShortText whose main features are:

It is optimized for short texts i.e. it is more efficient for large-scale short-text

classification compared to traditional tools.
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2. The default options are selected to guarantee the best performance for user

applications.

3. Error analysis is performed via an interactive tool at each text level detail.

LibShortText is written in Python for simplicity and extensibility with portions in
C/C++ for speed/efficiency. The workflow in a LibShortText application follows three

steps, each corresponding to an included library.

1. libshorttext.converter: the bag-of-word model is used to generate features. Short
texts can be pre-processed by tokenization and optionally by stemming and

removing stop-word. The library both unigram and bigram features.

2. libshorttext.classifier: after the user chooses how features will be represented
(options include binary, word count or TF-IDF), the library generates sparse
feature vectors and calls a linear-classification package for training/testing.

Multi-class classification is also supported.

3. libshorttext.analyser: this is the interactive tool used to conduct error analysis in
both the overall performance level and the level of analysis of each feature of a

short text.

Gensim

Gensim [30] is a free and open source vector space modeling and topic modeling toolkit
implemented in Python. It was created in 2009 and it is distributed under the GNU
LGPLV2.1 license. Since its creation, it has become a reference point both for
researchers in related fields and for companies and is also used in commercial products.

It is supported by the company RaRe Technologies and it is hosted on GitHub.

In the words of its creator, Radim Rehtifek, Gensim is “the most robust, efficient
and hassle-free piece of software to realize unsupervised semantic modeling from plain
text”. The algorithms in Gensim, such as Word2Vec, FastText, Latent Semantic
Analysis, Latent Dirichlet Allocation, etc, automatically discover the semantic structure

of documents by examining statistical co-occurrence patterns within a corpus of training
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documents. These algorithms are unsupervised, which means no human input is
necessary only a corpus of plain text documents is required. After these statistical
patterns have been discovered, any plain text document of any length can be succinctly
expressed in the new, semantic representation and queried for topical similarity against

words, phrases or documents [30].

The basic features of Gensim are:

o  Memory independence: the entire corpus used in training does not need to
reside in the computer’s RAM all at any one time. Therefore, large corpora
(such as web-like ones) are an option for training.

e Memory sharing: models that have completed their training can be saved
to disk and loaded back for experiments and multiple processes can share
the same data.

e Efficient implementations for several popular vector space algorithms.

e Input/ output wrappers and readers from several popular data formats.

e Fast similarity queries for documents in their semantic representation.

Gensim was designed to be straightforward to use and easy to learn for
developers, with an impressive API that is great for prototyping. Additionally, because
Gensim operates in a streaming fashion, one document at a time, the size of the corpus

is not a hindering factor.

Core concepts in Gensim
This section summarizes some of the core concepts in Gensim which are required to

follow the details of code implementation presented in the next chapter.

Corpus
A corpus in Gensim is a collection of digital documents. Corpora serve as input for
model training and models utilize the training corpus to initialize their internal

parameters. No human intervention is required (e.g. annotations or tagging by hand
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which are very costly and cannot be performed in bulk in reasonable time frames).

Indeed, Gensim focuses solely on unsupervised models.

Corpora in Gensim also serve as documents to organize. After training, a topic
model can be used to extract topics from new documents (not already contained in the

training corpus).

Vector space model
As it was discussed in previous sections, in a Vector Space Model, each document is
represented by an array of features. For example, a single feature may be thought of as a

question-answer pair:
How many times does a specific word appear in the document? Zero.
How many paragraphs does the document consist of? Two.
How many fonts does the document use? Five.

The question is usually represented only by its integer id (such as 1, 2 and 3 here),
so that the representation of this document becomes a series of pairs like (1, 0.0), (2,

2.0), (3, 5.0).

This sequence of answers can be thought of as a vector (in this case a 3-
dimensional dense vector) and are the same for all documents. As a result, vector
similarity can be interpreted as document similarity. The selection of questions and the

degree to which they correlate with real world similarity is therefore critical.

Gensim sparse vector
For space saving reasons, Gensim does not store vector elements that are equal to zero.
Each vector element is 2-tuple of (feature id, feature value) and all missing values are

resolved to zero so documents are potentially represented by sparse vectors.
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Gensim streamed corpus

Gensim does not prescribe any specific corpus format. A corpus is simply a sequence of
sparse vectors, as described above and any object that when iterated over, successively
yields such sparse bag-of-word vectors is acceptable in Gensim. This flexibility enables
users to create their own corpus classes that stream vectors directly from disk even on

the fly.

Model, Transformation

In Gensim the term model is used to refer to the code and associated data (parameters)
required to transform one document representation to another. As discussed above,
documents in Gensim correspond to vectors so a model is essentially a transformation
from one vector space to another. The parameters of this transformation are learned
from the training corpus and data computed based on these parameters (i.e., the trained
model) can be written to disk and then reloaded and reused either for further training or

new transformations.
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6. A practical application of Gensim doc2vec for similarity estimation

between Wikipedia articles

Application goals and Problem definition

This section describes a practical example of using the word2vec and doc2vec
implementation in order to model data, produce analogy when given a set of words and
find the less relevant one between a bunch of words. The objective is also to be able to
execute similarity queries among the articles of Greek Wikipedia and obtain a list of

article rankings based on similarity indices.

Stakeholders

This functionality can help scientists or interested parties in word/document similarities
in the Greek language. Word and document embeddings, as discussed in previous
chapters, can be also used as input in various machine learning algorithms for automatic
summarization, machine translation, sentiment analysis, speech recognition etc. This
functionality, consequently, can help scientists or interested parties in exploring the

methods mentioned above in the Greek language.

Methodology

To ensure project application goals are met the following methodology shown by the
diagram below was utilized. The first step is to identify user requirements, and the second
step is to identify the appropriate machine learning algorithms. The following step is to
implement the algorithms chosen and finally to present and evaluate the results. This
framework allows us to select the right algorithms to accomplish goals set (please see

below).
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Figure 1. Methodology diagram

Requirements
This section describes the requirements of the system. The ecosystem should consist of

two concrete applications.

1. The first application should be able to identify:
e Semantic similarities between words.
o A less semantically relevant word between a bunch of words.
o Analogies between one word and a tuple (two words semantically
connected).
2. The second application should be able to identify:
e Semantic similarities between documents.
o The closest semantically related documents within a collection

(corpus) given one document as input.

Design

In the section to follow we discuss the method in which the requirements can be met.
Initially, the methodology is decided upon, followed by the structure of the proposed
solution. Depicted in the following diagram is the overall structure of the application

code.
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« Retrieval of Greek Wikipedia articles
5 = Conversion to sentences/ documents
rpus s » .
gen‘?;.,ﬁum * Generation of corpus and dictionary of terms

* Stop words removal (nltk)
* Removal of terms that occur only once
WEECEEER  » Optional: Removal of terms that appear “too” often (tf-idf)

* Skip-gram/DM or CBOW/DBOW
* Testing with limited number of items for development/ code checking

Word2vec &
Doc2vec model
application

* Evaluation of the models

MRl Queries for similarities between words/ documents
Results

Figure 2: Python application code building blocks

Our initial step is to create the corpus of this application. For this purpose obtaining
the source documents and then converting these documents into sentences gives us the
opportunity to construct a dictionary. Secondly, preprocessing methods are needed to be
applied as they transform the original sequence of characters to a cleaner form. For this
purpose we will convert all characters to lowercase. One of the major forms of pre-
processing is to filter out useless data. In natural language processing, useless words are
referred to as stop words. Therefore, we will remove all stop words and terms that appear

only once in each document.

Moving on, we are going to divide our application into two sub applications which
both use different algorithms and compute different tasks. The first sub application should
utilize the wordToVec algorithm in order to transform a word into a vector. The second
application should utilize the docToVec algorithm with the intention of assigning vectors
to documents. Both the selected algorithms contain two different architectures which will
be applied in each case. We then are going to test them for development/ code checking

with a limited number of items.

Our last step is to evaluate the accuracy of our models and present our results

revealing similarities between words and documents.
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Implementation

In order to meet the requirements some appropriate machine learning algorithms should
be selected and implemented as discussed previously. For the purpose of this thesis,
Word2vec and Doc2vec algorithms were selected. We initially executed commands
directly on the command line interpreter and then aggregated them into files for batch

execution which, in turn allowed for us to observe the results.

Next, we ran all experiments in Python 3.7 (64 bit version) on a Windows 10
machine. Initially we experimented on applying simpler algorithms such as tf-idf and
word2vec to the data at hand, to observe the capabilities of Gensim and to incorporate

them into our code further on.

The resulting Python code is modular and reusable, in the sense that blocks of code
generate intermediate results that can be used for other experiments of the same type or

slightly different processing of the article texts.

Obtaining the source documents

As in many natural language processing applications, we utilized the latest dump of
Wikipedia articles. Wikipedia offers a wide variety of downloadable files including
articles, list of all articles titles, media metadata, article to article links etc. all widely used

in various research projects.
The latest dump of Greek Wikipedia articles can be found in the link below:

https://dumps.wikimedia.org/elwiki/latest/

Wikipedia dumps, by definition, are the most recent Wikipedia’s platform updates.
Therefore this dataset is consistently updated. In this thesis we conducted experiments

using the full texts in two concrete dates.

The size of the download file (~310MB) and the number of articles (~145,000) is
convenient for experimentation. Gensim can process the compressed bz2 file directly,

therefore no deflating is required.
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Applying word2vec in the articles of Greek Wikipedia/ Word analogy queries
As a first step of all python implementations specific packages need to be imported. These

mainly are:

e  Multiprocessing that allows the programmer to fully leverage multiple processors
on a given machine.

e wikicorpus that constructs a corpus from a Wikipedia (or other MediaWiki-based)
database dump. Wikicorpus uses multiprocessing internally to parallelize the
work and process the dump more quickly.

e JWord2vec that implements the word2vec family of algorithms, using highly

optimized C routines, data streaming and Pythonic interfaces.

One of the first things, as mentioned in Chapter 2, required for natural language
processing (NLP) tasks is a corpus. In linguistics and NLP, corpus refers to a collection

of texts. So next we are going to create the corpus.

#WikiCorpus (wiki = WikiCorpus("D:\ code\data\elwiki-latest-pages-articles.xml.bz2",

lemmatize=Fualse, dictionary={}))

Main parameters [30]:

e fname (str): Path to where the Wikipedia dump file is stored.

e processes (int, optional): Number of processes to run, defaults to max(1, number
of cpu—1).

o Jemmatize (boolean): If the parameter lemmatization is set to True, it uses
lemmatization instead of simple regexp tokenization. Defaults to True if you
have the pattern package installed.

e dictionary (Dictionary, optional): If a dictionary is not provided, Gensim scans
the corpus once, to determine its vocabulary, which takes a long time.

e article_ min_tokens (int, optional):Minimum tokens in article. Article will be
ignored if number of tokens is less.

e ftoken min_len (int, optional): Minimal token length.

e token_max_len (int, optional): Maximal token length.

o lower (boolean, optional): It converts all text to lower case, if it is set to True.
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As the corpus was created we then used get fexts() that iterates over the dump,
yielding a list of tokens for each article that passed the length and namespace filtering
parameters (if any — not used in this example). The length parameter can be used, for
example, to exclude short articles (with fewer than 50 words) and the namespace
filtering to exclude, e.g. the discussion pages. This function uses multiprocessing
internally to parallelize the work and process the dump more quickly. In our
experiments, this command took about 5 minutes to execute for a dump with close to
144,000 articles.

The results of the command are shown in Figure 3 where each item in the
sentences list is a list of tokens (words) from the given Wikipedia article. The length of

the list (i.e. the number of elements) is also shown (144328).

B¥ python 3.7 (64-bit) - ] X h

Figure 3: Results of token extraction from Wikipedia articles

#Word2Vec

We first need to set the parameters for the word2vec modeling (params = {'size’: 200,
'window': 10, 'min_count': 10,'workers': max(1, multiprocessing.cpu count() -1),
'sample’: 1E-3,}) and then train the word2vec model (Word2Vec(sentences, **params)).

Gensim’s implementation of word2vec takes many parameters. The main ones are [26]:

e size (int, optional): Dimensionality of the word vectors.
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e window (int, optional): Maximum distance between the current and predicted
word within a sentence.

e min_count (int, optional): Ignores all words with total frequency lower than this.

e workers (int, optional): Use these many worker threads to train the model. This is
typically set equal to the number of available cores.

o 52 ({0, 1}, optional): Training algorithm: 1 for skip-gram; otherwise CBOW.

o s ({0, 1}, optional): If 1, hierarchical softmax will be used for model training. If
0, and negative is non-zero, negative sampling will be used.

e negative (int, optional): If > 0, negative sampling will be used, the int for negative
specifies how many “noise words” should be drawn (usually between 5-20). If set
to 0, no negative sampling is used.

e max vocab size (int, optional): Limits the RAM during vocabulary building; if
there are more unique words than this, then the infrequent ones are pruned.

o sample (float, optional): The threshold for configuring which higher-frequency
words are randomly down-sampled, useful range is (0, 1e-5).

e iter (int, optional): Number of iterations (epochs) over the corpus.

Modeling with doc2vec and performing document similarity queries
In this experiment, we created a corpus of Wikipedia articles and used Gensim’s doc2vec
implementation to model them and perform similarity queries based on search terms or

between documents within the corpus.

Same as in the previous example, the first step is to generate a corpus from
Wikipedia articles. For this example, we first used the entire dump of Wikipedia articles
and then included a subset of them in our corpus for the similarity tests in order for the
model training to be quick. The results are directly applicable to the entire list of articles,

with appropriate training time. The most important commands are as follows:

#join(sentences|])

In order for the training tasks to be completed in a logical amount of time we used a

subset of our original data by connecting the first 6 documents contained into the
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Wikipedia dump (data = [" " join(sentences[0]), ' "join(sentences[1]),’
"join(sentences[2])," "join(sentences[3])," "join(sentences[4])," "join(sentences[5])]).
As aresult data consists of the text of the first six articles (in Greek). Their titles translate
to Sport (AOAnTIopnog), Occitan language (O&itavikr yhoooa), Eleftherios Venizelos
(EAevBéprog Beviléhog), Cyprus (Kompog), Geography (I'ewypoeio) and Nicosia

(Aevkowoia).
#Preprocessing

Pre-processing can be referred to as the process of converting data to something
a computer can comprehend. One of the major forms of pre-processing is to filter out
useless data. In natural language processing, as discussed in Chapter 2, useless words
(data) are referred to as stop words. We can remove them easily, by storing a list of words
considered to be stop words. NLTK (Natural Language Toolkit) in python has a list of
stop words stored in 16 different languages. Unfortunately, it does not contain yet a list
in the Greek language. For the purpose of this thesis our stop word list will be created by
the user in the Greek language (manual user implementation of list) (stoplist = set("omo

UE aT aTo oTa. T0 T0. THS ToL Tov TN Yo .split())).

Continuing, we will convert all characters to lowercase and we will remove words
that appear only once (texts = [[word for word in document.lower().split() if word not in

stoplist] ).
#Doc2vec

Doc2vec consists of two models that use different architectures. Gensim’s Doc2vec

implementation [26] takes many parameters. These mainly are:

e dm ({1,0}, optional) — This parameter defines the training algorithm to be
implemented. In the case of dm=1, distributed memory (PV-DM) is used.
Otherwise, distributed bag of words (PV-DBOW) is employed.

e vector size (int, optional) — This corresponds to the dimensionality of the

feature vectors.

e window (int, optional) — The maximum distance between the current and

predicted word within a sentence.

80



Machine learning algorithms for big data

e min_count (int, optional) — Ignores all words with total frequency lower than

this.

e workers (int, optional) — Use these many worker threads to train the model

(=faster training with multicore machines).
e epochs (int, optional) — Number of iterations over the corpus.

o dm mean ({1,0}, optional) — 1If 0 , use the sum of the context word vectors. If

1, use the mean. Only applies when dm is used in non-concatenative mode.

e dbow words ({1,0}, optional) — If set to 1 trains word-vectors (in skip-gram
fashion) simultaneous with DBOW doc-vector training; If 0, only trains doc-

vectors (faster).

For the purposes of this thesis both architectures were implemented with the

following values selected as optimal.

e PV-DBOW (Doc2Vec(dm=0, dbow words=1, vector size=200, window=S8,

min_count=19, epochs=10, workers=cores))

e PV-DM (Doc2Vec(dm=1, dm mean=I, vector size=200, window=38,

min_count=19, epochs =10, workers=cores))

Results-Evaluation of models
This section briefly discusses the evaluation techniques performed and the results

obtained from the implementation of the two algorithms.

Results-Evaluation of Word2vec algorithm

In order to test the trained model, we first ran some classic similarity queries and
subsequently used an analogy test, which is a commonly used automated way to evaluate
models, or compare algorithms. We set a list of analogy tasks by hand and computed the
accuracy of our model (63.9%). To do so, a method that computes cosine similarity
between a simple mean of the projection weight vectors of the given words and the vectors
for each word in the model and finds the top n most similar words was used. Positive

words contribute positively towards the similarity, whereas negative words contribute
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negatively. This accuracy level is considered satisfactory given the volume of our input

data. Some of the results on analogy tasks are depicted below:

1. model.most_similar(positive=["yovaira', 'Baciiicg’], negative=["avipag'])
Paociiic = 0.609

Pacilicoo = 0.596

ovvyo = 0.533

otéyn = 0.520

ovvaorteio = 0.511
The words reference Result 1 translate from Greek to English as follows: yvvoixa
(woman), Pacilics (king), avipag (man), Pacilicoo (queen), ovlvyo (wife), aréyn
(coronation), ovvaoteio, (dynasty). It must be mentioned that due to declination the form

of the word may change in greek as in the case of pacilic which also means king.

2. model.most_similar(positive=["ayopt', 'unoundg'l, negative="uoud'|)

Kopitar = 0.703

roaoaxt =0.698

Uwpo = 0.694

roprroaxl = (.689

oyopoxt = 0.647
The words reference Result 2 translate from Greek to English as follows: ayopi (boy),
umouras (father), uouc (mother), kopitol (girl), waroox (child), uwpo(baby), kopitodxi
(little girl), ayopax (little boy).

Continuing, another common method (doesnt_match) was used. This function determines

which word doesn’t match the context of the others. The results are shown below:

o  model.doesnt_match('kanvicua nepratnua ko lvum moonioro’.split())
“kamviouo”
The words reference Result 1 translate from Greek to English as follows:
Kamviouo. (smoking), mepmatnuo. (walking), woAvumi (swimming), mwooniozo

(riding). As a resut smoking was returned.

e model.doesnt_match('mpwivo fpadivo onuntproxa usonuepiave’.split())
“onuntpraxa”
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The words reference Result 2 translate from Greek to English as follows: mpwivo
(breakfast), ppoové (dinner), onuntpioxa (cereal), ueonuepiovo (lunch). As a

resut cereal was returned.

1. model.doesnt_match('moptorxdiia uiio ppdovies packdunio’.split())
“pacrounio”
The words reference Result 3 translate from Greek to English as follows:
moptokddio. (oranges), unia (apples), gpaovies (strawberries), paokounio

(sage). As a resut sage was returned.

Results of Doc2vec- Document similarity queries

In Doc2vec’s original paper[16] experiments on several benchmark datasets were
presented in order to evaluate the algorithm and so as to demonstrate the advantages of
Paragraph Vector. These mainly were sentiment analysis tasks and text classification
tasks where Doc2vec has proved to outperform previous related algorithms.
Implementing this, however, exceeds the scope of this thesis and can be left for future

work.

In the experiments conducted in its original paper, each paragraph vector was a
combination of two vectors: one learned by the standard paragraph vector with distributed
memory (PV-DM) and one learned by the paragraph vector with distributed bag of words
(PVDBOW). It is discussed that PV-DM alone works well for most tasks (with state-of-
art performances), but its combination with PV-DBOW is usually more consistent across

many tasks [20].

In our experiment, as discussed in the previous chapter, we conducted both the
Distributed Bag of Words version of Paragraph Vector (PV-DBOW) and the Distributed
Memory Model of Paragraph Vectors (PV-DM). Both these models produced similar
results with some examples shown below. A method (most_similar) that computes cosine
similarity between a simple mean of the projection weight vectors of the given documents
was used. Documents may be specified as vectors, integer indexes of trained document
vectorss, or if the documents were originally presented with string tags, by the

corresponding tags:

1. As a first example using the PV-DM model, we executed the following query:
model.docvecs.most_similar(positive=[‘Teyvntq vonpoovvn’])) with the
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intention to find the most similar articles to Artificial intelligence within

Wikipedia.
('Osopntikn ITAnpogopikn', 0.7000911235809326),
("Epmepo cvotipara’, 0.6822481751441956),
('"Tavtoypoviopog', 0.6772329211235046),
('Mnyavikr 6pacn’, 0.6662312746047974),
('Nevpwviko diktvo', 0.6657699346542358),
(‘Mnyatpovikn', 0.6579104661941528),
("EXeyyog povtédmv', 0.6565818786621094),
('CrypTool', 0.6496784090995789),
(TAdooa meprypagnc vikov', 0.648236870765686),
(‘Mnyovikn pédbnon', 0.6471858024597168)]

The words reference Result 1 translate from Greek to English as follows: “Teyvntn
vonuoovvy” (Artificial Intelligence), Ocswpnuiny Iinpopopikn (Theoretical computer
science), Eurcipa ovotiuoto (Expert system), Tovtoypoviouog (Concurrency), Myyovikn
opoon (Computer vision), Nevpwviko Jiktvo (Neural Network), Mnyatpovikn
(Mechatronics), Eieyyoc poviéiwv (Model checking), CrypTool (CrypTool), I'idooa
meprypopns viikov (Hardware description language), Mnyovikn paOnon (Machine

Learning) .

Executing the same query using the PV-DBOW model we obtained similar results.
Ocwpnrixn Hinpopopixn (Theoretical computer science), Mnyovikn uaOnon (Machine
Learning), Mnyovikn opaon (Computer vision) and Eureipo. cvotijuazo (Expert system)

were some of the articles obtained in both occasions.

2. As asecond example we executed the following query with the intention of
finding the most similar articles to Athens in Greece
(model.docvecs.most_similar(positive=[ “EiLaoo.”,"A0nva"])). Again PV-
DBOW and PV-DM models returned similar results with the most important

ones being the following:
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("Aruixn’, 0.5792749524116516)
('"Knpiowa', 0.5288697481155396)
("Apyoio AOnva', 0.5189750790596008)
('llpoapoyiko {ntnuo (Mixpooiatikn Kotoaotpoen)', 0.5028291940689087)
("Bopeio. wpodotio AOnvav', 0.5021364092826843)
('Eievaivo InmoBowvtidog', 0.500443696975708)
("Hliobvmoln Attikng', 0.4993937611579895)
("Avtixa mpoaotio AOnvav', 0.4962661862373352)

The words reference Result 2 translate from Greek to English as follows: “Atuixn”
(Attiki) which is a neighborhood of Athens, Knpiowa (Kifissia) which is a suburb of
Athens, Apyaio AGnva (Classical Athens) which corresponds to the city of Athens during
the classical period of Ancient Greece, Ilpoapvyixo (ntnuo. (Mixpooiatikny Kataotpopn)
(Greek refugees), Bopeio. mpodotia AOnvav (Athens northern suburbs), Elevoiva
Izmobowvrioas (Elefsina), Hiiodmodn Atuxns (llioupoli) which is a suburban
municipality in the southeastern part of the Athens urban area, Avtixa rpoaotio. AGnvav

(Western suburbs of Athens).
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7. Conclusion

This thesis has provided a comprehensive review of word and document embedding
algorithms, both from a theoretical and a practical perspective. It must be highlighted,
that the related research field is not only really active, but numerous exciting and
promising areas of application have emerged in the last few years, and will continue to

emerge, with every application being trained/ tailored for a number of languages.

The results in performing natural language processing tasks after training are
impressive and consistent. This thesis was an attempt to apply word and document
embeddings in the Greek language. However, during the length of this paper several
limitations were met as the Greek language has a vast and rich vocabulary and the volume
of available resources in the Greek language is still quite limited. From research
conducted a suggestion for future work would be a combination of word embedding
algorithms with knowledge graphs such as Wordnet (that can be found in the greek
language). This could enhance the word embeddings produced in this thesis by learning
word embeddings that incorporate the semantic information from the resource and lead

to even better results.

As the volume of information available online increases and the hardware
performance improves and develops, further training and experiments may lead to a

variety of natural language processing tasks in the Greek language.
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