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ABSTRACT

Criteria for selecting quantum probability models versus Kolmogorov
probability models are usually expressed in terms of inequalities formulated from the
original Bell inequality. If the inequality is violated, Kolmogorov probability should be
replaced by quantum probability. We discuss these criteria and the maximal violations
and we illustrate the applicability with data sets. We explore the possibility to apply
quantum probability models and related statistical algorithms in three selected
applications, namely: 1) violation of Wigner-d’Espagnat inequality by a simple data set,
2) k-Means clustering versus quantum clustering, 3) Multiple linear regression versus

quantum regression.

KEY WORDS

Quantum Probability, Bell inequalities, Quantum statistics, Quantum Learning, Data

Analysis
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YXYNOYH

Tao kprriplo yio v €mAoyn LovtéAmv KPovTikng mlavotnTtog EVavit LOVIEA®Y
mBavotntoag Kolmogorov exkppalovial cuvinBwg pe Baon tig aviodTnTeg mov
dapopedvovtat oo v apykn avicotnta Bell. Av n avicotnta mapafraletat, tote N
mBavotnto Kolmogorov npénet va avtikataotadei and v Kpavtikny mboavotnto.
YvinTovuvial oV TA To KPLTNPLL KOt 01 LEYIGTEC TOPAPLAGELS TOVG KO TOPOVGIALETOL 1
EQUPUOYT TOVG GTOL GUVOAL dEdOUEVAV. Epguvdtat 1 duvatdtnta eQoaproyng LOVIEA®Y
KBavTIKNC TOavOTNTOC KOl CUVAPDY GTUATICTIK®V OAYOPIOU®V GE TPEIS EMAEYUEVEG
epapuoyég, omAaadn: 1) mopaPiacn g avicotnrag twv Wigner-d’Espagnat and évo
amho cuvoro dedouévav, 2) k-Means pébodoc clustering evavtiov kBavtikng puedddov

clustering, 3) IToAAamAr YpoppuK TOAVIPOUN O EVOVTIOV KPAVTIKNG TaAVOPOUNGNG.

AEEEIX KAEIAIA

KBavtikn Mbavomto, Avicotnteg Bell, KBavtikny Ztatiotikn, KPoviikn Madnon,

Avdivon Agdopévav
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I[TEPIAHYH

H «Bovropnyoviky mpoPAémer 611 pmopel vo vdpyovv "un Tomkés" oyEoels
peto&d copoatdinv. To 1969 dpmg o IpAavdodg puoikds John Bell anédeile o1t ot Bempieg
KPUQAOV  HETOPANTOV TOL  JlaTNPodV TIG TOPOOOYES TNG TOMKOTNTOS KOl TOV
VIETEPLIVIGLOV OEV UITOPOVV VO, TETOYOLV TIG TPOPAEYELS TG kBavtikhc puowng. O Bell
YPNOOTOINCE o, avicOTNTa oV av Toporalotay, TOTe dev UmOopel var 1oYVEL Kol
Bempia KpLE®OV HETOPANTOV oL Statnpovv ™V tomkdTa. To Bedpnua Tov Bell, mov
darvrdOnke 10 1964, Bewpeiton pio amd Tig Mo BepeMDOELS EMGTNUOVIKEG OVOKOADWELS
oV 20% owdva, 00Tl Katédelle VEOLS TOPOVG GTO LaBMUATIKO TANIGLO TG KPOVTIKTG
TOavOTTOC PE amPOCUEVEG SUVOTOTNTEG EPAPUOYADV, Ol OTOIEG VAOTOLOVVTOL GNIEPQ.
Boaoiopévo oto vontiko meipapa tov Einstein, Podolsky kot Rosen (EPR), petatomios to
EMYEPTNLLOTO CYETIKA LLE TN PLOIKT TPAYLATIKOTNTO TV KPAVTIKOV GLGTNUAT®OV and TO
YDOPO TG PrAocopiog o€ eketvo g melpapatikng uotkng. O Bell kot dAkot £deiav Ot
gtvan dSuvatdv va draxpivovpe HETaED KPOVTOUNYOVIKNG KOl 0VTOV TV BEOPIOV IE TIC
KPUUUEVES UETAPANTES XPNOYLOTOLOVTOG £VO. CUYKEKPIUEVO TOTO TEPALOTOS, TO OO0
HETPAEL L0 TTOPAUETPO YVOOTH G S Tapdpetpo. Ot tomikés Oempieg mpofAémovy 6tin S
00, £xel TaVTAL T PKpOTEPT TOV 2, £VE 1 KBavTuen TpoPAeym Siver S = 2V2. Otav 1 S
etvon peyolvtepn and 2, Aéue 6t mapaPidleton n avicdmra tov Bell. Kpoeéc petafintés
etvar o1 TpokaBopioUéVeG 1O10TNTES TOV TPAYLAT®OV, GYVOOTES KOl GTNV TPOKEEVN
TEPIMTMOT, TOTIKEG SIOTL OAANAETIOPOVV LE TO PPAYLLOL THG TOYDOTHTOS TOL PmTOC (Massen,
2019).

H avicoémro tov Bell eivonn eénig:

1+ C(b,c) > |C(ab) - C(ac)|

H avicotra Bell onpaivel 6t o€ pio otatiotikn GuALOYT, v i opdda £XEL TV 1310TITO
A Ko dgv Exel v 1010t Ta B, pio AN opdda £xer Ty ot B 1o oyt v 1016tta C,
161e 10 TANO0G TV dVO opAd®V Ba etvon peyolvtepo 1 160 amd to TAN00¢ piog Tpitng
opddog mov €xel v wWwmToe A ko oyt mv C (Massen, 2019). Me Aiyo Aoy
ocvumepaivoope 6t av vrdpyel kPavtiky cvoyétion (KPavtikn SepmAokn), TOTE M

TOPOTTOVE OVIGOTITO OEV TKOVOTTOLEITOL.
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Me apempio v avicétta tov Bell, cuvoyilouvpe ta kprmpio mov drakpivovy
mv KPavikn mbovoétta and ™y mbavommro Kolmogorov. Xto mpdto ke@Aiono
mopovotdlovpe o KpITnpe. ovtd pe Pdom TN YPOVOAOYIKY| GEPA EUPAVIONS TOLC.
[Moapovsidlovpe emiong TiG YEVIKEVGELS TOVG OC TPOG TO TAN00C TV qubits kot To TAN00g
TOV JlOCTACEDV TOLG, KaOMG Kot TIC HEYIoTeg duvatés mapaPidoelg Tovg. Xto OghTEPO
KEQOAOLO, OVOSIOTUTTAOVOLLLE TOL KPLTNPLOL VTE, MGTE VOL XPNGLOTTONO0VV G| GTATICTIKY
avAALOT) GUVOAMY OEGOUEVMV. ZTOYOC LAG EIVaL VOL TTOPOVGIAGOVLLE KPLTHPLH, TV OTO1mV
N mapafioon cvvemdyston TV VIOPEN KPAVTIKNG GLGYETIONG (SLEUTAOKTG) METAED TV
petofAntov, apa g Kpavtikng mbavotroc. Emmiéov, mapovctdlovpe KovoTOUES Kot
TPOTOTUTES EPAPLOYES TOV KPITNPIOV OVTOV TOVEO GE TPOYLOTIKE GUVOAL OESOUEVMV.
[Mapoveidlovpe to kprrpro Wigner-d’Espagnat, to onoio avagépet ot av Oewpnoovpie 3

yeyovota A, B, I' tov detypatoydpov Q, 10te 10y0eL 1] avicOTNTOL:

P(ANB)+P(B°NTr)=P(ANT).

Me Baowég yvooels g Oswpiog [TiBavomtov mapovsialovpe v amdden g
nopomave avicdtrac. H onpacio g avicotntag twv Wigner-d’Espagnat éyketton
070 YEYOVOG OTL 1 Tapafiocn Tng omd £vo TapaTNPOVUEVO PUVOUEVO, ATOTELEL EVOEIEN
OTL TO TOPATNPOVUEVO PUVOLEVO OeV Umopel va povtedomombet pécm g mbavotntog
Kolmogorov kot povtelomoteitan péom kBaviikng mbavotmrog.

Ta kBavtikd cvotuata propel va Tapovctdlovv GLGYETIGELS TOV deV £(OVV
avdioyo otng Khaooikés Bewpieg. Tlapovsialovpe éva amdd Kot Gopég Tapadetypa
epapuoyng tov kpirnpiov Wigner-d’Espagnat oe éva chvoro dedouévmv. EAéyyovue
™mv avicotta tov Wigner-d’Espagnat amd dedopéva 5226 mapatnpioemy 3 Svadtkmv
petafintav, R, S kot E mwov avtictoryovv oe emPePainon ypnong ovsiag (R) , vmapén
QOVOTLTIIKOV YopakTnPoTkod (S) ko epyoactakn oyxéon (E). EAéyyoope toydv
OLOYETIGES UETOED TV TPIOV peTafAntav ava ovo. Ilapovcsidlovpe Aowmdv tovg
TivVOKEG CLVAPELNG KOl KOG EUTTELPIKNG TOOVATNTOS. LT CLVEXELN EQOPUOLOVLE TO

VOLO NG OAIKNG TBavOTNTOG e TNV €61 avTIoTOY I YEYOVOT®V:

(R=0}=A4, {R=1}=A4°, {S=0}=8B, {S=1}=B°, (E=0}=T, {E=1}=T°.

Amodeikviovpe 6Tt 0 VOHOGS TG oMK G TBavOTNTaG 1oYVEL 08 KABE TepinTmon.
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EXéyyovpe av 1oyver n aviedtta tov Wigner-d’Espagnat kot mpokdmtel 01t Ovimg
oyvel. Apov 1 avicomta tov Wigner-d’Espagnat dev mapapiéletor, dev vmdpyet
évoeln kBoavtikng cvoyétiong petald tov petafintov R, S kot E.

‘Enerta xataokevdlovpe éva vEo GOVOLO OEOOUEVAOV HE OVTEC TIC TPELS
petaPAntég pe véeg ouyvotntes. EAEyyovpe mih tuxov cvoyeticelg petabd Tov TPV
petafAntaov oava ovo. Ilapovoidlovpe Tovg VEOLE TIVOKEG GUVAQPELNG KOL KOIVNG
eunelpkng mhavotnroc. Eeapuolovpe 1o vopo g oAkng mbavotntag pe v i
aVTIOTOLY(I0 YEYOVOTMV OTIMG TAPUTAV®.

AmodEIKVOOLLE OTL 0 VOLOG TG OMKNG TOavATNTOS 10Y0EL 0 KAOE TepimTmon.
Eléyyooue av oyver n avicomta tov Wigner-d’Espagnat. Qot6c0, vty 11 @opd
TPOKOITEL OTL eV 1oyveL N avicotta tov Wigner-d’Espagnat. Apov 1 avicdmTo TV
Wigner-d’Espagnat ropofialetat yio 1o Tapadety o 0e50UEVOV TOV KOTOOKEVAGOLLE,
T0 GUCTNUO TOV TPLOV dvadtkdv petafintov R, S, E Ba npénet va povrelomon el
péom g KPavtikng mbavotrags.

O oK0mo¢ TOV SEVTEPOV KEPAAAIOV AVTAG TNG EPYOTTiaG Elval Vo TPOGPEPEL Eval
amAd mopaderypo Bdong dedopévav, n omoia emeldn mapafralel MV avicOTNTO TOV
Wigner-d’Espagnat, amottel kpavtikr povielonoinomn. Aev Bprikape otn Piroypopio
napopoo anio topddstypa. H mpaxtikn a&io avtov Tov mapadeiypatog eivon 6t dtav
éyovpe pio Paon dedopévav yuoo TNV avdivon TPV SLOdIKOV peTafAnTdv, TPV
TPOYMPNOGOLVUE GE GTATIOTIKY AVAAVOT, TPETEL Vo eEETAGOVE OV 1GYDEL 1] AVICOTNTA
tov Wigner-d’Espagnat. Edv wavomoteitonr 1 ovicomro tov Wigner-d’Espagnat
(mpdn mepintwon), TOTE MPOY®POVUE OTN povieAomoinon pécm S Oempilog
mBavotitov katd Kolmogorov, evd av mopaPialeton (d€btepn mepintwon), tOTE
elLOOTE VTOYPEOUEVOL VO KATOOKELAGOVE HoVTELD KPavtikng mlavotntog. Otav
KAVOLUE OTOTIOTIKN avdAvom, GLAAEyovpe dedopéva ywplg va yvopilovpe v
TPOYUATIKY] TPOEAEVGT] TOLG OVTE TOV TUMO HOVIEAOTOINOTG 7OV TPEMEL VO
axoAovOncovpe. I'vopiloviog opmg to Osdpnua twv Wigner-d’Espagnat, éxovpe éva

KPLTNP1o EMAOYNG KAUGGIKNG N KPaVTIKNG LOVTEAOTOINOTG.

210 1pito KePOAono TNG €peuvig Mo €EETACOVIE TOL TAEOVEKTILOTO. KOL TOL
pewovektquoto g kPavtikng  pnyovikng  pabnons.  Iopovoidlovpe  peBddovg
KOIKOTOINoNG TV KAUCOIK®V 0edopévey oe kPavtikég kotaotaoels. TiBston to
TpOPANU TOTOBETNONG TOV KAAGGIK®V OedopEVeV oe vrépheon Kol mmg pmopel va

OVTILETOMOTEL.  XVYKPIVOUUE TNV  VLTOAOYICTIKY] TOALTAOKOTNTO, TV  KBOVIIK®V
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aAyopiBU@V LE TOVG AVTIGTOLYOVS KANGGIKOVG aAyopiBuovs. Emonuaivoope v kAdon
aAyopiOuwv Quantum-Assisted Machine Learning (QAML), ot onoiot ypnoipomotovvon
a6 KPOVTIKES GUGKEVEC Y10, VO OVTILETOTIGTOVV 0EO0UEVO TOAADV Ol0GTAGEDY GLVEXDY
petaAnTOV.

Yul{nrodue yoo mv kPovrik pvnun toyaiog cpoomédacng (Quantum Random
Access Memory), n omoia givorl pioe KBovTiky) GUGKELY TOL PTOPEL VO KOIIKOTOLEL G
vrépBeon N Khacowkd dovicpota d-dwctdoemv og log(N d) qubits pe vroloyiotikn
noAvmhokotro O(log(N d)). EmmAfov, mopovctdlovpe Tig TPOKANGELG TOL AVTIUETOTICEL

N KPavtikn pvhun toyoiog mpoonélaong (QRAM).

210 t€t0pTo KEPAA0, Tapovcidlovpe and ) PiAloypapio Eva Topdderypo TOv
ovykpivel Toug odyopibuovg Quantum Computing Shor’s Algorithm kow v epapykn
uébodo clustering yio. éva cuvoro dedopévmv acbevav pe kapkivo. TTapovoidlovpe emiong
tov oAyopiBpo Dynamic Quantum Clustering kot évo. mapaderypo epopuoynic Tov o€
yohoiec. X cvvéyela cuykpivovpe tovg odyopibuovg Quantum Meila-Shi Clustering
Algorithm xou k-Means Clustering Algorithm cg éva mapadetypo GuvoLov dedoUEV®DY 0Ttd
€idn koPfovpudv. EEnyode toug Adyoug, yio Toug omoiovg o amoTeEAEGHATO KPOVTIKNG
uebodov tagvoumong (quantum clustering) eivat KaAOTePO 6€ OPIGUEVES TEPITTMOOELG OE
oYE0T LE TO. AVTIOTOL0. AMOTEAEGUATO TV KAOGGIKOV pehddmv ta&ivopnong (K-Means
clustering).

Y& emAeYIEVT €QUPLOYT EQOPUOLOVIE TPMTO KAOGTIKOVS odyopiBuovg yio v
ta&vopunon osdopévav, omaadn m pEbodo k-Means, v epapyikr pEBodo, kabdg Kot ™
uébodo Model-based mov cuvdvalet kprrrpio. Bayes kot extipmon péytotng mbovopavelog
o€ £V0, TPAYLOTIKO GOVOAO OESOUEVMV, OTMG 1) OTOLGIOL TWV ATOUMV OO T1) SOLAELL TOVG.
2T oLVEYEW OTO 1010 CUVOAD OdOUEVDV EPOPUOLOVUIE TOV TPMOTOTLTO OAYOPIOLO
KBoavtikrg  ta&vounong  (quantum - clustering) kot wopovoldlovpE  GTATIOTIKA
amoteléopato kot ontikonoinon. O adydpBpog avtdg pmopet v epoppoctel o kKB
oOvoro dedopévav. Emyeipodpe va cuykpivovupe T0 OTOTIOTIKO OTOTEAECLOTO TMV
KMooIKoOV kot KPavtikdv pefddwv tagvopnone, ®ote vo Ppodpe v mpoTidtepn

HEBOSO Y10 TO CUYKEKPLEVO GUVOAO OEGOUEVMV.

2t0 méumto keeAioo, mopovoialovpe amd ™ Prloypaeion v KAGom
aAyopiBuwv Quantum-inspired Machine Learning yio moAivopdpnon. Avtoi ot odydpiBpot

pnyovikng pabnong Paciovion oe kamowo KPavtikd OBewpnrikd otovyeio, oAAd Oev
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OTOTOVV L0 KPOVTIKY] GLGKELT Yol TV €QOpLoYN TV aAyopiBuwv. [Tapovsidlovpe Eva
vEo olyopOpo ToAvOpoOumong Pooiopévo otn KPavTiKy pUnyovikn kot ot OempnTikn
ohvdeon pHetaly KPavTikdv punveldy Kot odyopifpmy umyavikng pdonong. Xvykpivoope
TouG aAyopibuovg kPavtikig molvopounong (Quantum-Inspired Ensemble Linear
Regressors) kot ypoppukne moivopounone (Random Ensemble Linear Regressors) ue
Baom 10 HECO TETPOYOVIKO GOAALN TV TOPOTPNCEDY KoL TIG TUTTIKEG ATOKAIGELS TOV Kot
ToPaTNPOVUE OTL GE OPICUEVEG TEPUTTAOGCELS Efval TPOTIUOTEPOG O KPavTiKOg adlydpBog
oe oY£oN HE TOV avTIoTOOo KAAGOWKO. Xtn Piploypopio €xel emiong avamtuydel
alyop1Opoc kBavtikng moAvopdunong elayiotwv tetpaydvey (Quantum Least Squares
Regression algorithm). Avoldovpe 10 m0600TO G@EOANNTOG (Error rate) ko Tnv
VIOAOYIGTIKY]  TTOALTAOKOTNTA. TOV aAyopiBuov avtov. ITlapovoidlovpe axodun Evav
KBavtikod adydpduo ypappikng taivopounong (Quantum Linear Regression Algorithm)
Booldpevo o€ KAAGGIKA GOVOLD SESOUEVMV.

Emnpdoheta, mapovcialovpe v kPoaviikny pdbnon xvkiopdtov (Quantum
Circuit Learning), omov meptypdpovpe T Bempio Kot TG AETTOUEPELES TOV ahyopibov
KBOvTIKNG TOAVOPOUNONG OV YPTGILOTOLOVLE TOPOUKATE® Y10 TV TPOTOTLT EPOPUOYN
omv Python. O oyopiBpoc avtdg evaver dvo topeig, Quantum Computing kot Mnyavikn
MaOnon. Iapovsidlovpe éva omhd mapddetypa kPavtikng moaAvdpounong oty Python
amo ) PProypagic. Emonuaivovpie akoOun to TAEOVEKTILOTO KO TOVG TEPLOPIGLOVG TOV
alyopiBuwv mov aviKovv otV KBOVTIKY Ao KUKAGOUAT®V.

e emAeyIéVn €QAPUOYT EPAPUOLOVLE TPAOTO KAAGGIKOVS 0AyopiBovg yio TV
ToAVOpPOUNGT dedopEVAV, ONANON T HEOOOO TOALATANG YPOLLLIKNG TOAVOPOUNOTG KO
™ AOYIOTIKY] TOAVOPOUNOT) GE EVOL TIPAYUATIKO GUVOAO OESOUEVAYV, OTIWS TO GUGTILO
Babporoyimv og éva oxoAelo. X1 GuVEKELD 0TO 1010 GUVOLO OESOUEVDV EPAPUOLOVLLE TOV
npwtéTVTO  aAyopldpo  KPoviikng  moAwvdpounong  (quantum - regression) ko
TOPOLGLALOVE GTOTIOTIKG ATOTEAEGHLOTA KO OTtTikomoinot). O aAyopiBuog awtdg pmopet
va papuroctel og k0Be cuvoro dedopévmv. Emyeipovpe va cuykpivoupe to GTATIOTIKA
OTOTEAEGLLOTO TOV KAUGGIKOV Kot KBavTikav pefddmv molvdpdunong, mote va Ppodue
™V TPOTOTEPT UEBOSO Y10l TO GUYKEKPILEVO COVOAO OESOUEVMV. ZNUELOVOLUE OTL AVTOG
0 akyopBpog KPavtikig molvopdunong oty Python avantiybnke omd 1o apepucaviko
navemotuo MIT, ®otdco o6tav Tov €QapuOcapE 6TO GOUVOAO SECOUEVOV HOC, OEV
Aertovpynoe. Metd and GUYKEKPYEVES TPOTOTOMNGELS, O AAYOPIOLOG £Tpese Kot amedmaE
T0. OTOTIOTIKG  OomoTeEAéopoTa NG moAvdpopnons. I v ontikomoinom  twv

anmoteleopatov Pacilopaote otov aiyopduo tov David Horn mov avortdybnke oto
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npoypappa Matlab. Enpeidvoope 6Tt Kot 0 GuyKeKpIUEVOG ol yOpOUOG TapovGinse TOAG
TPOPANUOTO. OTNV EUPAVIOT] TOV OOTEAECUATMV, MOTOGO WHETO OO GUYKEKPULEVES

TPOTOTOMGELS, 0 OAYOPOLOG £Tpee Kot amESMGE TIC (NTOVUEVES YPOPIKES TTUPOUCTACELC.

Mo tg epappoyéc G £€peuvdg  HOG  YPNOWOTOOHVTIOL Ol YADCGES

npoypoppoaticpov R ko Python, kabmg ko to otatiotikd mpdypoppo Matlab.

216y0G oG eivar vo GUYKPIVOLLLE, av ival SuVOTOV, TO ATOTEAEGHLOTO KPOVTIKNG
LNYOVIKNG LaBnomg pe Tol avTioToryo TG KAUGGIKNG UNYOVIKNG pddnong. 261660 avtd
dev givan Tavto e0koro. AAAG givar Eva Tp®TO Prio 6TV KPOVTIKY pnyovikh pabnon o
oTI GUVOEST] NG LE TIS Topofricels Tov avicottav tov Bell. Eipacte aict660&0t ot
UTOPOVLE VO BPOVLE TPOYLOTIKA GUVOAL OEOOUEVAV, T OTTO10 TAPOLGLALOVY KPOVTIKES
ovoyetioels (depmAokn) Kot yio o, omoia pmopel vo amoderydel 6to £yydg HEALOV OTL 1
epapproyn HeBddwV KPavTiKng Unyovikng nabnong tvar mpotidtepn amd TV EQAPLOYN
LeBOO®MV KAOGGIKNG UNYOVIKNG LaBnoTG.
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PROLOGUE

The goal of this work is to examine if there are criteria which we could
implement in order to select and apply quantum statistical analysis instead of classical
statistical analysis on a given data set. Data sets become larger and more complex. The
analysis of Big Data has been recently appreciated as the fourth scientific paradigm
(Hey, Tansley, Tolle, 2009). We consider quantum statistical analysis as a way to deal
with Big Data. We shall investigate whether employing quantum computers we could
handle better the information, which comes from a data set. With Quantum Machine
Learning we could get results for a large data set by using new methods and graphical
representations in the fields of Medicine, Physics, Chemistry and Cosmology. Our
analysis indicates that the quantum method is more useful for certain data sets from the
perspective of computational complexity, huge amount of data, data visualization,
correlations which could not come from the classical methods such as regression and
clustering.

Bell’s inequalities are the first criterion to check if the classical representation
is violated and so we have to use the quantum statistics. Criteria based on Bell’s
inequalities are presented in Chapter 1. The fundamental Bell’s inequality (CHSH) is
referred to 2 qubits and if it is violated, then there is quantum entanglement.

The knowledge so far is not satisfactory, because Bell’s inequalities are referred
to 2 qubits. However, a large data set contains many variables, so the need arises to
search and investigate new criteria. Classical models may not fit well to data, so we
search for new quantum models. For example, we could implement linear or logistic
regression for a data set. However, it may exist a corresponding quantum regression
method under certain circumstances, which could be better than the other methods for
the specific data set. New quantum methods of information processing include
Quantum Machine Learning.

In Chapter 2 we present selected applications on Bell inequality criteria for real
data sets. Starting from the Bell’s inequality for 2 qubits (CHSH), we find out new
inequalities — criteria and generalizations with respect to the number of qubits and the
dimensions of qudits. We find out the bounds of maximal violation between classical —
quantum statistics for the above criteria — inequalities. We present calculation examples

of the above criteria and their purpose of existence. Moreover, we simulate our own
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example for a data set for different number of qubits and different dimensions of qudits.
We use Python for the quantum regression implementation. We use R for the quantum
clustering implementation. We use Matlab for the visualization of the quantum
clustering results. Finally, we make comparisons between classical and quantum
statistical methods in terms of the results and conclusions. The methodology is one
from the first times it is applied and especially my own implementations, because we
try to figure out if there are criteria which motivate us to select and apply quantum
statistics instead of classical statistics in a data set. For the implementation of the above
methodology we need a large data set with many variables and many observations for
the cases of 2-qubits, 3-qubits, 2-qutrits and qudits.

In Chapter 3, we present the benefits and caveats of Quantum Machine
Learning.

In Chapter 4 and 5, we present novel applications on Quantum Clustering and
Quantum Regression. Data has to be suitable for the classical algorithms, such as
multiple linear regression and clustering, so that the corresponding quantum methods
of regression and clustering could be also implemented later to compare the results.
There are available data sets suitable for my implementations. The data sets are

downloaded from the UCI library (https://archive.ics.uci.edu/ml/data sets.php , 21-03-

2019). We have permission to process them, according to the directions of the above
library. The data sets seem to be sufficient for the above methodology. The data is
expected to be as large as the number of dimensions of the data sets we use in our
implementations. However, not all the data sets are in workable form, since some
variables contain data types as characters and for that reason | have to transform them
into arithmetic characters to process them. We note the code of quantum regression in
Python firstly introduced by MIT university and the code in Matlab by David Horn.
However, when we implemented them in our data sets, these codes were not working.

Therefore, we processed and developed these codes and finally we get our results.


https://archive.ics.uci.edu/ml/datasets.php
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CHAPTER 1: QUANTUM PROBABILITY AND BELL’S
INEQUALITY

1.1: BRIEF PRESENTATION OF BELL’S INEQUALITY:

A “local” theory is defined as a one where the outcomes of an experiment on
a system are independent of the actions performed on a different system which has no
causal connection with the first. For example, the temperature of this room is

independent on whether we choose to wear purple socks today (Bell, 1987).

A “realistic” theory is defined as one whose experiments reveal pre-existing
properties. In other words, in a realistic theory the position, momentum and spin of an

electron exist and we simply measure them. (Wheeler, Zurek, 1983).

Local correlations:

We can now form an idea of what locality means. A hidden variables theory
usually assumes that there exist some other variables, A, on which the outcomes a and
b depend. This hidden factors can account for the correlations between Alice’s and
Bob’s experiments by having a joint causal influence on the two. The probability to
obtain values a, b given the measurement contexts M, , Mg for Alice and Bob
correspondingly and the hidden variables A, is p(ab|M, Mg , ) (1.1) (Brunner,

Cavalcanti, Pironio, Scarani, Wehner, 2014).
Locality means simply that the local measurements are independent:

p(ablMsMp , 1) = p(alMs, 1) p(bIM , 2).

Quantum correlations:

To define quantum behaviors, we need to define a state p,5 shared by
the two parties, and measurement operators, M, and My, acting on the
Hilbert spaces where Alice’s and Bob’s part of the shared state belongs H,
and Hjg, respectively. The conditional probability (1.1) is:
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p(ab|M,Mg) = tr(pag My, ® Mg) , where M, and My are the projection operators on
the subspaces corresponding to the values a, b of the Hilbert spaces Hy , Hg of the
systems A, B (Mackey 2004, Nielsen & Chuang, 2010, Di6si, 2011, Wilde, 2013).

This is a rephrasing of Born’s rule. If the density operator p4p is the pure state
vy on the tensor product space H,, Hy , the conditional probability is simplified as

follows:
p(ab|MyMp) = (U| My @ Mg|).

Proof of Bell’s theorem:

We will use the Bell inequality. Suppose we have two identical objects,
namely they have the same properties. Suppose also that these properties are
predetermined (counterfactual definiteness) and not generated by their measurement,
and that the determination of the properties of one object will not influence any
property of the other object (locality) (Mermin 1981, Preskill, 2018).

We will only need three properties A, B and C that can each take two values:
“0” and “1”. For example, if the objects are coins, then A = 0 might mean that the
coin is gold and A = 1 that the coin is copper (property A, material), B = 0 means the
coin is shiny and B = 1 it is dull (property B, texture), and C = 0 means the coin is

large and C =1 it is small (property C, size).

Suppose we do not know the properties because the two coins are a gift in two
wrapped boxes. We only know the gift is two identical coins, but we do not know
whether they are two gold, shiny, small coins (A =0, B =0, C = 1) or two copper,
shiny, large coins (1, 0, 0) or two gold, dull, large coins (1, 1, 0), etc. We do know
that the properties “exist” (namely, they are counterfactual and predetermined even if
we cannot see them directly) and they are local (namely, acting on one box will not
change any property of the coin in the other box: the properties refer separately to
each coin). These are quite reasonable assumptions for two coins! Our ignorance of
the properties is expressed through probabilities that represent either our expectation
of finding a property (Bayesian view), or the result of performing many repeated
experiments with boxes and coins and averaging over some possibly hidden variable,

typically indicated with the letter A, that determines the property (frequentist view).
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For example, we might say the gift bearer will give me two gold coins with a 20%
probability (Mermin et al., 1981).

Bell’s inequality refers to the correlation among measurement outcomes of the
properties. We call Py, (4, B) the probability that the properties A of the first object
and B of the second are the same: A and B are both 0 (the first coin is gold and the

second is shiny) or they are both 1 (the first is copper and the second is dull). For
example, Pgme(4,B) = % tells us that with 50% chance A = B (namely they are both

0 or both 1). Since the two coins have equal counterfactual properties, this also
implies that with 50% chance we get two gold shiny coins or two copper dull coins.
Note that the fact that the two coins have the same properties means that

P.gme (A, A) = Pygme (B, B) = Pume(C, C) = 1: if one is made of gold, also the

other one will be, or if one is made of copper, also the other one will be, etc.

Under the conditions that three arbitrary two-valued properties A, B, C satisfy
counterfactual definiteness and locality, and that P, (X, X) = 1, for X=A, B, C
(i.e. the two objects have same properties), the following inequality among

correlations holds:
Pigme (A, B) + Pygme (A, C) + Pogme(B,C) = 1 (1.2)

namely, a Bell inequality. The proof of such inequality is given graphically in Figure
1 below (Mermin et al., 1981).



Anestis Kosmidis

Puome(A,B)+ Py (A, B)=1

2 A A R

l‘u;nu ':-‘L B)

™

Al

Prome(A,C)

R

AA X
AAAR

EE: P, (ALBa O©)

%

aame A B) ’+'Paame(A C +Panme(B C)

p f,
2 YeY I

¢
=i
‘\'"r* .aﬂl: ‘«' ' \
\\ @
(c) B x’; ’J

Figure 1: Proof of Bell inequality (1.2) using areas to represent probabilities. (a) The dashed
area represents the probability that property A of the first object and B of the second are
equal (both 1 or both 0): Psame(A, B). The white area represents the probability that they are
different: Pdiff (A, B). The whole circle has area 1 = Psame(A, B) + Pdiff (A, B). (b) The gray
area represents the probability that A and C are equal, and the non-gray area represents the
probability that A and C are different. If A of the first object is different from both B and C of
the second (dotted area), then B and C of the second object must be the same. Hence, the
probability that B and C are the same must be larger than (or equal to) the dotted area: since
B is the same for the two objects, Psame(B, C) must be larger than (or equal to) the dotted
area. (c) The quantity Psame(A, B) + Psame(A, C) + Psame(B, C) is hence larger than (or
equal to) the sum of the dashed + gray + dotted areas, which is in turn larger than (or equal
to) the full circle of area 1: this proves the Bell inequality (1.2). The reasoning fails if we do
not employ counterfactual properties, for example if complementarity prevents us from
assigning values to both properties B and C of the second object. It also fails if we employ
non-local properties, for example if a measurement of B on an object to find its value changes
the value of A of the other object (Mermin et al., 1981).
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The inequality basically says that the sum of the probabilities that the two
properties are the same if we consider respectively A and B, A and C, B and C must
be larger than one. This is intuitively clear: since the two coins have the same
properties, the sum of the probabilities that the coins are gold and shiny, copper and
dull, gold and large, copper and small, shiny and small, dull and large is greater than
one: all the combinations have been counted, possibly more than once (Mermin et al.,
1981).

In Figure 2 the events to which the probabilities represented by the Venn
diagrams of Figure 1 refer are made explicit. This is true, of course, only if the two
objects have same counterfactual properties and the measurement of one does not
affect the outcome of the other. If we lack counterfactual properties, we cannot infer
that the first coin is shiny only because we measured the second to be shiny, even if
we know that the two coins have the same properties: without counterfactual
definiteness, we cannot even speak of the first coin’s texture unless we measure it.
Moreover, if a measurement of the second coin’s texture can change the one of the
first coin (non-locality) again we cannot infer the first coin’s texture from a
measurement of the second: even if we know that the initial texture of the coins was
the same, the measurement on the second may change such property of the first
(Mermin etal., 1981).
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Figure 2: Explicit depiction of the properties whose probabilities are represented by the
areas of the Venn diagrams in Figure 1. The properties are represented by a triplet of
numbers (A, B, C) that indicate the (counterfactual, local) values of the properties A, B, and
C for both objects. Note that in the dotted area A must be different from both B and C, so that
B and C must be equal there (B and C are equal also in the intersection between the two

smaller sets, but that is irrelevant to the proof) (Mermin et al., 1981).

To prove Bell’s theorem, we now provide as a counter example a quantum

system that violates the above inequality. Consider two two-level systems (qubits) in
the joint entangled state |<D+) = (100)+|11))/N 2, and consider the 2 valued properties

A, B, and C obtained by projecting the qubit on the states

pcflar =10 [ =300+ 21 i) = 5100 1)
a2} = 1) b) = 210) - 311) e = 210y + 31)

where it is easy to check that |b1) is orthogonal to [bo) and |c1) is orthogonal to [co). It

is also easy to check that

lagag) +|ajas) _ |bobo)+ |b1ib1) _ |coCo) +lcic1)

V2 B V2 B V2

|®7) =

so that the two qubits have the same properties, namely P, ;e (A, A) = Pygme (B, B) =
P.ume(C,C) = 1: the measurement of the same property on both qubits always

yields the same outcome, both 0 or both 1.
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We are now ready to calculate the quantity on the left of Bell’s inequality
(1.2). We just write the state |<I>+) in terms of the eigenstates of the properties A, B,
and C. e.g., it is easy to find the value of P,4,,,. (A, B) if we write:

lag) (Ibo) + V3Ib1)) + |as) (V3]bo) — |bs))
242

In fact, the probability of obtaining 0 for both properties is the square modulus of the

|@7) =

coefficient of |a,) |by), namely, [1/2 v 2|2 = 1/8, while the probability of obtaining 1

for both is the square modulus of the coefficient of |a,) |b,), again 1/8.

Hence, P,yme (A, B) = % +

ool M

= i . Analogously, we find that P,,,,,. (4, C) = % and

that Pygme (B, C) = i by expressing the state respectively as:

|ao) (|Co) + \/§|C1)) — lay) (V3lco) — ler))

%) = 5
oty = (o) + VBIbD) (I0) + V3len) = (V31bo) = 11) (Bleo) = lex)
42

Summarizing, we have found
3
Psame(A,B) + Pogme (4, C) + Pygme (B, C) = : <1

which violates Bell’s inequality (1.2).

This proves Bell’s theorem: all local counterfactual theories must satisfy inequality
(1.2) which is violated by quantum mechanics. Then, quantum mechanics cannot be a
local counterfactual theory: it must either be non-counterfactual (as in the
Copenhagen interpretation) or non-local (as in the de Broglie-Bohm interpretation)
(Mermin et al., 1981). ]

Bell’s thought experiment:

Bell considered a setup in which two observers, Alice and Bob, perform

independent measurements on a system S prepared in some fixed state. Each observer
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has a detector with which to make measurements. On each trial, Alice and Bob can
independently choose between various detector settings. Alice can choose a detector
setting a to obtain a measurement M, and Bob can choose a detector setting b to
measure Mg. After repeated trials Alice and Bob collect statistics on their

measurements and correlate the results (Bell, 1987).

There are two key assumptions in Bell's analysis: (1) each measurement
reveals an objective physical property of the system and (2) a measurement taken by

one observer has no effect on the measurement taken by the other.

In the language of probability theory, repeated measurements of system
properties can be regarded as repeated sampling of random variables. One might
expect that measurements by Alice and Bob to be somehow correlated with each
other: the random variables are assumed to not be independent, but linked in some
way. Nonetheless, there is a limit to the amount of correlation one might expect to
see. The Bell inequality expresses that maximum amount of correlation one can
expect (Bell, 1987).

A version of the Bell inequality appropriate for this example is given by

Clauser, Horne, Shimony and Holt, and is called the CHSH form:

where C denotes correlation and M, , M,' refer to measurement settings for Alice and

Mg, Mg' refer to measurement settings for Bob (Bell, 1987).

The CHSH inequality involves two settings for Alice and two settings for Bob.

Now we denote by A; the measurement settings for Alice, B; the measurement
settings for Bob, a the outcome of the measurement setting for Alice and b the
outcome of the measurement setting for Bob. Let us take the eigenvalues of both 4;
and B; to be =1, and let E;; denote the expectation value for measurement settings i
and j respectively:

E;j = (A;Bj) = Xqp ab - p(ablA;B;) (1.4) (Clauser, Horne, Shimony,
Holt, 1969)

The inequality (1.3) then reads:

S = EOO + EOl + EIO — E11 S 2 (15)
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with 2 being the maximum value of S allowed by local realist theories.

The maximum quantum value is

S=22> 2 (1.6) (Clauser, Horne, Shimony, Holt, 1969)

Equation (1.6) illustrates the content of Bell’s theorem, establishing the nonlocal
character of quantum theory. All bipartite Bell inequalities that involve two
dichotomic measurements on both parties are equivalent (up to permutations of inputs
and outputs) to the CHSH (Clauser, Horne, Shimony, Holt, 1969).

We will now prove the bounds of CHSH. To prove the local bound we assign
values to the expectation values of the operators, maximizing S. We keep in mind
that, for local behaviors, it holds that (4;B;) = (4;) (B;).

There are 42 possible assignments, and to find the maximum value one needs
simply to go over them (see Table 1). But it is easy to see that the value S = 2 cannot
be exceeded. We maximize the terms that come into S with a plus sign by assigning
the value +1 to each 4; and B; , thus maximizing each term. Since the last term, A; B,
which comes into S with a minus sign is also 1, the total value of S is 2 in this
scenario. If we, on the contrary, minimize the negative term, by assigning opposite
sign values to A; and B, the positive term is also minimized, and the total value of S

is again 2 (Clauser, Horne, Shimony, Holt, 1969).

(Ao) (A1) (Bg) (B1) Ego Eoq Eio Eyy |S
1 1 1 1 1 1 1 1 2
1 1 1 -1 1 -1 1 -1 2
1 1 -1 1 -1 1 -1 1 -2
1 1 -1 -1 -1 -1 1 1 -2
1 -1 1 1 1 1 -1 -1 2
1 -1 1 -1 1 -1 -1 1 -2
1 -1 -1 1 -1 1 1 -1 2
1 -1 -1 -1 -1 -1 1 1 -2
-1 1 1 1 -1 -1 1 1 -2
-1 1 1 -1 -1 1 1 -1 2
-1 1 -1 1 1 -1 -1 1 -2
-1 1 -1 -1 -1 -1 1 1 -2
-1 -1 1 1 -1 -1 -1 -1 2
-1 -1 1 -1 -1 1 -1 1 -2
-1 -1 -1 1 1 -1 1 -1 2
-1 -1 -1 -1 1 1 1 1 2
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Table 1: the local values of S

In quantum mechanics, we can choose a state and some operators such that,
when plugging them in equation (1.4), we obtain a behavior that violates the CHSH
inequality. We give an example of such a choice here (Clauser, Horne, Shimony,
Holt, 1969).

Let us take the state to be the singlet state of two qubits, |y> = (|01> + |10>) /
V2 and Alice’s operators to be Ao= Zaand A1 = Xa, where Zaand Xa are the Pauli
operators acting on Alice’s Hilbert space, in the z and x directions, respectively. We

choose Bob’s operators to be:

_ —Zp—Xp

_ —Zp+Xp

By = =22

where Zg and Xg are the corresponding Pauli operators on Bob’s Hilbert

space. We then have <AoBo> = <AoB1> = <A1Bo>=1/4/2 and <AiB1>=-1/v2.

Putting these values together in S, we get S = 2v/2 > 2, at odds

with (1.5). We have shown that quantum mechanics allows for the value 2v2,

thus proving Bell’s theorem (Clauser, Horne, Shimony, Holt, 1969).

In order to prove that 2v2 is indeed the maximum value allowed by quantum
mechanics, we start by defining the operator:
F = AOBO + AOBI + AlBO - A1B1

Since the eigenvalues of 4; (and B;) are +1, it follows the operators are all
involutions, i.e. they all square to the identity: A7 = I, and Bf = I . Using this,
we have:

F? = 4l — [Ao, A1] [Bo, B1] (1.7)
We also need to define the norm of an operator O, as following:

loll = y(010)

or simply

o]l = y(0?)
since we are only concerned with Hermitian operators. Plugging the following

norm inequalities:
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I[Ao, A1]Il < 2 [[ Ao |l | A4l
I[Bo, B1lll < 2 [|Boll | B4l
into equation (1.7), and using the fact that (4;) <1 and (B;) <1, the

quantum limit follows (Tsirelson, 1993).
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1.2: CRITERIA INDICATING THE PRESENCE OF QUANTUM
PROBABILITY

Quantum systems may exhibit correlations that go that have no analogue
classical theories. We shall present criteria for selecting quantum probability instead
of classical probability. The order of criteria will be presented following their
historical appearance, starting from Bell’s theorem for locality.

Quantum theory and classical probability are often seen
as two very different theories...

Major differences

classical quantum
probability theory

S —

+ amplitudes, interference

+ non-commutativity

« uncertainty relations

+ entanglement

« violation of Bell inequalities
+ Kochen-Specker theorem

.

Figure 3: Major Differences between classical probability and quantum theory (Rau, 2009).

Criterion: Bell’s theorem for locality (1964)

In order to ensure non-disturbance, the most stringent physical requirement is
to carry out measurements on systems that cannot possibly influence each other.
According to the special theory of relativity, information (or information-bearing
physical carriers) propagate with a speed bounded by that of light in vacuum, c.

Hence, performing measurements on two systems separated by a sufficient distance
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such that no signal could reach each from the other during the performance of the
experiment seems to forestall any possibility of influence between the experiments
(Bell, 1964).

This is, in fact, the assumption of locality made by Bell (1964). In our setup,
this corresponds to assuming a joint system, described by a density operator p,g in
the joint Hilbert space Hz = H4 @ Hp , on which local measurements of the
form A;®1 and 1® B; are performed. Thus, the CHSH-expression (John Clauser,

Michael Horne, Abner Shimony, and Richard Holt) becomes:

(Censu) = (A1 ® By)+ (A; ® By)+ (A, & By)— (4; ® By) (2.1)

If the locality-assumption now suffices to certify non-disturbance, and if we
are furthermore justified in assigning definite values to these quantum mechanical

observables, then the above expression should be bounded by 2:
(Consn) < 2 (2.2)
However, if we take the state:

+y = L
|@*) == (100) + |11)) (23)
together with the observables:

A]_:GX y B]_:%(O-)("‘ 0'2)

A2=0z , B = \/% (ox — 07) (2.4)

where ay and g, are the Pauli operators acting on Alice’s Hilbert space, in the x and z
directions, respectively and B; , B, are the chosen Bob’s operators where gy and o,
are the corresponding Pauli operators on Bob’s Hilbert space, then a straightforward
calculation of the expectation values:

(A;B;) = tr(A; ® Bj |PTWDT|) (2.5)

shows that:

(Ceusu) = (A1 @ B1)+ (A1 ® By)+ (A, @ By)— (4, ® By) =
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+=-(-5) = 2v2 > 2 (2.6)

which, as can be shown, is in fact the maximum value (Tsirelson, 1993). Thus, despite
the locality requirement, there are quantum mechanical measurements that do not

possess a joint probability distribution.

The impossibility to reconcile a local realistic picture with the predictions of
guantum mechanics is the essence of Bell’s theorem. The reason for this
irreconcilability does indeed lie with the failure of co-measurability of the
observables: neither A; and A,, nor B; and B, are jointly measurable, since both
[A1,A,] and [B,, B,] are nonzero. The necessity of this requirement can be seen easily

by taking the square of the CHSH-operator:
Clusn =4 * 1+ (A1Az — AA1)®(B,By — B;By) = 41— [A;, A;]®[By, B;]
(2.7)

where we have used that dichotomic observables square to the identity.
Hence, a violation of the CHSH-inequality is only possible if both commutators are
non-vanishing (Bell, 1964).

Note, however, that while this is a necessary condition, it is not alone
sufficient. For a state of the form  p,,.,q = [Y1)(W1] ® [P)(P2| , since the
observables A; act nontrivially only on [i;) , while the observables B; act only on
|Y5) , the correlators factorize, yielding for the expectation value of the CHSH-

operator:

(Censn) = (A1)(B1) + (A1X(B3) + (A;) (B1) — (A2 XB2) =

= (A1) ((By)+ (B2)) + (42) ((By)— (Bz)) < 2 (2.8)
since (4;),(B,) < 1 (Bell, 1964).

This extends to convex combinations  pse, = X p; pz",md since each of the
terms in the combination is bounded by 2. Thus, separable states, i.e. states that can be

written as a convex combination of product states, cannot violate the bound
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[{Ccusu)] < 2. It follows that, besides non-jointly measurable observables,

entanglement is a critical resource for Bell inequality violation (Bell, 1964).

Representation of Bell’s inequality with Venn's diagrams

In his original paper, Bell showed that under conditions of independence
classical random variables A, B, C will satisfy:

|Rs‘ame(A; B) - Psame(A: C)l < Psame(B; C) +1 (2-9)

where P,,.(4, B) isthe probability that the pair of random variables A, B have
some identical property. Bell showed that similar measurement of entangled quantum
variables can lead to a violation of the inequality (2.9) and, therefore, such violation

can serve as a divide between classical and quantum variables (Bell, 1964).

However, Bell inequality is also violated in many classical situations where long-
range correlations persist (Bell, 1964).

It is quite clear that a constraint on n variables will be projected as several
constraints on subsets of these variables. Therefore, if we are only given the
constraints on the subsets of the variables, it cannot be said if they were derived from
the same function on all the variables. Consider (with Boole) three events A, B, and
C. Let P(AB) =, P(BC) =s and P(AC) =t. If a Venn diagram is drawn and we write:

P(ABC) =1, P(ABC) =pu, P(ABC)=v , P(ABC) =17
ThenA+p=r, A+n=s, A+v=t

and:
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ABC

Figure 4: Venn diagram for three events A, B, C (Kak, 2013).

A straightforward computation shows that the following constraints need to be

satisfied for the data to be consistent:

r>s+t—1 (2.10a)
s>t+r—1 (2.10b)
t>r+s-1 (2.10c)

These are of the form:
P(AB) — P(AC) > P(BC) - 1
which may be written as:
IP(AB) — P(AC)| < 1 - P(BC) (2.10d).

This is a form similar to that of the original Bell inequality (2.9).
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Counterexample

For the past 60 years, the best guide to that boundary has been a theorem
called Bell's Inequality, but now a new paper shows that Bell's Inequality is not the
guidepost it was believed to be, which means that as the world of quantum computing
brings quantum strangeness closer to our daily lives, we understand the frontiers of

that world less well than scientists have thought.

In this new paper, published in the July 20 edition of Optica, University of
Rochester researchers show that a classical beam of light that would be expected to
obey Bell's Inequality can fail this test in the lab, if the beam is properly prepared to

have a particular feature: entanglement.

Not only does Bell's test not serve to define the boundary, the new findings
don't push the boundary deeper into the quantum realm but do just the opposite. They
show that some features of the real world must share a key ingredient of the quantum
domain. This key ingredient is called entanglement, exactly the feature of quantum

physics that Einstein labeled as spooky (Qian, Little, Howell, Eberly, 2015).

According to Joseph Eberly, professor of physics and one of the paper's
authors, it now appears that Bell's test only distinguishes those systems that are
entangled from those that are not. It does not distinguish whether they are "classical”

or quantum.

In the forthcoming paper the Rochester researchers explain how entanglement

can be found in something as ordinary as a beam of light.

Eberly explained that "it takes two to tangle." For example, think about two
hands clapping regularly. What you can be sure of is that when the right hand is
moving to the right, the left hand is moving to the left, and vice versa. But if you were
asked to guess without listening or looking whether at some moment the right hand
was moving to the right, or maybe to the left, you wouldn't know. But you would still
know that whatever the right hand was doing at that time, the left hand would be
doing the opposite. The ability to know for sure about a common property without
knowing anything for sure about an individual property is the essence of perfect
entanglement (Qian, Little, Howell, Eberly, 2015).
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Eberly added that many think of entanglement as a quantum feature because
"Schrodinger coined the term 'entanglement' to refer to his famous cat scenario.” But
their experiment shows that some features of the "real™ world must share a key
ingredient of Schrodinger's Cat domain: entanglement.

With this result, Eberly and his colleagues have shown experimentally "that
the border is not where it's usually thought to be, and moreover that Bell's Inequalities

should no longer be used to define the boundary™.

The growing recognition that entanglement is not exclusively a quantum
property, and does not even originate with Schrodinger’s famous remark about it,
prompts the examination of its role in marking the quantum-classical boundary. We
have done this by subjecting correlations of classical optical fields to new Bell-
analysis experiments and report here values of the Bell parameter greater than B =
2.54 . (Qian, Little, Howell, Eberly, 2015)

This is many standard deviations outside the limit B =2 established by the
Clauser—Horne—-Shimony—Holt Bell inequality, agreement with our theoretical
classical prediction, and not far from the Tsirelson limit B =2.828....These results
cast a new light on the standard quantum-classical boundary description, and suggest

a reinterpretation of it (Qian, Little, Howell, Eberly, 2015).
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Figure 5: Experimental setup consists of a source of unpolarized light and a measurement
using a modified MZ interferometer. HWP and a QWP control the polarization of the source.
All beam splitters are 50:50 unless marked as a PBS. Intensities needed for obtaining the
required joint projections are measured as detector D1. Shutters S independently block the
arms of the interferometer in order to measure light through the arms separately. A
removable mirror (RM) directs the light to a polarization tomography setup where the
orthogonal components of the polarization in the basis determined by the wave plate are
measured at detectors D2 and D3 (Qian, Little, Howell, Eberly, 2015).

Our theoretical sketch for the simplest case, unpolarized light, indicated that
such fields or states are predicted to possess a range of correlation strengths equal to
that of two-party quantum systems, that is, outside the bound B <2 of the CHSH Bell
inequality and potentially as great as B = 22 . In our experimental test, we used
light whose statistical behavior (field second-order statistics) is indistinguishable from
classical, viz., the light from a broadband laser diode operating below threshold (Qian,
Little, Howell, Eberly, 2015).
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Our detections of whole-beam intensity are free of the heralding requirements
familiar in paired-photon CHSH experiments. Repeated tests confirmed that such a
field can strongly violate the CHSH Bell inequality and can attain Bell-violating
levels of correlation similar to those found in tests of maximally entangled quantum

systems.

One naturally asks, how are these results possible? We know that a field with
classically random statistics is a local real field, and we also know that Bell
inequalities prevent local physics from containing correlations as strong as what
quantum states provide. But the experimental results directly contradict this. The
resolution of the apparent contradiction is not complicated, but does mandate a shift in
the conventional understanding of the role of Bell inequalities, particularly as markers
of a classical-quantum border. Bell himself came close to addressing this point. He
pointed out that even adding classical indeterminism would still not be enough for any
type of hidden variable system to overcome the restriction imposed by his
inequalities. This is correct as far as it goes, but fails to engage the point that local
fields can be statistically classical and exhibit entanglement at the same time (Qian,
Little, Howell, Eberly, 2015).

For the fields under study, the entanglement is a strong correlation that is
intrinsically present between the amplitude and polarization DOFs, and it is embedded
in the field from the start (as it also is embedded ab initio in any quantum states that
violate a Bell inequality). The possibility of such pre-existing structural correlation is
bypassed in a CHSH derivation.

Thus one sees that Bell violation is a result of entanglement due to tensor
product structure (Qian, Little, Howell, Eberly, 2015).

Criterion: Bell-Kochen-Specker inequality (1967)

Firstly, we present the requirements of this criterion. The generalized Bell
inequality, due to Kochen and Specker, namely, the Bell-Kochen—Specker (BKS)
inequality, analyzes under what condition a single degree of freedom exhibits the
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inequivalence between explanations based on classical and quantum probabilities.
There is no need to consider entangled states, which requires at least two or more
degrees of freedom, and neither is it necessary to have spins with space-like
separation (so that the operators operating on the different spins commute). All that is
needed for the BKS theorem is the existence of a certain collection of Hermitian

operators.
BKS inequality for a single Spin 1 System:

The BKS inequality can be derived for a spin 1 system that is located at a
single point. Since there is only one degree of freedom, the quantum state cannot be

an entangled state (Kochen, Specker, 1967).

Consider the case of P, P,, P;, P,, Ps , namely, five commuting and non-
commuting operators that are arranged in Figure 6. Let the operators be numbered
periodically with P, = P;; then the commutation equations are given by the

following:

[Py, Pry1]l =0, [By, Ppy2]l #0 ,where n=1,2,...,5

.I”| P_:

P Fy

Figure 6 (Baaquie, 2013)

We assume the quantum state is described by the pure density matrix p given
by: p = |[Y)y| and tr(p) = 1. Then the quantum expectation value of a
(Hermitian) operator B is given by: E,[B] = tr(pB) .
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We assume P(X = x, Y =y, Z = z) yields the probability for the
simultaneous occurrence of the sample values X, y and z of the random variables X,
Y and Z respectively. We consider a function H that depends on the random

variables X, Y, Z. Its (average) classical expectation value is given by:
E/[H] = [dxdydzH(x,y,z) P(x,y,2) .

It can be shown that the BKS inequality for this case is given by classical

probability theory and yields:
YiE.[P]] <2 : BKSinequality (2.11)

The “contextual” inequality, obtained by evaluating the expectation value of

P; in a quantum state, is given by:
Y E,[P] <5 (2.12)

and violates the BKS inequality given in (2.11).

BKS inequality for two Spin 1/2 System:

Consider the case of three Hermitian operators A,B, and C such that [A,B] =0
=[A,C] but [B,C] #0 and constructed from the two spin 1/2 degrees of freedom.
Since A can be simultaneously measured with other operators that commute with it,
the joint probability distribution functions p, (4, B) and p, (4, C) can be measured,
and which are theoretically also obtainable from guantum mechanics(Kochen,
Specker, 1967).

Although not within the framework of quantum mechanics, a classical joint
probability distribution function does in fact exist for A,B,C considered as classical
random variables and is given as follows:

p(A,B,C) = —”1(“'?(3;“"” (2.13)

where Y5 p1(4,B) = p(4) = X p(4,0).

This construction reproduces the experimentally measurable marginal
probability distribution function. One recovers, for instance, the experimentally

observed p; (4, B) by summing over the outcomes for C in p(A,B,C) and which
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results in a cancellation of p(A) on the right-hand side of (2.13), leading to the
required probability p, (A4, B) for the inequality (2.11) (Kochen, Specker, 1967).

Criterion: Bipartite Bell inequalities — Clauser-Horne-Shimony-Holt inequality
(1969)

We first assume two particles controlled by Alice and Bob, respectively. In the
framework of hidden variables, the probability that Alice obtains the outcome o and
Bob the outcome  when Alice is measuring observable A and Bob is measuring

observables B given that the hidden variable is A is denoted by px(a, B|A, B). The

expectation value of the observable AB given that the hidden variable is A is then

calculated according to

(AB)3 = XapaP pa(a,BlA, B) (2.14)

We measure the expectation value in experiment

(AB) = [dAp(A) LapaB pa(a,BlA, B) (2.15)

where p()) is a probability density on the hidden variable A (Clauser, Horne,
Shimony, Holt, 1969).

Besides the existence of hidden variables, Bell theories also assume locality.
In other words, one considers hidden-variable theories in which the expectation values
of Equation (2.15) can always be written in terms of probability distributions that

factorize, i.e. which obey

pala, BlA, B) = pa(ald) pa(BIB) (2.16)

for any two observables A; and B; and fixed A. Hidden-variable theories that obey
Equation (2.16) are called local hidden-variable theories (LHV theories). Note that
locality implies that Alice’s choice of observable cannot affect Bob’s outcome
probabilities (no-signalling), i.e., that for any two observables B and B’ that Bob
measures (and any observable A and outcome a of Alice), the probabilities obey

pa(al4,B) = py(alA,B)
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where p;(alA,B) = Y., pa(a, B|A,B) (2.17) (Clauser, Horne, Shimony,
Holt, 1969).

The most commonly used Bell inequality for two particles is the Clauser-
Horne-Shimony-Holt (CHSH) inequality. It states that in any LHV theory, the

inequality
(AB) + (AB'Y+ (A'B)— (A'B') < 2 (2.18)

holds for any observables A, A", B and B'. In quantum mechanics, this inequality can

be violated by choosing A=-X, A’=-Y ,B=(X-Y )/ V2,B'=(X+Y )/ V2 and
the singlet state of Equation [y ™) = \% (J01) — ]10)) . For these choices, the left-

hand side of Equation (2.18) equals 2v/2.

Bell inequalities can also be used for entanglement detection, as any state that
violates a Bell inequality must be entangled. This can be seen by noting that for any

separable state ps., = Xip;i pi ®pf , one has

(AB) = X;p; tr(Ap{') tr(Bpf) (2.19)

This defines an LHV model, where the locality can be seen by Equation (2.19) and
therefore, it cannot violate a Bell inequality. However, the converse is not true: There
are some entangled states that do not violate any Bell inequality. Finally, it is worth
mentioning that Bell inequalities are, in contrast to entanglement witnesses, tools to
detect entanglement independent from the observables actually measured in

experiment (Clauser, Horne, Shimony, Holt, 1969).

Criterion: Kochen-Specker non-contextuality (1969)

As Bell’s theorem relies on locality in order to prevent influences between
different measurements, so does the theorem by Kochen and Specker (1969) rely on
the notion of noncontextuality: roughly, the idea that the value of an observable A,
measured simultaneously with observables B or C (with which it hence must be
jointly measurable), does not depend on whether it is measured simultaneously with

B or C. This is a reasonable expectation in the classical world—for instance, we do
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not observe an object’s color changing, depending on whether we measure it

simultaneously with its shape, or with its mass.

It is again clear that this assumption holds whenever we have a joint
probability distribution—as in this case, we can think of a population in which
elements simply carry certain values for all observables within experimental interest,
which do not mutually influence one another, and are simply revealed upon

measurement (Kochen, Specker, 1967).

We consider four observables {A,B,C,D} on a four-dimensional Hilbert space
H,. Among these observables, we have the following commutation (and hence, joint

measurability) relations:

[A,B]=0 [C,B]=0
[A, D] =0 [C,D]=0 (2.20)
[A, C]#0 [B, D] #0

Thus, in the expression:
(CES...) = (AB) + (BC)+ (CD)— (DA) (2.21)

only jointly measurable quantities enter in pairs. If we now assume that the value of
each observable is independent of the context—that, for instance, the value of A
does not depend on whether it is measured simultaneously with B or D — we again

assume the presence of a joint probability distribution for all observables, and

consequently, again obtain the bound |(C§,§SH)| < 2.

Now, with the identifications 4, @1 =C, A, ®1 = A, 1®B, =D
and 1® B, = B, the observables in Equation 1.2.4 fulfill exactly these relations.
Consequently, we cannot assume that each of them yields its value independently of
its context—and hence, any test of Bell’s theorem is also a test of the Kochen-Specker

theorem.

However, we need not appeal to entanglement, or indeed the bipartite Hilbert-
space structure in order to test the Kochen-Specker theorem. For instance, we may
take the observables (which are related to the observables in Equation (2.4) by a

unitary rotation):
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1 1 0 0
0 0 1 1
1 -1 0 0

C=o0® B=2(30 o Y (2.22)

and the (product) state :
[¥) =2 (100)+ |10)) (223)

to again obtain the value [(CX3s,)| < 2. Hence, we can view the noncontextuality
of Kochen and Specker as a relaxation of Bell’s locality: for any set of local
observables, the commutation relations in Equation (2.20) will be automatically
fulfilled, but not every set of observables fulfilling them consists of local observables

on a bipartite Hilbert space (Kochen, Specker, 1967).

Criterion: Roy-Singh local-realist inequalities (1979)

Roy and Singh were the first to derive from the local-realist condition testable
inequalities (RS inequalities) different from the Bell-CHSH-type inequalities. The
Roy-Singh method provides an elegant method to derive local-realist inequalities.
Suppose two qubits in an entangled state are intercepted by two measuring devices
geographically separated from each other. The first device randomly measures
property either X;, X,, ... on particle 1, and the other device either property Y;, Y, ...
on particle 2. Experimentally, one measures bi-partite correlations of the type
P(xj, yk) , Where x; =£1 and y, = =1 are measurement outcomes of measuring
X; and Y respectively. The assumption of local-realism (LR) entails that for each
such pair of these variables, there is a deterministic hidden variable (DHV) theory
whereby:

(XjYe) = [, dAp)X;(D)Y (D) (2.24)
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where A is a “complete” or “dispersion-free” specification of the state described by
underlying probability distribution p(L). Roy and Singh consider quantities of the

form:

2
2
VP27 2o £ D) 4ot (X0 £ X0 £ 2 XV 4 Pk @ £ 1

2
H9) = q (2.25)

v

where m; +n; = odd and the self-correlation terms, i.e., correlations between the
same particle, are so arranged as to cancel out. Here X,gj) € {X,X,,...,X,} and

Yk(j) € {1,Y,, ..., Yn} , where m, n are positive integers and X;, Yy, € {1} (Roy,
Singh, 1979).

As a particular example, we consider:
X, - Y-+ X, -V + ¥,)2>2 (2.26)

Expanding the left hand side of (2.26), and using the DHV assumption Equation
(2.24), we obtain:

(B) = (X1Y1) + (X1Y2) + (Xp1)) — (XpY5) < 2 (2.27)

which just is the CHSH inequality (2.18) (Roy, Singh, 1979).

Criterion: Mermin inequality (3-qubits) (1981)

We first assume two particles controlled by Alice and Bob, respectively. In the
framework of hidden variables, the probability that Alice obtains the outcome o and
Bob the outcome B, when Alice is measuring observable A and Bob is measuring
observables B given that the hidden variable X is denoted by p,(a, 8 | 4, B). The
expectation value of the observable AB given that the hidden variable is A is then

calculated according to:

(AB); = XapaB pa(a,BlA,B)  (2.28)
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Besides the existence of hidden variables, Bell theories also assume locality. So the
expectation values of Equation (2.28) can always be written in terms of probability

distributions that factorize, i.e. which obey:

pala,BlA,B) = pa(ald) pa(B|B)
for any two observables A, and B; and fixed A.

Analogously, we assume three particles controlled by Alice, Bob and Charlie,
respectively. In the framework of hidden variables, the probability that Alice obtains
the outcome o, Bob the outcome B and Charlie the outcome vy, when Alice is
measuring observable A, Bob is measuring observables B and Charlie is measuring
observables C given that the hidden variable A is denoted by p,(a, B,y | 4, B, C).

We consider probability distributions which factorize fully and have the form:

pala, B,v14,B,C) = pa(ald) pr(BIB) pa(y|C) (2.29)

Probability distributions of this kind, which one might call “fully local”, obey the
Mermin inequality. For three qubits, the Mermin inequality is given by

(ABC) — (AB'C’y — (A'BC'Y — (A'B'C) < 2 (2.30)

where A, A", B, B, C and C ' are arbitrary observables. We will present Bell
inequalities with the quantum mechanical observables that yield the largest violation
already plugged in, since this allows for a more compact notation. The Mermin
inequality (2.30) is maximally violated for the three-qubit Greenberger-Horne-
Zeilinger (GHZ) state:

|GHZ3) = == (]000) + |111)) (2.31)

1
7 (
In this case, the left-hand side of (2.30) has a value of 4, since every term has an
absolute value of 1 with the appropriate sign. Therefore, 4 is the value of maximal
violation of the inequality (2.30). This observation was also the basis for the argument

by Greenberger, Horne and Zeilinger who argue that the GHZ state contradicts

realism in the sense of Einstein, Podolsky and Rosen (Kafatos, 1989).

Criterion: Leggett-Garg macroscopic realism (1985)
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Finally, the third option to make the non-disturbance assumption plausible,
after Bell locality and Kochen-Specker contextuality, is the macroscopic realism of

Leggett and Garg. Macroscopic realism is the conjunction of two postulates:

(i) Any macroscopic system that has available to it two or more distinguishable states,

is at any given time in exactly one of those states.

(i) It is possible, in principle, to determine which of these states the system is in at a
given time, without disturbing the system or its dynamics (Leggett, Garg, 1985).

Let us thus imagine a system that has exactly two states available to it, as well
as a measurement Q (which we again assume to be + 1-valued) that is capable of
differentiating between these states. Furthermore, we measure this observable at four
different points in time t,, t,, t3, t, . Then, we observe the correlation between

measurements at different points in time, and calculate the quantity:

(Céiisy) = (Q(t1) Q(t2)) + (Q(t) Q(tz)) + (Q(t3) Q(te)) — (Q(t1) Q(ts))
(2.32)

The assumption of macroscopic realism serves to shield a measurement at a
later time from the influence of an earlier one; thus, again, we can assume a joint

probability distribution for the value of Q at different times, and conclude that:

[(CGsi)| < 2 (Leggett, Garg, 1985).

A difference to the previous two cases (Bell locality and Kochen-Specker non-
contextuality) is now that at first sight, there is no problem with ’joint’ measurability,
as we just re-measure the same observable Q at different points in time. However, in
general, there will be a non-trivial time-evolution of the system in between

measurements.

This time-evolution is mediated by some unitary U(t), producing the
transformation |y (0)) — |Y(t)) = U(t) |Y(0)) (Leggett, Garg, 1985).

To calculate the expectation value of an operator at time t, we can equally well use a

time-evolved operator and the state at t = 0:
Ay, = tr(Ap(®) = tr (A U(t) p(0) Uf(t)) = tr (U*(t) AU p(O)) -

= tr(A@®) p(0)) (2.33)
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This is known as the Heisenberg picture, whereas the corresponding picture in
which the time evolution acts on the states instead is the Schrodinger picture. Hence,

we can keep the initial state fixed, and take

Q; =UT (t; — to) Qto) U(t; — to)

However, this yields ‘too much’ incommensurability: in general
[Q(t),Q(¢;)] # 0 for any pair of indices, and consequently, we do not know how to
define the correlator (Q(t;) Q(t;)) , as the simple product of both operators will

typically fail to be Hermitian.

Nevertheless, for projective qubit measurements, we can go back to the
definition of the correlator:

(Q1Q2) = Zgpq, @ Pr(Q7* Q3" (2.34)

where gy, q; € {+1,—1} are the outcomes of Q; and Q, , respectively. To calculate

these probabilities, the projection postulate yields:

Pr(Qf* ') = (FHRT UL ZALT) (2.35)

where g; is the Bloch vector associated to Q; (Leggett, Garg, 1985).

Using this to compute the correlator, one arrives at the expression (Fritz 2010):
Yawa W Pr(Qf* Q') = (Qy o (2.36)

for the appropriate quantum analogue to the classical correlation functions in
Equation (2.32), where the symbol ¢ denotes the symmetric (Jordan) product:

XY+YX
2

X oY =

(2.37)

With this framework, it can again be shown that in quantum mechanics, a maximum

of [(CkSsu)| < 2V2 s achievable (Leggett, Garg, 1985).

Criterion: Svetlichny inequality (1987)

We assume three particles controlled by Alice, Bob and Charlie, respectively.
In the framework of hidden variables, the probability that Alice obtains the outcome
a, Bob the outcome B and Charlie the outcome vy, when Alice is measuring observable
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A, Bob is measuring observables B and Charlie is measuring observables C given that
the hidden variable A is denoted by p;(a, B,y | 4, B, C). As for entanglement, there
is also a notion of genuine multipartite non-locality. For three qubits, any probability

distribution that cannot be written as:

pala, B,vIA,B,C) =

= q1pa(alDpa(B,vIB,C) + q2p2(BI1B)pala, vIA, C) + qspa(vIC) pa(a, BIA, B)
(2.38)

where };q; =1 and gq; = 0, is called genuine multipartite non-local. Any
probability distribution that is of the form of Equation (2.38) obeys the Svetlichny
inequality:

(ABC) + (AB'C) + (ABC'Y — (AB'C’) + (A'BC) — (A'B'C) —(A'BC’) —
(A'B'C'Y < 4 (2.39)

where A, A’, B, B’, C and C ' are arbitrary observables.

The quantum mechanical violation is maximal for the GHZ state (Equation

2.31) of three qubits and equals 4v2 for the choice A=—-X,A’=Y ,B=(X+Y )/
V2,B'=(X-Y)/V2,C=-Xand C'=Y, where X, Y are the Pauli matrices
(Svetlichny, 1987).

One way to prove that Equation (2.39) holds for genuinely non-local models is
based on the realization that the inequality is a sum of two CHSH inequalities. For
example, all expectation values containing A form a CHSH inequality on parties two
and three and the same for all terms that include A’ . Moreover, since Equation (2.39)
is invariant under any permutation of particles, it has this form on any two qubits.
Also, Svetlichny’s inequality has been generalized to an arbitrary number of qubits

(Collins, Gisin, Popescu, Roberts, Scarani, 2002).

Criterion: Mermin polynomials and Mermin inequalities (1990)

Quantum probability can be discriminated from classical probability using
Bell-type inequalities. An extension of Bell inequalities to a larger number of particles
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corresponds to the set of Mermin inequalities. Such inequalities should be maximally
violated by GHZ-type states (Mermin, 1990).

The Mermin polynomial for 3-qubits is:

Mz = (o102 0’3+ 010’203+ a’10203)—(a’1a’20’3) (2.40)

where aj and aj’ correspond to two different settings for the measurement of each

qubit i. Each measurement can take the values {-1, 1}. Classical theories obey local
realism (LR) which translates into a bound for the expectation value of the Mermin
polynomial, (M;)® < 2 (Mermin, 1990).

In this case, the maximum possible eigenvalue, and therefore the quantum

bound, is (M3)?M < 4 (Greenberger, Horne, Shimony, Zeilinger, 1990).
The Mermin polynomial for 4-qubits is:
M, = —(aqa,asa,) + (aya,a3a’, + aja,a';a, + aya’yas3a,4 + a'ya,asa,) +

+(a,a,a'3a’ 4 +a,a’,a5a’, + aqa’,a' 5a4 + a'yazaza’, + a’'ja,a’ 30, +

a'ya’yaza,) —

—(a,a’'ya'3a’' s + a'ja,a'3a', + a'1a’yaza'y + a’'ja’ya’3a,) —

—(a'1a'za'3a’y) (2.41)

with a classical bound of (M,)"R < 4 and a quantum bound of (M,)?™ < 8+/2.
The Mermin polynomial for 5-qubits is:

Mg = —(ayaza3a4a5) + (a1aza3a’,a’s + aja,a’3a4a's + aqa’,a3a4a' s +

+a'ja,aza,4a's + a;a,a'3a a5 + aqa’,a5a' a5 + a'jazasa’as +

a,a',a'sa4a5 + + a'1a'ya3a4a5) —

— (aqa',a'3a’ 4a’s + a’'jaya'3a'4a's + a'1a’'ya5a a0’ s + a'ja’a'5a4a s +

+a'ia'ya'3a'4a’s) (2.42)

with a classical bound of (Ms)*R < 4 and a quantum bound of (M:)?™ < 16

(Greenberger, Horne, Shimony, Zeilinger, 1990).



Quantum Statistics and Data Analysis

|[LR| QM| EXP

3 qubats] 2 | 4 [2.85% 0.02
4 qubits| 4 |8 +2|4.81+ 0.06
5 qubits| 4 [ 16 |4.05% 0.06

Table 2: Table of results. LR corresponds to the Local Realism bound for each Mermin
inequality, QM to the Quantum bound and EXP is the experimental result (Alsina, Latorre,
2016).

There exists an entire family of n-qubit inequalities first discovered by
Mermin. We present Mermin operators. Let us change the notation of observables
{a,b,c, ...} ={aq,ay, as, ...}, which is more convenient to treat the multipartite case.

Defining M; = a4, the Mermin polynomials are obtained recursively as:

1 i 1 ! !
M, = > n-1(an + ap) + > My (a, — ap) (2.43)
where M, is obtained from M, by interchanging primed and non-primed

observables a,,. In particular, M5 corresponds to the three-qubit Mermin operator:
M; = (a®bQc' + a®b'®c + a'®b®c) — (a'R®b'Qc’) (2.44)

where @ denotes the Kronecker product and the variables a, a’ and b, b’ are
represented by Hermitian operators acting on Hilbert spaces #, and H;, ,
respectively. For dichotomic variables the operators satisfy a?=a’2? = b2 = b* 2 =
[, because the measurement operators a, a’ ,b and b’ have eigenvalues + 1. M2

corresponds to the two-qubit Mermin operator:
M, = (a®b + a®b' + a'®b) — (a’'®b") (2.45)  (Mermin, 1990) .
For n qubits, the Mermin inequality is given by:

<X1X2X3X4X5 "'Xn> - Zperms<Y1Y2X3X4X5 "'Xn) + Zperms(Y1Y2Y3Y4X5 "'Xn) -

<

2n/2
{ , for even n (2.46)

2=1/2 " for odd n
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where Y,.rms  indicates a sum over all permutations of all qubits that lead to
distinct terms. This Mermin inequality holds also for an arbitrary choice of

observables. The maximal violation is obtained for the n-qubit GHZ state:
1
|GHZy) = 7 (10...0) + |1..1)) (2.47)

for which the left-hand side of the inequality (2.46) reaches a value of 2™~1 .

Therefore, 271 is the maximal violation of the inequality (2.46) (Mermin, 1990).

Criterion: Ardehali inequality (1992)

The Ardehali inequality holds for the same kind of non-locality. We denote X;
the Pauli matrix oy acting on the i*" qubit, Y; the Pauli matrix oy and Z; the Pauli

matrix o, acting on the i" qubit. Then, the Ardehali inequality is given by:

[(A1X2X3X4X5X6X7 X)) + (B Xy X3 Xy XX X7 . X)) —
Yperms(2,..n){A1Y2 X3 X4 X5 X6 X7 ... Xpn) — (B1Y2X3X4 X5 X6 X7 ... Xp)) —
Yperms,.n) {4123 X, X X X7 . Xp) + (B1Y2V3 Xy X X X7 .. X)) +
Yperms,..n)({A1Y2Y3Ya X Xe X7 .. X)) — (B1 Y2 Y3VuXs X X7 .. X)) +
Yperms(,.n)({A1Y2YsYy Yo X X7 . Xp) + (B1Yo V3 X, Vs X X7 . Xy)) —
Yperms,.n){A1Y2Y3 X, YsYe Xy . X)) — (B Yo Y3 YaYeYe X7 . X)) — - ] IV2 <

{ 2M2 | for odd n

2.48
2-D/2  for even n (2.48)

where Y, erms(z,...ny  denotes a sum over all permutations of qubits 2 to n that

yield distinct observables. Moreover, A; = (X; + Y1) /2 and B, = (X; — Y;) / V2.

The Ardehali inequality holds for arbitrary observables, but with the above
observables and the GHZ state, the quantum mechanical violation is maximal and
equals 2™1 (Ardehali, 1992).

Criterion: Bell inequality for two qutrits (2002)
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We first assume there are two parties, A and B, are allowed to perform two
different three-outcome measurements, A; and A, for A, and B, and B, for B.
Denoting by P(A; = B; + k) the probability that the outcomes for parties A and B,
measuring A4; and B; , differ by k modulo d (in this case d=3), one can consider

the following Bell inequality:

Is=P(Ay = B))+ P(By= A, + 1)+ P(A; = By) + P(B, = A1) —
—P(A; = B;,—1)— P(By= A4,)—P(4,=B,—1)— P(B,= A, —1) < 2

(2.49)

The maximally entangled state of a bipartite system |¥) € (*®(C? reads:
@) = = %50 i) (2.50)

where |j) are the orthonormal bases in each subsystem (Acin, Durt, Gisin, Latorre,
2002).

Criterion: Bell inequality for three qutrits (2004)

We construct a Bell inequality for coincidence probabilities on a three three-
dimensional (qutrit) system. We studied above the Bell inequalities and the Clauser-
Horne-Shimony-Holt (CHSH) inequality, the latter being cast into a form more
amenable for experimental verification, were formulated or the simplest composite
quantum system, namely, a system of two two-dimensional particles (or two qubits).
Since then, Bell arguments have been generalized to more complicated situations,
either for a larger number of particles or for two particles of dimension greater than
two. For three two-dimensional particles, Greenberger, Horne, and Zeilinger
presented an elegant argument, also known as GHZ paradox, where the conflict
between classical theories and quantum mechanics was shown to be qualitatively
stronger in this case than for two qubits. For N (N > 3) two-dimensional particles,
Mermin, Belinskii, and Klyshko separately generalized the CHSH inequality and
proved that the quantum violation of this inequality increases exponentially with the
number of particles (Acin, Chen, Gisin, Kaszlikowski, Kwek, Oh, Zukowski, 2004).
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For two particles of dimension greater than two, it was found that the CHSH
inequality can be maximally violated in higher dimensional systems and this violation
continues to survive in the limit of infinite dimension. Moving to higher dimension,
very little is known for N-qudit systems, with N, d > 2. GHZ paradoxes have been
generalized, and some numerical results have been presented for three- and four-qutrit
systems. We present an interesting coincidence Bell inequality for three quitrits in the
case for which each observer measures two non-commuting observables (Acin, Chen,
Gisin, Kaszlikowski, Kwek, Oh, Zukowski, 2004).

We consider the following Bell-type scenario: three space-separated
observers, denoted by A, B, and C (or Alice, Bob, and Charlie), can measure two
different local observables of three outcomes, labeled by 0, 1, and 2.We denote by X;
the observable measured by party X and by x; the outcome with X=A, B, C (x =3,
b, ¢). If the observers decide to measure A, B; and C, , the result is (0, 2, 1) with
probability p(a; = 0,b; = 2,¢, = 1) (Acin, Chen, Gisin, Kaszlikowski, Kwek, Oh,
Zukowski, 2004).

The set of these 8 x 27 probabilities gives a complete description of any
statistical quantity that can be observed in such Gedanken experiment. We denote by

p(a; + bj + ¢, = ) the coincidence probability:
p(ai+ bj+ cx=7) = Yap=o12 P(@=abj=b,cg=r—a—D)
(2.51)

where all the equalities are modulo three (Acin, Chen, Gisin, Kaszlikowski, Kwek,
Oh, Zukowski, 2004).

Any Local Reality description of the Gedanken experiment, must satisfy some
constraints, known as Bell inequalities. The following condition is satisfied by all

Local Reality theories:

p(a,+by+c; =0+ pla;+b,+c,=1)+ play,+b;+c, =1)+
+p(a2+b2+C1=1)+ p(a2+b2+C2=O)_p(a2+b1+C1=2)_
pla; +b,+¢c; =2)— play+by+c,=2) < 3 (2.52)
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These are considerations to deterministic local models. This is because any
probabilistic model can be transformed into a deterministic one by simply adding

some additional variables:

p(a1+b1+C1=O)+p(a1+b2+C2=1)+p(a2+b1+C2=1)+
+p(a2+b2+C1=1)+ zp(a2+b2+C2=0)_ p(a2+b1+C1=2)—
p(a1+b2+C1 :2)_ p(a1+b1+C2 :2) S 3 (253)

This is the final form for our three-qutrit Bell inequality (Acin, Chen, Gisin,
Kaszlikowski, Kwek, Oh, Zukowski, 2004).

Taking c¢; = ¢, = 0 in Equation (2.53), one derives the two-qutrit inequality:

p(a; +b; =0)+ pla; + b, =1)+ plaz + by = 1) +p(a, + b, = 0) —
—play+by=2)—pla,+b;=2)— pla; +b,=2)—plaa+b,=2) < 2

(2.54)

After deriving the Bell inequality, our next step will be to look for quantum states and

measurements violating it. First, as initial state, we take:
[$) = = (1000} + [111) + |222)) (2.55)

which can be regarded as a generalization of the maximally entangled state of two

qutrits.

For this choice of setting, and the state (2.55), all the probabilities terms with a
positive sign are equal to 7/9, while the terms with negative sign are equal to 1/9, so
the inequality gives 6 x 7/9 -3 x 1/9 = 39/9 = 4.33 > 3 (Acin, Chen, Gisin,
Kaszlikowski, Kwek, Oh, Zukowski, 2004).

Criterion: Bell inequality for n qutrits (2004)

The Bell inequality (2.49) is also extended to arbitrary dimension. It is shown

that the combination of joint probabilities:
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[2]-1 .
k=0

(2.56)
for Local Variable Theory Models.

Starting from Equation (2.56) we can derive the corresponding Bell operator
and a larger violation is again found partially entangled stated of two qudits. Table 3
summarizes these results up to d = 8. Note that the difference between the violation
for |¥) and |¥,,) increases with increase in the dimension (Acin, Durt, Gisin,
Latorre, 2002).

Dimension Violation for  Maximal violation — Difference
W) (for |Wm,)) (%)
3 28720 20140 1.4591
- 2.89462 29727 2.6398
3 29105 3.0157 3.6133
] 29202 3.0497 44345
7 29272 30776 51411
8 29324 3.1013 5.7588

Table 3: Violation of the inequality (2.56) for two qudits, C* ® C¢ , up to d=8. The values
obtained for the maximally entangled state (2.50) and the maximal violation of the inequality
corresponding to the largest eigenvalue of the Bell operator are shown (Acin, Durt, Gisin,
Latorre, 2002).

Criterion: Bell inequality for qutrits by Acin (2004)

We consider the following Bell-type scenario. Three space-separated
observers A, B and C can measure two different local observables of three outcomes,
labeled by 0, 1 and 2. We denote by X; the observable measured by party X and by x;

the outcome with X = A, B, C (x = a, b, ¢). For example, if the observers decide to
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measure A;, B, and C,, the results is (0, 2, 1) with probability p(a; = 0, b; = 2,
c, = 1) . Acin proposed the following three parties Bell inequality, which in the

probability formalism it reads:

pa+by+c;=0)+pla;+b,+c,=1)+p(a,+by+c,=1)
+play + by +c, =1)+ 2p(ay + by + ¢, =0)
—play+bi+ci=2)—pla; +by, +¢c; =2)
—-pla;+b+c;=2) < 3

(2.57)

The analysis here is very similar to the CGLMP case: the maximal violation is

given by a quasi maximally entangled state |y) = (|000) + y |111) + |222))/

V2 +y? where now y = 1.186 . The quantum value is 4.37 (Acin, Chen,
Gisin, Kaszlikowski, Kwek, Oh, Zukowski, 2004).

Criterion: Multi-setting tight Bell Inequality for 2 qubits from Collins, Gisin
(2004)

Most of the inequalities mentioned above belong to the two setting Bell
inequalities, i.e., they are based on the standard Bell experiment, in which each local
observer is given a choice between two dichotomic observables. However, we could
extend the number of measurement settings. Actually, multi-setting Bell inequalities
may have many advantages in many protocols in quantum information theory
(Collins, Gisin, 2004).

We focus on Bell inequality for two-particle systems. The Bell-type scenario
involves only two observers and each of them measures M different local observables

of two outcomes + 1. We denote A; and B; the observables on the A and B party
respectively, withi, j=1, ... , M. The correlation function Q(4;B;) , in the case of a
local realistic theory, is then the average values of the products A;B; over many runs
of the experiment. We also denote Q(4;B;), Q(4;) and Q(B)) as Q;j, Qi and Qy; ,
respectively. Then the famous CHSH inequality:
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Icysy = Q11+ Q12+ Q21 — Q2 < 2 (2.58)

holds in any local realistic theory. The CHSH inequality is almost always the most
efficient one to prove a quantum state to be nonlocal. The first Bell inequality relevant
to the CHSH inequality was proposed by Collins and Gisin (2004). In the form of
joint probability, their inequality for 3-setting Bell inequality for 2 qubits reads:

Ieg =P(a; =0,by =0)+ P(a; =0,b, =0)+ P(a; =0,b; =0) +

+P(a, =0,b; =0)+ P(a3=0,b; =0)— P(b, =0) +
P(a; =0,b, =0) — P(a; =0,b3=0)— P(a3=0,b, =0)— P(a; =0) —
2P(b, =0) < 0 (2.59)

After some calculations, our new two three-setting Bell inequalities are:

-8 < I3 = Q21+ Q12 + Q31 + Q13 + Q32 + Q23 - Qll - Q22+
+ Q1o + Qo1 — Q20 — Qo2 =< 4 (2.60)

We also obtain two four-setting Bell inequalities:

—6 < I, = Qi1+ Q22 + Q12 + Q21 + Q14 + Qu1 — Q24 — Quz2—

- 2Q33 + Q31 +Q13 +Q32 + Q23 < 6 (261)
(Collins, Gisin, 2004).

Criterion: Multi-setting tight Bell Inequality for 2 qutrits (2004)

For two-qutrit system, the CGLMP inequality reduces to:
Icgimp = [P(A1 = By) + P(By =4, +1) + P(A; = B,) + P(B, = A)] -
—[P(Ay, =B, —1)+ P(By=4,)+ P(A,=B,—1)+ P(B,=A4,—1)] <2
(2.62)

where all the equalities in the probabilities are modulo 3 (Collins, Gisin, Linden,

Massar, Popescu, 2002).

We can find a new three setting Bell inequality for two qutrits, which is relevant to
the CGLMP inequality for two qutrits:
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I;= -2P(a; +b; =0)+ P(a; +b; =1)+ P(a; + by =2)+ P(a; + b, =0) —
~P(a;+b, =2)+ P(ay +b; =0)— P(a, +b; =2)+ P(a; +b3=1) —
—P(a;+b;=2)+ P(ag+b;=1)— P(az+b;=2)+ P(a, +b;=1) —
—P(ay; +b3=2)+ P(az+b,=1)— P(az+ b, =2)+ P(az+b3=0) —

—Plaz+b;=1) < 4 (2.63)

where all the equalities in the probabilities are modulo 3 (Deng, Zhou, Chen, 2009).

Criterion: CGLMP inequality for qudits (2004)

The CHSH inequality, which belongs to a class of mathematical formulations
broadly termed as Bell’s inequalities, allow us to distinguish the predictions of local
hidden variable theories (LHVs) and theories involving non-classical correlations,
specifically quantum theory in our case. In that experiment, we worked with a
maximally-entangled state (Equations 2.64, 2.65) with a dimensionality of d = 2, i.e.
the number of independent outcomes of the measurements. The maximum violation of

the CHSH inequality expected for such a bipartite, two-outcome experiment is S =

2v2 (Collins, Gisin, Linden, Massar, Popescu, 2002).

Bell states:

™) =% (H)alV)s = [V)alH)s)

[W*) = = (H)alV)s + V)alH)5) (2.64)
07 == (IH)alH)5 = V)alV)s)

0% == (IH)alH)5 + 1V)alV)s) (2.65)

The CHSH inequality can however be also generalized to experiments with d
> 2 given suitable modification to correlation function E (Equation 2.66). This
inequality has the feature that the expected theoretical maximum violation decreases
with the increasing d and converges to the classical limit of S=2 ford = . This

feature may suggests somekind of an approach to classicality with large particle
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counts. A violation of less than S = 2v/2 may indicate the system has d > 2 or it
might due to the non-maximally entangled nature of the state describing the quantum

system under test (Collins, Gisin, Linden, Massar, Popescu, 2002).
The correlation function is given by:

E(a,bj) = P(a;= +1,bj= +1)— P(a; = +1,b; = —1) —
—P(a;= -1,bj = +1)+ P(a; = —1,b; = —1) (2.66)

In 2002, Daniel Collins, Nicolas Gisin, Noah Linden, Serge Massar, and
Sandu Popescu came up with a set of Bell’s inequalities which came to be known
collectively as the CGLMP inequality. The inequality is generalized for arbitrary
high-dimensional bipartite systems with two measurement settings and d outcomes on
each side. What this means is that the violation increases with the dimensionality d of

the system.

In a bipartite system, suppose that both parties, Alice (A) and Bob (B) each
can carry out two possible measurements, A; or A,, and B, or B, , respectively. Each
measurement may have d possible outcomes denoted by 0, ..., d — 1 (Figure 7). The

expression for the CGLMP expression can then be written as:

o= S (1= 25 (PCA, = B, +10) + P(By = Ay + k4 1) +

P(A4, =B, +k) + +P(B,=A, +k)|—[P(A4;, =B, —k —1) + P(B, = 4, —
kK)+P(A,=B,—k—1)++P(B, =4, —k — 1]} (2.67)

where d > 2. For any dimensionality d, the CGLMP inequality has the classical limit

of 1; <2 (Collins, Gisin, Linden, Massar, Popescu, 2002).



Quantum Statistics and Data Analysis

— d-1— —d-1—

Setting B Setting A
(By.85) Ay .45)

1 — — 1

[ ]

Coincidence unit

d? Coincidences

Figure 7: A d-dimensional quantum system with two measurement settings A; and A, or B
and B,, and d outcomes on each side. The four different combinations of settings give in total
of 4d? possible outcome of coincidence patterns which can be used for calculating the
CGLMP inequality (Shun, 2015).

For bipartite system with two outcomes on each side, i.e. d = 2, the CGLMP

inequality expression I, can be written as:
I, =[P(Ay = B)+ P(By= A, + 1)+ P(A; = By)+ P(B, = Ay)] —
—[P(A4; = B;—1) + P(B,= A,)+ P(A, = B,— 1)+ P(B, = A, — 1)]
(2.68)
which further expands to:
ILL=PA,=0B,=0)+ P4, =1,B;=1)+ P(4,=0,B,=1) +

+P(A2=1,Bl=0)+ P(A2=O,Bz=0)+ P(AZ

1,B,=1) +

+ P(A4,=0,B,=0)+ P(4,=1,B,=1)— P(4,=0,B, =1) —

— P(A4,=1,B,=0)— P(4,=0,B,=0)— P(A4,=1,B,=1) —

— P(4,=0,B,=1)— P(4,=1,B,=0)— P(4,=0,B,=1) —
— P(A,=1,B,=0) =

= E(A1,B1) + E(Az;Bz) + E(ALBZ) - E(AZ;B1) = S (2-69)
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thus recovering the original expression for the CHSH inequality for the same

dimensionality (Collins, Gisin, Linden, Massar, Popescu, 2002).
Maximal Violation:

As the dimensionality of the Hilbert space increases, the maximal violation for
a maximally-entangled state:

1

|Pg) = 7 j'i=_01 1/74®1))5 (2.70)
also increases.

We mention that for d > 2, the inequality I; does not give the maximum
violation for a maximally-entangled state. Paradoxically, a maximum violation for I,
only occurs for the case of a non-maximally entangled state (Collins, Gisin, Linden,
Massar, Popescu, 2002).

We assess the CGLMP inequality on the case of a bipartite system with
dimensionality d = 4 , with two measurement settings at each party. This is the
minimum dimensionality where the behaviors of CHSH and CGLMP inequality
diverges. A and B can each perform two possible measurements, A, or A, and
B; or B,, respectively. Each measurement will yield 4 possible outcomes, giving a
total of 64 joint outcomes when all 4 possible combinations of A and B settings are

considered.

The CGLMP expression [; in Equation (2.67) is equivalent to the I,,,4 €xpression:

Izaa =5 (g —2) (2.71) (Collins, Gisin,

Linden, Massar, Popescu, 2002)
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d QM) 1
2 2.8284  2.8284 0.20711
3 29149 28729 (.29098
4 29727 28962 0.33609
5 3.0157 29105 0.36422
6 3.0497 2.9202 0.38342
7 3.0776 29272 0.39736
8 3.1013 29324 0.40793
9 3.1217 29365 0.41622
10 - 2.9308 0.42291
100 - 29668 0.47856
1000 - 29695 0.45427
oo - 29698 0.48491

Table 4: The summary of different types of violation with two measurement settings and d

outcomes. It has been shown that the maximum CGLMP violation I7***(QM) does not

)

+
correspond to maximally entangled input states. I‘L‘pd is the maximum violation for a

loF)

maximally entangled input state |<Z>;L). 122dd is the corresponding best known

I,,44 Violation given in Equation (2.71) (Shun, 2015).

Criterion: Bell function — Buhrman and Massar inequality — Bell operator
(2005)

We propose a generalized Bell inequality for two three-dimensional systems
with three settings in each local measurement. It is shown that this inequality is
maximally violated if local measurements are configured to be mutually unbiased and
a composite state is maximally entangled. This feature is similar to Clauser-Horne-
Shimony-Holt inequality for two qubits but is in contrast with the two types of
inequalities, Collins-Gisin-Linden-Massar-Popescu and Son-Lee-Kim, for high-

dimensional systems (Ji, Lee, Lim, Nagata, Lee, 2008).



Anestis Kosmidis

Now we derive a three-setting Bell inequality for two qutrits. Alice and Bob
now have three sets of measuring apparatus each, from which they each choose one
and perform a measurement. The three variables whose values are determined by the
measurements using Alice’s (Bob’s) three sets are referred to as 4y, A; and A,

(Bo, B; and B,), respectively. We assign three possible values of 1, o, and w? , where
w = e'?™/3 s a primitive third root of unity, to the outcome of the measurement on
each variable. As discussed for the CHSH inequality, the local realistic description
implies that the values of the variables are predetermined by the local hidden
variables 1. A; = A;(1) and B; = B;j(4) , and a statistical average of their

correlations is given as:

(A;Bj) = [dAp(2) A;(D)B;(A)

where p(}) is the probability density distribution over A:

p(M)>0and [dlp(d) = 1.

We consider the following Bell function:

BO) =5 T2, 2,32, o™ AT () BF(A) (2.72)

where A}, Bj* is the n-th power of A; and B; respectively and % are the local

hidden variables like the CHSH inequality (Ji, Lee, Lim, Nagata, Lee, 2008).

The constraint for the classical correlations using the above Bell function is:

-2 <B@) < 2.73)

N o

We examine the quantum violation of the three-setting Bell inequality for two
qutrits. The Bell operator corresponding to the classical Bell function in Equation

(2.72) is given as:
B=1y2_y2 y2 ,nijjir@pn 274
T 9 Zn=121=021=0 w l® j ( . )

where each operator A, (1§j) represents a measurement for A; (B;) on Alice’s
(Bob’s) qutrit. An orthogonal measurement of M € {4;, B;} is described by a

complete set of orthonormal basis vectors {|k),}. Distinguishing the measurement
outcomes is indicated by a set of eigenvalues. Let the set of eigenvalues be {1, o,

w?}, as the trichotomic variable M takes an element in the set by definition. The
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measurement operator is then represented by M = Y2_, w® |k)y (k| . Inthis
representation each trichotomic operator M € {4;, B;} is unitary, satisfying M* =1,
where 1 is the identity operator. We note the unitary operator M and its second power
M? have the same measurement basis just with different orderings of eigenvalues so
that the introduction of higher powers does not alter the number of measurement

settings in this section.

We remark the previous work by Buhrman and Massar, in which the authors
introduced a Bell function and determined its quantum upper bound allowed for the
general case of d-dimensional systems and d measurements settings when local
measurements on quantum entangled states are made. The quantum upper bound they
determined is “non-tight” in the sense that their Bell function cannot take on a value
greater than that, but it has not been proven that this upper bound can actually be
attained. Applying their result to our Bell operator of Equation (2.74), the quantum
upper bound is 3v/3 =~ 5.196 . On the other hand, it is proven that

33 cos(%) ~ 5.117 is the maximum value actually attainable (Buhrman, Massar,

2005).

We want to generalize the Bell function for qudits. So we generalize the Bell
inequality for qutrits to d-dimensional systems, namely qudits, with d a prime integer.
A measurement on a qudit produces one of d possible outcomes. For a generalized
Bell inequality for qudits, two observers are allowed each to choose one of d

variables.

We consider a classical Bell function for qudits:
B(A) = —= SAZ1 T 95 o™ AP (D) BF () (2.75)

where o isnow a primitive d-th root of unity, i.e. w = exp (127”) and 4;(1) =
w%® and B;(1) = 0”@ with a;(1) and b;(2) integer-valued functions of

hidden variables A (Ji, Lee, Lim, Nagata, Lee, 2008).

The statistical average of the Bell function, namely (B), satisfies the following

inequality:

_a* < (B) < d(2d-3)

d-1 — d-1 (2'76)
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where (B) = [dA p(2) B(A) , with a probability density distribution p(1) and A is a

collection of local hidden variables.

The quantum Bell operator, corresponding to the classical Bell function, is
given as:

A 1 _ _ _ PPN ~
B=—¥iiYi 2o o™ AT®B! (2.77)

where 4; and B, are local unitary operators with eigenvalues {1, o, w?, ..., 0%~}

(Ji, Lee, Lim, Nagata, Lee, 2008).

Our Bell inequalities show relatively small degrees of violations. Ratios of

quantum to classical maxima are given for d =3, 5, 17 as:

A 1.137 for d =3
B )
WIB) ~ < 1.156 , for d=5

(B) 1229 , for d=17

These ratios are smaller than 1.414 and 1.436, those of CHSH inequality for qubits
and CGLMP inequality for quitrits, respectively. However, it is interesting to observe
that the ratios increase with respect to the dimension once the nonlocality appears (Ji,
Lee, Lim, Nagata, Lee, 2008).

Criterion: Tight Bell Inequalities for many qubits (2006)

We present a family of tight Bell inequalities involving only two measurement
settings of each party for N > 2 qubits. Remarkably our new inequalities are violated
by some states which do satisfy all the standard Bell inequalities. Furthermore the
inequalities automatically recover all the standard ones for systems with less than N
qubits (Chen, Albeverio, Fei, 2006).

Their implementations are not only favorably within the reach of well-
established technology of linear optics, but also can provide stronger nonlocality tests
and contribute significantly to the reduction of experimental efforts (Chen, Albeverio,
Fei, 2006).

We consider N parties and allow each of them to choose independently

between two dichotomic observables A;, A;" for the j-th observer, specified by some
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local parameters, each measurement having two possible outcomes -1 and 1. We
define:

B = BN—1®%(AN +A'y) + Il1v—1®% (Ay —A'y) (2.78)

By_1 =

1 ki—1 kn—1—1
oN-1 Zsl,...,sN_1=—1,1S(Sl; ey SN-1) Zkl,...,kN_1=1,2 Sit 5N1111 Eom(k1, o kn_1)
(2.79)

where By_; is the quantum mechanical (QM) Bell operator of WWZB (Werner,
Wolf, Zukowski and Brukner) inequalities for N-1 particles and S(sy,...,Sy—1) can

be arbitrary function taking only +1 as values. Here Eqgpy(ky, ..., ky—1) =
(®Y= 0;(k;))  denotes the expectation value of the correlation function

®Y3 0;(k;) ,where 0;(1) = 4; and 0;(2) = A; with k; =1, 2. The notation

1y_, represents an identity matrix of dimension 2¥~1  with the meaning of “not

measuring” the first N-1 parties (Werner, Wolf, Zukowski, Brukner, 2002).

The WWZB Bell operator is defined by:

1 k k N
B}\/IVWZB =N Zsl,...,sN=—1,1 S(S1, -1 SN) Zkl,...,kN=—1,1 Syt SNN j=1 Oj(kj)

(2.80)

where S(sy,...,Sy) isan arbitrary function of s; (=+1),i=1, ..., N, taking
values 1, 0;(1) = 4; and 0;(2) = A; with k; =1, 2. Itis shown that local
realism requires: [(By) < 1 (Werner, Wolf, Zukowski, Brukner, 2002).

Noting that local realism requires |(By_1).yy| < 1, we obtain:

|<B>LHV| = % |<BN—1(AN + A,N) + (AN - AIN))LHV' <1 (2.81)

Infact Ay =+1 and Ay’ ==£1 for the observer N, one has either
|Ay + Ayl =2 and |Ay — Ay| = 0, or vice versa. This implies that Equation
(2.81) holds. For a given function of S(sy,...,Sy—1) , One can generate the full set of
members of a family by simply permuting different locations, or the measurement
orientations A; and A;' (Werner, Wolf, Zukowski, Brukner, 2002).
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Maximal Violation:

We presented the first family of tight Bell inequalities with all the advantages

above. It is shown that all the generalized GHZ entangled states, given by equation:
|Y) = cosa 0, ...,0) +sine|1, ...,1) (2.82)

where 0 <a <n/4, can violate the inequalities. All the Greenberger-Horne-Zeilinger
states of N qubits (up to local unitary transformations) are shown to violate the
inequalities maximally, by an amount that grows exponentially with N. Though the
new inequalities involve only the same setup as the standard Bell inequalities (with
only two measurement settings per site), they can reveal the nonlocality of the states
(2.82) with an extraordinary power. Remarkably all the GHZ states of N qubits (up
to local unitary transformations) are shown to violate the inequalities maximally, with

a violation factor that grows exponentially as 2(V=2/2  (Chen, Albeverio, Fei, 2006).

Theorem 2.83: All generalized GHZ states of many qubits violate a Bell
inequality, where the generalized Greenberger-Horne-Zeilinger (GHZ) states given by
Equation (2.82) (Chen, Albeverio, Fei, 2006).

Theorem 2.84: All the GHZ states violate the Bell inequality (Equation 2.81)
maximally (Chen, Albeverio, Fei, 2006).

The result of Theorem (2.83) is remarkable. Our inequalities only involve the
same setup as the standard nonlocality testing experiment by using only two
measurement settings per site, and are immediately feasible due to rapidly developing
technology for generation and manipulation of multiparticle entangled states in linear

optical, atomic or trapped ions systems (Chen, Albeverio, Fei, 2006).

For N even, the corresponding Mermin inequalities presented above, are
combinations of all the correlation functions and have a total of 2V terms. These tight
inequalities (Equation 2.78) require only 2¥~1 + 2 terms, as By_, is a combination
of 2N=2 correlation functions in this case. Therefore these tight inequalities demand
asymptotically only half of the experimental efforts, as compared with the standard
ones, for N even (Chen, Albeverio, Fei, 2006).
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It is shown that these tight inequalities reveal violation of local realism for
some class of states, while the standard Bell's inequalities fail to detect. Furthermore
the inequalities can be maximally violated by GHZ states with an amount that grows
exponentially as 2(V=2)/2 and all the standard inequalities for less than N parties

can be automatically recovered (Chen, Albeverio, Fei, 2006).

Maximal Violation for two qudits:

We investigate the maximal violation of Bell inequalities for two d-
dimensional systems by using the method of Bell operator. The maximal violation
corresponds to the maximal eigenvalue of the Bell operator matrix (Chen, Wu, Kwek,
Oh, Ge, 2006).

The eigenvectors corresponding to these eigenvalues are described by
asymmetric entangled states. We estimate the maximum value of the eigenvalue for
large dimension. A family of elegant entangled states 1), that violate Bell
inequality more strongly than the maximally entangled state but are somewhat close

to these eigenvectors is presented (Chen, Wu, Kwek, Oh, Ge, 2006).

These approximate states can potentially be useful for quantum cryptography
as well as many other important fields of quantum information (Chen, Wu, Kwek, Oh,
Ge, 2006).
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Table 5: Bell expressions, where g = Tsirelson’s bound ,

maximal eigenvalue of Bell operator matrix ,

maximally entangled state (Chen, Wu, Kwek, Oh, Ge, 2006) .

Y>app = approximate states ,

Y>mes =

V>eig maximal violation =

Criterion: Experimentally testable state-independent quantum contextuality

(2008)

Local hidden variable theories are a special type of non-contextual hidden

variable (NCHV) theories, defined as those where the expectation value of an

observable A is the same whether A is measured with a compatible observable B, or

with a compatible observable C, even though B and C are incompatible. The Kochen-
Specker (KS) theorem states that no NCHV theory can reproduce QM (Cabello,

2008).

These proofs apply to systems described by Hilbert spaces of dimension d > 3

and are state-independent (i.e., valid for any state). Quantum contextuality is related

to quantum error correction, random access codes, quantum key distribution, one-

location quantum games, and entanglement detection between internal degrees of

freedom. There are “KS inequalities”, which are based on the assumption of

contextuality and on some QM predictions, and therefore are not independent of QM
(Cabello, 2008).

A natural question is the following: Given a physical system described in QM

by a Hilbert space of dimension d, is it possible to derive experimentally testable
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inequalities using only the assumption of noncontextuality, such that any quantum
state violates them (Cabello, 2008)?

Given a physical system described in Quantum Mechanics by a Hilbert space
of dimension d, we suppose that 4;; is an observable with two possible results: -1 or
+1, and two observables A;; and Ay, are compatible if they share a subindex (i.e. i
=k,or i=1,or j=k, or j=1). When we prepare an ensemble of systems and

measure 4 compatible observables A;;, A;x , A and A, in each system,

ij
(A;jAiAyAim) denotes the average of the products of their results. In any theory of
NCHV (Non-Contextual Hidden Variable) in which the observables A;; have

definite results, the following inequality must be satisfied:

—(A12416417418) — (A12423A28439) — (A33A34437439) —
—(A344454474A48) — (AssAseAsgAse) — (A16As6467469) —
—(A17437447467) — (A18428A48A58) — (A20A30450460) < 7
(2.85)

This inequality can be proven as follows. We define a« = —A;,4,44,7415 — ... —
Aj9A39AseAgy . If we generate all the 218 possible values of o, we will find that a = 7
is the maximum. Therefore, if we can measure o on different systems, the average
satisfies (a) < 7 . We cannot measure a on a single system, because a contains
incompatible observables. However, since we assume that each 4;; would give the
same result in any context, we can measure subsets of compatible observables on
different subensembles prepared in the same state and then inequality (2.85) is valid
for the averages over each subensemble. This derivation is similar to a standard
derivation of a Bell inequality. The only difference is that in a Bell inequality we
assume that the result of a measurement of A, is independent of spacelike separated
measurements, while here we assume that it is independent of compatible

measurements.

Now consider a physical system described by a Hilbert space of dimension d =4 (e.g.,
two qubits or a single spin-3/2 particle), and the observables represented by the

operators:

Aij = 2|vy) (vl — 1



Anestis Kosmidis

where v;; is a unit vector and 1 denotes the identity. Each observable 4;; has two
possible results: -1 or +1. If v;; is orthogonal to vy, , then A;; and A;; are compatible.
Therefore, 4 orthogonal vectors define 4 compatible observables. 18 vectors v;; with

the orthogonality relations assumed in inequality (2.85) are presented in Figure 8

below.
v ,=(1,0,0,0)
v=(0,0,0,1) v 4=(0,1,0,0)

1,5=(0,1,1,0) [ v,=(0,0,1,1)
vy, =(0,1,-1,0) v =(0,0,1,-1)
v.¢=(1,0,0,1) v =(1,-1,0,0)
v, ~(1,1,1,-1) ve=(1,1,-1,-1)
v=(-1,1,1,1) v.=(1,1,1,1)

ve=(1,1,-1,1) " v=(1,-1,1,-1)

ve=(1,0,1,0) vy=(1.0,-1,0)
ve=(0,1,0,-1)

Figure 8: Each dot represents a unit-vector v;; . Each of the 6 sides of the regular hexagon

and each of the 3 rectangles contains only orthogonal vectors. Note that, for clarity’s sake,
most labels have no unit length (Cabello, 2008).

Now we prove that for d=4 Quantum Mechanics violates (2.85) for any state.
According to QM, if one measures on the same system 4 compatible observables A;;
corresponding to 4 orthogonal vectors v;; , the product of their 4 results will always
be -1, because A;;A;xAyAim = —1 . Therefore, using the vectors of Figure 8, QM
predicts that the experimental value of the left-hand side of inequality (2.85) must be

9 in any state, which is clearly beyond the bound for any description based on

noncontextual hidden variables (Cabello, 2008).

Suppose that P;; with ie{1, 2,3} and je{4,5, 6} isan observable with
two possible results: -1 or +1, and two observables P;; and Py; are compatible if

they share a subindex. Using the method described before, it can be easily proved that
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any NCHV theory in which the observables P;; have definite results satisfies the

following inequality:

(P14P15Pig) + (PaPysPog) + (P34P3sPsg) + (P1aPpsPas) +
+ (P15Py5Ps35) — (P1gPoePsg) < 4 (2.86)
However, if we consider a two-qubit system and choose the following observables:
Puu=21, Pis=22, Pis =21 ® Z2,
P2 =Xz, Ps=X1, Ps=X1® Xz,
Psa=Z1® X2, P3s=X1® Z2, P3s=Y1® Y2 (2.87)

where e.g. Z; denotes 02(1) , the Pauli matrix Z of qubit 1, then, according to

QM, the left-hand side of Equation (2.86) must be 6, since P;,PicP¢ =

Py4P25Pyg = P34P35P3g = P14PaP3y = PisPpsPss = —PigPaeP3e = 1, Where 1
denotes the identity. Therefore, QM violates inequality (2.86) for any two-qubit state
(Cabello, 2008).

Suppose that the 4+2n observables A,, ..., A4, B4, ..., By, Cy1 , ..., C,, with n (odd) >3,
have only two possible results: -1 or +1. Assuming that each of the following
averages contains only compatible observables, using the method described before, it

can be easily seen that any NCHV theory satisfies the following inequality:

n n n n
BB, | [ B+ (aBiC, | [eo+ aaciB, [ [eo+ wacic, | [ B0 -
i=3 i=3 i=3 i=3

However, if we consider an n-qubit system, with n (odd) > 3, and choose the

following observables:
A = Z,07,07:® ...QZ,
A, = Z,0X,QX:3Q ... X,
Az = X,QZ,R0X:Q ... X,

A4 = X1®X2®Z3® ®Z‘l’l
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then according to QM, the left-hand side of inequality (2.88) must be 5, since
A1B1By [1i=3 B = A3B1C; T1i=5C; = A3C1B; 125 G = AyC1Co T1i23 B =

— A;A, A5 A, = 1. Therefore, QM violates inequality (2.88) for any n-qubit state with
n (odd) > 3 (Cabello, 2008).

The above 3 experimentally testable inequalities are valid for any NCHV
theory and violated by any quantum state. They combine the most celebrated
properties of the Bell inequalities, independence of QM and experimental testability,
with state independence, the most celebrated property of the KS theorem. One of
these inequalities seems particularly suitable to experimentally test the state-
independent violation predicted by QM (Cabello, 2008).

Criterion: Zohren and Gill inequality for 2x2xd Bell scenario (2008)

Entanglement and nonlocality in general, there have been many studies of
generalized Bell inequalities. These include the Mermin inequality for multiple qubits
(n > 2), the Collins-Gisin inequality for multiple measurements (m > 2), and the
Collins-Gisin-Linden-Massar-Popescu (CGLMP) inequality for higher-dimensional
systems known as qudits (d > 2). For n =2 and m = d > 2 exhibits the potential to
reduce the requirements to close the detection loophole. Here, n denotes the number
of parties (e.g. Alice, Bob). Each party performs one of m measurement choices,

with each measurement registers one of d outcomes.

The CGLMP inequality (forn =m =2 and d > 2), which takes the form:

Ia = ZE: (1 - ;—_kl) [P(k) —P(-k—-1)] < 2 (2.90)

where P(k) =P(A, =B, +k)+P(B,=4,+k+1)+P(A,=B,+k)+

P(B, = Ay + k) (2.91) and the measurement settings are labeled by 1 and 2 for
Alice’s (or Bob’s) choice of measurement, with outcomes A; and A, for Alice (and
B, and B, for Bob) and in a slight abuse of notation, the joint probability p(4, = By)

indicates the probability that Alice and Bob’s measurement outcomes are identical.

Here the joint probabilities are defined for outcomes A, =0, 1, ...,d-1 and

the addition is performed modulo d. These can expressed as:
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P(Aq = By+k)= X920 P(As = j, B, =j+k modd) (2.92)
It is also studied a closely related inequality proposed by Zohren and Gill:
P(A, < By)+ P(B, < A+ PL(A; < B)+ P(B1< 4;) = 1 (293

where P (A, < Bp) = Xicj P.(i,jla,b) and P, (i,jla,b) =
Y2 p(1) P(ila, ) P(j|b,A) (local realistic theory) (Zohren, Gill, 2008).

These two inequalities (2.92, 2.93) have the remarkable property that the violation
increases with increasing d (Polozova, Strauch, 2016).

Criterion: Bell ratio — Bell operator (2016)

We reproduce some known results in a novel way and find some multipartite
Bell inequalities for systems having three settings and three outcomes per party. We
construct Bell inequalities for systems composed of several subsystems composed by
more than two levels each. In particular, we focus our attention on quantum systems
consisting on qutrits. Inequalities for three outcomes have been written more often in

terms of probabilities but they can also be treated with expectation values.

We extend this formalism in order to build new inequalities for three outcomes
and a different number of parties and find its classical and quantum bounds for qutrits
in a semi-systematic way. We find some regular patterns for the coefficients of the
inequalities and for the settings and states that maximally violate these inequalities.
This mechanism is potentially generalizable to other dimensions (Alsina, Cervera,

Goyeneche, Latorre, Zyczkowski, 2016).
Bell Inequalities for two Outcomes and two parties:

In the case of two parties the only relevant Bell inequality is the one of
Clauser, Horne, Shimony and Holt. It is obtained out of the following Bell

polynomial:

BCHSH = ab+ab’+a’b—2a’b’ (2.94)
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where a,a’=+1 and b, b’ ==+1 are the possible outcomes detected by observers

Alice and Bab, respectively. Note that equation (2.94) can be factorized as:
BcHsH = a(b+b’)+a’(b—b’) (2.95)

so one of the terms is +2, while the other one is equal to zero, which means that the
maximum value that can be obtained with a local realistic theory is (Beusu)ir = 2 -
In a more general case, this classical bound can be obtained by computing the value of
the Bell polynomial with all possible outcomes for a, a’,band b’ and selecting its

maximum (Alsina, Cervera, Goyeneche, Latorre, Zyczkowski, 2016).

In quantum mechanics, the variables a, a’ and b, b’ are represented by
Hermitian operators acting on the Hilbert spaces #, and H, , respectively. For
dichotomic variables the operators satisfy a?=a’2=b?>=b’2=1 , because the
measurement operators a, a’, b and b’ have eigenvalues +1. The quantum Bell

operator reads then:
BCHSH = a®b +a®b’ +a’®b —a’®b’ (2.96)

where ® denotes the Kronecker product. The quantum bound (Bcysu)om
corresponds to the maximal eigenvalue of all possible Bell operators (2.96) satisfying
the previously stated conditions. A Bell operator B defines a Bell inequality if
(B)Lr < (B)oum - In the case of CHSH inequality, it is proven by Tsirelson that the
maximum quantum value is (Bcysy)om = 2 V2 (Alsina, Cervera, Goyeneche,

Latorre, Zyczkowski, 2016).

We study the ratio associated to a Bell polynomial:

R(B) = Blem (2.97)

(B)LR
as it quantifies the strength of the inequality generated by the Bell operator B. Note
that a Bell inequality is characterized by the ratio R(B) > 1. For example, for the

CHSH inequality we have R(Bcysy) = V2 (Alsina, Cervera, Goyeneche, Latorre,
Zyczkowski, 2016).

Quantum states producing R(B) > 1 are non-local in the sense that those ratios
cannot be reproduced by considering a local hidden variable theory. As consequence,
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non-local quantum states cannot be fully separable. However, entanglement and non-
locality are different concepts. Indeed, some entangled states do not violate any Bell
inequality. Furthermore, states producing the maximal ratio are typically highly

entangled (Alsina, Cervera, Goyeneche, Latorre, Zyczkowski, 2016).
Three parties:

In the case of three qubits (Alice, Bob, Charlie) the most general symmetric Bell

operator can be written as:
B; = z,(a®bQ®c) + z3(a’'®b'®c’) + z,(a®bRc’ + a®b'®c + a'®bRC) +
+ 7,(a®b'Q®c’ + a'®bRc’ + a’'®b'RC) (2.98)
where z,, ..., z3 € R. The following values for z; :
zM ={zy, 21,25, 253" = {0,1,0,—1} (2.99)
lead us to the 3-qubit Mermin operator:
M; = (a®b®c’ + a®b'®c + a'®bQc) — (a'®b'Qc’) (2.100)
having a square:
M2 = 4l pc — ([a,a']Q[b, 'R + [a,a'l®15Q]c,c'] + 1,8[b,b'1®[c,c'])
(2.101)

Bell inequalities generated by operators like M5 are called multipartite Bell

inequalities (Alsina, Cervera, Goyeneche, Latorre, Zyczkowski, 2016).

Criterion: CGLMP inequality — Bell operator Cnsa (2016)

Two parties with hermitian operators and 3 Outcomes:

A Bell inequality for two parties, two settings and d outcomes is known as
CGLMP inequality. In the case of three outcomes, as we have seen above, the

inequality is given by:
pa=b)+pb=a"+1)+pl@ =b)+pb'=a)—pla=b—-1)—

—p(b=a')—pla'=b'-1)-pb'=a-1) < 2 (2.102)
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where the possible outcomes are {0, 1, 2} and the sum inside probabilities is modulo

d = 3. This Bell inequality can be associated with the following Bell operator:
Cyp3 = 2 —3(a? +b'?) +% (ab+ a%*b —a'b—a'?b — ab? + a’b? + ab’ — a?b’
+a'b’ +
+a'?b' +ab’? —a'b’?) + 2 (a?b? —a’b? +a?b? + a’?h'?)  (2.103)

where the notation C,,; stands for n parties, s settings and d outcomes (Alsina,
Cervera, Goyeneche, Latorre, Zyczkowski, 2016).

2
The quantum value is given by (Caz3)om = 2(53’/ ) ~ 2.9149 for the optimal state:

(J00)+ y|11)+ |22))

) = =
where y = LEERL LR 0.7923 . The violation rate for this quasi Bell state reads:

2

2
R(Cyy3) = STV ~ 1.4547 (Alsina, Cervera, Goyeneche, Latorre, Zyczkowski,

2016).

Larger number of parties:

In the case of four parties, two settings and three outcomes we have found the

following symmetric Bell operator:

Cu23 = [2(abcd) + (a’bcd + ab'cd + abc'd + abcd’) +
+w(a'b’'cd+a'bc’'d+ a’'bcd’ + ab’c'd + ab’cd’ + abc'd") +
+(@@'b’'c'd+a'bc’'d +a'b’'cd’ +ab'c’'d")+2 (a’'b'c'd")] (2.104)

which produces (Cyz3).2 = 3V3 = 5.19 , (Caa3)om = 9.766 and R(Cyy3) =

1.879 for the optimal settings:

A=B=C=D=X

A=B=C=D"=Z (2.105)
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which are again mutually unbiased settings. The optimal state has entanglement
properties equivalent to those of the GHZ of four parties and three settings:

|GHZ,3) = (|0000) + |1111) + |2222))/V3 .

Itis noted X and Z are the generators of the Weyl-Heisenberg group which is

formed by the generalized unitary Pauli matrices:
0 0 1 1 0 O

X = <1 0 0) , Z = (0 w O) (2.106)
0 1 0 0 0 w?

where w = e?™/3 (Alsina, Cervera, Goyeneche, Latorre, Zyczkowski, 2016).

For 6 parties we have also found a symmetric Bell operator. To simplify the
notation, the polynomials having terms with the same number of primes are denoted

by its number of primes in parenthesis, for example:

(1") = a'bcdef + ab’cdef + abc’ def +abcd’ef + abcde’f + abcdef’ .
In this notation, the 6 parties operator reads:

Corzs = —w(O)+(1A)-2)+w@B)—-@")+ () —w(6) (2.107)

For this inequality, (Cez3)1r = 9V3 = 15.589 , (Cez3)om ~ 32.817 and
R(Cs,3) = 2.105 , with optimal settings. The maximal violation is given by a quasi
GHZ state, as for the case of 2 and 3 qutrits (Alsina, Cervera, Goyeneche, Latorre,
Zyczkowski, 2016).

T Qutrits| 2 3 4 5 i
([Bla)Lr 3 |33 [3V3] 0v3 | 9V3
{[B]a ViR —2v3|-3v3|-6v3| -0v3 |—18+3
([Bl)Lr 3 3 g 9 27
([Bla)i g 3| -6 | -9 | —18 | —27
([Bl=)oum 2.524 | 5.058 | 9.766 |15.575 | 32.817

R 1. 457 | L.6R6 | 1.879 | 1.731 | 2.105
Settings MOS | MUB | MUB | Num. | MOS
P 0347|0342 1/3 | 0.851 | 0.334

Table 7: Main results for inequalities from 2 to 6 qutrits, where it can be seen that the

classical patterns match perfectly, while the 5-qutrit inequality appears not to follow the
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qguantum pattern. Here, (B),z and (B)E;) denote the maximum and minimum classical
value for the optimizations of anti-Hermitian or Hermitian part of the operator, respectively.
The-quantity that we take as the extremal classical bound is marked in bold, and ([B]) om
stands for its corresponding quantum value, where x = A for an even number of qutrits and
x =H for an odd number of qutrits. R = (B),y/(B),g and Settings denotes the optimal
settings. P denotes the purity of the [n/2] party reductions of the optimal state and Num.
means numerical approximate solution and italic font in the 5-qutrits case is written to note
that this case does not follow the same patterns of the others. We remark that optimal values
appearing in this table have been achieved by optimizing over qutrit systems (Alsina,
Cervera, Goyeneche, Latorre, Zyczkowski, 2016).

Criterion: 3-qubits set Bell inequalities (2017)

We consider a three-qubit system, with a qubit each with Alice, Bob and
Charlie. In the Bell inequalities that we introduce, two of the parties will make two
measurements, while the third party will make only one measurement. This third party
can be either Alice, Bob, or Charlie. A general state need not have any symmetry,
therefore we will be considering a set of Bell inequalities, rather than one inequality.
The one measurement by one of the parties is necessary. We note that one of the two
parties makes only one measurement. We list the set of six inequalities. In this list, the
left-hand side should be thought of as the expectation value of the observables. In the
first and third inequalities, Alice makes one measurement given by observable A4;,
Bob measures the observables B; and B,, and Charlie measures observables
C; and C, .These are dichotomic observables, with values {-1, 1}. In the inequalities
(2.108b) and (2.108f), Bob measures only one observable, B, while in the
inequalities (2.108d) and (2.108e), Charlie measures only one observable, C;. Other
parties measure two observables:

AB,(C, +C) + By(C;—Cy) < 2 (2.108a)
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(A4, + A)B, + (A, — A,)B,C, < 2 (2.108¢)
(4, + A,)C, + (A, — A))B,C, < 2 (2.108f)

We obtain the bound for the first inequality (2.108a) and the analysis is similar
for the others. Let us call the corresponding Bell operator for the first inequality
(2.108a) as:

B3 = AlBl(Cl + CZ) + BZ (C]__Cz) (2109)
If we take the square of this expression we get:
B% = 4]1 + Al[Cl ) CZ] [Bl ,Bz] (2110)

Here, we have used A% = B? = BZ = C = CZ =1 . We know that, for two bounded

operators X and Y :
XY < 21X1 Y]] (2.111)

where ““|| || is the sup norm of a bounded operator. Using this relation, we notice

that the maximum value will be obtained when B2 is 81 and hence ||B3|| < 2v?2
(Das, Datta, Agrawal, 2017).

Proposition 1: All generalized GHZ states violate all six inequalities (2.108a —
2.108f) of this set (Das, Datta, Agrawal, 2017).

Proposition 2: Any separable pure three-qubit state obeys all the inequalities
within the set (Das, Datta, Agrawal, 2017).

Proposition 3: All biseparable pure three-qubit states violate exactly two
inequalities within the set and the amount of maximal violation are same for both
(Das, Datta, Agrawal, 2017).

Proposition 4: For all genuine tripartite entangled states, we have violation
within the set (Das, Datta, Agrawal, 2017).

It is shown that the more entangled a generalized GHZ state is, the more will
be the violation. This establishes a relation between nonlocality and entanglement for
this class of states (Das, Datta, Agrawal, 2017).
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Criterion: multi-qubits set Bell inequalities (2017)

We have established that our set of inequalities are violated by any entangled
three-qubit state. We can generalize this set of inequalities to n-qubit states. We have
to distinguish between two cases, odd number of qubits and even number of qubits.
Starting from the operator, of which GHZ state is an eigenstate, one can construct
different Bell inequalities. For even n, there will be a set of n inequalities, while for
odd n, the number will rise to n(n-1). The set is larger for odd number of qubits,
because we have choice of making one measurement on any of n qubits, while in the
case of even n, two measurements are made on all qubits. Therefore, we have to
construct different types of inequalities for even and odd number of particles. We

have already seen that the GHZ state of three qubits is eigenstate of the operator:

V2 (0,®0,R0, + 0,80,81) with the highest eigenvalue 2v?2 .

This form of the operator can be generalized for any n-qubit GHZ state, when

n is odd. It is noted that n-qubit GHZ states is the eigenstate of the operator:

V2 (0,80,80,Q ... Q0™ " + 6,80, ... Qc" D 'Q1) (2.112)

with the highest eigenvalue 2v/2 . So, like the three-qubit case, we have to consider
non-correlation Bell inequalities, when n is odd. The first two Bell inequalities
(2.108a) and (2.108b) can be easily generalized for n-qubit pure states as:

A1 A Az A A . (Ay + A') + ALA A LA s (A, —A") < 2 (2.113)
and
A Az AL As .. (Ay + A) + AL A LA A A s . (A, —A'y) < 2 (2.114)

Here, A; and A;' are two dichotomic observable for i-th party. In these
inequalities, one measurement has been made on first qubit. Similarly, one can make
single measurement on (n-2) other qubits. This will lead to (n-1) inequalities. We
can write n such (n-1) inequalities with (4; + 4;") for i-th qubit, giving a set of total
n(n-1) inequalities. For three qubits the number of inequalities in the set is twelve
(Das, Datta, Agrawal, 2017).

For finding maximal violation, we consider all allowed A; and A;’ therefore

their positions in the inequalities can be interchanged. The above set of inequalities
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can be used to characterize the entanglement of n-qubit states for odd n. In the case
of generalized n-qubit GHZ states, any one of these generalized inequalities is
enough. One can show that for odd number of qubits these non-correlation Bell

inequalities are violated by all generalized GHZ states with maximum violation of
2+/2 for the conventional GHZ state. Situation changes when one considers GHZ like
states with even number if qubits. Because now, like the Bell states, the conventional
GHZ state of n qubits (n is even) is the eigenstate of the operator:

V2 (6,80,80,Q ... Q01" + 6,80, ... Q5" Y ™ ®a,) with highest eigenvalue
2+/2 . This suggests that correlation Bell inequalities are required in this case. For

example, we can generalize the first correlation Bell inequality as:
(AL + A DAAZALAs A+ (A — A DA A A A LA, < 2 (2.115)

Proposition 5: Multiqubit extension of the inequalities are violated by
multiqubit generalized GHZ states (Das, Datta, Agrawal, 2017).

Criterion: Coefficient matrix for Bell inequalities (2018)

Multi-setting Tight Bel Inequality for 2 Qubits:

We focus on Bell inequality for two-particle systems. The Bell-type scenario
involves only two observers and each of them measures M different local observables

of two outcomes + 1. For simplicity and convenience, we denote X, ;, , X,,, as Ay
and By (k=1, - - - ,M)respectively. The correlation function Q(A4;B;) , in the case
of a local realistic theory, is then the average values of the products A;B; over many
runs of the experiment. We also denote Q(4;B;), Q(4;) and Q(B;) as Q;; , Q; and
Qo respectively. Then the famous CHSH inequality, as we have seem above from

the inequality (2.59) :

Iepsy = Q11+ Q2+ Q21— Qg < 2

and in the form of joint probability, the inequality (2.60) reads:

ICGZP(a1=O,b1=O)+ P(alzo;b220)+ P(alzolb3:0)+
+P(a2:0,b1:0)+ P(a3:Opb1:O)_P(b2:O)+
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P(a, =0,b, =0) — —P(a; =0,b3=0)— P(az =0,b, =0) —
The four-setting Bell inequality (2.62):

_6 S 14- = Qll+ QZZ + Q12 + Q21 + Q14- + Q4-1 - Q24 - Q4-2_

- 2Q33 + Q31+Q13+Q32 + Q23 =< 6

The last inequality (2.62) can be written in the following way:

L A Az A3 A4
B, 1 1 1
L, = | B, 1 1 -1 (2.116)

1
1
B311—20/
B/ 1 -1 0 0

Here, the coefficient in the matrix indicate the coefficients of the

corresponding expectation values. Using the same method, we find many six-setting

Bell inequalities for two qubits. We present only one of them whose correlation

coefficients are regular with respect to the CHSH inequality and inequality (2.62). In

the matrix form, it reads:

A, A, A A, As  Ag
B 1 1 1 1 1 1 \
|B 1 1 1 1 1 -1|
I, =B 1 1 1 1 -2 0 | (2.117)
B/ 1 1 1 -3 0 o0 |
B4/ 1 1 -2 0 0 0/
B/ 1 -1 0 0 0 0

Inspired by previous inequalities, it is not difficult to guess the general form of a set

of even setting Bell inequalities:

IZn -
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4, Ay Az .. Ap Ans1 Apiz v Aoz A1 Apn
BgwAgyiag 1 | ... 1 1 1 e 1 1 1
€H.01 1 AL - 1 1 1 o1 Y|
By——1——1—=1=% ... 1 1 1 1 —2 0
B, 1 1 1 - 1 1 —(n-1) - 0 0 0

Bpey 1 1 1 - 1 —n 0 0 0 0

Buuy 1 1 1 « —(n=1) 0 0 0 0 0

By 1 1 1 . 0 0 0 0 0 0

By 1 1 =2 0 0 0 w0 0 0

B,y 1 -1 0 - 0 0 0 w0 0 0
< n(n+1) (2.118)

More generally, if we set A2n and B2p ininequality (2.118) equal to 1, then most

of, not all, the reduced inequality: 13¢%4c¢? < n(n+ 1) is tight (Deng, Zhou,
Chen, 2009).

Comments on the criteria:

The tests become more and more stringent.

1) The fundamental test is contextuality which is applicable for any quantum system.
There is always an appropriate collection of operators that can decide at the most
basic level whether a system can be described by quantum or classical probability

theory.
2) The second test is entanglement that requires two or more couples of systems.

3) The third test is non-locality expressed as violation of the Bell inequality which is
a special case of the second test for many applications. Non locality and entanglement

are more useful.
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CHAPTER 2: SELECTED APPLICATIONS OF QUANTUM
STATISTICS FOR THE ANALYSIS OF DATA SETS

2.1 Example: 3-Qubits Wigner-d’Espagnat inequality

Theorem 1 (Wigner-d’Espagnat inequality):

We consider three events A, B, I' (measurable subsets) of the sample space Q and we
denote by A¢ the complementary event of A, then the following inequality holds for
the probability measure P (Wigner 1970, d’Espagnat 1979, Bell 1981, Khrennikov
2016):

P(ANB)+P(B°NI)=P(ANT) (11).

Proof:

P(ANB)+P(B°NT) =

=P((ANB)NN)+P((B°NINHNN) =
=P(ANB)N[TUT)+P((B°NI)N(AUA))=
=P((ANBNIMUMANBNT)+P((B°NI'NA)U (B NT NA%))=
=P(ANBNT)+ PANBNT )+ PB°NTI'NA)+P(B°NTINA°) =
=P((ANT)NB)+ PANBNT)+P((ANT)NB)+P(B° NI NA°) =
=P(ANnT)+ PANBNTI®)+PB‘NI'nA)= P(ANT)

because P(ANBNT€)>0and PB°NT'NA°)>0. m

Remark 1: Importance of the Wigner-d’Espagnat inequality

The violation of Wigner-d’Espagnat inequality indicates that the observed
phenomenon can not be modeled by the Kolmogorov probability and it has to be
modeled by quantum probability (Wigner 1970, d’Espagnat 1979, Bell 1981, 1987,
Khrennikov 2016). The key point here is that quantum systems can exhibit
correlations that are not analogous to classical theories. If Wigner-d’Espagnat
inequality holds for a data set, we shall employ classical probability models. On the
contrary, if for a given data set Wigner-d’Espagnat inequality fails, we have to

employ non-Kolmogorov probability models, like quantum probability models.
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Example 1:

We shall the validity of the Wigner-d’Espagnat inequality for 5226 observations of 3

binary variables R, S and E, which correspond to confirmation of substance use (R),

existence of phenotypic trait (S) and employment relationship (E). We compute the

binary correlations between (R,S), (R,E), (S,E). To simplify the notation and relate

directly with previous notation of events, we denote the events as follows:

{(R=0}=A4,{R=1}=4% {§=0}=B,{S=1}=B, {E=0}=T,{E=1}=TF¢.

The contingency matrices and the joint empirical probability matrices are:

Contingency table of Variable S Marginal events of R

Variables R, S {S=0}=B | {S=1}=B°¢

VariableR | {R=0}=4 | 333 559 892
{R=1}=A° | 955 3379 4334

Marginal events of S 1288 3938 5226

Table 8

Joint Probability Distribution | Variable S Marginal Probabilities of R

of Variables R, S {S=0}=B | {S=1}=B¢

VariableR | {R=0}=A4 | 0.0637 0.1070 0.1707
{R=1}=A° | 0.1827 0.6466 0.8293

Marginal Probabilities of S 0.2464 0.7536 1

Table 9
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Contingency table of Variable E Marginal events of R
Variables R, E {E=0}=T | {E=1}=T°
Variable R {R=0}=A | 349 543 892
{R=1}=A° | 766 3568 4334
Marginal events of E 1115 4111 5226
Table 10
Joint Probability Distribution | Variable E Marginal Probabilities of R
of Variables R, E {E=0}=T | {E=1}=T°¢
VariableR | {R=0}=A4 | 0.0668 0.1039 0.1707
{R=1}=A° | 0.1466 0.6827 0.8293
Marginal Probabilities of E | 0.2134 0.7866 1
Table 11
Contingency table of Variable E Marginal events of S
Variables S, E {E=0}=T | {E=1}=T°
Variable S {S=0}=B | 377 911 1288
{S=1}=B¢ | 738 3200 3938
Marginal events of E 1115 4111 5226
Table 12
Joint Probability Distribution | Variable E Marginal Probabilities of S
of Variables S, E {E=0}=T | {E=1}=T°
VariableS | {S=0}=B |0.0721 0.1743 0.2464
{S=1}=B°¢ |0.1412 0.6123 0.7535
Marginal Probabilities of E | 0.2134 0.7866 1

Table 13

We check the validity of the Law of Total Probability:

P(4) = P(B)P(A|B) + P(B°)P(A|B®) =

0197 _ 0.0637 4+ 0.107 = 0.1707

00637 4 0.7536 - =

0.2464 0.753

P(A) = P(I)P(AIT) + P(I'€)P(A|T®) =

= 0.2464 -

0.1039 0.0668 + 0.1039 = 0.1707

00668 1 .7866 - -
66

0.2134 0.78

=0.2134 -
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P(A°) = P(B)P(A°|B) + P(BS)P(A°|BC) =
01827 1 07536 - 28%% _ 0.1827 + 0.6466 = 0.8293

0.2464 0.7536

P(A°) = P(I)P(AC|I") + P(I€)P(AC|TC) =

= 0.2464 -

0.1466 0.6827

+ 0.7866 - = 0.1466 + 0.6827 = 0.8293

0.2134 0.7866

=0.2134-

P(B) = P(A)P(B|A) + P(A°)P(B|AS) =

= 0.1707 - 2297 4 0.8293 - 21827

0.1707 0.8293

= 0.0637 + 0.1827 = 0.2464
P(B) = P(I')P(BII") + P(I'°)P(BIT®) =

0.0721 0.1743

+ 0.7866 - = 0.0721 + 0.1743 = 0.2464

=0.2134 - =
0.2134 0.7866

P(B€) = P(A)P(B¢|A) + P(A°)P(B°|A°) =

0.107 0.6466

+ 0.8293 - = 0.107 + 0.6466 = 0.7536
0.1707 0.8293

=0.1707 -
P(B) = P()P(BC|IIN) + P(Ir'°)P(BCIrc) =

0.1412 0.6123

+ 0.7866 - —— = 0.1412 + 0.6123 = 0.7535
0.2134 0.7866

=0.2134 -

P(I') = P(B)P(I'|B) + P(B°)P(I'|B) =

0.0721 0.1412

= 0.2464 -——+ 0.7535 - = 0.0721 + 0.1412 = 0.2133
0.2464 0.7535

P(I') = P(A)P(I'|A) + P(A°)P(I'|A°) =

0.0668 0.1466

+ 0.8293 - = 0.0668 + 0.1466 = 0.2134

= 0.1707 - =
0.1707 0.8293

P(rc) =P(B)P(I'°|B) + P(B°)P(I'°|B°) =

0.6123

. 407535 - = 0.1743 + 0.6123 = 0.7866
0.2464 0.7535

P(I¢) = P(A)P(I'°|A) + P(A°)P(I'°|A°) =

= 0.2464 -

0.1039 0.6827

+ 0.8293 -
0.1707 0.8293

= 0.1707 -

= 0.1039 + 0.6827 = 0.7866

The Law of Total Probability is valid in all cases. &
We also check the validity of Wigner-d’Espagnat inequality:

P(4,B) + P(B,T") = 6.37% + 14.12% = 20.49% > 6.68% = P(A, T
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Since the Wigner-d’Espagnat inequality is not violated, the Kolmogorov probability
model is sufficient for this class of data.
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Construction of a counterexample:

We construct a data set, which violates the Wigner-d’Espagnat inequality. The

constructed data set is given in the following tables for 3 binary variables R, S, E:

Contingency table of Variable S Marginal events of R
Variables R, S {S=0}=B | {S=1}=B°
Variable R {R=0}=4 |30 1270 1300
{R=1}=A° | 3746 180 3926
Marginal events of S 3776 1450 5226
Table 14
Joint Probability Distribution | Variable S Marginal Probabilities of R
of Variables R, S {S=0}=B | {S=1}=B¢
VariableR | {R=0}=4 | 0.0057 0.243 0.2488
{R=1}=A° | 0.7168 0.0344 0.7512
Marginal Probabilities of S 0.7225 0.2774 1
Table 15
Contingency table of Variable E Marginal events of R
Variables R, E {E=0}=T | {E=1}=T°¢
VariableR | {R=0}=A4 | 1000 300 1300
{R=1}=A° | 2876 1050 3926
Marginal events of E 3876 1350 5226
Table 16
Joint Probability Distribution | Variable E Marginal Probabilities of R
of Variables R, E {E=0}=T | {E=1}=TF°
VariableR | {R=0}=4 |0.1914 0.0574 0.2488
{R=1}=A° | 0.5503 0.2009 0.7512
Marginal Probabilities of E 0.7417 0.2583 1

Table 17
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Contingency table of Variable E Marginal events of S
Variables S, E {E=0}=T | {E=1}=TF°
Variable S {S=0}=B | 3300 476 3776
{S=1}=B¢ | 576 874 1450
Marginal events of E 3876 1350 5226
Table 18
Joint Probability Distribution | Variable E Marginal Probabilities of S
of Variables S, E {E=0}=T | {E=1}=T°
VariableS | {S=0}=B |0.6315 0.0911 0.7226
{S=1}=B°¢ |0.1102 0.1672 0.2774
Marginal Probabilities of E 0.7417 0.2583 1
Table 19

We check the validity of the Law of Total Probability:

P(A) = P(B)P(A|B) + P(B°)P(A|B®) =

00057 =+ 0.2774 - 2== = 0.0057 + 0.243 = 0.2487

= 0.7225 -
P(A) = P(F)P(AIF) + P(Ir°)P(A|rc) =

0.1914 0.0574

= 0.7417 - -+ 0.2583 - py—

= 0.1914 + 0.0574 = 0.2488

P(A°) = P(B)P(A€|B) + P(B°)P(A°|B¢) =

0.7168 0.0344

= 0.7225 - 57205 T 0.2774 - = 0.7168 + 0.0344 = 0.7512

P(A°) = P(INP(AC|IN) + P(I"C)P(ACIFC) =

0.5503 + 0.2583 - 0.2009
02583

= 0.7417 - = 0.5503 + 0.2009 = 0.7512

P(B) = P(A)P(B|A) + P(A°)P(B|A®) =

0.0057 0.7168
+ 0.7512 -
0.2488 07512

P(B) =P(I")P(B|I') + P(I'°)P(B|I'¢) =

= (0.2488 - = 0.0057 + 0.7168 = 0.7225

0.6315 + 0.2583 - 0.0911
02583

= 0.7417 - = 0.6315 + 0.0911 = 0.7226

P(B€) = P(A)P(B¢|A) + P(A°)P(B¢|A°) =

0.243 0.0344

= (0.2488 - +07512 i = 0.243 + 0.0344 = 0.2774
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P(B®) = P(I")P(BE|I") + P(F€)P(BE|I'°) =

0.1102 0.1672

+ 0.2583 - = 0.1102 + 0.1672 = 0.2774

= (0.7417 - =
0.7417 0.2583

P(I') = P(B)P(I'|B) + P(B°)P(I'|BS) =

0.6315 0.1102

+ 0.2774 - = 0.6315 + 0.1102 = 0.7417
0.7226 0.2774

=0.7226 -
P(I') = P(A)P(|A) + P(AS)P(|A) =

0.1914 0.5503

+ 0.7512 - = 0.1914 + 0.5503 = 0.7417

= (0.2488 - =
0.2488 0.7512

P(I'®) = P(B)P(I'°|B) + P(B)P(I'°|BS) =

0.0911 0.1672

+0.2774 - ——— = 0.0911 + 0.1672 = 0.2583
0.7226 0.2774

= 0.7226 -

P(I'¢) = P(A)P(I'°|A) + P(A°)P(I'°|A°) =

00572 4+ 0.7512 - 22%% — 0.0574 + 0.2009 = 0.2583

= (0.2488 -
0.2488 0.7512

The Law of Total Probability is valid in all cases. =

However, the Wigner-d’Espagnat inequality does not hold:

P(4,B) + P(BS,T) = 0.57% + 11.02% = 11.59% < 19.14% = P(4,I").

We observe that the Wigner-d’Espagnat inequality is clearly violated for the data set
we constructed. Therefore, according to the Remark 1 above, the system of three binary

variables R, S and E should be modeled with quantum probability.

We conclude that if we have a data set with three binary variables and we
want to correlate the variables two by two in the frame of joint probability, we
distinguish two cases. In the first case, the Wigner-d’Espagnat inequality is
confirmed, so we model the system with joint probability according to Kolmogorov
and examine Pearson correlations between the variables. In the second case, the
Wigner-d’Espagnat inequality is violated, so we model the system with quantum
probability according to Heisenberg and we examine correlations between the density

operators of the variables.

In statistical analysis, we collect data without knowing its true origin nor the type of
modeling we should follow. However, the Wigner-d’Espagnat inequality is a criterion

for selecting classical or quantum modeling.
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2.2 Example: Quantum probability in macroworld. Vessels of water (Aerts,
Aerts, Broekaert, Gabora, 2000)

It is shown that Bell inequalities can be violated in the macroscopic world.
The macroworld violation is illustrated using an example involving connected vessels
of water. It is shown that whether the violation of inequalities occurs in the
microworld or in the macroworld, it is the identification of nonidentical events that
plays a crucial role. We investigate the violation of Bell inequalities in macroscopic
situations and analyze how this indicates the presence of genuine quantum structure.
We explicitly challenge the common belief that quantum structure is present only in
micro-physical reality (and macroscopic coherent systems), and present evidence that
quantum structure can be present in the macro-physical reality.

Specifically, we note that if nonidentical events are consistently differentiated,
Bell-type Pitowsky inequalities are no longer violated, even for Bohm’s example of

two entangled spin 1/2 quantum particles.

Bell inequalities are defined with the following experimental situation in
macroworld. We consider a physical entity S, and four experiments e;, e,, e; and e,
that can be performed on the physical entity S. Each of the experiments e;, i € {1, 2,
3, 4} has two possible outcomes, respectively denoted o;(up) and o;(down). Some
of the experiments can be performed together, which in principle leads to
‘coincidence’ experiments e;; , i, j € {1, 2, 3, 4}.

For example e; and e; together will be denoted e;; . Such a coincidence
experiment e;; has four possible outcomes, namely (ol- (up), o) (up)) ,
(oi(up),oj(down)), (oi(down),oj (up)) and (ol- (down), o; (down)). Following
Bell, we introduce the expectation values Ej; , i, j € {1, 2, 3, 4} for these coincidence

experiments, as:

Ej;= +1-P (oi(up), of (up)) +1-P (oi(down), of (down)) —

—1-P (oi(up), oj(down)) - 1P (oi(down),oj(up)) (2.1)
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From the assumption that the outcomes are either +1 or -1, and that the

correlation E;; can be written as an integral over some hidden variable of a product of

the two local outcome assignments, one derives Bell inequalities:
|E13 - E:14| + |E23 + E24| < 2 (22)

Hence we have the coincidence experiments e; s, 14, €23 and e, , but instead
of concentrating on the expectation values they introduce the coincidence
probabilities p;3, P14, P23 and p,, , together with the probabilities p, and p, .

Concretely, p;; means the probability that the coincidence experiment p;; gives the

outcome (oi(up), 0j (down)) , While p; means the probability that the experiment e;

gives the outcome o;(up). The Clauser Horne inequalities then read:

—1 < Pra— Pzt Pzt P2a— P2— Py <0 (2.3)

Although the Clauser Horne inequalities are thought to be equivalent to Bell
inequalities, they are of a slightly more general theoretical nature, and lend
themselves to Pitowsky’s generalization, which will play an important role in our

theoretical analysis.

We review an example of a macroscopic situation where Bell inequalities and
Clauser Horne inequalities are violated. Consider an entity S which is a container with
20 liters of transparent water (Figure 9), in a state s such that the container is placed
in the gravitational field of the earth, with its bottom horizontal.

We introduce the experiment e, that consists of putting a siphon K; in the
container of water at the left, taking out water using the siphon, and collecting this
water in a reference vessel R, placed to the left of the container. If we collect more
than 10 liters of water, we call the outcome o, (up), and if we collect less or equal to
10 liters, we call the outcome o, (down). We introduce another experiment e, that
consists of taking with a little spoon, from the left, a bit of the water, and determining
whether it is transparent. We call the outcome o, (up) when the water is transparent
and the outcome o, (down) when it is not. We introduce the experiment e; that
consists of putting a siphon K5 in the container of water at the right, taking out water

using the siphon, and collecting this water in a reference vessel R5 to the right of the
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container. If we collect more or equal to 10 liters of water, we call the outcome
03 (up), and if we collect less than 10 liters, we call the outcome o;(down). We also
introduce the experiment e, which is analogous to experiment e,, except that we

perform it to the right of the container.

Figure 9: The vessels of water example violating Bell inequalities. The entity S consists of
two vessels containing 20 liters of water that are connected by a tube. Experiments are
performed on both sides of the entity S by introducing syphons K; and K in the respective
vessels and pouring out the water and collecting it in reference vessels R; and R,. Carefully
chosen experiments reveal that Bell inequalities are violated by this entity S (Aerts, Aerts,
Broekaert, Gabora, 2000).

Clearly, for the container of water being in state s, experiments e; and e
give with certainty the outcome o, (up) and o;(up) , which shows that p; = p; = 1.
Experiments e, and e, give with certainty the outcome o, (up) and o, (up) , which

shows that p, = p, = 1.

The experiment e; can be performed together with experiments e; and e, ,
and we denote the coincidence experiments e;; and e;,. Also, experiment e, can be

performed together with experiments e; and e, , and we denote the coincidence
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experiments e,; and e,, . For the container in state s, the coincidence experiment e; 3
always gives one of the outcomes (o, (up), 03(down)) or (o0, (down), 03(up)),
since more than 10 liters of water can never come out of the vessel at both sides. This
shows that E;; = —1 and p;3 = 0. The coincidence experiment e, , always gives
the outcome (o4 (up), 04(up)) which shows that E;, = +1 and p;, = +1,and the
coincidence experiment e, 5 always gives the outcome (o2 (up), 03 (up)) which shows
that E,3 = +1 and p,3 = +1. Clearly experiment e,, always gives the outcome
(0,(up), 04(up)) which shows that E,, = +1 and p,, = +1. Let us now

calculate the terms of Bell inequalities:
and of the Clauser Horne inequalities:

P Pzt Pyt Py p,—p, = +1-0+14+1-1-1= +1 (2.5)

This shows that Bell inequalities and Clauser Horne inequalities can be
violated in macroscopic reality. It is even so that the example violates the inequalities

more than the original quantum example of the two coupled spin- 1/2 entities.

If we get more than four events, and unfortunately the original Bell
inequalities are out of their domain of applicability. However Pitowsky has developed
a generalization of Bell inequalities where any number of experiments and events can
be taken into account, and as a consequence we can check whether the new situation

violates Pitowsky inequalities.

If Pitowsky inequalities would not be violated in the vessels of water model,
while for the microscopic Bohm example they would, then this would ‘prove’ the
different status of the two examples, the macroscopic being ‘false’, due to lack of

correctly distinguishing between events, and the microscopic being genuine.
More specifically, let S be a set of pairs of integers from {1, 2, ..., n} that is:
sclijf|isi<j <n} (2.6)

Let R(n, S) denote the real space of all functions f:{1,2,..,n} US » R.
We denote vectors in R(n, S) by f = (f1, f2) s fus ooes fij » o) Where the f;;



Quantum Statistics and Data Analysis

appear in a lexicographic order on the i,j’s . Let {0,1}" be the set of all n-tuples of
zeroes and one’s. We denote elements of {0,1}" by & = (g1,&,,...,&,) Where g €
{0, 1}. Foreach ¢ € {0,1}" let u® be the following vector in R(n, S):

u=¢ ,1<j<n

uS = giej ) {l,]}GS

9]

The classical correlation polytope C(n,S) is the closed convex hull in R(n, S) of all

2™ possible vectors u®, ¢ € {0,1}".

Let p = Py, Dns - Dij,--) beavectorin R(n,S). Then peC(n, S) if
there is a Kolmogorovian probability space (X, M, ) and (not necessarily distinct)
events A,,4,,...,A,, € M such that:

pi =u(4), 1<i<n, p;j=pd;n4;) ,{i, j}reS
where X is the space of events and p the probability measure (Pitowsky, 1989).

To illustrate the above theorem and at the same time the connection with Bell
inequalities and the Clauser Horne inequalities, we consider some specific examples
of Pitowsky’s theorem. The casen=4and S = {{1, 3}, {1,4}, {2,3}, {2,4}}. The

condition p € C(n, S) is then equivalent to the Clauser-Horne inequalities:
0<pj=p =1

0<p; <pj<1 ,i=12and j=34 (2.7)
pitpj —pj<1

—1 < p13+ pra+ P2g = P23 —P1—Ps =0

—1 < pa3+ p2at+ P1a— P13 —P2—Ps <0

—1 < p1a+ P13+ P23 —Pas—P1—P3 =0 (2.8)

—1 < paa+ P23+ P13 —Pra—P2—p3 <0

Thecase n=3 and S={{1, 2}, {1, 3}, {2, 3}}. We find then the following
inequalities equivalent to the condition p e C(n, S):

OSpijSpiS1
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0<p;j<p <1 ,1=<i<j<3
pi+p; —pij =1

P1t P2t P3— P12 — P13~ P23 =0
P1— P12~ P13+ P23 <0

P2 — D1z — P23+ P13 =0

P3s— P13 — P23+ P12 =0

(2.9)

(2.10)
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2.3 Example: Quantum probability in cognition. Cats (Aerts, Aerts, Broekaert,
Gabora, 2000)

We study how Bell inequalities can be violated in cognition, specifically in the
relationship between abstract concepts and specific instances of these concepts. This
supports the hypothesis that genuine quantum may represent mental processing and
cognition. We introduce a model where the amount of nonlocality and the degree of
quantum uncertainty are parameterized and demonstrate that increasing nonlocality
increases the degree of violation, while increasing quantum uncertainty decreases the
degree of violation. So we show how Bell inequalities are violated in the mind in
virtue of the relationship between abstract concepts and specific instances of them.

We investigate how concepts violate Bell inequalities.

As in macroworld, Bell inequalities are defined with the following
experimental situation in mind. We consider a physical entity S, and four experiments
e1, €2, e3 and e, that can be performed on the physical entity S. Each of the
experiments e;, i € {1, 2, 3, 4} has two possible outcomes, respectively denoted
0;(up) and o;(down). Some of the experiments can be performed together, which in

principle leads to ‘coincidence’ experiments e;; , i, j € {1, 2, 3, 4}.
For example e; and e; together will be denoted e;; . Such a coincidence
experiment e;; has four possible outcomes, namely (ol- (up), o) (up)) ,

(oi(up),oj(down)), (oi(down),oj (up)) and (ol- (down), o; (down)). Following

Bell, we introduce the expectation values E;; , i, j € {1, 2, 3, 4} for these coincidence

j o |1
experiments, as:

Ej;= +1-P (oi(up), 0j (up)) +1-P (oi(down), oj(down)) -

—1-P (oi(up), oj(down)) - 1-pP (oi(down),oj(up)) (3.1)

From the assumption that the outcomes are either +1 or -1, and that the

correlation E;; can be written as an integral over some hidden variable of a product of

the two local outcome assignments, one derives Bell inequalities:

|E13 - E14| + |E23 + E24| < 2 (32)
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Hence we have the coincidence experiments e, s, 14, €23 and e,, , but instead
of concentrating on the expectation values they introduce the coincidence
probabilities p; 3, P14, P23 and p,, , together with the probabilities p, and p, .

Concretely, p;; means the probability that the coincidence experiment p;; gives the

outcome (oi(up), of (down)) , While p; means the probability that the experiment e;
gives the outcome o; (up). The Clauser Horne inequalities then read:

—1 < P1a— Pzt Pzt Paa— P2— Py <0 (3.3)

To make things more concrete we present an example. Keynote players in this
example are the two cats, Glimmer and Inkling, that live at our research center. The
experimental situation has been set up by one of the authors (Diederik) to show that
the mind of another of the authors (Liane) violates Bell inequalities. The situation is
as follows. On the table where Liane prepares the food for the cats is a little note that
says: ‘Think of one of the cats now’. To show that Bell inequalities are violated we
must introduce four experiments e;, e,, e3 and e,. Experiment e; consists of Glimmer

showing up at the instant Liane reads the note.

If, as a result of the appearance of Glimmer and Liane reading the note, the
state of her mind is changed from the more general concept ‘cat’ to the instance
‘Glimmer’, we call the outcome 0, (up), and if it is changed to the instance ‘Inkling’,

we call the outcome o, (down).

Experiment ez consists of Inkling showing up at the instant that Liane reads
the note. We call the outcome o5 (up) if the state of her mind is changed to the
instance ‘Inkling’, and 03 (down) if it is changed to the instance ‘Glimmer’, as a
result of the appearance of Inkling and Liane reading the note. The coincidence
experiment e, ; consists of Glimmer and Inkling both showing up when Liane reads
the note. The outcome is (o, (up), 03(down)) if the state of her mind is changed to
the instance ‘Glimmer’, and (0, (down), 03(up)) if it changes to the instance

‘Inkling’ as a consequence of their appearance and the reading of the note.

Now it is necessary to know that occasionally the secretary puts bells on the
cats’ necks, and occasionally she takes the bells off. Thus, when Liane comes to work,
she does not know whether or not the cats will be wearing bells, and she is always

curious to know. Whenever she sees one of the cats, she eagerly both looks and listens
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for the bell. Experiment e, consists of Liane seeing Inkling and noticing that she hears
a bell ring or doesn’t. We give the outcome o, (up) to the experiment e> when Liane
hears the bell, and o, (down) when she does not. Experiment e, is identical to

experiment e, except that Inkling is interchanged with Glimmer.

The coincidence experiment e, , consists of Liane reading the note, and
Glimmer showing up, and her listening to whether a bell is ringing or not. It has four
possible outcomes: (0, (up), 04(up)) when the state of Liane’s mind is changed to
the instance ‘Glimmer’ and she hears a bell; (0, (up), 0,(down)) when the state of
her mind is changed to the instance ‘Glimmer’ and she does not hear a bell;
(0,(down), 04(up)) when the state of her mind is changed to the instance ‘Inkling’
and she hears a bell and (o, (down), o,(down)) when the state of her mind is
changed to the instance ‘Inkling” and she does not hear a bell. The coincidence
experiment e, is defined analogously. It consists of Liane reading the note and
Inkling showing up and her listening to whether a bell is ringing or not. It too has four
possible outcomes: (o, (up), o;(up)) when she hears a bell and the state of her mind
is changed to the instance ‘Inkling’; (0, (up), 05(down)) when she hears a bell and
the state of her mind is changed to the instance ‘Glimmer’; (0,(down), 03(up))
when she does not hear a bell and the state of her mind is changed to the instance
‘Inkling’ and (0,(down), 0;(down)) when she does not hear a bell and the state of

her mind is changed to the instance ‘Glimmer’.

The coincidence experiment e,, is the experiment where Glimmer and
Inkling show up and Liane listens to see whether she hears the ringing of bells. It has
outcome (o0, (up), o,(up)) when both cats wear bells, (o, (up), 0,(down)) when
only Inkling wears a bell, (0,(down), 0,(up)) when only Glimmer wears a bell and

(0,(down), 0,(down)) when neither cat wears a bell.

We now formulate the necessary conditions such that Bell inequalities are

violated in this experiment:
(1) The categorical concept ‘cat’ is activated in Liane’s mind.

(2) She does what is written on the note.
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(3) When she sees Glimmer, there is a change of state, and the categorical concept
‘cat’ changes to the instance *Glimmer’, and when she sees Inkling it changes to the

instance ’Inkling’.
(4) Both cats are wearing bells around their necks.

The coincidence experiment e;5 gives outcome (o, (up), os(down)) or
(0,(down), 05(up)) because indeed from (2) it follows that Liane will think of
Glimmer or Inkling. This means that E;; = —1 . The coincidence experiment e;,
gives outcome (o4 (up), o,(up)), because from (3) and (4) it follows that she thinks
of Glimmer and hears the bell. Hence E;, = +1 . The coincidence experiment e,
also gives outcome (o, (up), 03 (up)), because from (3) and (4) it follows that she
thinks of Inkling and hears the bell. Hence E,; = +1. The coincidence experiment
€24 gives (0, (up), 04 (up)), because from (4) it follows that she hears two bells.

Hence E,, = +1. As a consequence we have:
|E13 — Eq4] + |Ez3 + Ezu|l = +4

The reason that Bell inequalities are violated is that Liane’s state of mind
changes from activation of the abstract categorical concept ‘cat’, to activation of
either ‘Glimmer’ or ‘Inkling’. We can thus view the state ‘cat’ as an entangled state of

these two instances of it.

Our example shows that concepts in the mind violate Bell inequalities, and

hence entail nonlocality in the sense that physicists use the concept.

As a first approximation, we can say that the nonlocality of stored experiences
and concepts arises from their distributed nature. Each concept is stored in many
memory locations; likewise, each location participates in the storage of many
concepts. In order for the mind to be capable of generating a stream of meaningfully-
related yet potentially creative remindings, the degree of this distribution must fall
within an intermediate range. Thus, a given experience activates not just one location
in memory, nor does it activate every memory location to an equal degree, but
activation is distributed across many memory locations, with degree of activation

falling with distance from the most activated one.

Memory is also content addressable, meaning that there is a systematic

relationship between the content of an experience, and the place in memory where it
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gets stored. Thus not only is it is not localized as an episodic memory or conceptual
entity in conceptual space, but it is also not localized with respect to its physical

storage location in the brain.

Over the past several decades, numerous attempts have been made to forge a
connection between quantum mechanics and the mind. In these approaches, it is
generally assumed that the only way the two could be connected is through micro-
level quantum events in the brain exerting macro-level effects on the judgements,
decisions, interpretations of stimuli, and other cognitive functions of the conscious

mind.

From the preceding arguments, it should now be clear that this is not the only
possibility. If quantum structure can exist at the macro-level, then the process by
which the mind arrives at judgements, decisions, and stimulus interpretations could

itself be quantum in nature.

We should point out that we are not suggesting that the mind is entirely
quantum. Clearly not all concepts and instances in the mind are entangled or violate
Bell inequalities. Our claim is simply that the mind contains some degree of quantum

structure.

On the other side, both these hidden variable models (Aerts and Pitowsky) are
based on an observation that a structure of conditional probabilities characteristic for
systems with spin is not a Kolmogorovian one. The problem is rooted in a non-
Bayesian structure of such probabilities and is typically manifested by a violation of

Bell’s inequality. Both Aerts’ and Pitowksy’s models are not about simultaneous

measurements as we have in the EPR-Bohm framework, but about conditional

measurements. To define conditional measurements, we assume we have some state

¢, perform a measurement of an observable a and the state ¢ is changed; in a new
post a-measurement state we perform a measurement of another observable b which
is incompatible with (or complementary to) a. We point out both Aerts’ and
Pitowksy’s models were created in relation to Bell’s inequality. However, there is no
contradiction with the Bell Theorem, because it is impossible to derive the ordinary
Bell’s inequality for this model, because we cannot perform a simultaneous
measurement of o and b. So instead of Bell’s inequality for the simultaneous

probability distributions, one can derive Bell’s inequality for conditional probabilities,
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as it has been demonstrated that this inequality can be applied to conditional
measurements. Moreover, it has been demonstrated that it is violated by quantum
model. We remark this conditional probability inequality is based only on the
assumption that we can use Bayes’ formula for conditional probabilities. Since both
Aerts’ and Pitowsky’s models reproduce quantum probabilities, Bell’s inequality for
conditional probabilities is automatically violated for these models (Khrennikov 2003,
2016).
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CHAPTER 3: QUANTUM MACHINE LEARNING
VARIABLES AND CAVEATS

Machine learning algorithms construct and/or update their predictive model
based on input data. A number of advances in the field of quantum information shows
that particular quantum algorithms can offer a speedup over their classical
counterparts (Jordan, 2018). It has been speculated that application of these
techniques to the field of machine learning may produce similar results (Adcock,
Allen, Day, Frick, Hinchliff, Johnson, Stanisic, 2015).
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Figure 10: The roles of space S and time T in the circuit model for quantum computation

(Adcock, Allen, Day, Frick, Hinchliff, Johnson, Stanisic, 2015).

In order to understand the potential benefits of Quantum Machine Learning
(QML), it must be possible to make comparisons between classical and quantum
machine learning algorithms, in terms of speed and classifier performance. To

compare algorithms, computer scientists consider two characteristic resources:

* Space, S: The amount of computational space needed to run the algorithm.
Formally, “space' refers to the number of qubits required. For S qubits, the dimension
of the relevant Hilbert space is 25 . It is important to distinguish between these two

guantities, as there is an exponential factor between them.
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« Time, T: The time taken to train and then classify within a specified error. Formally,
“time' refers to the number of operations required and, in the quantum circuit model,

can be expressed as the number of consecutive gates applied to the qubits.

Figure 10 shows how time and space are represented in quantum circuit diagrams.

These are typically functions of the following variables:

« Size of training data set, n: The number of data points in the training set supplied to

an algorithm.
» Size of input data set, N: The number of data points to be classified by an algorithm.

* Dimension of data points, m: The number of parameters for each data point. In
machine learning, each data point is often treated as a vector, where the numeric value

associated with each feature is represented as a component of the vector.

* Error, &: The fraction of incorrect non-training classifications made by the algorithm
(Adcock, Allen, Day, Frick, Hinchliff, Johnson, Stanisic, 2015).

We outline some challenges for quantum machine learning that we believe
should be taken into account when designing new algorithms and/or architectures. We
start from some common early pitfalls in quantum algorithm design.

More specifically, an often overlooked aspect of quantum algorithms is state
preparation. Arbitrary state preparation is exponentially hard in the number of qubits
for discrete gate sets, providing a bound on the performance of all algorithms, and
placing a restriction on the types of states used in initializing an algorithm. Moreover,
there exist cases where this addition to the algorithm's complexity is ignored (Adcock,
Allen, Day, Frick, Hinchliff, Johnson, Stanisic, 2015).

We know measurement of a quantum mechanical system results in the
collapse of the system's wave function to a single eigenstate of the measurement
operator. Although it is possible to learn the pre-measurement state using a number of
trials exponential in system size, this will kill any potential speedup. Therefore, any
algorithm which outputs all of the amplitudes of the final state |x>, suffers exponential
costs. The only information that can be easily extracted from |x> is a global
statistical property, such as the inner product, <x|z>, with some fixed reference state
|z>, or the location of the dominant amplitudes of [x>. This argues against the
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existence of a useful quantum algorithm that stores output data in the exponentially
large Hilbert space of a quantum state - the data would be impossible to retrieve
(Adcock, Allen, Day, Frick, Hinchliff, Johnson, Stanisic, 2015).

We consider how to encode classical data into quantum states. This procedure
is an important part of any quantum algorithm. In terms of state preparation,
information is typically encoded in state amplitudes. So given a vector x € R¥

stored in memory, we create copies of the state:
|x) = ﬁ Y. x; |i) (3.1) (Prakash, 2014)

In the context of the analysis of classical data, we can exploit the encoding of
quantum information to efficiently represent classical probability distributions with
exponentially many points. For instance, when v = (v, ... ,v,n) IS a probability

vector of size 2™ , we can write an n-qubit state (register):

Y= YL, Ju e (3.2)

Quantum Random Access Memory (QRAM) is a theoretical oracle that stores
quantum states and allows queries to be made in superposition. The efficiency of the
oracle removes any overheads for arbitrary state preparation, which could suppress

the claimed quantum speedup of an algorithm.

It is possible to use QRAM to generate a quantum state from the n-
dimensional vector x, in time 0 (v/n) . However, by pre-processing the vector, this

can be improved to O(polylog(n)) (Prakash, 2014).

The inclusion of QRAM in QML proposals is troubling, both from a
theoretical and an experimental perspective. However ruling out QRAM does not
necessarily mean no data sets can be loaded into a quantum state efficiently. If the
coefficients to be loaded into a state are given by an explicit formula, it may be
possible for a quantum computer to prepare said state independently, without
consulting a QRAM. This sample can be loaded into a superposition over n qubits
efficiently, provided there is an efficient classical algorithm to integrate the function
over an arbitrary interval. Therefore, it is a strong indication that a total dependence
on QRAM is not necessary (Adcock, Allen, Day, Frick, Hinchliff, Johnson, Stanisic,
2015).
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The table below (Table 36) presents some algorithms and includes, where
possible, the advantage the quantum algorithm gains over its classical counterpart and

any conditions required for the speedup to be maintained.
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Algorithm

Quantum Time Scaling

Cuantum

Space Scaling

Classical Time
Sealing

Deefinition of Terms

Quantum Speedup?

Comments

Cuantum Dot
based Artificial
Neural Network [18,

24, 25, 26, 27, 28).

No rigorous hounds.

Mot available.

Might provide spatial benefits because of ca-
pability to create temporal neural network,
but no rigorous analysis found in papers.

Superposition-based
Learning

Algorithm

(WNN]) [32].

Ofpoly(Na))

Nyp: Mo training patterns.

Unknown.

Assuming pyramidal QRAM network, and
two inputs to every GRAM node.

Associative
Memory using
Stochastic
Quantum Walk [33].

No rigorous hounds.

e Coherent weights.
v Decoherent weights.

Kot available.

Authors identify dependence of runtime on
r and y with no detailed analysis offered.

Probabilistic
Cuantum
Memaories [45].

No rigorous hounds.

Mot available.

Specifically notes no discussion of “possible
quantum speedup” as *[__] the main point of
the present Letter is the exponential storage
capacity with retrieval of noisy inputs”.

Cuantum Deep
L roing {Gibhs

O(NER)

np +ny +

O(NLEK)
O(NEr)

N: No. training vectors.

ing factor.

Asymptotic advantage.

The quantum advantage lies in the found so.
lution being ‘exact’ up to e The clasical

Opoly log N, paly(e~ ! N

Sampling) [4 I loge™ b L: No. layers. I lri::m’nF vector, illlgcarithn: converges to an approximate solus
ke No. sample sets ny: Mo, hidden nodes, tion.
PN, snmple ses. n,: Moo visible nodes.
Quantum Deep O(NLEE) - ::: :: w4
. I (N NEr) P oo, Brges. . . Assumes access to training data in quantum
Learning O{yNE® /7) Qlng +n, + K ing factor. Quadratic  advantage in aracle. The dependence on E can be reduced
(Amplitude T loge™) o x: Training vector. number of training vectors. I . ) :
A . L: No. layers. . : quadratically in some cases.
Estimation) [44]. kN e ng: Moo hidden nodes,
: No. sample sets.
Quantum Deep I)I:.\':LEH 2.:: gn. s, )
:‘;:’1’:‘]:11(1! OWRELR) (N +np+nc+ O(NEx) K ing factor. h.;\ru ;mil“ (E::‘R:::::L E:T Assumes QRAM allows simultaneous opera-
Estimati : : v loge™) L No. 1 x: Training vector. ruing (A ) tions on different qubits at unit cost.
’ A1) | ot sample s ny: Mo, visible nodes,
Linear Systems ()Qu??tlum ;—tate IOIIJ;DM':_[ N: Dimension of the sys- | Exponential if the desired | As lots of classes of problems can be reduced
Solving (HHL| (poly O.g(' ). poly .og(r. ) Oflog N O(poly(N Iug(t'1 )) | tem. output is & quantum state. | tolinear system solving, the quantum advan-
. Classical output: . . . . .
55, 36]. & Error. Complicated otherwise. tage is heavily dependent on context.

Quantum Principal

d: Dimensions of

Speadup only valid for spaces dominated by

Spanning Tree [68).

imum spanning tree.

Cumpu.ncr!t Mlogd) - O(d) data space Exponential in d. fcu_' principal components,  Algorithm re-
Analysis [39] quires QRAM.
Quantum Nearest £ tial speedun. how Assumes all vectors and amplitudes stored in
Centroid 1 . n: No. training vectors. penential speecup, hows QRAM, otherwise speedup vanishes. Cuan-
. ™" log nm) - O(nm) . ° ) ever average classical run- . B
(sub-routine m: Length of vectors, " be | y.3, | tum Support Veetor Machine is Quantum
in k-means) [61, 62] ime can be log(nm) /(7). Nearest Centroid with two elusters.
Fenearest . Quantum  advantage for
o O{y/nlogn) (first order) - O(nm) n: No. training vectors. high-dimensional ~ vector | Reduces to nearest centroid for k=1.

Neighbours [64]. spaces
Mini Polynomial in the sub-

i B(Nj"’?) - Q[.’\"!) N: No. points in dataset. routine used to find a min- | Matrix model.

Quantum
Perceptron

(Data in States) [16,
30, 06|

No rigorous bounds.

O(W + Nlog(e™!))

W: No. of weights.
N: Size of training dataset.
& Allowed error.

Not available.

Producing a speedup appears to be diffi-
cult using these algorithms (see Appendix A,
from which the classical bound has been
taken).

Quantum
Perceptron
[Weights in
States) [Appx. A].

O(W +1og(N) log(e™"))

O(W + Nlog(e™!))

W: No. of weights.
N: Size of training dataset.
& Allowed error.

Exponential in N.

Table 36: Table of Quantum Algorithms Advantages (Adcock, Allen, Day, Frick, Hinchliff,
Johnson, Stanisic, 2015).

We recommend some cases where quantum theory helps Machine Learning

(ML):

Example Principal Component Analysis (PCA):
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Data: classical vectors vy, .., vy € R% . For example:

-jen entry.of v; counts number of times document i contains keyword j
-jen €ntry of v; indicates whether buyer i bought product j

PCA finds the principal components of correlation matrix:

A= XL vv (3.3)

Main eigenvectors describe patterns in the data. Can be used to summarize data, for
prediction, etc (Lloyd, Mohseni, Rebentrost, 2014).

Idea for quantum speed-up :

If we can efficiently prepare the |v;) as log,(d) — qubit states, then doing this for

random i gives mixed state: p == A (3.4)

2|~

where the equation (3.4) is the condition for Quantum Algorithm Implementation.

We want to sample (eigenvector, eigenvalue)-pairs from p (Lloyd, Mohseni,
Rebentrost, 2014).

- Using few copies of p, we wanttorun U = e~'” onsome o
- Idea: start with ¢ ® p, apply SWAP, throw away 2nd register.
1st register now has U¢o(UT)¢,uptoerror 0(e?).

Repeat this 1/¢ times, using a fresh copy of p each time.

First register now contains UcsU7 , up to error EO(SZ) = 0(¢)

- Suppose p has eigendecomposition:

Phase estimation maps |w;)|0) ~ |w;)|A";) , Where |1; — A;'| <38, using
O(1/3) applications of U.

-Phase estimation on another fresh copy of p maps:

p®[0)0] = X A; [wiXw;| ® |4 ){A]
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Measuring 2" register samples |w;)|A’;) with probability A; (Lloyd, Mohseni,
Rebentrost, 2014).

Fast linear algebra with quantum mechanics:

A significant number of methods in the quantum machine learning literature is
based on fast quantum algorithms for linear algebra. We discuss about the two main
quantum sub routines for linear algebra: a quantum algorithm for matrix inversion and

a quantum algorithm for singular value decomposition.
Fast matrix inversion: the quantum linear system algorithm

We know for a system of linear equations Ax = b with 4 € RN and x,b €
RY , the best classical algorithm has a runtime of O(N?373) (Coppersmith,
Winograd, 1990). However, due to a large pre-factor, the algorithm is not used in
practice. Standard methods, for example, based on QR-factorisation (Q is an
orthogonal matrix, R is an upper triangular matrix) take O(N3) steps (Golub, Van

Loan, 1996). The quantum linear system algorithm (QLSA) promises to solve the
2
problemin O(log(N) k2 S?) , where « is the condition number, defined to be the

ratio of the largest to the smallest eigenvalue, s is the sparsity or the maximum
number of non-zero entries in a row and column of A and & is the precision to which

the solution is approximated (Harrow, Hassidim, Lloyd, 2009).

Although the QLSA algorithm solves matrix inversion in logarithmic time a
number of caveats might limit its applicability to practical problems. First, the QLSA
algorithm requires the matrix A to be sparse. Second, the classical data must be
loaded in quantum super position in logarithmic time. Third, the output of the
algorithm is not x itself but a quantum state that encodes the entries of x in
superposition. Fourth, the condition number must scale at most sublinearly with N
(Harrow, Hassidim, Lloyd, 2009).

We present a general comparison of the asymptotic scalings of classical,
quantum and parallel algorithms for linear algebra and their major applications in
machine learning in Table 37. With optimal learning rates we mean that any learning

algorithm cannot achieve better prediction performance (uniformly) on the class of
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problems considered. Interestingly, such assumptions also allow us to derive estimates

for the condition number of the kernel matrix to be of order x = O(N'/?).

Problem Scaling A pplications

Solving linear C: O(skNlog (1/€)) [Shedd]* Least-square-SVM [RML14]
system of : O(s%k%log (N)/e) [HHLO9® GP Regression [ZFF15)]
suations

ranations P: @{logz{.-\"} log (1/€)) [CsaT6]® Kernel Least Squares [SSP16]

C: O(E*N log (1/8)/€)[FKV04]?  Recommendation Systems [KP16]
Q: Oflog (N)e *)[LMR14] Linear Regression [SSP16]
P: O(log*(N)log(1/e)) [CzaT6]® Principal Component Analysis [LMR14]f

Singular value
estimation

Quantum linear algebra algorithms and their machine learning applications. When
carefully compared with classical versions that take into account the same caveats, quantum algorithms
might loose their advantages. C,(}.P indicate, respectively, the asymptotic computational complexity
tor classical, quantum, and parallel computation. We remind the reader that, to date, memory and
bandwidth limits in the communication between processors make the implementation of certain parallel
algorithms unrealistic. Given an N x N dimensional matrix 4, we denote by k the number of singular
values that are computed by the algorithm, by s the sparsity, and by & the condition number. For
approximation algorithms € is an approximation parameter. In other cases it denotes the numerical
precision. Classical algorithms return the whole solution vector. Quantum algorithms return a quantum
state: in order to extract the classical vector one needs Q(N') copies on the state. a) is an approximate
algorithm and can be applied to dense matrices; b) is exact but it does not output the solution vector
and works only for sparse matrices (more details can be found in Section 6); €) requires O(N*) parallel
units and it is numerically unstable due to high sensitivity to rounding errors. Stable algorithms such
as Gaussian elimination with pivoting or parallel QR-decomposition require Q(N) time using Q(N?)
computational units [CR86]; d) is an approximate algorithm which returns a rank k-approximation with
probability 1 — 4, and has an additional error €|[4||p. Exzacts methods for an N x M matrix scale
with min{ M N2, N M?}; e) calculates SVD by computing the eigenvalue decomposition of the symmetric
matrix AAT; f) works on dense matrices that are low-rank approximable.

Table 37 (Ciliberto, Herbster, lalongo, Pontil, Rocchetto, Severini, Wossnig, 2018).

Algorithms whose runtime is upper bounded by a polynomial function of N
are said to be efficient. Problems for which there exists an efficient algorithm are

easy. Conversely, hard problems are those where no polynomial algorithm is known.

The quantum algorithms surveyed here speed up efficient classical algorithms.
Two types of speedups are obtained: polynomial or exponential. Polynomial
speedups, although important from a practical point of view, do not prove that
guantum computers are able to turn hard learning problems into easy ones. On the
other hand, exponential speedups of algorithms that are already efficient face
important challenges.
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In order to achieve an exponential speedup despite the computational costs
arising from accessing the memory we are restricted to hard algorithms. This is
because, for these algorithms, the polynomial time construction of the quantum state
that encodes the data set does not dominate over the speedup (Ciliberto, Herbster,

lalongo, Pontil, Rocchetto, Severini, Wossnig, 2018).

How to put classical data in superposition:

. 1 .
- Given vector v € R?: how to prepare |v) = 4 v i)

Il
- Assume quantum-addressable memory: 0, : |i,0) ~ |i,v;)

1.Find g = max|v;| in  0(V/d) steps
L
1 N Ov o1 . 1 . v; v?
2. \/—aZi i) > Yi,v) e 7 Xli,v;) (; |0) + fl—p |1)>

o \/ia ¥.li) (”; 10) + /1—Z—§ |1>> = %"E [v)10) + |w)[1)

ud

3. Boost [0> by O(IIvII

) rounds of amplitude amplification

-Expensive for “peaked” v; cheap for “uniform” or “sparse” v (but there we can

efficiently compute many things classically!) (Arunachalam, Wolf, 2017).

Many other attempts at using quantum for Machine Learning (ML):
1) k-means clustering

2) Support Vector Machines

3) Training perceptrons (depth-1 neural networks)

4) Quantum deep learning (=deep neural networks)

5) Training Boltzmann machines for sampling (Arunachalam, Wolf, 2017)
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Problems:

1) How to efficiently put classical data in superposition?
2) How to use reasonable assumptions about the data (also in classical ML)

3) We don't have a large quantum computer yet!

- How to measure the efficiency of the learning algorithm:
(i) Sample complexity: number of examples used
(it) Time complexity: number of time-steps used

- A good learner has small time and sample complexity.

Quantum data:

We try to circumvent the problem of putting classical data in superposition, by
assuming we start from quantum data: one or more copies of some quantum state,
generated by natural process or experiment. However, it is observed that in
distribution-independent learning, quantum examples are not significantly better than

classical examples.

We can get quadratic speed-ups for some ML problems, while exponential
speed-ups are under strong assumptions. The biggest issue is how to put big classical
data in superposition. So in some scenarios, provably there is no quantum

improvement (Arunachalam, Wolf, 2017).

Quantum Assisted Machine Learning:

We introduce the quantum-assisted Helmholtz machine (QAHM), an attempt
to use near-term quantum devices to tackle high-dimensional data sets of continuous
variables. Instead of using quantum computers to assist deep learning, the QAHM
uses deep learning to extract a low-dimensional binary representation of data, suitable

for relatively small quantum processors which can assist the training of an
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unsupervised generative model. Figure 2 illustrates an example of this concept for the
case of ML tasks (Hinton, Dayan, Frey, Neal, 1995, Dayan, Hinton, Neal, Zemel,
1995).

Research in the field of Quantum Assisted Machine Learning (QAML) has
been focusing on tasks such as classification, regression, Gaussian models, vector
quantization and principal component analysis. We do not think these approaches
would be of practical use in near-term quantum computers. The same reasons that
make these techniques so popular, e.g., their scalability and algorithmic efficiency in
tackling huge data sets, make them less appealing to become top candidates as killer
applications in QAML with devices in the range of 100-1000 qubits. In other words,
regardless of the claims about polynomial and even exponential algorithmic speed-up,
reaching interesting industrial-scale applications would require millions or even
billions of qubits. Such an advantage is then moot when dealing with real-world data
sets and with the quantum devices to become available in the next years in the few
thousands-of-qubits regime. So, we believe that only a game changer such as the new
developments in hybrid classical quantum algorithms might be able to make a dent in
speeding up ML tasks (Hinton, Dayan, Frey, Neal, 1995, Dayan, Hinton, Neal, Zemel,
1995).

We propose and emphasize the following approach to maximize the possibility
of finding killer applications on near-term quantum computers. More specifically, we
focus on data sets with potentially intrinsic quantum-like correlations, making
quantum computers indispensable. These will provide the most compact and efficient
model representation, with the potential of a significant quantum advantage even at
the level of 50-100 qubit devices. It is suggested the case of the cognitive sciences, as
a research domain potentially yielding such data sets (Hinton, Dayan, Frey, Neal,
1995, Dayan, Hinton, Neal, Zemel, 1995).

However, the small number of qubits and the limitations of currently available
hardware may impair the sampling process, making it useless for real ML
applications. So, we argue that even noisy distributions could be used for generative
modeling of real-life data sets. This requires working in settings where the operations
implemented in hardware are only partially known. We call this scenario a gray-box.

We also argue that hybrid classical-quantum architectures are suitable for near-term
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applications where the classical part is used to bypass some of the limitations of the
quantum hardware. We call this approach quantum-assisted (Hinton, Dayan, Frey,
Neal, 1995, Dayan, Hinton, Neal, Zemel, 1995).

We wonder which type of real-life applications could benefit from quantum
supremacy with near-term small devices. One of the main motivations underlying the
research efforts described here is that quantum computers could speed up ML
algorithms. This suggests that quantum models hold the potential to substantially
reduce the amount of other type of computational resources, e.g., memory required to

model a given data set.

PREDICTIONS

#[ P(s|@N]

LEARNING
Siochastic gradient descent

@M =@+ g[ P(s|® ]

HARD TO COMFUTE

Estimation assisted by sampling
from quantum computer

Figure 11: General scheme for hybrid quantum-classical algorithms as one of the most
promising research directions to demonstrate quantum enhancement in ML tasks. A data set
drives the fine tuning of model’s parameters. In the case of generative models one can use
stochastic gradient descent to update the parameters @ from time t to t+1. The updates
often require estimation of an intractable function G, which could be approximated by
samples from a probability distribution P(s|@"). This computationally hard sampling step
could be assisted by a quantum computer. In some cases, making predictions out of the
trained model is also an intractable task. The predictions F could be approximated by
samples with the assistance of a quantum computer as well (Pedromo-Ortiz, Benedetti,

Realpe-Gomez, Biswas, 2018).

Although it is emphasized the case of cognitive sciences, it would be
interesting to explore what other relevant and commercial data sets exhibit quantum-

like correlations, and where quantum computers can have an advantage even at the
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level of 50-100 qubits. In general, the identification of characteristics that are
intrinsically quantum, and therefore hard to simulate classically, could be a game

changer in the landscape of applications for near-term quantum technologies.

Challenges in QAML.:

We distinguish between two types of algorithms: those that operate on
quantum data (i.e. data that is output of a quantum process, for example, a quantum
chemistry problem) and those that seek to process data stored in a classical memory.
The first case is ideal for QML. The data is ready to be analyzed and we do not have
to spend computational resources to convert the data into quantum form. The second
case is more elaborate as it requires a procedure that encodes the classical information
into a quantum state. We know that the computational cost of this operation is
particularly relevant to determine whether we can obtain quantum speedups in
machine learning for classical data (Hinton, Dayan, Frey, Neal, 1995, Dayan, Hinton,
Neal, Zemel, 1995).

We assume that we want to process N d-dimensional classical vectors with a
quantum algorithm. The quantum random access memory (QRAM) is a quantum
device that can encode in superposition N d-dimensional vectors into log(N d)
qubits in O(log(N d)) time by making use of the so called “bucket-brigade”

architecture. The idea is to use a tree-structure where the N d leaves contain the
entries of the N vectors in RY. The QRAM, with a runtime of O(log(N d)), can return

a classical vector in quantum superposition efficiently. However, the number of
physical resources it requires scales as O(N d). This exponential scaling, with respect
to the number of qubits, has been used to question whether the QRAM can be built in
an experimental setting or whether it can provide a genuine computational advantage.
Fundamentally the issue can be related to whether the exponential number of
components needs to be continuously “active”. The proponents of the QRAM claim
that only O(log(N d)) components need to be active while the others can be
considered as “non-active” and error free. Whether this assumption holds in an
experimental setting is unclear (Hinton, Dayan, Frey, Neal, 1995, Dayan, Hinton,
Neal, Zemel, 1995).
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The first challenge that appears with QRAM is whether all the components
require to be error corrected. Indeed, if the exponential physical resources required
full error correction then it would be impractical to build the device in an
experimental setting. We consider that for superpolynomial query algorithms, the

QRAM requires error-corrected components.

A second problem is related to the exponential number of resources in an
active memory. More specifically, the only fair comparison of a system which
requires an exponential number of resources, is with a parallel architecture with a
similar amount of processors. In this case many linear algebra routines, including
solving linear systems and singular value decomposition, can be solved in logarithmic

time.

A third challenge of the QRAM is the requirement of having data distributed
in a relatively uniform manner over the quantum register. If that was not the case, the
QRAM would violate the search lower bounds. In the case of non-uniformly
distributed data, the QRAM is no longer efficient and take O(VN) to turn the

classical data set into quantum superposition.

A fourth comment on the QRAM, the possibility of loading the data in
logarithmic time, when the size of the data is considerable, can be controversial due to
speed of communication arguments. We point out that latency can play a role in big
memory structures. In particular, a lower bound on the distance which the information

has to travel implies a lower bound on latency, due to considerations on the limits set

by the speed of light. In a three dimensional space these are given by 0(¥Nd) . In
practice these considerations will only dominate if the amount of memory is
extremely large but, because in quantum machine learning we aim at data sets that
surpass the current capability of classical computers, this bound is a potential caveat
(Hinton, Dayan, Frey, Neal, 1995, Dayan, Hinton, Neal, Zemel, 1995).

There are additional challenges which will generally impact any QAML
algorithm, such as the limited qubit connectivity, the finite dynamic range of the
parameters dictated by the intrinsic energy scale of the interactions in the device, and
intrinsic noise in the device leading to decoherence in the qubits and uncertainty in the

programmable parameters (Pedromo-Ortiz, Benedetti, Realpe-Gomez, Biswas, 2018).
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We conclude that the QRAM allows to upload data efficiently but might be

~ hard to irh'p__le'mént 'experimentally or might not allow a genuine quantum advantage if

we take into account all the required resources. Noticeably the fast data access
guaranteed by the QRAM is only required for QLM algorithm that run in sublinear
time. Although many known QML algorithms run in sublinear time, quantum learning
theory suggests that for some classically hard problems quantum resources might give
exponential advantages. In this case, a memory structure that can prepare a quantum
superposition in polynomial time (i.e. in O(Nd)) can still be sufficient to maintain a

quantum speedup compared to the classical runtime.

One key strategy we propose towards the near-term demonstration of quantum
advantage is the development of hybrid quantum—classical algorithms capable of
exploiting the best of both worlds. Therefore, we put forward a new framework for
such hybrid QAML algorithms (Pedromo-Ortiz, Benedetti, Realpe-Gomez, Biswas,
2018).

quantum information
processing

quantum machine
learning

machine learning

Figure 12: Quantum Machine Learning (Sekar, 2017).
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CHAPTER 4: QUANTUM CLUSTERING

Quantum Computing Shor’s Algorithm and Hierarchical Clustering
Technique:

It is observed that the detection procedure of Cancer Disease is very much
time consuming and the results obtain by them are not so fast, so there is a need of
more accurate, fast and efficient method through computing technologies. This can be
accomplished with the collaboration between Quantum computing and the clustering
algorithm, i.e. Shor Algorithm of Quantum Computing with various Hierarchical
Clustering Technique. More specifically, the Hierarchical Clustering Technique helps
in clustering of results to obtain an approach for Cancer Disease Detection, while the
Shor Algorithm helps to increase the efficiency in term of accuracy (Jain, Chaturvedi,
2014).

We use quantum switching architecture for nearest neighbour coupling,
namely an efficient quantum shear sorting (QSS) algorithm to reduce the number of
time steps. For the QSS algorithm, the running complexity of the quantum switching
architecture is polynomial in time with the nearest neighbour coupling and the
implementation is less complex. The result shows that improved switching is
extremely simple to implement using existing quantum computer candidates. The
Quantum Computing technique can provide faster and efficient results with the use of
different parameter in this system and the K-means clustering technique and
Agglomerative clustering technique can provide a result analysis by clustering of
results (Jain, Chaturvedi, 2014).

The quantum search algorithm is a technique for searching possibilities in only
steps. In the first step we collect the information in the form of tumor size and node
status as Data set, which has to be analyzed by both conventional pathological tests &
our Quantum computing based technique which involves Shor Algorithm as an
analyzing tool to analyze the data set. In the next step the clustering of obtained result
by both techniques is done. In case of analyses of data set with conventional
pathological tests, these tests analyze different aspects one by one in stages i.e. after
completion of 1st they proceed towards 2nd and so on, whereas on the other hand in
our Quantum computing based Analyses, Shor Algorithm analyzes the data set
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peculiarly on the basis of range of parameters so there is no such time consumption,
namely if the parameters are not in the range of define values, the algorithm
automatically analyzes on next level and gives results accordingly. Then treatment
will start within a short duration with more accuracy according to cancer type and
stage of severity, because after getting results from Shor Algorithm and clustering an
oncologist can get a clear cut idea about the stage of Cancer in which patient held
(Figure 13) (Jain, Chaturvedi, 2014).
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Figure 13: Designed System for Cancer Disease Detection (Jain, Chaturvedi, 2014).
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Basically six steps are used to create a new data set which are given below:

Step 1: Apply the Shor Algorithm on data set providing tumor size denoted by ‘A’,
Metastasis denoted by ‘MS’ and Node status ‘NS’.

Step 2: Apply the number ‘N’ is the number wish to factorize. As the different stages
of Cancer depending upon severity are here and the remainder from this operation is

placed in a second 3 bit register.

Step 3: Apply random number X, where 1 <X < N-1. This is the last stage of
providing the initials to execute the Algorithm and there are chances of multiple
answers so to reduce the error in operation these to be verified with different value of

random number ‘X’.

Step 4: Results provided from Shor Algorithm. The result which we get is in the form

of stages of Cancer which are now ready for clustering by using statistical techniques.

Step 5: Clustering by K-means Clustering Technique and Agglomerative clustering
technique, here top to bottom approach used. Clustered values are used to draw

Dendrogram and graphical representations.

Step 6: Comparing the clustered values of results obtained by both the techniques i.e.
from conventional Cancer Disease Detection and Shor Algorithm based Disease
Detection technique (Jain, Chaturvedi, 2014).

Experiments performed on data set of cancer: In this Data set which have
collected data for Cancer Disease which contain the Tumor Size, Node Status,
Metastasis (Collected from Navodaya Cancer Hospital, Indrapuri, Bhopal). These
three parameters have a great importance in Cancer Disease detection as Tumor size
in any type of Cancer is the first Criteria for further analyses then Metastasis i.e. the
spread of a cancer from one organ or part to another non-adjacent organ or part and
Node status i.e. the lymph node condition at the site of tumours which either be
negative or positive (Table 38). Here A is the Tumor size, ID is Identification

number, NO is clear or Negative node, N1 is Cancerous or positive node, MO is No
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spread of Tumor, M1 is Tumor has spread, Weight in Kg and Age in years (Jain,
Chaturvedi, 2014).

Experiments performed on proposed data set of cancer: The given below
variables are used for applying the Shor Algorithm on data set (Table 39). Here A is
the tumor size, X is the random number, N is the number we wish to factorized, M
denote the metastasis, M0O=no spread of tumor, M1=tumor has spread, NS denote the

node status, NO=clear or negative nodes, N1=cancerous or positive node.

Shor based algorithm shows the stages of cancer, Patient age in years and ID
shows the identification of patients. First evaluate the data set on the basis of Tumor
Size then after applying Shor Algorithm get different Stages according to Tumor Size
and Node status and Metastasis condition. According to Node Status and Metastasis
Conditions sometime a patient who having a large Tumor may also do not have any
Cancer Disease because of having NO which means negative node or M0 condition
which means Tumor is not malignant or not spreading which shows the Tumor is here

but not carcinogenic (Jain, Chaturvedi, 2014).
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Sno  |Name |ID A NS MS Age  |Weight | |Sno  [Name D A (X [N STAGE |NS NS
1 Ankya 1 2 |ND MO 18 45 1 Ankya |1 2 2 3 1 NO M0
2 Sujit 5 |2 [NOorNt  [MO 2 |78 2 st 5 2[4 |7 |2 NO or N1 |MO
3 Dinesh [E |3 |NDorN1  |MO 24 |68 3 Dinesh 5 3 [2 |5 |3 NO or N1 (MO
4 Ruchi 9 |7 |NI M1 2B |5 4 Ruhi 9 7 (8 |7 J4 N M
5 Kiran  [11 |1 [ND MO 49 &2 5 Kren |1 1 2 |3 o NO (MO
& Dimple 15 |3 |NOorN1 MO 51 56 3 Dimpe [15 |3 |3 |5 2 NO or N1 MO
T Rohan |21 |4 |NOorhi M1 4 7 Rohan |21 4 3 |7 4 NO or N1 M1
g Pradeep |26 |4 [NOorN1 MO 52 gd B Pradesp (26 4 13 |6 3 N or N1 |M[J
9 Servesh |31 1 [ND MO 40 73 9 Sevesh M 1 1 3 0 NO o [MO
10 Vingy |35 |8 |NO MO L 0 iy 3 6 @4 7 1 o [m
1 Ashish |38 |4 |NDorNi WM 67 |10 1 Aghish 38 4 2 8 4 NO or N1 M1
12 shani |41 |1 [N MO |4 12 Shani 41 [t 3 {4 [0 N MO
13 Upsndra |45 |3 |NOOrN1 MO % @ 13 Upendr 45 [3 2 |5 3 [nNoorNi]MO
1 Kapl 2 |3 |NOorNi MO “4 |1 14 kapl 2 33 5 2 |NoorNt|mo
15 Sanjeev |12 |4 |NO MO B 5 15 Samesv |12 4 2 5 1 [N Mo
18 Sanchita [14 [2  [NDorW1 |1 81 52 ® Sachia 14 12 & & 4 NDor NT M1
17 Shobhit (24 |3 MO or M1 MO o 48 17 Shobhit (24 |3 |2 5 3 NO or M4 |M]
18 Nipma [34 [2 [NOorN1 MO 3 53 1 Nepma % 2 3 7 2 NO o N1 MO
Table 38: Data set of Cancer Disease Table 39: Results obtained from

Shor Algorithm based Cancer Disease
Detection Technique
(Jain, Chaturvedi, 2014).

Results comparison between conventional cancer disease detection technique
and shor algorithm based cancer disease detection technigue on the basis of
dendrogram (Figures 14, 15, 16). By these two profiles search it is easy to understand
that there is Shor Algorithm which is a basic Algorithm of Quantum Computing is
giving results convenient for an Oncologist and make an exact figure of a patient’s
condition who suffers from the most devastating disease of this century i.e. Cancer
(Jain, Chaturvedi, 2014).

We propose the use of tumour size as a parameter for disease prediction with
metastasis condition and node status is used so accuracy is also enhanced in compare
to any technigue which uses only tumour size as a parameter. So the chances of error
in disease detection increases because in many cases this is observed that a patient
having a large tumour size have not been suffering from cancer, as the node status is
not shows symptoms of Cancer (NO) also the possibility of Metastasis condition
where the tumour is not showing any malignancy (MO) but in case of Quantum

Computing based Approach i.e. Shor Algorithm based Cancer Disease Detection
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Technique these errors has been removed for increasing accuracy (Jain, Chaturvedi,
2014).

The different Hierarchical Clustering helps to understand the results by
making clusters of acquired data obtained by both the Detection Techniques. Finally
with the help of these three Distance measures we get difference among the
conventional approach and Quantum Computing based approach. Where
Conventional approach which is used widely for Cancer Disease Detection-based on
Classical Computing, on the other hand this Shor Algorithm based Cancer Disease
Detection technique is totally based on Quantum Computing so an Oncologist get the
results more frequently that is within a few seconds in compare to hours in case of

Classical Computing (Jain, Chaturvedi, 2014).

Also the result are more accurate and accessibility to different parameters is
more in case of Quantum Computing based approach so it is much easy for an
oncologist to create a treatment program with more ease and accuracy within a short
period of time which may be act as a boon for the Cancer patients in near future (Jain,
Chaturvedi, 2014).
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Figure 14: Dendrogram of Conventional Cancer disease detection Technique using
Euclidean Distance (Jain, Chaturvedi, 2014).
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Figure 15: Dendrogram of Shor Algorithm based Cancer Disease Detection Technique using
Euclidean Distance (Jain, Chaturvedi, 2014).

Figure 16: Dendrogram of Shor Algorithm based Cancer Disease Detection Technique using
Euclidean Distance (Jain, Chaturvedi, 2014).

Dynamic Quantum Clustering:

We provide the following question: “How does one search for a needle in a
multi-dimensional haystack without knowing what a needle is and without knowing if
there is one in the haystack itself”. The answer in this question is Dynamic Quantum
Clustering (DQC). DQC is a powerful visual method that works with big, high-
dimensional data. It exploits variations of the density of the data in feature space and
unearths subsets of the data that exhibit correlations among all the measured
variables. The outcome of a DQC analysis is a movie that shows how and why sets of

data-points are eventually classified as members of simple clusters or as members of -
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what we call - extended structures. This allows DQC to be successfully used in a non-
conventional exploratory mode where one searches data for unexpected information
without the need to model the data. The DQC methodology works for big, complex,
real-world data sets that come from five distinct fields: i.e., X-ray nano-chemistry,
condensed matter, biology, seismology and finance. We know that big, complex data
sets often contain interesting structures that will be missed by many conventional
clustering techniques. Experience shows that these structures appear frequently
enough that it is crucial to know they can exist, and that when they do, they encode
important hidden information. However, DQC is able to detect these structures. In
short, we not only demonstrate that DQC can be flexibly applied to data sets that
present significantly different challenges, we also show how a simple analysis can be
used to look for the needle in the haystack, determine what it is, and find what this

means (Weinstein, Meirer, Hume, Sciau, Shaked, Hofstetter, Horn, 2013).

We note DQC is not only a density based clustering algorithm, but it is also a
visual tool that can reveal subsets of large, complex data that exhibit simultaneous
correlations among the many variables being measured. More specifically, a DQC
analysis begins with the creation of a movie wherein proxies of the data-points move
from their initial position towards the nearest region of higher density. Hereafter this
step will be referred to as the DQC evolution of the data. Correlated subsets are
distinguished from one another depending on their final shape during or after DQC
evolution: extended shapes are referred to as structures, while the term cluster is
reserved for subsets that collapse to a point. A DQC analysis results in a movie that
visually reveals how and why the algorithm identifies and distinguishes between
structures and clusters (Weinstein, Meirer, Hume, Sciau, Shaked, Hofstetter, Horn,
2013).

We present some of the advantages of DQC algorithm. Firstly, DQC doesn’t
begin by assuming there are structures to be found, and because it has been proven not
to find structures in random data and it makes no assumptions about the type or shape
(topology) of structures that might be hidden in the data, it can be used to determine if
one is collecting the right kind of information. Secondly, DQC exploits variation in
the density of the data. Thus, it reveals structures with unusual topologies even in very
dense data sets. Furthermore, DQC works well for high-dimensional data since the

time spent in a DQC analysis only grows linearly with the dimension of the data.



Quantum Statistics and Data Analysis

Finally, while DQC’s greatest strength is that it allows one to visually explore high-
dimensional complex data for unexpected structure, it can also be used to rapidly
classify incoming data once a sufficiently large subset of data has been analyzed
(Weinstein, Meirer, Hume, Sciau, Shaked, Hofstetter, Horn, 2013).

The steps of the DQC algorithm are presented in Appendices (Appendix A).

We support that the output DQC evolution is an animation showing how data
points move towards the nearest minimum of the potential. More specifically, if the
potential has isolated minima due to topologically simple regions of higher density,
then the results of the evolution are fixed points describing isolated clusters. If,
however, there are higher density regions of the data where the density is constant
along complicated and possibly intersecting shapes, then the results of DQC evolution
will be filamentary structure (Weinstein, Meirer, Hume, Sciau, Shaked, Hofstetter,
Horn, 2013).

This is what one will see if there are subsets of the data that exhibit
multivariate correlations that can be parameterized in terms of only a few variables.
We can show that these structures encode important information about the data
(Weinstein, Meirer, Hume, Sciau, Shaked, Hofstetter, Horn, 2013).

The Galaxies example:

We want to demonstrate that the DQC potential accurately captures the
density of data-points, and that DQC evolution can reveal extended, topologically
non-trivial structures (or regions of nearly constant density) hidden in the data. So, we
apply it to a well understood subset of 139,798 galaxies taken from the Sloan Digital
Sky Survey (SDSS). Each data entry consists of the three coordinates of a single
galaxy. The first two numbers are 0 and ¢, the angular coordinates defined in our
Galaxy; the third coordinate is the redshift, z, a proxy for the distance from us to the
other galaxies. It is well known that galaxies are not uniformly distributed, but rather
they form a web of filaments and voids, so the question is if DQC evolution will
reveal this structure (Weinstein, Meirer, Hume, Sciau, Shaked, Hofstetter, Horn,
2013).



Anestis Kosmidis

We observe that Figure 17A is a plot of the quantum potential for a two-
dimensional subset of the data obtained by choosing galaxies whose red-shifts differ
by a very small amount. The galaxies are plotted as yellow points and the transparent
quantum potential constructed from this set of galaxies is plotted upside-down, so that
the maxima of the upside-down potential actually correspond to minima. This plot
shows that the potential closely conforms to the distribution of galaxies and so it is
clearly a very good proxy for the density of the data. Changing by 20%, doesn’t
change the potential significantly. We note that this two-dimensional slice of the data
shows significant structure, but fails to exhibit filamentary features of nearly constant
density. Furthermore, in Figures 17B-17D we see what happens to the full three-
dimensional data set as DQC evolution collects the data-points into structures that
follow the shape of the minima of the three-dimensional potential. In this case DQC
evolution reveals the existence of the network of filaments and voids that is not
readily apparent in Figure 17B. The web of filaments revealed in this picture
correspond to the topological structure of the minima of the quantum potential
(Weinstein, Meirer, Hume, Sciau, Shaked, Hofstetter, Horn, 2013).
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Figure 17: A) Comparison of SDSS data points with the derived DQC potential. The potential
is plotted upside down and the yellow data points are slightly shifted in order to increase
their visibility. B) The distribution of data in a 3D space defined by ¢, ¢ and z. C) Early
stage of DQC evolution of the data. D) Further DQC evolution exhibits the clear appearance

of string-like structures (Weinstein, Meirer, Hume, Sciau, Shaked, Hofstetter, Horn, 2013).

DQC algorithm can be used in a variety of applications, as it can be applied to
all sorts of data. We recommend that possible future extensions demonstrate that
DQC can be important to people working in such diverse fields as chemistry, biology,
particle physics, astrophysics, genomics, business, finance, analysis of social
networks and national security (\Weinstein, Meirer, Hume, Sciau, Shaked, Hofstetter,
Horn, 2013).
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Quantum Meila-Shi Clustering Algorithm vs k-Means Clustering
Algorithm:

We know that one of the biggest problems of data analysis is data with no
known a priori structure. Therefore, data clustering, which seeks to find internal
classes or structures within the data, is one of the most difficult, yet needed
implementations. The standard algorithm is K-means, which rests on the following

assumptions:

(1) Assume in advance the number of clusters

(2) Generate random seeds

(3) Assume at least one seed “hits” every cluster

(4) Clusters “grow” in the neighborhood of each seed

(5) Cluster regions grow until saturation (Scott, Therani, Wang, 2017).

On the other hand, Meila-Shi algorithm supposes we have a real N x K data matrix
Q and then:

S=0QxQT (4.3)
Si,j
A= ai,j = (44)
JZk:l Sik Zk=1 Sjk
P=p, =—u (4.5)
b Yke1 sik '

where S is the similarity matrix, A is the adjacency matrix and P is a row-
stochastic matrix, often called a Markov matrix. It is also called a transition matrix.
Moreover, ¢; and ; are respectively the normalized eigenvectors of A and P,
taken as column vectors, but these matrices share the same eigenvalues A; , which

have special properties:
=1 and ;4,1 <1< 4 ,where i=1,2,3, ...

However, the corresponding eigenvectors of P, i.e. y; provide a much better

clustering picture. For i> 0, plotting the lead eigenvectors i, versus i, (oftenthe
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leading two eigenvectors i =1, 2 are sufficient) serves as the principal axes,
graphically provides a clustering picture and consequently a considerable dimensional
and size reduction of the original problem (Meila, Shi, 2001, Scott, Therani, Wang,
2017).

Acrtificially-created data set of random points data set:

We compose artificially-created random points within two circular envelopes
of different sizes with the circle of a smaller size having a high density of points. We
observe Figure 18a shows the result for k-Means, as provided by the MATLAB
toolbox, for a choice of two clusters. The result is stable, but illustrates one of the
problems experienced with overlapping clusters using k-Means. The smaller cluster,
which is shown in red, penetrate the larger circle too much. However, as we see in
Figure 18b, the contour plot of the quantum potential allows us to better isolate the
smaller cluster. We note the cluster centers are shown in black dots. The continuous
transitions between potential minima, which are the cluster centers, provide a
continuous description of the “fuzzy-clustering” aspects (Scott, Therani, Wang,
2017).

Figure 18: k-Means vs quantum clustering on two overlapping circles. (a) k-Means
clustering: the smaller circle “overflows” into larger blue circle. (b) Quantum clustering: the

contour plot better isolates the smaller circle, ¢ = 0.7125 (Scott, Therani, Wang, 2017).
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Rock Crabs example:

This example comes from biology and we suppose one has two sexes and two
(new) species and consequently four groups. Preserved specimens lost their colour, so
it was hoped that morphological differences would enable museum material to be
classified. Data was collected on 50 specimens of each sex of each species, collected
in Western Australia. Each specimen had measurements to according to: (1) frontal
lip, (2) rear width, (3) length along midline, (4) maximum width of carapace and (5)
body depth. Thus,, the total data set isa 200 x 5 data matrix.

We observe that Figure 19 shows the outcome of the application of spectral
Meila-Shi and quantum clustering on this data. The actual classes are illustrated by
the colours red, blue, green and yellow. The lead eigenvectors ¥, and ., are
sufficient to provide a complete two-dimensional clustering picture. It is also shown
the contour plot from the quantum clustering potential is the minima clearly indicating
the cluster centers. All four classes were recovered to within 80% of the data

according to the Jaccard index.

The “fuzzy” nature of points that are nearly equally spaced between cluster
centers is handled continuously by the quantum potential. Our results are comparable,
but the difference in outcome between the two approaches increases for larger data
sets in both row and column size (Ripley, 1996, Horn, Gottlieb, 2001, Scott, Therani,
Wang, 2017).
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Crab Data — Meila—Shi + Quantum Clustering
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Figure 19: Identification of four classes by quantum clustering (Scott, Therani, Wang, 2017).

Quantum Clustering Algorithms — Results visually:

A given set of data-points in some feature space may be associated with a
Schrédinger equation whose potential is determined by the data. This is known to lead
to good clustering solutions. We extend this approach into a full-fledged dynamical
scheme using a time-dependent Schrédinger equation. Moreover, we approximate this
Hamiltonian formalism by a truncated calculation within a set of Gaussian wave
functions (coherent states) centered around the original points. This allows for
analytic evaluation of the time evolution of all such states, opening up the possibility
of exploration of relationships among data-points through observation of varying
dynamical-distances among points and convergence of points into clusters. This
formalism may be further supplemented by preprocessing, such as dimensional
reduction through singular value decomposition or feature filtering (\Weinstein,
Marvin, Horn, 2009).

We advocate the use of a Schrodinger Hamiltonian H that is intimately
connected to the data structure, as defined by the quantum clustering method and

summarized below. We extend it into a time-dependent Schrodinger equation:

WED = Hp(E, 1) (4.6)

i
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The ensuing Dynamic Quantum Clustering (DQC) formalism allows us, by
varying a few parameters, to study in detail the temporal evolution of wave-functions
representing the original data-points. Then, this dynamical behavior allows us to
explore the structure of the quantum potential function defined by the quantum
clustering method. DQC begins by associating each data-point with a state in Hilbert
space. The temporal development of the centroids of these states may be viewed in
the original data-space as moving images of the original points. Their distances to
one-another change with time, thus representing associations they form with each
other. Convergence of many points onto a common center at some instant of time is
an obvious manifestation of clustering. Many transitional relationships may occur,
revealing substructures in clusters or even more complex associations. For this reason
we propose this approach as a general method for visually and interactively searching

for and exploring structures in sets of data (\Weinstein, Marvin, Horn, 2009).

More specifically, we start to describe the Quantum Clustering method. The
quantum clustering approach begins by associating to each of n data points X; inan

E-%)°

Euclidean space of d dimensions a Gaussian wave-function ¢;(¥) = e 202 and

then constructing the sum of all these Gaussians:

F-7)°

YE) = Xie 2 (4.7)

Conventional scale-space clustering views this function as a probability
distribution (up to an overall factor) that could have generated the observed points,
and regards therefore its maxima as determining locations of cluster centers. Often
these maxima are not very prominent and, in order to uncover more of them, one has
to reduce o down to low values where the number and location of the maxima
depend sensitively upon the choice of o. Quantum clustering took a different

approach, requiring y to be the ground-state of the Hamiltonian:

Hy = <—"72 V2 4 V(x)>¢ = By (4.8)

By positing this requirement , the potential function V(x) has become
inextricably bound to the system of datapoints, since V(X) is determined, up to a
constant, by a simple algebraic inversion of Equation (4.8). Moreover, we may expect

V' to have minima in regions, where v has maxima. In fact, it frequently turns out
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that a concentration of data points will lead to a local minimum in V , even if y does
not display a local maximum. Thus, by replacing the problem of finding maxima of
the Parzen estimator by the problem of locating the minima of the associated potential
V(%) , we simplify the process of identifying clusters. The effectiveness of this
approach has been demonstrated in the work by Horn and Gottlieb. It should be noted
that the enhancement of features obtained by applying Equation (4.8) comes from the
interplay of two effects: attraction of the wave-function to the minima of V and
spreading of the wave-function due to the second derivative (kinetic term) (\Weinstein,
Marvin, Horn, 2009).

Dynamic Quantum Clustering (DQC) drops the probabilistic interpretation of
v and replaces it by that of a probability-amplitude, as customary in Quantum
Mechanics. DQC is set up to associate data-points with cluster centers in a natural
fashion. Whereas in Quantum Clustering this association was done by finding their
loci on the slopes of V , here we follow the quantum-mechanical temporal
evolvement of states associated with these points. Specifically, we will view each

data-point as the expectation value of the position operator in a Gaussian wave-

2

e
X— Xj

function: Y;(¥) = e 202~ . The temporal development of this state traces the
association of the data-point it represents with the minima of V(X) and thus, with
the other data-points (Weinstein, Marvin, Horn, 2009).

We present the detailed description of the Dynamic Quantum Clustering
method as provided by Horn, Weinstein and Marvin in Appendices (Appendix B).

We want to test our method, so we apply it to a five-dimensional data set with
two-hundred entries, used in Ripley’s text book. This data set records five
measurements made on male and female crabs that belong to two different species.

The data is stored in a matrix M which has 200 rows and 5 columns.

In what follows we study the temporal behavior of the curves (x;(t)) , for all
i. Henceforth we will refer to this as the “motion of points”. Figure 20 shows the
distribution of the original data points plotted on the unit sphere in three dimensions.
This is the configuration before we begin the dynamic quantum evolution. To visually
display the quality of the separation we have colored the data according to its known

four classes, however this information is not incorporated into our unsupervised
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method. To begin with, we see that the two species of crabs ((red,blue) and
(orange,green)) are fairly well separated; however, separating the sexes in each
species is problematic. The middle plot in Figure 20 shows the distribution of the
points after a single stage of quantum evolution, stopped at a time when points first
cross one another and some convergence into clusters has occurred (Weinstein,
Marvin, Horn, 2009).

It is immediately obvious that the quantum evolution has enhanced the
clustering and made it trivial to separate clusters by eye. Once separation is
accomplished, extracting the clusters can be performed by eye from the plots or by

any conventional technique, e.g. k-means.

An alternative way of displaying convergence is shown in Figure 21, where
we plot the Euclidean distance from the first point in the data set to each of the other
points. The clusters lie in bands which have approximately the same distance from the
first point. It is difficult to get very tight clusters since the points, while moving
toward cluster centers, oscillate around them, and arrive at the minima at slightly
different times. Given this intuition, it is clear that one way to tighten up the pattern is
to stop DQC evolution at a point where the clusters become distinct, and then restart it
with the new configuration, but with the points redefined at rest. We refer to this as
iterating the DQC evolution. The right-hand plots in Figure 20 and Figure 21 show
what happens when we do this. The second stage of evolution clearly tightens up the
clusters significantly, as was expected (\Weinstein, Marvin, Horn, 2009).

Figure 20: The left hand plot shows three-dimensional distribution of the original data points

before quantum evolution. The middle plot shows the same distribution after quantum
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evolution. The right hand plot shows the results of an additional iteration of DQC. The values
of parameters used to construct the Hamiltonian and evolution operator are: ¢ = 0.07 and m
=0.2. Colors.indicate the expert classification of data into four classes, unknown to the
clustering algorithm. Note, small modifications of the parameters lead to the same results
(Weinstein, Marvin, Horn, 2009).
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Figure 21: A plot of Euclidean distance of each point i from the first data point. Again, the
left hand plot shows the distances for the initial distribution of points. The middle plot shows
the same distances after quantum evolution. The right-hand plot shows results after another
iteration of DQC. The numbering of the data-points is ordered according to the expert
classification of these points into four classes containing 50 instances each (Weinstein,
Marvin, Horn, 2009).
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Figure 22: A plot of the first three principal components for a large data-set, comprising
35,213 points in 20 dimensions, before and after DQC evolution. The potential was
determined from the full data-set and evolved using a sub-set of 1200 points, whose
Gaussians serve as an essentially linearly set of independent states. Three stages of DQC
development are shown. The coloring was decided upon by selecting the most obvious
clusters from the evolved data and assigning colors to them. The dark blue points correspond
to points that we did not bother to assign to clusters. The purpose of coloring is to be able to
look at the points in the original data, discern those that belong to common structures, and

follow their dynamic distances under DQC evolution (Weinstein, Marvin, Horn, 2009).

In this section we present a novel clustering method to microarray expression

data in simple steps:

The first stage involves compression of dimensions that can be achieved by applying
Singular Value Decomposition (SVD) to the gene—sample matrix in microarray
problems. Thus, the data (samples or genes) can be represented by vectors in a

truncated space of low dimensionality (Horn, Axel, 2003).

We find it preferable to project all vectors onto the unit sphere before applying a

clustering algorithm.
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The clustering algorithm used here is the quantum clustering method that has one free
scale parameter. Although the method is not hierarchical, it can be modified to allow

hierarchy in terms of this scale parameter (Horn, Axel, 2003).

More specifically, Singular Value Decomposition Algorithm concerns an m x n
gene/sample matrix X. Its columns may be interpreted as sample vectors defined in
gene-space, and its rows are gene-vectors in sample space. This matrix of rank k <

min(m, n) can be expanded into a sum of k unitary matrices of rank 1:
X = ZI(;:l Oq Ug vE (4.18)

The two sets {u,} and {vg}, where a, B =1, ..., k, of column and row vectors,

respectively, are orthonormal sets. This expression can be rewritten in the matrix

representation:
X=U0zVvT (4.19)

where X is a (non-square) diagonal matrix, and U, V are orthogonal matrices.
Ordering the non-zero elements of X in descending order, we can get an

approximation of a lower rank r to the matrix X by taking %, =0 forj>r,

leading to the matrix:
y=uzvT (4.20)

This is the best approximation of rank r to X, i.e. it leads to the minimal sum of

square deviations:
2
S=Yr¥HX; —Yy) (4.21)

Once we apply SVD to a given matrix X, we automatically define two spaces
dual to each other. The matrix U has orthogonal columns (eigensamples) that serve
as axes for representing all genes (rows of U), while the matrix V has orthogonal
columns (eigengenes) that serve as axes of a space representing all samples (rows of
V or columns of V). Truncating these representations to dimension r, the gene-
vectors (truncated rows of U) and the sample-vectors (truncated columns of VT) do
not have equal norms (Horn, Axel, 2003).

This leads to a problem for the clustering algorithm that is applied in these

spaces since many vectors accumulate around the origin. We employ therefore
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rescaling of all vectors to unit length. In other words, we project these vectors onto

the unit sphere in r-space (Horn, Axel, 2003).

We present the Quantum Clustering Algorithm suggested by Horn and
Gottlieb (2002) in Appendices (Appendix C).

We apply our method to three data sets. The results are very promising. On
cancer cell data we obtain a dendrogram that reflects correct groupings of cells. In an
AML/ALL data set we obtain very good clustering of samples into four classes of the
data. Finally, in clustering of genes in yeast cell cycle data we obtain four groups in a
problem that is estimated to contain five families (Horn, Axel, 2003).

We want to describe the quality of the results, so we calculate at each stage of

o, the Jaccard score:

Jo_— 1 (4.27)

N1 +Nq0 + No1

where n,, isthe number of pairs of samples that appear in the same cluster both
according to the cell type and according to our clustering algorithm, whereas n,, +
ny, IS the number of pairs that appear together in one classification and not in the
other. This score should be 1, for perfect clustering and decrease as the clustering
quality decreases (Horn, Axel, 2003).

We compare here the QC results with a k-means analysis, which turns out to
be worse. The Jaccard scores are 0.72 for the best QC result (varying over c) and 0.48
for the best k-means (varying over k and averaging over initial conditions). It can be
seen in Figure 24 that the k = 4 k-means analysis has one quite empty cluster. Indeed,

the best k-means results were obtained for k = 3 (Horn, Axel, 2003).
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Figure 23: . Representation of data of four classes of cancer cells on two dimensions of the
truncated space. These data points (denoted by star and by the relevant letters) are shown
after the normalization of each data point in r-space. The circles denote the locations of the

data points before this normalization was applied (Horn, Axel, 2003).
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Figure 24: Clustering solutions for the AML/ALL problem using QC with ¢ = 0.54 (upper
frame) and k-means with k = 4 (lower frame). The samples are ordered on the x-axis
according to the true classification into four groups, indicated by alternative gray and white
areas (Horn, Axel, 2003).
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truncated space (Horn, Axel, 2003).
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Figure 26: Cluster assignments of genes for QC with ¢ = 0.46 as compared to the
classification by (Spellman et al., 1998) shown as alternating gray and white areas (Horn,
Axel, 2003).
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QUANTUM CLUSTERING: NOVEL APPLICATION

We construct the following example:
Data set from UCI Repository: Absenteeism at work Data Set

Abstract: The database was created with records of absenteeism at work from July

2007 to July 2010 at a courier company in Brazil.
Number of Instances: 740

Attribute Characteristics: Integer, Real

Number of Attributes: 21

Download date: 12 January 2019
Attribute Information:

1. Individual identification (ID)

2. Reason for absence (ICD).

Absences attested by the International Code of Diseases (ICD) stratified into 21 categories (I
to XXI) as follows:

I Certain infectious and parasitic diseases

I1 Neoplasms

111 Diseases of the blood and blood-forming organs and certain disorders involving the
immune mechanism

IV Endocrine, nutritional and metabolic diseases
V Mental and behavioural disorders

VI Diseases of the nervous system

VII Diseases of the eye and adnexa

V111 Diseases of the ear and mastoid process

IX Diseases of the circulatory system

X Diseases of the respiratory system

XI Diseases of the digestive system

XII Diseases of the skin and subcutaneous tissue
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X111 Diseases of the musculoskeletal system and connective tissue

X1V Diseases of the genitourinary system

XV Pregnancy, childbirth and the puerperium

XVI Certain conditions originating in the perinatal period

XVII Congenital malformations, deformations and chromosomal abnormalities
XVl Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere
classified

XIX Injury, poisoning and certain other consequences of external causes

XX External causes of morbidity and mortality

XXI Factors influencing health status and contact with health services.

And 7 categories without (CID) patient follow-up (22), medical consultation (23), blood
donation (24), laboratory examination (25), unjustified absence (26), physiotherapy (27),
dental consultation (28).

3. Month of absence

4. Day of the week (Monday (2), Tuesday (3), Wednesday (4), Thursday (5), Friday (6))
5. Seasons (summer (1), autumn (2), winter (3), spring (4))

6. Transportation expense

7. Distance from Residence to Work (kilometers)

8. Service time

9. Age

10. Work load Average/day

11. Hit target

12. Disciplinary failure (yes=1; no=0)

13. Education (high school (1), graduate (2), postgraduate (3), master and doctor (4))
14. Son (number of children)

15. Social drinker (yes=1; no=0)

16. Social smoker (yes=1; no=0)

17. Pet (number of pet)

18. Weight

19. Height

20. Body mass index

21. Absenteeism time in hours (target)
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Firstly, we implement classical statistical methods for clustering, like k-
Means, hierarchical clustering and Model-based clustering for the data set
“Absenteeism at work”. Then, for the same data set we implement Quantum
clustering method and try to interpret and compare the results of classical and

quantum methods.

For this implementation we use David Horn’s quantum clustering algorithm in R.
It does not suffer from the curse of dimensionality and takes advantage of
eigenfunctions for non-linear clustering. It was adapted from

http://horn.tau.ac.il/software/qc.m with help from the following paper: Algorithm for

Data Clustering Pattern Recognition Problems Based on Quantum Mechanics (2002).

e Quantum Clustering:

The goal is to perform clustering analysis according to the target variable
“Absenteeism time in hours” of the data set.

Firstly, we implemented the classical methods of cluster analysis and more
specifically Partioning (k-Means) method, Hierarchical (Ward) method and
Model-based method (Bayes criteria and maximum likelihood estimation).
These methods are in appendices (see Appendix I).

Then, we perform the quantum clustering method.

81 #quantum Clustering|

g2

83 clustersld <- gcimydatacl, sigma=l, steps=21, min_d_factor=2,
84 n_clusters_max=14, verbose=FALSE)

85 clustersld

g6

7 #plotting
88 plotcluster (mydatacl, clusters)


http://horn.tau.ac.il/software/qc.m
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min_d_factor=2,

21,
FALSE)

=1, steps
_max=14, verbose

n_clusters

= clustersld <- qgc(mydatacl, sigma
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Figure 31: Maximum number of clusters = 740

' - [ -

= Clusters

[1] 5 303 1 302 5 1 66 22 301 21 65 65 65 64 1 300 1 10 299 298 297

[22] 10 298 22 5 122 5 295 5 294 10 121 293 120 10 122 5 292 121 22 291 11

[43] 10 45 119 11 10 32 22 118 117 116 2 16 115 114 2 6 290 83 5] 9 20

[64] 16 114 113 5] 2 16 2 B3 8 5] 2 9 8 2 112 289 9 a 2 6 111

[85] 8 288 110 287 2 286 2 111 2 9 a2 2 285 & 62 109 108 44 2 9 109
[106] 31 2 9 2 31 284 283 282 3 7 7 o1z 3 6l 3 3 7 3 7 7 7
[127] 7 7 7 15 19 7 7 7 3 19 61 281 o4 280 107 14 432 106 100 3
[148] 3 15 279 3 105 105 3 107 27 60 277 276 30 @0 104 103 102 275 274 &0 12
[169] 19 273 101 3 272 100 3 42 15 42 42 29 271 3 103 3 30 3 12 41 12
[190] 3101 100 270 30 99 30 269 102 19 268 59 19 267 98 7 266 58 29 42 265
[211] 58 29 7 o264 263 262 201 29 96 260 41 259 41 30 99 29 5B 41 96 258 257
[232] 256 59 255 254 253 252 251 7 2530 249 40 248 56 50 247 246 5 1 245 5 244
[253] 5 243 5 95 94 94 22 5 93 242 40 39 93 21 39 21 241 240 92 91 239
[274] 238 237 236 235 234 92 233 91 232 231 230 229 228 227 226 225 90 89 90 88 224
[295] 223 55 222 2B 6 221 54 8B 49 54 7 7 53 & 220 53 86 117 B85 219 55
[316] 55 53 7 62 218 9 217 216 215 214 213 44 7 44 6 212 211 210 20 209 a
[337] 208 207 3] 2 20 20 B9 108 9 206 3] 6 113 16 44 6 205 204 52 203 10
[358] 5 3 202 12 201 12 200 199 198 197 1 1 7 1 18 43 14 1 1 1 1
[379] 51 1 196 1 26 26 195 1 1 194 1 1 25 26 51 14 1 84 38 193 1
[400] 832 192 191 82 24 24 190 189 81 1 43 188 26 1 14 750 13 7 1 24
[421] 187 186 14 1 49 185 13 50 4 1 83 14 38 3B 48 36 7 4 25 184 4
[442] 25 1 25 36 14 183 118 1 26 1 B8O 1 35 39 64 40 51 56 21 40 35
[463] 22 182 79 181 52 11 180 120 7179 10 39 66 5 453 732 17 1 7 7
[484] 11 5 45 32 10 7 7 21 711 32 52 7 711 119 32 177 176 10 35
[505] 175 28 86 77 76 174 77 8 16 173 8 2 28 B 2 28 6 172 8 7 2
[526] 7 2 110 171 170 118 2 20 16 1a&9 [ 7112 7 2 3 i 7 2 20 16

[547] 7 2 83 115 63 54 2 168 31 167 8 2 166 2 2 31 165 164 163 162 2
[568] 2 2161 15 104 23 23 15 23 1e0 23 15 12 15 1 19 1 1 1 3 159
[589] 1 3 1 4 158 1 7 1 18 1 1 3 4 23 1 7 4 1 1 1 12
[610] 732 1 18 1 13 3 1 1 157 1 13 48 13 156 1 36 1 36 4 73 155
[631] 1 1 1 4 154 13 1 18 1 43 48 1 13 1 4 1 1 153 152 1 1

[652] 151 150 50 72 7 70 149 69 34 148 147 146 7 71 145 34 72 144 34 143 69
[673] 142 34 B84 47 68 49 80 4 33 7141 7 4 24 24 25 E1l 4 140 7 139
[694] 138 33 38 18 7 68 33 4 137 136 7133 18 134 4 133 49 59 132 131 4
[F15] 98 130 82 4 33 129 11 46 37 57 46 45 46 95 11 128 127 11 66 35 126
[736] 5 21 125 124 123

e Changing sigma (controls how closely related data in clusters should be) and
n_clusters _max (number of clusters) and searching best choice

94 ##Change sigma and n_clusters_max = number of clusters (searching best choice)
95 clusters5s20000 <- gcimydata, sigma=20000, steps=21, min_d_factor=2,
96 n_clusters_max=5, verbose=FALSE)

7 clusters5s20000

98 clusters50s100

99
100 ## K-Means Clustering with 50 clusters
101 fit50 =- kmeans(mydata, 50)
102 fHit50%cluster
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> ##Change sigma and n_clusters_max = number of clusters
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104 #Conclusions

105 #fit = classical clustering

106 #clusters = quantum clustering
107 str(fit)

108 str(clusters)

109

110

111 # comparing 2 cluster solutions
112 dnstall.packages("fpc")

113 Tdibrary(fpc)

114

115 d =- dist(mydatacl, method = "euclidean”) # distance matrix

= #Conclusions
= #Fit = classical clustering
= #clusters = quantum clustering

= str(fit)

List of 9

$ cluster : int [1:740] 5 7 14 2 5 14 10 11 8 3 ...

§ centers :onum [1:14, 1:20] -0.7519 -0.278 -0.1047 0.1099% 0.0985 ...

..- attr{®, "dimnames")=List of 2
. .$ : [h[‘ [1:14] Ir1Ir Ir2Ir Ir3Ir Ir4|r

% totss : num 14780

$ withinss ponum [1:14] 337 496 196 128 1459 ...

§ tot.withinss: num 7122

% betweenss : num 7658

% size podint [1:147 32 39 27 35 134 46 60 80 13 32 ...
% dter »int 5

% ifault :dint 0O

attr{®, "class")= chr "kmeans"
= str{clusters)
num [1:740] 5 303 1 302 51 66 22 301 21 ...

e Conclusions from the results above

117 #1.For example the bigger the diameter of the cluster, the worst
118 #the clustering, because the points that belong to the cluster
119 #are more scattered.

120 #2.The higher the average distance of each clustering, the worst
121 #the clustering method. (Let's assume that the average distance
122 #is the average of the distances from each point in the cluster
123 #to the center of the cluster.)

124 cluster.stats(d, fits0icluster)

125 cluster.stats{d, clusterss0s100)

126

127

128

129

130 #First Conclusion: Many clusters ==> quantum clustering

131 # Less clusters === classical clustering

132 #second Conclusion: The guantum alogirthm is approximately o{na2)

All statistics of quantum clustering can be found in appendices (see Appendix J) and
compared with the statistics of classical methods of clustering analysis, such as k-

Means partioning and hierarchical method.

.% : chr [1:20] "Reason for absence” "Month of absence"” "Day of the week" "Seasons" .
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Here, gc {quantum clustering}: Cluster data using a non-linear clustering algorithm
which finds organic groups of data from eigenfunctions and does not suffer from the
curse of dimensionality. The algorithm is approximately O(n?). The function qc

returns a vector of the numeric clusters assigned to each row in data set.

gc(data set, sigma, steps = 21, min_d_factor = 2, n_clusters_max = 1000,verbose =
FALSE)

Arguments:

data set: The cleaned input data to be clustered in either data frame or matrix format.
This should contain only numeric data and must not have any factors, strings, NAs,
etc. It also should not contain any irrelevant columns such as observation ID or

redundant data.

sigma: A double which controls how closely related data in clusters should be. The
smaller the number, more clusters will be created with fewer observations in each. If
sigma is too small, observations either will not be clustered or will be in their own
individual clusters. If sigma is too large, most — if not all — observations will be in the

first cluster

steps: An integer specifying the number of expectation-maximization steps to take. If

faster, less accurate results are required, this may be reduced from the default of 21

min_d_factor: A double which controls how close data points must be in order to be
considered in the same cluster. Specifically, this value is the number of sigmas of
distance to be within said threshold. This value should probably not be changed unless

there is a strong reason to do so

n_clusters_max: An integer specifying the maximum number of clusters to return.
These clusters will always be the most common clusters with the most observations in

them

verbose: A boolean value which toggles the algorithm's verbosity for details as to how

far along it is.
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We prefer to present our visual results of Quantum Clustering using Matlab
language because in Matlab environment the results are more comprehensible than in

other programming languages like R or Python.

The necessary functions for our representation are provided in appendices (Appendix
D).

We implement the above code in Matlab and we take the following plot and output:

QC clusteringd dimensions jacard=0.18655

\\

300 400 500 600 700

0.5 ‘

=

1.5

2.5 ‘
3 L
3.5t
4t
4.5
100 200

Figure 32: In my data set horizontal axis refers to observations and vertical axis refers to the
reduction of dimensions of my data set in 4 (like PCA or SVD method)
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MAME & WALLUE SIZE CLASS
HH Bwemap 5%3 double 5x3

HH clust 740=1 double 740

colheaders =20 cell e
HHo 740%=4 double double
HH data 740%20 double 740

H dims 4 =1

HH efficiency 0.3207 1x1 double
HH genes 740=20 double double
HH index 4=740 double 4 double
HH im 0.1666 %1 double
HH m 740=20 double 740

HH mm 11826 %1

Hn 4x740 double 7

HH purity 0.2084 %1 ouble
Ha 2.4000 ouble
HH @cjacard_measure 0.1866

HH @Cminkowski_measure 11826

Hﬂ realClust [1,300,495 608 678] double
Hs 20=20 double 20 double
Hﬂ samples 20=20 double 20=2 double
textdata 1=20 cell 20 ce

® 4x740 logical 4=7 ogica
HH xyData 740%4 double 740 double

Figure 33: This table contains all the statistical measures appeared during Quantum
Clustering in the Matlab code

Here we present a second visualization of Quantum Clustering for the same data set
using Matlab environment. We provide the necessary functions for the main code in

the appendices (Appendix E). Then, we take the following plots:
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step #24/25

700

600 e
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400 -

300 — -
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Figure 34: How data is presented before Quantum Clustering, where horizontal axis refers to
the fraction V/E and vertical axis refers to the 740 observations of the data set. We view

2
as an eigenstate of the Schrédinger equation: HY = <—% 72+ V(x)> Y = Ey and
here we rescale H and V of the conventional quantum mechanical equation to leave only
one free parameter o. The case of a single point at x, corresponds to Schrodinger equation

with V = % (x—x,)% and E = % , Where d is the dimension of the Euclidean space. The

values V/E are shown as functions of the serial number of the data. Lower cutoffs in V/E ,
including lower fractions of data, are required to define cluster cores that are well-separated
in their relevant spaces.



Anestis Kosmidis

700 |

600 | SR P S

500

400 | s- -

300 .- s - .

200 - -

100 . .

Figure 35: How data is presented after Quantum Clustering (different colours means
different clusters from PCA), where horizontal axis refers to the fraction V/E and vertical
axis refers to the 740 observations of the data set.

According to the figures of Quantum Clustering we observe that after
Quantum Clustering the observations and cores are better separated than before

Quantum Clustering.
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JAME & VALL SIZE CLASS

clustering... V'

[vk}

Helusters  500=1 double 500=1  double
H col 2554=1 double 2554=1  double
{}] colheaders 1220 cell 1:20 ce

E data J00=2 double  S500=2 double
H howoften... 1 11 double
Him 740=20 double T40=20 double
Hn 500 11 double
v| normalize... 0 1x1 ogica
¥ normalize.... 1 1=1 0gica
¥ recalculat... 0 1=1 0gica
Hrep 300 11 double
H row 2354=1 double 2554=1  double
H sigma 5 1=1 double

H stepSize 07143 1x1 doub
H stochasticsz[ ] D=0 doub

in

(15}

{} textdata  1x20 cell 1%20 ce

H voxelsize [} D=0 ouble
H= 500=2 double  500=2 ouble
| =History S00x=2=25 do_.. 500=2=25 double

Figure 36: This table contains all the statistical measures appeared during Quantum
Clustering in the Matlab code

Therefore, for Clustering Issues we developed a Quantum Algorithm using the
programming language R, which can be implemented in every data set. Then, we
plotted the results of the Quantum Clustering Algorithm using the Matlab program.
We also implemented the classical statistical methods for Clustering, Partioning (k-
Means) method, Hierarchical method (Ward distance) and Model-based method
(Bayes criteria and Maximum Likelihood estimation) and plotted their results. We
validated cluster solutions through cross-validation and compared the statistics, which

comes from the methods k-Means and Quantum Clustering.

We conclude that the comparison between Classical and Quantum Clustering
Algorithms leads to results, which prove that in some cases Quantum Clustering
algorithm prevails of the corresponding Classical Clustering algorithm. However,

these results can not be generalized yet.
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Moreover, we observe it is quite difficult to compare the results between
Classical and Quantum Clustering methods visually. However, Quantum Clustering is
an additional beyond novel method to handle a data set and it is very possible with
few modifications in the code to take improved results in the near future.

Comments on the Results

For the clustering algorithm we select a large data set, prepare the data and

implement:

. Partioning (k-Means) method

. Hierarchical method (Ward)

. Model-based method (Bayes criteria and Maximum Likelihood estimation)

We plot clustering solution methods and implement Quantum Clustering. Next
we validate the cluster solutions (cross-validation), we observe and compare the
statistics which comes from the methods k-Means and Quantum Clustering. However,
we are not able to construct analogous plots for all the methods to compare them. For
this reason we plot quantum clustering in Matlab. In the first figure horizontal axis
refers to observations and vertical axis refers to the reduction of dimensions of my
data set in 4 (like PCA or VSD method). In the first figure of second application we
see how data is presented before Quantum Clustering and in the second figure we see
how data is presented after Quantum Clustering (different colours means different
clusters from PCA). Here, horizontal axis refers to the fraction V/E and vertical axis
refers to the 740 observations of the data set. For the statistical results of cross-
validation, we can check comments of R-studio algorithm. We can implement this
algorithm in every data set. In another data set (or in other variables) somebody could
extract better or more useful clustering results. In worst case, these new quantum

methods could be used as an extra method of machine learning.
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CHAPTER 5: QUANTUM REGRESSION

We introduce the Quantum-inspired Machine Learning Algorithms for
Regression. These are machine learning algorithms that involve in some quantum
theoretical elements, but do not require a quantum machine for implementing it. We
present a novel ensemble regression algorithm inspired by quantum mechanics and
the theoretical connection between quantum interpretations and machine learning
algorithms. The goal of ensemble learning is to combine the predictions of multiple

base learners to get more accurate aggregate predictions (Xie, Sato, 2017).

Suppose we are given a dataset X € R™™ |y € R™ fora regression or
classification problem. X is a n X m data matrix, which contains n data samples,
and each feature vector x' has m features. The target variable vector y is a vector
with a length of n. We define the Gram matrix P = XXT that is a symmetric and
positive semi-definite n x n matrix. Then, we have P = XXT = UXPUT where
2P isa nxn diagonal matrix. Column vectors of US are equal to principal
components in Principal Component Analysis. People often use first k column

features US as dimension-reduced k-dimension feature vectors (Xie, Sato, 2017).

As the density matrix of quantum mechanics is Hermitian, positive semi-

definite and of trace 1, if we normalize the Gram matrix P by multiplying a factor

%(m , the Gram matrix can be regarded as a density matrix in quantum theory. We

denote the normalized Gram matrix by p. We redefine p with a normalization factor

as:

__xxT T

Let u; denote the i-th column vector of matrix U, so u; is also a pure state
vector, which denotes |u;) in quantum theory. As we have replaced the Gram Matrix
by the normalized p, the sum of diagonal elements of X: Y, s? = 1 . The density

matrix p describing the data matrix as a mixed state is also an operator of the form:

p = ?:151'2 lu M u;| = Zir=15i2 | Wy | (5.2)
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Physically, it means a data matrix X can be regarded as a mixed state or a
guantum ensemble consisting of r pure states, where r is the rank. In physics, an
ensemble of pure states p can reflect statistical expectations of quantum systems
|u;) . And the variance s? is the fraction (weight probability) of the ensemble in each
pure state |u;) (Xie, Sato, 2017).

On the one hand, the quantum interpretation treats PCA naturally as a
dimensionality reduction process. In machine learning, researchers usually preserve
the first k components with largest variance values as dimensionality reduced
features. In quantum mechanics, PCA means that we remove several non-principal
eigenstates from the mixed state and preserve those principal eigenstates so that we
prepare a new mixed state consisting of less eigenstates. The new state is exactly a
low-rank approximated copy of the original mixed state. PCA is also a naive and
biased operation that assigns uniform weights to principal eigenstates and weight 0

to non-principal eigenstates (Xie, Sato, 2017).

The second quantum interpretation is we can also regard regression as a state
preparation process that we operate several pure states |x;), [x3), ... , |x,) tO
approximate a target state |y) . Translated in quantum theoretical language, it can be

written as:
py = |yNyl = Ap AT (5.3)

where the state operation is noted by some quantum operator A . So the quantum
mechanism of regression tasks can be understood as we learn a Model Operator to

operate eigenstates in a mixed to approximate a target pure state under some metrics.

The importance of an eigenstate |u;) is also reflected by the Transition Probability
from an eigenstate |u;) jumping into the target state |y).We denote Transition

Probability Amplitude as t,so ¢; = (y|A|u;) . We note that Transition Probability

equals Transition Probability Amplitude squared, namely |(3/|A|ul-)|2 (Xie, Sato,
2017).

Obviously, the Transition Probability is a parameter decided by model
operator, the eigenstate, and the target state together. Aggregating fraction

probabilities and transition probabilities together, the Fraction Transition Probability
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for the i-th principal component is proportional to si2|(y|/i|ui)|2 . So we take the

Fraction Transition Probability for the ith principal component as:

2 .2
e = Sk (5.4)

T 2 42
i=1 Si b

Algorithm 1: Quantum-Inspired Subspace for generating feature suhsets
funetion QISubspace (X, y, F. T, K)
Input : the data matrix X, the target variable vector y, the ensemble size T, the target
space dimensionality K = am
Output: feature subsets {F;|i =1,...,T}
Preprocess data matrix Xp +— PCA(X) by using full-rank PCA
Compute Fraction Probabilities p, < the diagonal elements of covariance matrix X T X
Compute Transition Probability Amplitudes ¢ «— (X;EXJeJ_lX;Ey which are LR
parameters
Compute Transition Probabilities py « t. % ¢
Compute Fraction Transition Probabilities p + Eﬂ-”,ﬁi:—‘ﬂ
fori+ 1 teT do
Select K unique random integers aq,...,ax from [1,m] in probabilities of p,,

return {Fli=1,...,T}

Algorithm 2: Random Forest
function RandomForest (S, F,T, K)
Input : A training set S = (z!,3'), ..., (z",y"), features F, and the forest size T, the
target space dimensionality K
Output: Random Forest H
H 0
fori+1toT do
S* + a bootstrap sample from S
F! + arandom subset of size K sampled from F
h; + Treelearn(S*, F')
H +— HU{hi}
end
return H
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Algorithm 3: Quantum-Inspired Forest
funetion QIForest (S, F. T, K)
Input : A training set S = (2!, ¢, ..., (2", y"), features F, and the forest size T, the
target space dimensionality K

Output: Quantum-Forest H
H+0
{Fili=1,..., T} generated by function QISubspace (X, y, F, T, K)
fori+ 1teT do

S' « a bootstrap sample from S

Fle F

hi + TreeLearn(S®, F)

H + H U {h}
end
return H

(Xie, Sato, 2017)

We describe the basic steps of the above algorithms. More specifically,
Random Subspace is a fast and efficient ensemble method widely used in many
algorithms, including Random Forest. Random Subspace randomly select a subset of
features for training a base learner. But Quantum-Inspired Subspace (QIS) can utilize

the extra information inspired by quantum mechanics (Xie, Sato, 2017).

We first preprocess the input data matrix X by using full-rank PCA. Different
from either preserving principal components with largest eigenvalues or random
subspace, QIS selects a component in a probability proportional to the corresponding

Fraction Transition Probability. Under Gaussian assumptions of model parameters,

we let p, = ﬁ for the component k. When we replace Random Subspace by

2

i=1
Quantum-Inspired Subspace for Random Forest, we obtain a novel algorithm, namely
Quantum-Inspired Forest. We note that, in principle, full-rank PCA preprocessing
generally can neither improve nor damage algorithm performance. The additional
computational cost of the proposed algorithm is only brought by Principal Component
Analysis and several matrix operations for computing Fraction Transition

Probabilities. So it is a very low cost in practice (Xie, Sato, 2017).

We denote by h4, ... ,hy the regressors in the ensemble and by F, the
feature set. We need to choose ensemble size T in advance. All base regressors can
be trained in parallel, which is also the case with Bagging and Random Forests.

Algorithm 1 explains how to generate the training feature set F; for regressor

h; . And we modify Random Forest into Quantum-Inspired Forest by employing
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Quantum-Inspired Subspace to generate ensemble feature subsets instead of Random
Subspace. We can easily notice the difference between standard Random Forest and
Quantum-Inspired Forest respectively described in Algorithm 2 and Algorithm 3 (Xie,
Sato, 2017).

It is worthy noting that Quantum-Inspired Subspace is a general method which
can be easily applied with other ensemble methods and multiple base learners
together. QIS also lend itself naturally to parallel processing, as ensemble feature sets

and individual learners can be built in parallel.

The proof following states that the advantages of QIS theoretically increase
ensemble ambiguity and decrease the individual error expectation in the first order
approximation. And in our empirical analysis, the experimental results support the
advantage is still approximately applicable to nonlinear models, such as Decision

Tree, as we see below.

Firstly, we show how to obtain Error-Variance-Covariance Decomposition.
We use an ensemble of T base regressors h; , h,, ... ,hy to approximate a function
f: R™ — R .Then, we use a simple averaging policy for the final ensemble

prediction:
H(x) = 2 N1y hi(x) (5.5)

where H(x) is the ensemble learner. We continue by defining several notations. The

generalization error and ambiguity of a base learner are respectively defined as:
2
err(hy) = (hi(x) — f(x)) (5.6)
. 2
ambi(h;) = (hi(x) — H(x)) (5.7)
Moreover, we denote the expectation prediction of a base learner h; as:
E[h] = [ hi(x) p(x) dx (5.8)
where p(x) is the density function for data x.

The error-ambiguity decomposition of ensemble learning and the generalization error

of the ensemble can be written as:

err(H) = err(H) — ambi(H) (5.9)
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where err(H) = %Zle err(h;) isthe average of individual generalization

errorsand ambi(H) = % YT_, ambi(h;) is the average of ambiguities which is

also called the ensemble ambiguity. We know that the larger the ensemble ambiguity,

the better the ensemble.

Furthermore, the averaged bias, averaged variance and averaged covariance of the

individual learners are defined respectively as:
bas(H) = = L1_y(E[h] - f) (5.10)
Finally, we obtain Error-Variance-Covariance Decomposition as:
- 1y — 1y —
err(H) = err(H) — (1 — ;) vartance(H) + (1 — ;) covartance(H)

(5.11) (Xie, Sato, 2017).

We present now the empirical analysis and compare Random Forest with
Quantum-Inspired Forest method. We select 10 UCI data sets that are commonly
used in the machine learning literature in order to make the results easier to interpret
and compare. We compare Random Ensemble Linear Regression with Quantum-
Inspired Ensemble Linear Regression in Table 40, where we replace Decision Tree by
Linear Regression as base learners. Ensemble Linear Regressors are not useful in

practice, but it can show how our proof holds (Xie, Sato, 2017).

We take the averaged mean square error (MSE) on 10 data sets as the metrics
in our empirical analysis. We decide to preprocess data sets and take full-rank PCA
preprocessed data matrix and mean normalized target variables y as preprocessed data
sets. The first purpose is to ensure any performance differences are purely caused by
the proposed Quantum-Inspired Subspace method rather than full-rank PCA
preprocessing. We must leave the difference from full-rank PCA out. The second
purpose is to remove the scale differences of different data sets so that we can fairly
evaluate overall performance on 10 data sets. It’s reasonable to start from full-rank
PCA preprocessing because full-rank PCA is only an orthogonal transformation and
causes no loss or distortion of information. As we mentioned above, in principle, full-
rank PCA generally can neither improve nor damage algorithm performance. In

practice, full-rank PCA usually brings in uncertain performance improvement or
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damage. So the full-rank PCA preprocessing is necessary for removing the uncertain
performance differences from the orthogonal transformation (Xie, Sato, 2017).

We present mean square errors with standard deviations as subscripts on each
data set or the averaged MSE on all 10 data sets in following tables. In Tables 40-41,
we denote better, significantly better, worse and significantly worse respectively as +
, ++,- and --. Instances is the data sample size. Dimension is the original data space
dimensionality. We typically take 60% data instances as training data. As we notice
the performance of Random Forest and Quantum-Inspired Forest adapt to
hyperparameters in similar patterns, we decide to study two Forests’ performance in

multiple settings of forest hyperparameters (Xie, Sato, 2017).

Data Instances Dimension | QI-Forest R-Forest | +/—
Ahalone 4177 8 0.3204p.005s  0.33500 0072 | ++
Communities Crime 1994 122 0276300025 0.30160 ggzo | ++
Communities Crime Unnormalized 1 2215 140 0.2515q 0053 0.2766p 0112 | ++
Communities Crime Unnormalized 2 2215 140 0.2125p 0052  0.269Tg ooz | ++
Facebook Metrics 500 11 0.1580p 0302 012670 0480 -
Forests Fire 517 8 0.8206p 017 0.8369% pam -
Housing 505 13 0.2011p00se  0.24929 011 | +4+
Slump Test 103 9 0.1704p 0108 0.26789 0276 | +4+
Wine Quality Red 1599 11 0439 poe0 0.46229 0118 | ++
Wine Quality White 4898 11 0.4056p 0002 0.4087p pors +

Table 40: Quantum-Inspired Forest Regressors vs. Random Forest Regressors: select one
half features to train base learners, namely a = 0.5, ensemble size T = 30, training
instances N = 60% . Means square errors with standard deviations as subscripts are
presented (Xie, Sato, 2017).

Data Instances Dimension | QIE-LR RE-LR | +/-

Abalone arwr 8 0.3466p 0061 0.41860 0207 | ++

Communities Crime 1994 122 0.2398p 0021 0.32200 0275 | ++
Communities Crime Unnormalized 1 2215 140 0.0213g00m  0.193500228 | ++
Communities Crime Unnormalized 2 2215 140 0.110d4p. 0020 0.238% g200 | ++
Facebook Metrics 500 11 0.0044g pong 0.0675g gyoe | ++

Forests Fire 517 8 0.72980 0016 0.73320 0ong | ++

Housing 505 13 0269500026 0.388300247 | +4

Slump Test 103 0 0.1075p 0042 0.26240.0448 | ++

Wine Quality Red 1599 11 04764pp023  0.48330.0103 | ++

Wine Quality White 4R0R 11 0.52450 0010  0.533400072 | ++

Table 41: Quantum-Inspired Ensemble Linear Regressors vs. Random Ensemble Linear

Regressors: select one half features to train base learners, namely a = 0.5, ensemble size T
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=30, training instances N = 60% . Means square errors with standard deviations as

subscripts are presented (Xie, Sato, 2017).

o | QI-Forest R-Forest

0.125 | 0.4251p0154  0.4932p pops
0.25 | 0.3411p.0082 0.4186¢ 0182
0.5 0.3263p.0004 0.3544p 0168
0.75 | 0.3253p 0000 0.33135 0118
1.0 0.3377p. o005 —

Table 42: Quantum Inspired Forest Regressors vs. Random Forest Regressors: ensemble size
T =30, training instances N = 60% , adjust a respectively as 0.125, 0.25,0.5,0.75, 1.0.
When a =1.0, Quantum Inspired Forest degenerates into Random Forest. Mean Square

Errors averaged over 10 data sets are presented (Xie, Sato, 2017).

T |QI-F-:-r-:st R-Forest

3 0.42120.0313  0.4758p.0613
10 | 0.35650 po1o0 0.38825 nair
30 | 0.3263g 0004 0.3534p.0168

100 | 0.31400 004 0.33560.0076

Table 43: Quantum Inspired Forest Regressors vs. Random Forest Regressors: a= 0.5,
training instances N = 60% , adjust ensemble size T respectively as 3,10, 30, 100 (Xie,
Sato, 2017).

Quantum Least Squares Regression:

In this section, we present our quantum approximation algorithm for Least
Squares Regression (QLSR), then analyze its error rate and running time (Liu, Zhang,
2017).
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Algorithm QLSR

Input: A € R"*" be R". A is Hermitian with spectral decomposition 4 = 31| A;j|v;) (v;], where
all the eigenvalues Ay, ..., A,, satisfy f < |Aj| €1 for e =1,...,r for some known value £ and A; =0
fori=r+1,..,n. Suppose that b=3>""_, 5;|v;}.

Output: A quantum state proportional to |Z) where & ~ z* = ATh, and a value £ = ||:1‘.*||§.
Algorithm:

1. Prepare the quantum state |b) = mz;‘zl Bilvi)-
2. Perform phase estimation to create the state ﬁ P Bilvi)|\s), where ); is the estimated
value of A; satisfying |A~i — X < dpr def s-fori=1,...,n

3. Add a qubit |0) to the state and perform a controlled rotation as follows. If A > i rotate
the qubit to {ﬁﬂ) + /11— -1;\-;)\_9 |0)); otherwise do nothing. The resulting state is
1

LS4 A L 1-—L ) LSS B A0 6
mz i[vi) [ Aq) 2“}_| H‘\/ —m| ) +m > Bilva)|Ai)0). (6)
izl i i imr 1

4. Use amplitude amplification by repeating the previous steps O(x?/€) times.
5. Measure the last qubit.
6. if we observe |1),

¢ ) .. i s . Bilo V1

(a) The remaining state is proportional to 37, i—j|-1ai}|)\1-}.

r 5

(b) Reverse the phase estimation process and get the state proportional to >, 5
i

as our output.

[v) = 12)

else output 0 as an estimate to |2*).

~]

Use amplitude estimation to get an estimate p’ to the probability p of observing |1) when
measuring the state in Eq.(6), to precision § = ¢/(4x%) and with success probability 0.99.
Output £ = p’ - 4|b||3K2.

We assume that A € R™ ™ withrank r is Hermitianand b € R™. Our
goal is to compute x* = ATh . We analyze the precision, error probability and the

cost. For convenience, we summarize the parameters: the phase estimation error

Opg = i , the Hamiltonian simulation error 655 = 0(83g) - O (5) and last-step
measurement precision § = — .
4K

We analyze the quality of the solution: |%) . With probability at least 0.99, the

outputted vector ¥ satisfies the inequality:
X —x*ll; < e -max{llx"ll2, [Ibll2} (5.12)

Next we analyze the estimated norm. With probability at least 0.99 , the outputted

value [ satisfies the inequality:

L= 1lx* 3] < edllx*lIZ + 11b1I3) (5.13)
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Finally, we analyze the computational cost:

For Step 1 of the QLSR algorithm, we can efficiently prepare |b) intime O(logn)
provided that b; (i=1,...,n) and ZZ Ib;|>? (1 <iy <i, <n) are efficiently

computable.

For Step 2 we perform quantum phase estimation by simulating e*4 , which takes
time O(s(logn + polylog(s, k))).

We want the error of the eigenvalue estimation is at most 6p5 = i , SO the phase
estimation algorithm needs O(S) calls of e*4 simulation. Thus, the total time for

one phase estimation is O(s(logn + poly log(s, k)) k/¢€) .

Repeating this for 0(%) time in Step 4 needs time O(s(logn + poly log(s, k)) k3/
£ .

Therefore, if we do not need to estimate the norm ||x*||, , then the algorithm can just
stop before Step 7. The total time cost is O ((logn) - 52 g %) = 0((logn) s?k3/
£ .

If we want to estimate the norm ||x*||, , the Amplitude Estimation needs to repeat

1 K2 . .
Step 1 to Step 3 at most O (E) =0 (;) times. So the total cost is

0 <(logn) - 52 S K;) = 0((logn) s?k3/e?) (Liu, Zhang, 2017).

Quantum Linear Regression Algorithm from classical data set:

The quantum linear regression algorithm is based on the method of encoding
classical information such as a 2™ dimensional vector a = (ay, ... ,a,n_;)T into
the 2™ amplitudes ay, ... ,a,n_, of a n-qubit quantum system: |y,) = %:0‘1 a; |i),
where {|i)} is a convenient notation for the computational basis:

{|0..0) = |0),...,|1..1) = |2" — 1)} (Schuld, Sinayskiy, Petruccione, 2016).
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In other words, the probabilistic description of a set of 2-level quantum
systems is used to store and manipulate classical information. We refer to this method
here as amplitude encoding and denote every such quantum state by a v with a
subscript referring to the classical vector it encodes. Namely |a) is a quantum state
where some mathematical object o is encoded into the basis state in a way that is to
specify in detail, while [i,) isa quantum state representing the real vector o via

amplitude encoding (Schuld, Sinayskiy, Petruccione, 2016).

The strategy for the quantum algorithm is the following. In Step 1 the general
idea of the quantum pattern recognition algorithm is to create a quantum state
representing the data matrix X = ¥, o, u, v% via amplitude encoding. In Steps 2
and 3 we use tricks to invert the unknown singular values efficiently. In Step 4,
guantum state representations of y,x are used to write the desired prediction from

Equation:

=R o7 x v,uly (5.14)

into the off-diagonal elements of an ancilla qubit, where it can be read out by a simple

oy ,0, measurement (Schuld, Sinayskiy, Petruccione, 2016).
Step 1: State Preparation

The quantum algorithm takes copies of the quantum states representing each

of the objects X , y and X from above in amplitude encoding:

W) = TN TMzd 2™ 1)) m) (5.15)
) = M=t y® u) (5.16)
e = IV %, ) (5.17)

2
with % [x™[ = Sy® =3, |5 = 1.

We note that the algorithm thus works with normalized data and the results have to be
re-scaled accordingly. Using the Gram-Schmidt decomposition, we can formally

write:
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Wx) = Sfey 0" B vf 1) Thciwin m) = By 07 [Yor) [ibur)
(5.18)
We state |y,r) = Zle v ) and [iyr) = M_,ul, |m) are quantum states

representing the orthogonal sets of left and right singular vectors of X via amplitude

encoding and o” are the corresponding singular values.

We acknowledge that overall, the question of state preparation is an
outstanding challenge for quantum machine learning algorithm design. Our goal of
the following algorithm is to remain linear in the number of qubits or logarithmic in
the problem size. In this direction, we mention the number of qubits needed to
construct states (5.15), (5.16) and (5.17) are [logN] + [logM] , [logM] and
[logN] respectively. Generally, if given a “classical” data set, techniques for the
efficient preparation of arbitrary initial quantum states are a nontrivial and
controversially discussed topic. However, some ideas like the linear state preparation
in the number of qubits or via Quantum Random Access Memory (QRAM) make

their appearance to contribute in this efficient preparation.

Step 2: Extracting the singular values

We want to transform Equation (5.18) into a “quantum representation”, so
firstly we invert the singular values of X. For this, we will “extract” the eigenvalues
A, of XTX toeigenvectors v, and use the inversion procedure in the following
step. In order to access the eigenvalues, we use copies of the state (5.15) in which on
the level of description we ignore the |m) register in order to obtain a mixed state

pxty = tr, {|¥x) (¥x|} which represents the positive Hermitian matrix X*X :

Pxix = Xj jio1 Zm=1 x(m)x(rm)*| XA (5.19)

Now we use the ideas of Quantum Principal Component Analysis to “apply” pyty tO

|Wx) resulting in:
K_olkAt) (keAt|®@e ™" Pxtx®t |yhy) (x| e Pxtx 4 (5.20)

for some large K. The quantum phase estimation algorithm results in:
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r=1 07 [Ypr) [ur) |A7) (5.21)

in which the eigenvalues 1™ = (6")? of py+, are approximately encoded in the

qubits of an extra third register that was initially in the ground state.

Step 3: Inverting the singular values

If we add an extra qubit and rotate it conditional on the eigenvalue register,

then we have:

Ry 0" Thur) ) A7) (/ 1-(£) 10+ |1>> (5.22)

The constant ¢ is chosen so that the inverse eigenvalues are not larges than 1, which

is given if it is smaller than the smallest nonzero eigenvalue A™" of XtX or

equivalently the smallest nonzero squared singular value (ami”)z of X. We
perform a conditional measurement on the ancilla qubit, only continuing the algorithm
(“accepting”) if the ancilla is in state |1) , else the entire procedure has to be
repeated. In next step about runtime analysis we discuss about the amplitude

amplification and how it can boost the probability of accepting quadratically.

Uncomputing and discarding the eigenvalue register results in:

Cc

1) = = Tia o %) [Yur) (5.23)

c 12

where the probability of acceptance is given by: p(1) = ), IE

Step 4: Executing the inner products

The last step has the goal to write the desired result:

R, (@™t (x| v") (1/Jy| u") into selected entries of an ancilla’s single qubit
density matric, from which it can be accessed by a simple measurement. We consider
the result (5.23) of the previous step, as well as  [y,) = |1/)y) |Yx) from Equations
(5.16) and (5.17).
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We conditionally prepare the two states so that they are entangled with an ancilla

qubit:
% (P2 10) + [2) [1)) (5.24)

and trace out all registers except from the ancilla, the off-diagonal elements p;, , p,1

of the ancilla’s density matrix read:
7 2 007 v & T uf y™) (5.25)

and contain the desired result up to a known normalization factor.

Conditionally preparing (5.24) requires us to execute the entire algorithm
including state preparation conditioned on the state of the ancilla qubits and might not
be easy to implement. In that case one can adapt the algorithm so that the |0 ... 0)

basis state in |,) and |y,) is “excluded” from all operations and remains with a

constant amplitude % throughout the algorithm, while the other 2™ — 1 amplitudes

are renormalized accordingly. This prepares states of the general form |a) =

1 . 1 .

% (10..0)+ Ty 10), ) = 35 (10..0) + ZNobi ) -

A common swap test effectively shifts the inner product by 1/2 and thus reveals

2
[{a|b)|? = %+% >N a; b;| from which the sign of ¥V, a; b; can be extracted

(Schuld, Sinayskiy, Petruccione, 2016).

These are the basic steps of the algorithm. Now we describe briefly the
runtime analysis and the computational complexity of the above steps of the
algorithm. According to previous researches we need temporal resources t = kAt in
O(logN) and of the order O(e~3) copies of pyty to “exponentiate” a density
matrix in Step 2, where ¢ is the error and N the dimension of the inputs in our data
set. The method requires the density matrix pyt, to be close to a low-rank

approximation, which is dominated by a few large eigenvalues in order to maintain
the exponential speedup. In general, it takes time t = 0 (%) to simulate et for a

Hamiltonian H up to error & and it takes time t? to do the same for e‘t (Schuld,

Sinayskiy, Petruccione, 2016).



Quantum Statistics and Data Analysis

This means that if we want to resolve relatively uniform eigenvalues of the
order of 1/N, time grows quadratically with N and the exponential speedup is lost.
Hence, the method is only efficient if the density matrix is dominated by a few large

eigenvalues.

The singular value inversion procedure in Step 3 determines the runtime’s

dependency on the condition number of X, k = ¢™%* (cr"”'”)_1 . The probability to

measure the ancilla in the excited state is:

2
= Rx™* (5.26)

2 | Amin

p(l) = Zr

[
A_T - Amax

which means we need on average less than «* tries to accept the conditional

measurement (Schuld, Sinayskiy, Petruccione, 2016).

The amended SWAP routine in Step 4 is also linear in the number of qubits
and the final measurement only accounts for a constant factor. The upper bound for
the runtime can thus be roughly estimated as O (logN k2e~3) if we have sufficient
copies of py+, available which is required to be close to a low-rank matrix. We have
to remember that this does not include the costs of quantum state preparation, in case
the algorithm processes classical information. Our algorithm tackles the problem of
pattern recognition or prediction and it can be applied efficiently to non-sparse, but

low rank approximations of the matrix XTX (Schuld, Sinayskiy, Petruccione, 2016).

Therefore, in summary we described an algorithm for a universal quantum
computer to implement a linear regression model for supervised pattern recognition.
This quantum algorithm reproduces the prediction result of a classical linear
regression method with least squares optimization. It runs in time logarithmic in the
dimension N of the feature vectors as well as independent of the size of the training
set if the inputs are given as quantum information. Instead of requiring the matrix
containing the training inputs, X , to be sparse it merely needs XTX to be
representable by a low-rank approximation. However, the sensitive dependency on the
accuracy as well as the unresolved problem of state preparation illustrate how careful
we need to treat “magic” exponential speedups for pattern recognition (Schuld,

Sinayskiy, Petruccione, 2016).
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Quantum Circuit Learning:

In this section we describe the theory and the details of the Quantum
Regression Algorithm, which we use below for our novel application in Python. The
algorithm merges two areas, Quantum Computing and Machine Learning and belongs
to the category of Quantum Circuit Learning (QCL). The Quantum Circuit Learning
is a quantum/classical hybrid algorithm that aims to perform supervised or

unsupervised learning tasks (Kopczyk, 2018).

Quick explanation of the algorithm:

The QCL is based on the idea of variational circuits equivalent to
transformation U(x, 8) . By repetitive measurement of qubits after such
transformation, we can estimate an expectation value, which is expressed as a
function f(x , 0) . By proper tuning of 6 parameters the quantum circuit learns to

output some label vy, so thataloss L(y, f(x,8)) is minimized (Kopczyk, 2018).

Variational Quantum Circuit is just a unitary transformation that is 0-parameterized

(6 is a vector) and can be divided into a sequence of smaller unitaries:
U(x,0) = U)(6))...U;(6;) ... Uy (6,) Up(x) (5.27)

where U,(x) encodes an input data x into a quantum state. The key insight is that 0
parameters can be adjusted so that the variational circuit produces the desired output.
In supervised tasks, QCL is supplied with training data {x;} and corresponding labels
{y;} for i=1,2,...,M, where M is a number of samples. Then, the algorithm

learns to output f(x;,6) inaway itis as close as possible to y; .
We describe below the steps of the algorithm for N-qubits circuit (Kopczyk, 2018).

Step 1: Encode input data x; into a quantum state by applying some unitary

transformation U(x;) to initialized qubits |0)®V .

Step 2: Apply 0-parameterized unitary on the encoded input state, generate an output
state and measure some observable B. As an observable we use a subset of Pauli

operators {B} c {I,X,Y,Z}®N (for example Z measured on the first qubit).
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Step 3: Repeat Step 1 and Step 2 P-times to get an estimate of the expectation value
f(x;,0) of some chosen observable B.

Step 4: Repeat Step 3 for each sample and calculate a loss L(y, f(x,6)). Minimize it
by tuning 6 parameters using classical optimization algorithm such as gradient

descent.

» L (yaﬁxs 9))

- -
<
p—

Figure 37: The quantum part of the algorithm amounts to encoding an input data into a
guantum state, applying a theta-parameterized unitary and calculating expectation values for

each training sample (Kopczyk, 2018).

In this hybrid algorithm, a quantum subroutine calculates the output f(x;,6)
for each sample, whereas the calculation of loss and optimization of 6 parameters is

executed in a classical loop (Kopczyk, 2018).
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update ¢

Calculate
loss

Figure 38: Learning in QCL involves iterative execution of quantum and classical parts of the
algorithm (Kopczyk, 2018).

In case of larger parameter space, which is most commonly encountered in
machine learning, the preferred optimization methods are gradient-based. This, in
turn, requires us to calculate a derivative of f(x, 6). So we want to calculate the
derivative of the expectation value with respect to a circuit parameter V, f(x,6) , but
in many cases we can express it as a linear combination of the same quantum

functions, differing only in a shift p in parameter 6 (Kopczyk, 2018).

Vo flx, 0) x S, 9; P) - fx, H;p)
0) HA[0) A H A
0) - H A 0) - [/
0) 4 Uz, 0+ p) H-A| 10) 4 U(z,0—p) H-A
0) 1A 10) o HAA
0) A 10) H A

Figure 39: In many cases, the gradient can be expressed or approximated by a linear

combination of expectation values with a shift in the parameter (Kopczyk, 2018).

We present here a simple example of single parameterized gate:

U(x,0;) = Uy (67) Up(x) (5.28)
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.0
with Uy(8,) = Ry(6y) = e 2 ¥ (5.29)

where X is a Pauli operator. The gradient of this unitary and its conjugate transpose

is expressed by:
.6
Vo, U(61) = —lf X Uy(61)
t 01 0t
Vo, Uy (61) = L Uy (61)X (5.30)
as XT = X. The expectation value of measured operator B is defined as:
f(x,61) = (0|Ug () U (6:)BUL (6:)Up(x)]0) = (x|US(61)BU,(61)|x)

(5.31)

and the gradient is:

Vo, f(x,0,) = (x|Vg, (U] (61)BUL(6,))]x) (5.32)

Substituting the derivatives from Equation (5.37) we get:

Vo, f(x,0;) = (x|Uf(6)(XB — BX)U; (8))|x) = 5 (x|Uf (8)[X, BIU,(6,)]x)
(5.33)

where [X, Y] = XY - YX is the commutator. We use the following property of

commutator involving Pauli operators, in particular X, and an arbitrary operator B:

[X,B] = (U*( )BUl( ) ul (—g)BU1 (—§)> (5.34)

Thus, we obtain:

Vo, .00 = 3 (x]u] (61 + %) BUL (0 + D) -

L (x|ut (6. =) Bus (0 - %) |x) (5.35)
which is just:
Vo, fr0) = 1 (£ (x.0,+5) ~ f (x.0, - 7)) (5.36)
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This is a linear combination of the same quantum functions, but with shift

p= ig in the parameter! So to calculate the gradient we need to additionally run
Step 1 — Step 3 of our algorithm twice with the shifted parameters.

In case of multiple parameterized gates, the same logic applies. To calculate
the gradient, one has to modify the variational circuit by inserting i—% rotations next

to the 6;-dependent unitary U;(6;) (Kopczyk, 2018).

Regression Example in Python:

In this example, QCL will try to learn a simple quadratic function x2. Firstly,

we generate a (very) small data set x = {x;, ..., xg} with corresponding labels y =
{ylr 'yS}:

import numpy as np

np . random. sead (@)

m= 8
¥ = np.linspace(-0.95,0.95,m)
y = X¥2

Next we implement U, (x;) unitary to encode input data x; into a quantum

state. We will do that by applying the following qubit rotations:

Uo(x) = Tlk=1 R (cos(x})) R¥ (sin(x;)) (5.37)

to initialized state |0)®" with N =3 expressing a number of qubits in quantum

circuitand R¥ rotating k-th qubit (Kopczyk, 2018).

- — — Rx (cosz?) H Ry (sinz;)

— Up(x;) Rx(cosz?)H Ry (sinz;) -

- = — Rx(cosz?) H Ry (sinz;)

Figure 40: The unitary encoding input data is decomposed to a set of qubit rotations

depending on sample value (Kopczyk, 2018).
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We code “input prog” that returns an instance of “Program” object with
calculated U, (x;) unitary (you can access the unitary with “gate” property). The
“inst” method applies a gate on k-th qubit:
import gsimulator as pg

from gsimulator import RX, RY, RZ
n_quoits = 3

I

4 def input_prog(sample):

5 p = pg.Program{n_qubits)

5] for j in range(n_qubits):

7 p.inst(RY{np.arcsin(sample[@]}), 1
p.inst(RZ{np.arccos(sample[@]**233, i3

LU ]

return p

Then, we implement 6-parameterized gate. Generally, U(0) should create a
highly entangled output state so that the complex function can be efficiently learned.
The output state is generated by evolving a quantum system accordingly to
Hamiltonian of fully connected transverse Ising model and then use 6-parameterized
qubit rotations:

Ujk(ejk) = Ry (91",{2) Rz (9},(1) Ry (Qj'lfo) (5.38)

onall k=1, ..., N qubits. This procedure is repeated D times to increase the
learning capacity of the QCL algorithm. The Ising model Hamiltonian is expressed

by:
H = Y¥_1he X + X1 252 Jem Zk Zm (5.39)

with X, Z being Pauli operators and coefficients hy , /i, can be taken randomly
from uniform distribution on [-1,1]. The evolution of the Hamiltonian is e~" and
describes how interaction behaves in trapped ions or superconducting qubits, thus it is
easy to implement on quantum computers. However, it is not straightforward how to
emulate it on the classical machine, i.e. how to perform exponentiation of a matrix

with non-commuting terms (Kopczyk, 2018).

In our example we use a helper function to generate this unitary with Trotter-

Suzuki approximation (we fix T=10):

from gcl import ising_prog_gen
ising_prog = ising_prog_gen(trotter_steps=100@8, T=18, n_gubits=n_g

(R
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for j = D

r_______________J___I

- - A H Rx(0]5) HRz(0]1) H Rx(0]0) 4
| |

< U(0) - E+ e tTH - RX(9§,2) RZ(9§,1) B RX(O?,D) —:
| |

- - H Rx(0],) HRz(071) HRx(07,) H
L - - . T - - - - - — — - ———= _

Figure 41: The theta-parameterized unitary is decomposed into a set of qubit rotations
depending on adjustable parameters and entangling unitary represented by dynamics of the

Ising model (Kopczyk, 2018).

The output state is generated with the following function (D is denoted here by

depth variable):

depth = 3
def output_prog(theta):
p = pq.Program{n_gubits)
theta = theta.reshape(3,n_gubits,depth)
for i in range(depth}:
p += ising_prog
for j in range{n_qubits):
rj = n_qubits-j-1
p.inst(RX{thetal[®,rj, 11}, j)
p.inst(RZ{(thetall,rj, 112, i3
p.inst(R¥{(thetal[2,rj,i1}, i}
return p

H:_;El.ummlmm-pl_ur\.ll'-

We also need a function generating a variational circuit responsible for

gradient calculations. As explained in the previous section, this is done by inserting

i% rotations next to the 6;-dependent unitary U;(6;):
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1 def grad_prog(theta, idx, sign):

2 theta = theta.reshape(3, n_gubits,depth)

3 idx = np.unravel_index{idx, theta.shape)
4 p = pq.Program{n_qubits)

5 for 1 in range(depth}:

& p += ising_prog

7 for j in range(n_qubits):

8 rj = n_gubits-j-1

a if idx = (B,rj,1):

18 p.inst(RX{sign*np_pis2.8), i)
11 p.inst(RX{thetal®,ri, 11}, 7

12 if idx = (1,rj,1i):

13 p.inst(RZ(sign*np_pi/ 2.8), i)
14 p.inst(RZ{thetall,rj,il1}, 72

15 if idx = (2,rj,1):

16 p.inst(RX(sign*np_pi/ 2.8}, )
17 p.inst(RX{(thetal[2,r]j.i]1}, 7D

18 return p

Now, it is time to run QCL. We initialize 6 parameters with random numbers
drawn from uniform distribution on [0,2x]. Note that the total number of parameters is
equal to 3*N*D. The f(x;, 0) is taken from Z expectation value on the first qubit
and we use mean squared error as a loss function minimized. A number of training
iterations (epochs) is set to 20 and we use full-batch gradient descend. Additionally,
the expectation value is multiplied by a coefficient o which is also tuned, however,
this is done inside the code. The aim of this multiplication is to keep the correct scale

of the expectation value (Kopczyk, 2018).

The programs that defines Uy (x;),U(6) and V4 U(6) are passed by a

P11 9% ¢¢

dictionary with “input”, “output”, “grad” keys respectively:

1 from gsimulator import Z

2 from gcl import QCL

3

4 state_generators = dict()

5 state_generators['input'] = input_prog

& state_generators['output'] = output_prog

7 state_generators['grad'] = grad_prog

8

8 1initial_theta = np.random.uniform(®. @, Z*np_pi, size=3*n_qubits*d
18

11 operator = pq.Program{n_qubits)

12 operator.inst(Z, @)

13 operator_programs = [operator]

14 est = QCL({state_generators, initial_theta, loss="mean_squared_grr
15 operator_programs=operator_programs, epochs=28, batch_s
16 verbose=True)

We fit a QCL estimator to our training data and labels, extract the results for
inspection and predict to produce a plot (Kopczyk, 2018).
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1 est. fit(X,v)
results = est.get_results()

[

np.linspace(-1.8,1.8,58)
est._predict(¥_test)

H_test
y_pred

[0

As we see the QCL fits nicely to the data. Assuming, we have a low-noise
quantum computer, we can increase significantly a number of qubits, depth and a
number of samples to deal with more complex regression tasks (Kopczyk, 2018).

0.8 1

0.6

0.4 1

0.2 1

0.0 1

T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Figure 42: QCL regression results (Kopczyk, 2018).

The history of mean-squared error is presented on the chart below:
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0.25 A

0.20 A

0.15 4

Loss

0.10 A

0.05 A

0.00 A

T T T T T T T T T T T T T
1 2 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20
Epoch

Figure 43: The loss converges after 20 epochs (Kopczyk, 2018).

Benefits and Limitations:

From one side, one can claim that we have just learned 0-parameterized
matrices in a complex way to perform the simple regression task and that is the
triumph of form over content. However, this algorithm is meant to be executed on the
quantum processing devices. Generally, there exist methods to encode classical data
of size 2V into N qubits. Therefore, a huge data that cannot be handled on the
classical machine, may be effectively manipulated on the quantum computer due to

the exponential advantage (Kopczyk, 2018).

From the other side, the learning costs can kill the quantum advantage. To
perform gradient descend in our regression example, for each out of 3*D*N
parameters we need to prepare and measure two quantum circuits and then this
procedure has to be repeated in each epoch. Furthermore, the estimation of
expectation values would require that the circuits are prepared from scratch and
measured a sufficient number of times. In today’s world of gate noise existence, it

makes the QCL hardly possible to implement experimentally for complex tasks. It is
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expected that in the future the quantum computers would perform low-noise gate

operations so that the power of QCL can be utilized (Kopczyk, 2018).
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QUANTUM REGRESSION : NOVEL APPLICATION

We construct the following example:

Data set Title: Student Performance Data Set

Abstract: Predict student performance in secondary education (high school)
Source: UCI Repository

Number of Instances: 649

Number of Attributes: 33

Download date: 10 February 2019

Data set Information: This data approach student achievement in secondary education

of two Portuguese schools. The data attributes include student grades, demographic, social
and school related features) and it was collected by using school reports and questionnaires.
Two data sets are provided regarding the performance in two distinct subjects: Mathematics
(mat) and Portuguese language (por). The two data sets were modeled under binary/five-level
classification and regression tasks. Important note: the target attribute G3 has a strong
correlation with attributes G2 and G1. This occurs because G3 is the final year grade (issued
at the 3rd period), while G1 and G2 correspond to the 1st and 2nd period grades. It is more
difficult to predict G3 without G2 and G1, but such prediction is much more useful (see paper

source for more details).

Attribute Information: Attributes for both student-mat.csv (Math course) and student-

por.csv (Portuguese language course) data sets:

school - student's school (binary: 'GP' - Gabriel Pereira or 'MS' - Mousinho da Silveira)

sex - student's sex (binary: 'F' - female or ‘M’ - male)

age - student's age (numeric: from 15 to 22)

address - student's home address type (binary: 'U' - urban or 'R' - rural)

famsize - family size (binary: 'LE3' - less or equal to 3 or 'GT3' - greater than 3)

Pstatus - parent's cohabitation status (binary: 'T' - living together or ‘A’ - apart)

Medu - mother's education (numeric: 0 - none, 1 - primary education (4th grade), 2 - *“ 5th to
Oth grade, 3 - “ secondary education or 4 - *“ higher education)

Fedu - father's education (numeric: O - none, 1 - primary education (4th grade), 2 -*“ 5th to 9th
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grade, 3 a- “ secondary education or 4 - higher education)

Mjaob - mother's job (nominal: ‘teacher’, 'health' care related, civil 'services' (e.g.
administrative or police), 'at_home' or 'other’)

Fjob - father's job (nominal: ‘teacher’, 'health' care related, civil 'services' (e.g. administrative
or police), 'at_home' or 'other")

reason - reason to choose this school (nominal: close to ‘home’, school 'reputation’, ‘course’
preference or 'other’)

guardian - student's guardian (nominal: 'mother’, ‘father' or 'other’)

traveltime - home to school travel time (numeric: 1 - <15 min., 2 - 15 to 30 min., 3 - 30 min.
to 1 hour, or 4 - >1 hour)

studytime - weekly study time (numeric: 1 - <2 hours, 2 - 2 to 5 hours, 3 - 5 to 10 hours, or 4
- >10 hours)

failures - number of past class failures (numeric: n if 1<=n<3, else 4)

schoolsup - extra educational support (binary: yes or no)

famsup - family educational support (binary: yes or no)

paid - extra paid classes within the course subject (Math or Portuguese) (binary: yes or no)
activities - extra-curricular activities (binary: yes or no)

nursery - attended nursery school (binary: yes or no)

higher - wants to take higher education (binary: yes or no)

internet - Internet access at home (binary: yes or no)

romantic - with a romantic relationship (binary: yes or no)

famrel - quality of family relationships (numeric: from 1 - very bad to 5 - excellent)
freetime - free time after school (numeric: from 1 - very low to 5 - very high)

goout - going out with friends (numeric: from 1 - very low to 5 - very high)

Dalc - workday alcohol consumption (numeric: from 1 - very low to 5 - very high)

Walc - weekend alcohol consumption (numeric: from 1 - very low to 5 - very high)

health - current health status (numeric: from 1 - very bad to 5 - very good)

absences - number of school absences (numeric: from 0 to 93)

# these grades are related with the course subject, Math or Portuguese:
31 G1 - first period grade (numeric: from 0 to 20)
31 G2 - second period grade (numeric: from 0 to 20)

32 G3 - final grade (numeric: from 0 to 20, output target)
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Multiple Linear Regression:

We provide the code of Multiple Linear Regression in appendices (Appendix
F). Our aim is to predict the final grade of students. The output of Multiple Linear

Regression is presented below.

Output:
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school sex age add2ess famsize health absences G1 G2 G3
@ 1 1 13 1 2 . 3 4 @ 11 11
1 1 1 17 1 2 . 3 2 9 11 11
2 1 1 15 1 1. 3 6 12 13 12
3 1 1 15 1 2 . 5 @ 14 14 14
4 1 1 16 1 2 . 5 @ 11 13 13
5 1 2 16 1 1. 5 6 12 12 13
6 1 2 16 1 1. 3 @ 13 12 13
7 1 1 17 1 2 . 1 2 18 13 13
a 1 2 15 1 1. 1 @ 15 18 17
9 1 2 15 1 2 . 5 @ 12 12 13
la 1 1 15 1 2 . 2 2 14 14 14
11 1 1 15 1 2 . 4 @ 18 12 13
12 1 2 15 1 1. 5 @ 12 13 12
13 1 2 15 1 2 . 3 @ 12 12 13
14 1 2 15 1 2. 3 @ 14 14 15
15 1 1 16 1 2 . 2 6 17 17 17
16 1 1 16 1 2 . 2 @ 13 13 14
17 1 1 16 1 2 . 4 2 13 14 14
13 1 2 17 1 2 . 5 2 8 8 7
19 1 2 16 1 1. 5 6 12 12 12
28 1 2 15 1 2 . 1 @ 12 13 14
21 1 2 15 1 2 . 5 @ 11 12 12
22 1 2 16 1 1. 5 @ 12 13 14
23 1 2 16 1 1. 5 2 18 1@ 1@
24 1 1 15 2 2. 5 2 18 11 18
25 1 1 16 1 2. 5 6 18 11 12
26 1 2 15 1 2. 5 8 11 12 12
27 1 2 15 1 2. 1 e 11 11 11
28 1 2 16 1 1. 5 2 12 12 13
29 1 2 16 1 2. 5 4 12 11 12
619 2 1 18 1 2. 3 6 13 12 13
628 2 1 17 1 1. 1 4 15 14 15
621 2 1 17 2 2. 3 @ 13 13 13
622 2 2 18 2 2. 3 @ 8 18 a
623 2 2 18 1 1. 5 @ 15 16 16
624 2 1 17 2 2. 1 2 B 8 El
625 2 1 18 1 2. 4 2 18 1@ 1e
626 2 1 18 2 2. 5 5] 7 5 @
627 2 2 18 2 1. 3 3 9 1@ 1@
628 2 1 17 1 2. 3 g 18 11 12
629 2 1 17 2 2. 1 4 7 8 a
G638 2 1 18 2 1. 1 @ 15 17 17
631 2 1 18 2 2. 4 4 18 11 12
632 2 1 19 2 2. 3 4 7 8 a
633 2 1 18 2 1. 2 1 13 14 14
634 2 1 18 1 2. 1 1 16 16 16
635 2 1 17 2 2. 1 1@ B 9 a
636 2 2 18 1 2. 2 4 17 18 19
637 2 2 18 2 2. 5 2 7 7 ]
638 2 2 17 1 2. 3 4 14 15 16
639 2 2 19 2 2. 5 2 5 8 ]
G648 2 2 18 2 2. 3 a 7 7 a
641 2 1 18 2 2. 4 g 14 17 15
542 p 1 17 1 2 1 @ 6 9 11
543 p 1 18 2 2 s 4 7 9 18
544 2 1 19 2 2 s 4 18 11 1@
545 2 1 18 1 1 1 4 15 15 18
546 2 1 18 1 2 5 & 11 12 &
547 2 2 17 1 1 2 & 18 1@ 1@
648 p. 2 18 . 1 s 4 18 11 11
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Intercept:
-@3.1712538879869355

Coefficients:
[@.14839649 B.59714829]

Predicted G3:
[@.65847765]



Anestis Kosmidis

0OLS Regression Results

Dep. Variable: G3  R-squared: B.848
Model: oLs  Adj. R-sguared: a.547
Method: Least Squares F-statistic: 17949,
Date: Thu, 14 Mar 2819 Prob (F-statistic): 9.82e-265
Time: B2:33:44  Log-Likelihood: -1878.7
No. Observations: 649  AIC: 2147,
Df Residuals: 646  BIC: 2161.
Df Model: 2
Covariance Type: nenrobust

coef std err t Pr|t| [@.825 8.975]
const -8.1713 B.215 -8.796 @.426 -@8.594 @8.251
Gl B8.1489 B.@836 4.136 @.eae B.878 B.228
G2 B.8971 B.a34 26.448 @ . aae B.831 B.964
Omnibus: 478.895  Durbin-Watson: 1.852
Prob(Omnibus): 8.888  Jarque-Bera (JB): 11313.282
Skew: -3.888  Prob(JB): a.e8
Kurtosis: 22.554  Cond. No. 2.7
Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Name Type Size Value
New_G1 float 1 8.15
New_G2 float 1 8.9
School DataFrame (649,) Column names: school, sex, age, add2ess, famsize, Ps12lus, Medu, Fedu, ...
X DataFrame (649,) Column names: const, G1, G2
¥ Series (649, 33) Series object of pandas.core.series module
if DataFrame (649, 3) Column names: school, sex, age, add2ess, famsize, Ps12lus, Medu, Fedu, ...

predictions Series (643, 33) Series object of pandas.core.series module



Quantum Statistics and Data Analysis

Logistic Regression:

We provide the code of Logistic Regression in appendices (Appendix G). Our
aim is to predict the final grade of students. The output of Logistic Regression is

presented below.

Output:

school sex age add2ess famsize ... health absences G1 G2 y
a 1 1 13 1 2. 3 4 @8 11 1
1 1 1 17 1 2. 3 2 9 11 1
2 1 1 15 1 1. 3 6 12 13 1
3 1 1 15 1 2. 2 @ 14 14 1
4 1 1 16 1 2. 2 @ 11 13 1
5 1 2 16 1 1. 2 6 12 12 1
B 1 2 16 1 1. 3 @ 13 12 1
7 1 1 17 1 2. 1 2 18 13 1
8 1 2 15 1 1. 1 @ 15 16 1
a 1 2 15 1 2. 3 @ 12 12 1
1@ 1 1 15 1 2. 2 2 14 14 1
11 1 1 15 1 2. 4 @ 18 12 1
1z 1 2 15 1 1. 3 @ 12 13 1
13 1 2 15 1 2. 3 @ 12 12 1
14 1 2 15 1 2. 3 @ 14 14 1
15 1 1 16 1 2. 2 6 17 17 1
16 1 1 16 1 2. 2 1@ 13 13 1
17 1 1 16 1 2. 4 2 13 14 1
18 1 2 17 1 2. 3 2 8 a8 @
19 1 2 16 1 1. 3 6 12 12 1
28 1 2 15 1 2. 1 @ 12 13 1
21 1 2 15 1 2. 3 @ 11 12 1
22 1 2 16 1 1. 5 @ 12 13 1
23 1 2 16 1 1. 5 2 18 18 1
24 1 1 15 2 2. 5 2 18 11 1
25 1 1 16 1 2. 5 6 18 11 1
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26 1 2 15 1 2 ... 5 8 11 12 1
27 1 2 15 1 2 ... 1 e 11 11 1
28 1 2 le 1 1... 5 2 12 12 1
29 1 2 le 1 2 ... 5 4 12 11 1
619 2 1 18 1 2 ... 3 6 13 12 1
628 2 1 17 1 1... 1 4 15 14 1
621 2 1 17 2 2 ... 3 @ 13 13 1
622 2 2 18 2 2 ... 3 @ 8 1le @
623 2 2 18 1 1... 5 @ 15 18 1
624 2 1 17 2 2 ... 1 @ 8 a @
625 2 1 18 1 2 ... 4 @ 18 18 1
626 2 1 18 2 2 ... 5 @ 7 5 @
627 2 2 18 2 1... 3 3 9 18 1
628 2 1 17 1 2 ... 3 g 18 11 1
629 2 1 17 2 2 ... 1 4 7 a8 @
638 2 1 18 2 1... 1 @ 13 17 1
631 2 1 18 2 2 ... 4 4 18 11 1
632 2 1 19 2 2 ... 3 4 7 a8 @
633 2 1 18 2 1... 2 1 13 14 1
634 2 1 18 1 2 ... 1 1 16 16 1
B35 2 1 17 2 2 ... 1 18 8 9 @
636 2 2 18 1 2 ... 2 4 17 18 1
637 2 2 18 2 2 ... 5 a 7 7oe
638 2 2 17 1 2 ... 3 4 14 15 1
639 2 2 19 2 2 ... 5 a 5 a8 @
648 2 2 18 2 2 ... 3 @ 7 7 @
5641 2 1 13 2 2 ... 4 e 14 17 1
642 2 1 17 1 2 ... 1 =] B g 1
643 2 1 13 2 2 ... 5 4 7 g 1
644 2 1 19 2 2 ... 5 4 18 11 1
5645 2 1 13 1 1 ... 1 4 15 15 1
646 2 1 18 1 2 ... 5 6 11 12 @
647 2 2 17 1 1 ... 2 6 18 18 1
648 2 2 18 2 1 ... 5 4 18 11 1
(649 rows x 33 columns]

(648, 3)

['school', 'sex', 'age’, 'adddess', 'famsize', 'Ps12lus’, 'Medu', 'Fedu’, 'Mjob', 'Fjob', 'reason', 'guardian’, 'traveltine', 'studytine’, 'failures’,
"schoolsup', 'famsup', "paid’, 'activities', ‘nursery’, 'higher', 'intemnet’, 'romantic', 'famrel', 'freetine’, 'goout’, 'Dalc’, 'Walc', 'health', ‘absences’,
W, R, Yy
(161,)
(:\ProgranData\Anaconda3\1ib\site-packages \sklearn\utils\validation.py:578: DataConversionkiarning: A column-vector y was passed when a 1d array was expected.
Please change the shape of y to (n_samples, ), for example using ravel().

y = column_or 1d(y, warn=True)
(:\ProgranData\Anaconda3\Lib\site-packages\sklearn\utils\validation.py:578: DataConversioniiarning: A column-vector y was passed when a 1d array was expected,
Please change the shape of y to (n_samples, ), for example using ravel().

y = colum_or_1d(y, warn=True)
length of oversampled data is 768
Nunber of no subscription in oversampled data 334
Nunber of subscription 384
Proportion of no subscription data in oversampled data is 0.5
Proportion of subscription data in oversampled data is 9.5
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[ True False False False False False False False False False False False
False False False False False False False False False False Falsze False
False False False False False False False False False False False False
False False False True False False False False False False False False
False False False False False True False False False False False False
False False False False False False False False False False False False
False False False False False False False False False False False False
False True False False False False False False False False Falsze False
False False False False False False False False False False False False

True False False False False False False False False False False Falsg
False False False False False False False False False False False False
False False True True True True True True True False False False
False False False False False False True True True True True True

True True False False]

[ 1 32 82 42 68 184 38 41 1ee 47 98 141 67 69 57 99 78 113
181 123 117 182 11 58 7 12 985 66 20 53 139 118 14 48 Bl &4
78 1lle 93 1 1368 91 6l 3129 77 21 Ve 86 125 4 44 45 1
lee 115 19 138 24 98 97 18 8 118 183 387 54 28 34 138 43 B33
185 74 17 126 6 1es 3@ 22 31 27 111 112 25 1 122 37 B84 36
39 88 92 5 35 33 13 89 55 51 B2 63 188 71 59 135 46 2
1 26 72 128 65 49 g8 56 132 86 114 126 124 G5 131 52 79 121
134 137 127 286 148 23 15 187 1 1 1 1 1 1 1 58 594 119

73 18 B85 1é 9 48 1 1 1 1 1 1 1 1 75 133]

Warning: Maximum number of iterations has been exceeded.

Current function value: @.311345
Iterations: 35

Function evaluations: 42
Gradient evaluations: 42

Logit Regression Results

Dep. Variable: y  MNo. Observations: 768
Model: Logit  Df Residuals: 749
Method: MLE Df Model: 18
Date: Thu, 14 Mar 2819 Pseudo R-squ.: B.5588
Time: 82:45:23  Log-lLikelihood: -239.11
converged: False  LL-Null: -532.34

LLR p-walue: 6.288e-113
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coef std err z P>z [@.825 8.975]
reason_2 @8.1277 nan nan nan nan nan
failures_@ @.8671 nan nan nan nan nan
goout_3 @.3823 nan nan nan nan nan
absences_5 @.7997 nan nan nan nan nan
Gl_1le @.1888 nan nan nan nan nan
G1_11 3.6875 nan nan nan nan nan
Gl_12 2.8338 nan nan nan nan nan
G1_13 2.5927 nan nan nan nan nan
Gl_14 2.91a4 nan nan nan nan nan
G1_15 1.6734 nan nan nan nan nan
Gl_1e6 1.3937 nan nan nan nan nan
Gl 18 B.1888 nan nan nan nan nan
G2_1le @.7451 nan nan nan nan nan
G2_11 2.5992 nan nan nan nan nan
G2_12 2.8651 nan nan nan nan nan
G2_13 2.5947 nan nan nan nan nan
G2_14 2.2373 nan nan nan nan nan
G2_15 1.9@831 nan nan nan nan nan
G2_18 1.2684 nan nan nan nan nan
G2_17 1.4494 nan nan nan nan nan

Possibly complete quasi-separation: A fraction .15 of observations can be
perfectly predicted. This might indicate that there is complete
guasi-separation. In this case some parameters will not be identified.
Accuracy of logistic regression classifier on test set: 8.92

[[1es 4]
[ 14 1e8]]
precision recall fl-score  support
a8 B.38 .96 @.92 1&g
1 .98 @.89 @.92 122
avg / total .93 @.92 @.92 231
Feceiver cperating characteristic
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Name Type Size Value
School DataFrame (649, 33) Column names: school, sex, age, addless, famsize, Psl12lus, Medu, Fedu, ...
X DataFrame (768, 28) Column names: reason_2, failures_@, goout_3, absences_5, @118, @l 11, ...
X_test DataFrame (231, 28) : reason_2, failures_@, goout_3, absences 5, G1_1@, G1_11, ...
X_train DataFrame (537, 28) Column names: reason_2, failures @, goout_3, absences_5, G1_18, G1_11, ...
cat_list DataFrame (649, 16) Column names: G2_@, G2_5, G2_6, G2_7, G2_8, G2_9, G2_le8, G2_11, G2_12, ...
cat_vars list 32 ['school', 'sex', 'age', 'addless', 'famsize', 'Psl2lus', 'Medu', 'Fed ...
cols list 28 ['reason_2', 'failures_8', 'goout_3', 'absences_5', 'Gl_18', 'Gl_11', ...
confusion_matrix inte4 (2, 2) [Elgi 10;%]
datal DataFrame (/49, 193) Column names: school, sex, age, add2ess, famsize, Ps12lus, Medu, Fedu, ...
df DataFrame (/49, 193) Column names: school, sex, age, add2ess, famsize, Ps12lus, Medu, Fedu, ...
df_final DataFrame (649, 161) Column names: y, school_l, school_2, sex_1, sex_2, age_15, age_l6, age ...
df_final_vars list 161 ['v", 'school_1', 'school_2', 'sex_1', 'sex_2', 'age_15', 'age_lb', 'a ...
df_vars list 193 ['school', 'sex', 'age', 'addless', 'famsize', 'Psl2lus', 'Medu', 'Fed ...
Na'me Type Size Value
fpr floatsd  (61,) [e. 8. 8. ... B.4587156 ©.67889908 1. ...
logit_roc_auc floated 1 @.9242743269664612
os_data_X DataFrame (768, 188) Column names: school_1, school_2, sex_1, sex_2, age_15, age_16, age_17 ...
os_data_y DataFrame (768, 1) Column names: y
prosorin object (161,) ndarray object of numpy module
thresholds floated (61,) [8.99434401 @.99802053 @.9586928 ... ©.88873715 @.87452861 8. ...
to_keep list 161 ['y", 'school_1', 'school_2', 'sex 1', 'sex_2', 'age_ 15', 'age 16', 'a ...
tpr floated (61,) [8.88819672 @.03278689 @.843180833 ... 8.98368656 1. o zaa
var str 1 a2
¥ Series (788,) Series object of pandas.core.series module
v_pred int64 (231,) @11 ...081]
y_test Series (231,) Series object of pandas.core.series module
y_train Series (537, Series object of pandas.core.series module



Anestis Kosmidis
Quantum Regression:

We provide the code of Quantum Regression in appendices (Appendix H).
Our aim is to predict the final grade of students. The output of Quantum Regression is

presented below.

Output:

state_generators = dict()
state generators['input'] = input_prog
state generators['output’ output_prog

state _generators['grad’'] = grad_prog
initial_theta = np.random.uniform(®.8, 2*np.pi, size=3*n_qubits*depth)

operator = pq.Program(n_qubits)

operator.inst(Z, @)

operator_programs = [operator]

est = QCL(state_generators, initial theta, loss="mean_ squared error”,
operator_programs=ocperator_programs, epochs=28, batch_size=m,
verbose=True)

est.fit{X,v)
results = est.get_results()
print(results)
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Name Type Size Value
Parad float6d (649, ) [-1. -8.1 8.2.... 8.1 8. 8. ]
Parad2 floatsd (649,) [6.1 8.1 0.2 ... -8.1 8. 0.1]
School DataFrame (643, 33) Column names: school, sex, age, addless, famsize, Psl2lus, Medu, Fedu, ...
X floatd (649, ) [-1. -8.1 8.2 ... 8.1 8. 8. ]
A _test float6d (649, ) [-1. -8.1 8.2.... 8.1 8. 8. ]
z floated (2, 2) [E y _‘H]
depth int 1 3
df DataFrame (643, 33) Column names: school, sex, age, add2ess, famsize, Ps12lus, Medu, Fedu, ...
initial_theta floats4 (27,) [3.89168751 2.285@118 2.49432685 ... 3.81415956 3.67478872 8.583192%96 ...
m int 1 544
n_gqubits int 1 3
operator_programs list 1 [Program]
results OptResults & OptResults object of optimizer module
state_generators dict 3 {'input’:function, 'output':function, 'grad':function}
y floate4 (649,) [e.1 &1 @.2...-8.1 8. @a.1]

[[ ©.20664799]
y_pred floatéd (649, 1) e

In [12]: print(results)
{'theta': array([3.09168751, 2.2650118 , 2.49432685, 5.10400685, 4.54727612,

4,30181545, 5.31613726, 3.75461054, 2.48358865, 4.36619517,

4.84403917, 13389583 , 4.@4567775, 4.96235862, 2.88A11611,

5.4941249 | 1.27715984, 6.18524986, 4.16430622, 195439806,

#.65573147, 1.8974468 , 1.1388391 , 3.27321819, 3.814159%6,

3.67470872, 0.50319296]), 'coeff': @.8726539270163339, 'loss': @.03530840369083222, 'history loss': [0.33563107552303045, 8,16678368357479552,
0.18995682309369449, 8.87926703658338951, 0.060656242839355208, 0.062395108953629236, 0.05853002248594747, 8.055028720757291995, .851832704440871956,
8.84895952500192934, 0.04648569018740989, 0.04416812220897138, @.042248544882982414, 0.84060002427317463, 0.839241945325953145, @.03311839001462474,
0.837203921038133886, 0.036465237046362974, 0.039872510122532696, 0.03539840369083222], 'histery theta': [array([3.09168751, 2.2650118 , 2.49432685, 5.10400605,
4.54727012,

4,39181543, 5.31613726, 3.75461854, 2.48358065, 4.36619317,

4,844p3917, 1.3589583 , 4.84567775, 4.96235862, 2.33011611,

5.4941249 | 1.27715984, 6.18524986, 4.16430622, 195439806,

0.65573147, 1.8574468 , 1.1308391 , 3.27321019, 3.81415956,

3.67478872, 0.50319296]), array([3.80168751, 2.2650118 , 249432685, 5.104B0605, 4.54727012,

4,39181545, 5.31613726, 3.75461054, 2.48338065, 4.36619517,

4.84403917, 13389583 , 4.@4567775, 4.96235862, 2.88A11611,

5.4941249 |, 1.27715934, 6.18524986, 4.16438622, 1.93439306,

0.65573147, 1.8574468 , 1.1308391 , 3.27321019, 3.81415956,

3.67478872, 0.50319296]), array([3.89168751, 2.2650118 , 2,40432685, 5.10400605, 4.54727812,

4,39181543, 5.31613726, 3.75461854, 2.48358065, 4.36619317,

4,84403917, 1.3589583 , 4.84567775, 4.96235862, 2.83011611,

5.4941249 | 1.27715984, 6.18524986, 4.16430622, 195439806,

0.65573147, 1.8574468 , 1.1308391 , 3.27321019, 3.81415956,

3.67476872, 0.50319296]), array([3.80168751, 2.2650118 , 249432685, 5.104B0605, 4.54727a12,

4,39181545, 5.31613726, 3.75461054, 2.48338065, 4.36619517,

4.84403917, 13389583 , 4.@4567775, 4.96235862, 2.88A11611,
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4941249
.65573147,
.B7478872,
. 39181545,
. 84483917,
.4941249
.B65573147,
67478872,
.39181545,
. 34483917,
4941249
.65573147,
LB7478372,
. 39181545,
. 84483917,
4941249
.B85573147,
67478872,
.39181545,
. 84483917,
.4941249
.65573147,
LB7478372,
. 39181545,
. 84483917,
4941249
.65573147,
67478872,

RV~ N R S T I S L AL~ LV B S S FV I <~ W [ SO R WV~ V) I S SR UV <~ R |
[ R ST I B S S I~ B SR S ST I J SR SRR B R SY B R ST

I X_test = X

.27715984, 6.
8574468 , 1.
.58319296]),
.31613726, 3.
.3589583 , 4.
.27715984, G,
.8574468 , 1.
.58319296]),
.31613726, 3.
.3589583 , 4.
.27715984, &.
8574468 , 1.
.58319296]),
.31613726, 3.
.3589583 , 4.
.27715984, &,
.8574468 , 1.
.58319296]),
.31613726, 3.
.3580583 , 4,
.27715984, G.
.8574468 , 1.
.58319296]),
.31613726, 3.
.3589583 , 4.
.27715984, 6.
8574468 , 1.
.58319296]),

le524986, 4.l16438622, 1.95439866,
1388391 , 3.27321e19, 3.31415956,
array([3.89168751, 2.2658118 , 2.49432685,
75461854, 2.48358865, 4.36619517,
84567775, 4.96235862, 2.88811611,
18524936, 4.16438622, 1.95439886,
1388391 , 3.27321819, 3.81415956,
array([3.89168751, 2.2658118 , 2.49432685,
75451854, 2.48358865, 4.36619517,
B4567775, 4.96235862, 2.88811511,
185249386, 4.16438622, 1.95439886,
1388391 , 3.27321el9, 3.81415956,
array([3.89168751, 2.2658118 , 2.49432685,
754a1854, 2.48358865, 4.36619517,
84567775, 4.96235862, 2.88811611,
18524986, 4.16438622, 1.95439866,
1388391 , 3.27321e19, 3.81415956,
array([3.89168751, 2.2658118 , 2.49432685,
75461854, 2.48358865, 4.36619517,
84567775, 4.96235862, 2.38811s611,
18524936, 4.16438622, 1.95439886,
1388391 , 3.27321e19, 3.81415956,
array([3.89168751, 2.2658118 , 2.49432635,
75451854, 2.48358865, 4.36619517,
@4567775, 4.96235862, 2.88811611,
le524986, 4.l16438622, 1.95439866,
1388391 , 3.27321el19, 3.31415956,
array([3.89168751, 2.2658118 , 2.49432685,

_y_pred = est.predict(X_test])|

print(y_pred)

Table 44: Quantum Regression results of students performance
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From the table above (Table 44) we conclude which variables are more important for

the prediction of the final grade of the students.
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import matplotlib.pyplot as plt
plt.plot(X, y, 'bs", X _test, vy pred, 'r-")
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Figure 44: Quantum Regression Curve

In the above Figure 44 we can observe the data fitting after the quantum
regression implementation. The visual results of quantum regression are not very
distinct and comprehensible. The results of Quantum Regression for the prediction of
the students performance are presented in Table 44. However, if we use a different

data set, the results and the curve-line might be better.

Comments on the Results

We select a data set (Student Performance Data Set) and implement:
. Multiple Linear Regression
. Logistic Regression

. Quantum Regression
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The results of Quantum Regression may not be directly comparable with the
rest two methods (Multiple Linear Regression, Logistic Regression), but in case that
our model is not adapted well to the data by using Linear or Logistic Regression, we
have an extra selection (Quantum Regression). This algorithm can work for every
data set. It belongs to the category of QAML (Quantum Assisted Machine Learning)
algorithms, that is it is a quantum algorithm which can be implemented and give
results in a classical computer. However, if it was potential to implement this
algorithm (maybe with few modifications) in a quantum computer, the extracted

results may be more useful and well-presented.
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EPILOGUE

The goal of this work is to explore the possibility to apply quantum probability
models and related statistical algorithms to data sets. This goal involves two parts:

Firstly, we analyze the available criteria for data sets. We selected the Wigner-
d’Espagnat inequality as the simplest criterion to apply. The main result of this
research is to construct a data set, which violates the Wigner-d’Espagnat inequality.

Secondly, we implement Quantum Machine Learning from data sets. We use
data sets related with the school grades system and absenteeism at work. In these data
sets firstly we implement classical algorithms, such as k-Means or hierarchical
clustering and linear or logistic regression. Then, we implement quantum algorithms,
such as quantum clustering and quantum regression. The code of quantum regression
in Python was developed by MIT university and the code in Matlab by David Horn.
However, when we implemented them in our data sets, these codes were not working.
Therefore, we modified these codes and finally got results. We also compared to some
extent the results between the quantum and classical algorithms statistically and

visually.

In addition to extensive bibliographical processing the following new results

are presented:

1) The example on Wigner-d’Espagnat inequality (pages 88-94, chapter 2) is
original. No such example was found in the bibliography. This example is very simple
and straightforward, showing in a clear and simple way the distinction between

Kolmogorov and quantum probability.

2) The example on clustering (pages 149-162, chapter 4) is original, although
there are similar examples in the bibliography. This example is very simple and helps
to compare classical clustering algorithms and quantum clustering algorithm.

3) The example on regression (pages 189-204, chapter 5) is original, although
there are similar examples in the bibliography. This example is very simple and helps

to compare classical regression algorithms and quantum regression algorithm.
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It is expected that quantum computers implementing quantum statistics will
find useful applications demonstrating the advantage of quantum resources (High-

Level Steering Committee, 2017, Lavin, Anguita, 2018).
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APPENDICES

Appendix-A:Dynamic-Quantum Clustering Algorithm

Here we present the steps of the DQC algorithm. A DQC analysis begins with data that is
presented as an m X n data matrix. Each data point is one of the m rows of the matrix and is defined by
the n-numbers that appear in that row, These n numbers are referred to as features and the set of all
possible sets of n-values that might appear in a row is referred to as the feature space. The process of
creating a clustering algorithm using ideas borrowed from quantum mechanics starts with the creation

of a potential function that serves as a proxy for the density of data points. We do this as follows:

1) Define a function — Parzen estimator on the n-dimensional feature space. This function is

constructed as a sum of Gaussian functions centered at each data point, i.e. for m data points ¥, :

1 > . > o
(p(i) — {r;l e—m(x_xl)'(x_xl) (41)

2) We derive a potential function V(X) defined over the same n-dimensional space. Since ¢ (%) isa
positive definite function, we can define V(X) as that function for which ¢ (%) satisfies the time-

independent Schrodinger equation:
1 -
—53 VZp + V(X)p = Ep = 0 (4.2)

We note that the value zero is chosen to simplify the mathematics and plays no important role. Clearly,
the energy E can always be set to zero by adding a constant to the potential. It is straightforward to

solve the above equation (4.2) for V(%) .

3) The quantum potential is of interest for two main reasons: first, physical intuition tells us that the
local minima of V(%) will correspond to the local maxima of ¢ (%) if the latter are well separated
from one another. Second, V(X¥) may have minima at points, where ¢(X) exhibits no corresponding
maxima. If the Parzen estimator is meant to be a proxy for the density of the data, then DQC’s quantum
potential can be thought of as an unbiased way of contrast enhancing the Parzen function to better
reveal structure in the data. An additional benefit of working with this contrast enhanced version of the
Parzen estimator is that its features depend much less sensitively upon the choice of parameter ¢ that

appears in Equation (4.2).

4) Using the Hamiltonian defined by this potential, evolve each Gaussian that is associated with a
specific data point by multiplying it by the quantum time-evolution operator e~:%tH where 5t is
chosen to be small. We note this operator is constructed in the subspace spanned by all of the

Gaussians corresponding to the original data points.

5) We compute the new location of the center of each evolved Gaussian. Hereafter we refer to it as the

evolution of the data-point.



Anestis Kosmidis

6) Iterate this procedure. Ehrenfest’s theorem guarantees that for small time steps, the center of each
Gaussian will follow Newton’s laws of motion, where the force is given by the expectation value of the
gradient-descent in classical mechanics. The fact that we use quantum evolution rather than more
familiar classical methods, allows us to convert the computationally intensive problem of gradient
descent in a multi-dimensional potential into an exercise in matrix multiplication. This greatly reduces
the workload and allows parallel execution of the code in order to quickly deal with enormous sets of
data (Weinstein, Meirer, Hume, Sciau, Shaked, Hofstetter, Horn, 2013).

Appendix B: Detailed description of Dynamic Quantum Clustering method by Horn,
Weinstein and Marvin

We present here the detailed description of the Dynamic Quantum Clustering method. As we
already noted, the conversion of the static Quantum Clustering method to a full dynamical one, begins

E-7)°

by focusing attention on the Gaussian wave-function: Y;(X) =Ce 202 associated with the
it" data point, where C is the appropriate normalization factor. Thus, by construction, the expectation

-

value of the operator X in this state is simply the coordinates of the original data point:

o= @WlY) = [diyp; (@) X ¢() (4.9)

The dynamical part of the DQC algorithm is that, having constructed the potential function
V(%) , we study the time evolution of each state 1;(¥) as determined by the time dependent
Schrdédinger equation:

””"f’” = HY;(X,t) = <—%+V(5c’)> Y;(X,0) (4.10)

1

where m is an arbitrarily chosen mass for a particle moving in d-dimensions. If we set m=—

then, by construction, y(X) of Equation (4.7) is the lowest energy eigenstate of the Hamiltonian. If
m is chosen to have a different value, then not only does each individual state ; (%) evolve in time,
but so does the sum of the states (%) (Weinstein, Marvin, Horn, 2009).

The important feature of quantum dynamics, which makes the evolution so useful in the

clustering problem, is that according to Ehrenfest’s theorem, the time-dependent expectation value:

WOIZY®) = [dip; (&, 0) X, t) (4.11)
satisfies the equation:

d2(x(t)) _

S = —— [dR Y () WE BiE D = @©)] WE) [p)

(4.12)
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If y;(%) is anarrow Gaussian, this is equivalent to saying that the center of each wave-
function rolls towards the nearest minimum of the potential according to the classical Newton’s law of
motion. This means we can explore the relation of this data point to the minima of V(%) by following
the time-dependent trajectory: (X;(t)) = (; ()| X |;(t)).

Clearly, given Ehrenfest’s theorem, we expect to see any points located in, or near, the same
local minimum of V(X) to oscillate about that minimum, coming together and moving apart. In our
numerical solutions we generate animations which display this dynamics for a finite time. This allows
us to visually trace the clustering of points associated with each one of the potential minima
(Weinstein, Marvin, Horn, 2009).

In their quantum clustering paper Horn and Gottlieb successfully used classical gradient
descent to cluster data by moving points (on classical trajectories) to the nearest local minimum of
V(%) . The idea being that points which end up at the same minimum are in the same cluster. At first
glance it would seem that DQC replaces the conceptually simple problem of implementing gradient
descent with the more difficult one of solving complicated partial differential equations. We will show
the difficulty is only apparent. In fact, the solution of the Schrédinger equation can be simplified
considerably and will also allow further insights than the gradient descent method. The DQC algorithm
translates the problem of solving the Schrédinger equation into a matrix form which captures most of
the details of the analytic problem, but which involves N x N-matrices whose dimension, N, is less
than or equal to the number of data points. This reduction is independent of the data-dimension of the
original problem. From a computational point of view there are many advantages to this approach.
First, the formulas for constructing the mapping of the original problem to a matrix problem are all
analytic and easy to evaluate, thus computing the relevant reduction is fast. Second, the evolution
process only involves matrix multiplications, so many data points can be evolved simultaneously and,
on a multi-core processor, in parallel. Third the time involved in producing the animations showing
how the points move in data space scales linearly with the number of dimensions to be displayed.
Finally, by introducing an m that is different from 1/0% we allow ourselves the freedom of employing
low o, which introduces large numbers of minima into V, yet also having a low value for m which
guarantees efficient tunneling, thus connecting points that may be located in nearby, nearly degenerate
potential minima. By using this more general Hamiltonian, we reduce the sensitivity of the calculation

to the specific choice of o (Weinstein, Marvin, Horn, 2009).

Here we describe the Calculation Method. We begin by assuming that there are n-data points
that we wish to cluster. To these data points we associate n-states: |¢;) . These states are n Gaussian
wave-functions such that the it" Gaussian is centered on the coordinates of the i" data point. These
states form a basis for the vector space within which we calculate the evolution of our model
(Weinstein, Marvin, Horn, 2009).

Let us denote by N, the n x n matrix formed from the scalar products:

Nij= (i | ¥)) (4.13)
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and by H, the nxn matrix:
Hy; = (| H ;) (4.14)

and by Xi_ ; the matrix of expectation values:

X = Wil % ;) (4.15)

The calculation process can be described in five steps:

First, begin by finding the eigenvectors of the symmetric matrix N which correspond to states having
eigenvalues larger than some pre-assigned value (e.g. 10~°). These vectors are linear combinations of

the original Gaussians which form an orthonormal set.

Second, compute H in this orthonormal basis H'" .

Third, do the same for X; ; .

Fourth, find the eigenvectors and eigenvalues of H'" , construct |i;(t)) = e " ) thatis the

solution to the reduced time dependent Schrodinger problem:
, 0
i Wi(®) = HT [h:(0) (4.16)

such that |y;(t = 0)) = |[¥;) .

Fifth, construct the desired trajectories:

.

(Z(6)) = (| e®HT X e HT | yy) (4.17)

by evaluating this expression for a range of t and use them to create an animation. Stop

the animation when clustering of points is obvious (Weinstein, Marvin, Horn, 2009).

Appendix C: Quantum Clustering Algorithm by Horn and Gottlieb

It starts out with a Parzen window approach, assigning to each data-point a Gaussian of width
o thus constructing:
_Ge=xy)*
Yx) = Y e 20 (4.22)
that can serve (but for an overall normalization) as a probability density generating the data. One then
proceeds to construct a potential function:

2
9 y2
VY

Vix) =E+ m

(4.23)

where
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E = —min-2 ; (4.24)

thus rendering V positive definite. In fact V has a global minimum at zero, and grows as a
polynomial of second order outside the domain over which the data points are defined. Within this

domain, V develops minima that are identified with cluster centers (Horn, Axel, 2003).

The intuition behind this approach is that this choice of V is the correct one for the

Schrodinger equation:

Hy = (—"2—2 V2+V(x))1p - By (4.25)

whose solution (lowest eigenstate) is the probability density 1 (x) . In this equation, the potential
function V(x) can be regarded as the source of attraction, whereas the first Lagrangian term is the

source of diffusion of the distribution, governed by the parameter o (Horn, Axel, 2003).

Once the minima of V(x) are defined as cluster centers, the assignment of data points to
clusters can proceed through a gradient descent algorithm, allowing auxiliary point variables y;(0) =

x; to follow dynamics of:

yit+4t) = yi(t) — n(®) VV(y:()) (4.26)
that lead to asymptotic fixed points: y;(t) — z; coinciding with the cluster centers.

We emphasize that although a search is carried out here for the minima of a continuous
function V(x), which may be a complex problem in high dimensions, it can in fact be simplified by
evaluating this function only at the data points and their gradient descendants V (yy;) which is sufficient

to carry out the algorithm of clustering (Horn, Axel, 2003).

In this section we describe the Hierarchical Quantum Clustering (QC) Algorithm. The QC
algorithm has a free parameter o that characterizes the length scale over which we search for cluster
structures. Varying it from low to high values, we can get anywhere from N clusters (where N is the
number of data points) to one cluster. The algorithm has to be applied judiciously, e.g. by limiting
oneself to a small number of clusters that stays stable over a range of ¢ . It is however important to
realize that this algorithm does not guarantee hierarchy, i.e. the assignments of data points to clusters

does not follow a tree, or dendrogram representation, as o is being varied (Horn, Axel, 2003).

We find it useful to define a modified version that produces a hierarchical formulation in an
agglomerative manner. We start out with very low o, such that each data point is a cluster of its own
and we have the first trivial clustering z} = x; . Then we increase ¢ by some amount obtaining, after
the QC gradient descent algorithm, new clustering centers z? . Although there are N values specified
here, there should now be several coinciding with one another, thus describing small clusters with a

few points in each (Horn, Axel, 2003).
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We use z? as the data points in our next stage of QC, after once again increasing . This
leads to a new set of cluster values z; . This procedure is continued until large o values are reached
with only one cluster. On the way it defines a dendrogram whose clustering quality we may compare to
biological sample data. We call this method hierarchical quantum clustering (HQC) (Horn, Axel,
2003).

Appendix D: Quantum Clustering first visualization (Matlab)

e  norm_fcn

normec_fecn.m clustMeasure.m fineClusterm graddesc.m

1 function nm = normc_fen(m)
2= nm = sgri(m.”2 ./ sum({m.*2)} .* sign(m);
D) = end

e  clustMeasure

norme_fen.m clustMeasure.m fineClusterm graddesc.m plotClust.m qc.m QCscriptm +

1 function [minkowski_measure,jacard_measure,purity,efficiency]=clustMeasure(clust,realClust)
2 % function [minkowski_measure,jacard_measure,purity,efficiency]=clustmeasure(clust,realClust)
3 % input: clust=vector with all the cluster # of each data point

4 % realClust=vector ofthe starting place of each cluster

5 % (assuming the data points are sorted accordingly)
7
8
9

= pHNum=length(clust);
% S=the clutering result in pairs - 5(i,j)=1 iff data point i and j are asigned to the same cluster
= S=(repmat(clust,1,phum)==repmat(clust’,pNum,1));
10 - for i=1:(length(realClust}-1)
11 - t(realClust(i): (realClust(i+1)-1))=1i;
12 - end
13 - 1=length(clust);
14 - t(realClust(i+1):1)=1+1;
15 - T=(repmat(t',1,1)==repmat(t,1,1));
16 % T=the true clutering (same definition as for S)

2o

= sum(sum(T==1));

= sum(sum(T~=5));

= minkowski_measure=sqri{sum{sum(T~=5)})/sum(sum(T==1)));

= 51=5%2-1; % replace 8 for -1

= TP=(T==51); % all palces where both T and S equal 1
jacard_measure = sum{sum(TP))/(sum(sum(T~=5))+sum{sum(TP}));

GRENESLE®

=
|

&

- efficiency = sum(sum(TP))/sum(sum(T==1)); % nll/(nl@ + nil)
purity= sum{sum(TP) }/sum(sum(5==1)); % nl1l/(n@l + nil)

RN NN MR

]
1

e fineCluster

norme_fen.m clustMeasure.m fineCluster.m graddesc.m plotClust.m qc.m QCscript.m +

function clust=finsCluster(xyData,minD)

# clust=fineCluster(xyData,minD) cluster xyData points when closer than minD
% output: clust=vector the cluter index that is asigned to each data point
% (it's cluster serial #)

= n=length(xyData);
clust=zeros{l,length(xyData));
i=1;
clustInd=1;
= while min(clust)==0
= x=xyData(i,:);
D=sum( ({repmat(x,n,1)-xyData).”2)").".5;
clust(D<minD)=clustInd;
= i=find(~clust);
- if length(i)>e
i=i(1); % index of the fisrt non-clustered point
end
= clustInd=clustInd+l;
= end
clust=clust’;

W0 Mo B WM R 0 m s ;U B W R

e graddesc



norme_fcn.m clustMeasure.m fineClusterm graddesc.m x | plotClustm gc.m QCscript.m

[function D=graddesc(xyData,q,steps)
% function graddesc(xyData,q,[steps])
% purpose: performing quantum clustering in and moving the
% data points down the potential gradient
% input: xyData - the data vectors
% q=a parameter for the parsen window variance (g=1/(2*sigma~2))
% steps=number of gradient descent steps (default=58)
% output: D=location of data o=point after GD

= if nargin<3

= steps=58;

= end

- eta=0.1;

= D=xyData;

- [V.P,E,dV] = gc (xyData,q,D);
= for j=1:4

= for i=1:(steps/4)

= dv=normc_fen(dv')';

= D=D-eta*dvV;

- [V,P,E,dV] = gc (xyData,q,D);
= end;,

= eta=eta®d.5;

= end

e plotClust

[T - TR . Y B S FTR N

mREe

normc_fcn.m clustMeasure.m fineCluster.m graddesc.m plotClustm =

Péplot clusters

= x=zeros(length(xyData),max(clust));

= x=repmat(1l:max(clust),length(xyData),1)";

= index=repmat(clust,l,max(clust))’;

= x=(x==1index);

= x(:,realClust)=x(:,realClust)+2;

- Bllcmap=[1 1 1;8 @ @;1 @ ©,8.7 8.7 8.7,;8.2 8.2 8.2];

= colormap(Blcmap) ;
= image(x*2)

. qc

Quantum Statistics and Data Analysis
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norme_fcn.m clustMeasure.m fineCluster.m graddesc.m plotClust.m gc.m x | QCscript.m P
1 Function [v,P,E,dv] = gc (ri,q,r)
2 % function qc
3 % purpose: performing quantum clustering in n dimensions
4 % input:
5 %* ri - a vector of points in n dimensions
[ % q - the factor g which determines the clustering width
7 % r - the vector of points to calculate the potential for. equals ri if not specified
8 % output:
E % V - the potential
10 % P - the wave function
1 % E - the energy
12 % dv - the gradient of V
13 % example: [V,P,E,dV] = qc ([1,1;1,3;3,3],5,[@.5,1,1.5]);
14 % see also: gc2d
15
15 %close all;
17 - if nargin<3
18 - r=ri;
19 - end
20
21 #default q
22 - if nargin<2
23 - q=8.5;
24 - end
25 #default xi
26 - [pointshum,dims] = size(ri);
27 - calculatedium=size(r,1);
28 % prepare the potential
29 - V=zeros(calculatedium,1);
38 - dP2=zeros(calculatedium,1);
31 % prepare P
32 - P=zeros(calculatedNum,1);
33 - singlePoint = ones(pointsium,1);
34 - singlelaplace = zeros(pointsHum,1);
35 - singledvl=zeros(pointsMum,dims);
36 — singledv2=zeros(pointsMum,dims);
37 % prevent division by zero
38 % calculate vV
39 %run over all the points and calculate for each the P and dP2
4 - for peint = 1:calculatedlum
4 - singlePoint = ones(pointshum,1);
42 - singlelaplace = singlelLaplace.*@;
43 - D2=sum(((repmat(r(point,:),calculatedNum,1)-ri)."2)");
24 - singlePoint=exp(-q*D2)";
45 %EXPij=(repmat(singlePoint’,calculatedium,1).*(repmat(singlePoint,1,calculatedium)));
46 % singlelLaplace = sum((D2").*singlePoint);
47 - for dim=1:dims
a8 - singlelLaplace = singlelaplace + (r(point,dim)-ri(:,dim)).”2.*singlePoint;
49 - end
50 - for dim=1:dims
51 - singledvi(:,dim) = (r(point,dim)-ri(:,dim)).*singleLaplace;
52 - end
53 - for dim=1:dims
54 - singledv2(:,dim) = (r(point,dim)-ri(:,dim}).*singlePoint;
S = end
56 — P(point) = sum{singlePoint);
57 - dP2(point) = sum(singlelaplace);
58 — dvi(point, sum(singledvl,1);
59 - dv2(point, : )=sum(singladv2,1);
60 — end
61 % dill with zero
82 %vi(find(vi==8)) = min(vi(find(v1)));
63 Fvax(find(v2x==8)) = min(v2x(find(v2x>8)));
64 %vay(find(v2y==)) = min(v2y(find(v2y>8)));
65 - P(find(P==0)) = min(P(find(P)));
66
67 — ims/2+g*dP2./P;
68 — E=-min{V);
69 — V=V+E;
70 — for dim=1:dims
7 = AV dim)=-g*dVi(:,dim)+(V-E+(dims+2)/2) . *dv2(:,dim);
72 - end

73 - dv(find(P==0),:)=0;

e  QCscript



norme_fen.m clustMeasure.m fineClusterm graddesc.m plotClust.m | qgc.m ‘ QCscriptm x

% This script demonstare the QC alogorithm in a truncated SWD space |
% on microarray data the run time should take several minutes

load the data matrix

= importdata( Absenteeism_at_work2.csv', ";', 1)

= M.data

##load

% perform SVD - the result are 3 matrixes s.t genes x S x samples = M
[genes,S,samples] = svd(M,@);

dims=4;

q=2.4; % q=1/(2%sigma~2) => sigma=8.46 (smaller q -> less clusters)

%xyData=samples(:,1:dims); % load dims most significant vectors to xyData
xyData=genes(:,1:dims); % load dims most significant vectors to xyData

% data normalization (gives all vector unit length)
n = normc_fen(xyData’);
xyData=n';

Quantum Statistics and Data Analysis

+

%show_gc; % run gc and then plot the result (if more than 2 dimentions are used -

% then the result is the projection of on the first to dimentions)

% this procedure does not perform the gradient descent and uses only

% for presentation purpose

% QC

D=graddesc(xyData,q,80); #performs gradient descent on xyData with 28 steps

clust=fineCluster(D,0.1); % "collapse” the points to their final places and
% return the division of data into clusters

plotClust;

[mm, jm, purity, efficiency]=clustMeasure(clust,realClust); #minkowski measure and
QCjacard_measure=jm;

QCminkowski_measure=mm;

pairwise measure

title(strcat('QC clustering ',int2str(dims),’ dimensions jacard=" ,num2str(QCjacard_measure) ))
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Appendix E: Quantum Clustering second visualization (Matlab)

o normr

normr.m = | DisplayQC.m ‘ FindApproximateEntropy.m FindApproximatePotential.m

1 ffunction n = norme(m)
2 HNORMR Normalize rows of matrix.
3 %
4 % NORMR(M)
5 % M - a matrix.
[ % Returns a matrix the same size with each
7 % row normalized to a vector length of 1.
8 *
g % See also NORMC, PNORMC.
1@
11 % Mark Beale, 1-31-92
12 % Copyright (c) 1992-97 by The MathWorks, Inc.
13 % $Revision: 1.3 § $Date: 1997/85/14 22:18:5@ §
4
15 - if nargin < 1,error(’Not enough input arguments.'); end
16
17 - [mr,mc]=size(m);
18 - if (mc 1)
19 - n=m./ abs(m);
W - else
1 - n=sgrt(ones./(sum((m.*m}"))) "*ones(l,mc}.*m;
) o end
23
e DisplayQC
1 ffunction pisplayoc(xHistory,clusters,principalCompenents,datalnPChasis)
2 % displays the quantum clustering process dymanically
3 % xHistory - the entire evolution of QC as returned from the function PerformGDQQC
s % clusters - vector with cluster indexes of data points. numel(clusters) = size(xHistory,1). can be [] for no clustering.
5 % optonal:principalComponents - the principal components of the original data, as returned from function pca. The display will project the data back to the origi
s % optonal:datalnPCbasis - the original data in the principal component basis. The display will also use the coordinated of the unused principal components in t
7
E capturevideo - false;
9
8
u- showLines = @;
2
5 - if (nargin>=3)
- n = size(xHistory,2);
15 - newxHistory = zeros(size(xHistory,1),size(principalComponents,1),size(xHistory,3});
15 - for ii-1:size(xHistory,3)
- if (nargin--4)
18- newxHistory(:,:,11) = [xHistory(:,:,1i),dataInPCbasis(:,(n+1):end)]*principalComponents’ :
s - else
e - newXHistory(:,:,1i) = xHistory(:,:,ii)*principalCompenents(:,1:n}';
n - end
n - end
3 - xHistory = newxHistory;
% - end
25
% - if isempty(clusters)
- clusters = ones(size(xHistory,1),1);
¥

5 - end
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if (size(xHistory,2) == 1)
figure;
axis equal;

clrs = myColorMap(max(clusters));

[~,~,tmp] = unigue(clusters);
clrs = clrs(tmp,:);

sc = scatter(xHistory(:,1,1),xHistory(:,1,1)*@,18,clrs, filled");
xlim([min(min{xHistory(:,1,:))} , max{max(xHistory(:,1,:3))]);

ylim([-1 , 1]);
if capturevideo

frm = print('-RGBImage','-re', -opengl', -noui');

frm = frm(256:570,:,:);
frames = zeros({size(frm,1),size(frm,2),3,20);

nextFrmInQueue = 1;

frames(:,:,:,nextFrmInQueue) = frm;
nextFrmInQueue = nextFrmInQueue+l;
vid = videoWriter('filename.mp4’, 'MPEG-4');

vid.FrameRate = 18;
open(vid);

end

for ii=1l:size(xHistory,3)

set(sc, 'XData',xHistory(:,1,ii});

title([ 'step #' num2str(ii-1) '/’ num2str(size(xHistory,3))]);

if capturevideo
frm =
% frm =

rint('-RGBImage', -r@", -opengl’, -noui’);
rm(72:780,188:1658,:);

frames(:,:,:,nextFrmInQueue) = frm;

nextFrmInQueue

nextFrmInQueue+l;

if (nextFrmInQueue==21)
writevideo(vid,framas/255);
nextFrmInQueue = 1;

end
end
pause(0.85);
end
if capturevideo

frames(:,:,:,nextrrmInQueue) = frm;

writeVideo(vid,frames(:,:,:,

close(vid);
end
figure;
axis equal;

scatter(xHistory(:,1,1),xHistory(:,1,1)%,10,clrs, filled");

hold cn;

xlim([min(min(xHistory(:,1,:))) , max(max(xHistory(:,1,:)))]):

yln([-1, 1]);
for ii-1:max(clusters)

(
text(mean(xHistory(clusters==ii,1,1)),8.5,num2str(11), 'BackgroundColor', 'w', 'EdgeColor’, 'k, "HorizontalAlignment', ' center’,'VerticalAl!
text(mean(xHistory(clusters==11,1,1)),8.5,num2str(sun(clusters==ii)), 'BackgroundColor', 'w', 'EdgeColor’, 'k', 'HorizontalAlignment ", 'cente

end

elseif (size(xHistory,2) == 2)
figure;
axis equal;
clrs = myColorMap(max(clusters))
[~y tmp] = unique(clusters);
clrs = clrs(tmp,:);

3

1:nextFrmInQueue)/255);
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86 - sc = scatter(xHistory(:,1,1),xHistory(:,2,1),1@,clrs, fillad");
87 - x1im{[min(min(xHistory(:,1,:})) , max{max(xHistory(:,1,:))31);
88 - ylim{[min(min({xHistory(:,2,:})) , max{max(xHistory(:,2,:)))]);
89 - if capturevideo

@ - frm = print(’-RGBImage', '-r@', '-opengl’, '-noui’);

1 * frm = frm(258:570,:,:);

2 — frames = zeros(size(frm,1),size(frm,2),3,28);

3 - nextFrmInQueue = 1;

4
|

frames(:,:,:,nextFrmInQueue) = frm;
nextFrmInQueue = nextFrmInQueue+l;
= vid = videoWriter('filename.mp4d', "MPEG-4');

S oo wwwoowo o
1

7 — vid.FramsRate = 18;
8 - open(vid);
9 - end
e - for ii=l:size(xHistory,3)
le1 - set(sc, 'XData',xHistory(:,1,ii), vData',xHistory(:,2,i1));
182 - title(['step #' num2str(ii-1) */° num2str(size(xHistory,3))]1);
[CER if ((ii»1) & showLines)
o4 - line([xHistory(:,1,ii-1)";xHistory(:,1,1i)"], [xHistory(:,2,1i-1)";xHistory(:,2,ii) ], Color',[0.95,8.95,0.95]);
185 - end
186 — uistack(sc, 'top');
187 - if capturevideo
log - frm = print('-RGBImage'," -r8', '-opengl’, '-noui');
Lag % frm = frm(72:760,180:1858,:);
e - frames(:,:,:,nextFrmInQueue) = frm;
11 - nextFrmInQueue = nextFrmInQueus+l;
12 - if (nextFrmInQueue==21)
13 - writevideo(vid,frames/255);
nextFrmInQueve = 1;
end
end
pause(@.@5);
end
if capturevideo
frames(:,:,:,nextFraInQueue) = frm;
writeVideo(vid, frames(:, :,:,1:nextFrnInQueue)/255);
closetvid);
end
figure;

axis equal;
scatter(xHistory(:,1,1),xHistory(:,2,1),18,clrs, filled');
xLim{[min(min(xHistory(:,1,:))) , max(max(xHistory(:,1,:)))1);
ylim{[min(min(xHistory(:,2,:))) , max(max(xHistory(:,2,:)))1);

% for ii-1:max(clusters)
%% text(mean(xHistory(clusters—-ii,1,1)),mean(xHistory(clusters—-ii,2,1)),num2str(ii), ‘Backgroundcolor’, ‘w', "EdgeColor", 'k, HorizontalAlign
% text(mean(xHistory (clusters—-ii,1,1)),mean(xHistory(clusters--i1,2,1)),num2str(sun(clusters--i1)}, *BackgroundColor’, 'w’, 'EdgeColor’, k",
% end

else
if ((size(xHistory,2) > 2) && (nargin<3))
[principalComponents,datalnPChasis,~] - pca(xHistory(:,:,1), Centered’,false);
n - size(xHistory,2);
newxHistory - zeros(size(xHistory,1),size(dataInPCbasis,2),size(xHistory,3)};
for 1i-1:size(xHistory,3)
newxHistory(:,:,i1}) - xHistory(

1)*principalcomponents;
end
xHistory = newXHistory;

end

figure;

axis equal;

clrs = jet(max{clusters));
[~,~, tmp] = unique(clusters);
clrs = clrs(tmp,:);

sc = scatter3(xHistory(:,1,1),xHistory(:,2,1),xHistory(:,3,1),10,clrs, filled');
xLim([min(min({xHistory(:,1,:))) , max(max(xHistory(:,1,:)))1);
ylim([min(min(xHistory(:,2,:))) , max(max(xHistory s
Zlim([min(min(xHistory(:,3,:))) , max(max(xHistory(:,3,:)))1);

if capturevideo

frm = print(’-RGBImage’,'-r@', -opangl’, -noui');
% frm = Frn(258:578,:,:);

frames = zeros(size(frm,1),size(frm,2),3,20);

nextFrmInQueue = 1;

frames(:,:,:,nextFrmInQueue) = frm;
- nextFrmInQueue = nextFrmInQueue+d;
- vid = VideoWriter('filename.mp4', 'MPEG-4');
- vid.FrameRate = 18;
= open(vid);
162 - end
163 - for ii=1:(size(xHistory,3)-1)
4 - set(sc, 'XData',xHistory(:,1,ii), ¥Data',xHistory(:,2,1i), ZData’,xHistory(:,3,ii));
= title(['step #' num2str(ii-1) */' num2str(size(xHistory,3)-1)]);
= if ((iir1) & showlines)
- line([xHistory(:,1,ii-1) " ;xHistory(:,1,1i)" ], [xHistory(:,2,11i-1)";xHistory(:,2,ii)" ], [xHistory(:,3,ii-1) sxHistory(:,3,ii)'], Col
- end
69 — uistack(sc, 'top');
170 - if captureVideo
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print(’-RGBImage', -r&', -opengl’, -noui');
% frm = frm(72:760,180:1850,:);
frames(:,:,:,nextFrmInQueus) = frm;
nextFrmInQueue = nextFrmInQueue+l;
if (nextFrmInQueue==21)
writeVideo(vid, frames/255);
nextFrmInQueue = 1;

= end
179 - end
138 - pause(8.@5);
181 - end
182 - if capturevideo
183 - frames(:,:,:,nextFrmInQueue) = frm;
184 - writevideo(vid,frames(:,:,:,1:nextFrmInQueue)/255);
185 — close(vid);
186 - end
187 - figure;
188 - axis equal;
189 - scatter3(xHistory(:,1,1),xHistory(:,2,1),xHistory(:,3,1),1@,clrs, "filled');
198 - axis equal;
191 - xlim([min(min(xHistory(:,1,:))) , max(max(xHistory(:,1,:)))1);
192 - ylim{[min(min(xHistory(:,2,:))) , max(max{xHistory(:,2,:)))1);
193 - zlim([min(min(xHistory(:,3,:))) , max(max(xHistory(:,3,:)))]);
194 - clr = jet(max(clusters));
195 % for ii=1:max(clusters)
196 %% text(mean(xHistory(clusters==ii,1,1)),mean(xHistory(clusters==1i,2,1)),mean(xHistory(clusters==ii, 3,1)),num2str(ii), ' BackgroundColor’, 'w'
197 % text(mean(xHistory(clusters==ii,1,1)),mean(xHistory(clusters==11,2,1)),mean(xHistory(cluster i,3,1)),num2str(sum{clusters==ii)), "Backg
198 %* end R
199 - end
200
201 % if (size(xHistory,2) > 1)
202 % figure;
203 % clr = jet(max(clusters));
204 % held on;
205 % for ii=1:max(clusters)
206 % plot(xHistory(clusters==ii,:,1)", "Color’,clr(ii,:));
207 % end
208 % end
269
210 - end
° FindApproximateEntropy
normrm = | DisplayQC.m x | F pym x| F tentialm = | F pym x| F tochasticPotentialm | F unctionm > +
1 )'Functwn [S,dS] = FindApproximateEntropy(data,coeff,sigma,x)
2 % finds the approximate entropy and its gradient for quantum clustering
3 % data - matrix with data. each row corresponds to one data point.
4 % coeff - a weight for wach row in data
5 % sigma - scalar, the parameter that appears in the Parzen wavefunction.
6 % x - matrix with points where the potential will be evaluated. Each row is a point. If x is empty, then x = data.
7 % S - the entropy. It is a column vector with size(x,1) elements.
8 % dS - the gradient of the entropy at the peints x. It has the same size as x.
9
18 - if isempty(x)
1 - x = data;
12 - end
13
14 - S = zeros(size(x,1),1);
15 — dS = zeros(size(x));
16 - for ii=1:size(x,1)
57 difference = (repmat(x(ii,:),size(data,1),1) - data);
18 - squaredDifference = sum(difference.”2,2);
19 - gaussian = exp(-(1/(2*sigma~2))*squaredDifference);
2 - laplacian = sum(coeff.*gaussian.*squaredDifference); % this is not the true Laplacian, since I omit a constant additive term from the potential
n - parzen = sum(coeff.*gaussian);
2 - V = (1/(2*sigma"2))*laplacian/parzen;
23 - S(ii) = V + log(abs(parzen));
24
25 - ds(ii, (1/parzen)*sum{difference.*repmat(coeff.*gaussian,1,size(data,2)).*(2*sigma"~2*v-repmat (squaredDifference,1,size(data,2))));
26 - end
27
2 - end
e  FindApproximatePotential
nomrm x | DispiayQC.m m mx m m m > +
1 lFunction [V,dV] = FindApproximatePotential(data,coeff,sigma,x)
2 % finds the approximate potenatial and its gradient for quantum clustering
3 % data - matrix with data. each row corresponds to one data point.
a % coeff - a weight for wach row in data
5 % sigma - scalar, the parameter that appears in the Parzen wavefunction.
6 % x - matrix with points where the potential will be evaluated. Each row is a point. If x is empty, then x = data.
7 % V - the potential that gives the Parzen wavefunction as an eigenfunction. It is a column vector with size(x,1) elements.
s % dv - the gradient of the potential at the points x. It has the same size as x.
9
10 - if isempty(x)
1 - X = data;
12 - end
13
14 - zeros(size(x,1),1);
15 - dV = zeros(size(x));
16 - for ii=l:size(x,1)
17 - difference = (repmat(x(ii,:),size(data,1),1) - data);
18 - squaredDifference = sum(difference.”2,2);
19 - gaussian = exp(-(1/(2*sigma~2))*squaredpifference);
20 - laplacian = sum(coeff.*gaussian.*squaredDifference); % this is not the true Laplacian, since I omit a constant additive term from the potential
21 - parzen = sum(coeff.*gaussian);
22 - V(ii) = 1+(1/(2%signa~2))*1aplacian/parzen;
23
2 - av(ii,:) - (1/parzen)*sum(difference.*repmat(cosff.*gaussian, 1,5ize(data,2)). *(2 signa~2~V(ii)-repmat (squaredDifference,1, size(data,2))));
25 - end
2
= Vo= V-1
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e  FindApproximateStochasticEntropy

normrm DisplayQC.m Lm m x m m > +
1 [function [5,d5] = FindApproximateStochasticEntropy(data,coeff,sigma,x,sz)
2 % finds the estimated approximate entropy and its gradient for quantum clustering
3 % data - matrix with data. each row corresponds to one data point.
a % coeff - a weight for wach row in data
H % sigma - scalar, the parameter that appears in the Parzen wavefunction.
6 % x - matrix with points where the potential will be evaluated. Each row is a point. If x is empty, then x = data.
7 % sz - a number between @ and 1. The entropy and gradient will be calculated based on a random sample of size 'sz*size(data,1)’ of data points
g % S - the entropy. It is a column vector with size(x,1) elements.
2 % dS - the gradient of the entropy at the points x. It has the same size as X.
1e
1 - if isempty(x)
12 - x = data;
13 - end
14 - sz = ceil(sz*size(data,1));
s
16 - 5 = reros(size(x,1),1);
17 - ds = zeros(size(x));
18 - for size(x,1)
19 - inds = randi(size(data,1),sz,1);
20 - currentData = data(inds,:);
n
22 - difference = (repmat(x(ii,:),size(currentData,1),1) - currentData);
23 - squaredDifference = sum(difference.”2,2);
28 - gaussian = exp(-(1/(2*sigma"2))*squaredDifference);
25 - laplacian = sum(coeff.*gaussian.*squaredDifference); % this is not the true Laplacian, since I omit a constant additive term from the potential
26 - parzen = sum(coeff.*gaussian);
27 - V = (1/(2*sigma*2))*laplacian/parzen;
28 - S(ii) = V + log(abs(parzen));
z
2
EC ds(ii,:) = (1/parzen)*sum(difference.*repmat(coeff.*gaussian,1,size(currentData,2)).*(2*sigma~2*V-repmat (squaredDifference,1,size(currentbata,2)))
31 - end
32
33 - end
e  FindApproximateStochasticPotential
norme.m DisplayQC.m P! L.m m x m > +
1 [function [V,dV] = FindApproximateStochasticPotential(data,coeff,sigma,x,sz)
2 % finds the estimation to the approximate potenatial and its gradient for quantum clustering
3 % data - matrix with data. each row corresponds to one data point.
s % coeff - a weight for wach row in data
5 % sigma - scalar, the parameter that appears in the Parzen wavefunction.
3 % x - matrix with points where the potential will be evaluated. Each row is a point. If x is empty, then x = data.
7 % sz - a number between 8 and 1. The potential and gradient will be calculated based on a random sample of size 'sz*size(data,1)' of data points
8 % V - the potential that gives the Parzen wavefunction as an eigenfunction. It is a column vector with size(x,1) elements.
9 % dV - the gradient of the potential at the points x. It has the same size as x.
1 - if isempty(x)
12 - % = data;
13 - end
14 - sz = ceil(sz*size(data,1));
-
16 - V = zeros(size(x,1),1);
17 - dv = zeros(size(x));
18 - for size(x,1)
19 - inds - randi(size(data,1),sz,1);
20 - currentData = data(inds,:);
2
2 - difference = (repmat(x(ii,:),size(currentData,1),1) - currentData);
23 - squaredDifference = sum(difference.”2,2);
2 - gaussian = exp(-(1/(2*sigma~2))*squaredDifference);
25 - laplacian = sum(coeff.*gaussian.*squaredDifference); % this is not the true Laplacian, since I omit a constant additive term from the potential
26 - parzen = sum{coeff.*gaussian);
27 - V(i1) = 1+(1/(2*signa*2))*laplacian/parzen;
2
29 - (1/parzen)*sum(difference.*repmat(coeff.*gaussian,1,size(currentData,2)).*(2*signa*2*V(ii)-repmat (squaredDifference,1,size(currentData,
38 - end
31
33 - end
° FindApproxiamteStochasticWaveFunction
< DisplayQC.m m m m m x| FindApp
1 [function [Psi,dPsi] = FindApproximateStochastichaveFunction(data,coeff,sigma,x,sz)
2 % finds the estimated approximate wave function\Parzen function and its gradient.
3 % data - matrix with data. each row correspends to one data point.
4 % coeff - a weight for wach row in data
5 % sigma - scalar, the parameter that appears in the Parzen wavefunction.
6 % X - matrix with points where the wave function will be evaluated. Each row is a point. If x is empty, then x - data.
7 % sz - a number between @ and 1. The wavefunction and gradient will be calculated based on a random sample of size 'sz*size(data,1)' of data points
8 %V - the wave function. It is a column vector with size(x,1) elements.
9 % dv - the gradient of the wave function at the points x. It has the same size as x.
10
n
12 - if isempty(x)
13 - x = data;
14 - end
15 - sz = ceil(sz*size(data,1));
16
17 - Psi = zeros(size(x,1),1);
15 - dpsi = zeros(size(x));
19 - for i size(x,1)
20 - inds = randi(size(data,1),sz,1);
n - currentData = data(inds,:);
22
23 - difference = (repmat(x(ii,:),size(currentData,1),1) - currentData);
24 - squaredDifference = sum(difference.~2,2);

= exp(-(1/(2"sigma~2))*squaredDifference);
sum(coeff.*gaussian);

- -1%sum(difference. *repmat(coeff.*gaussian,1,size(currentData,2))*2"signa2);
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e  FindApproximateWaveFunction

m m m Lm m x

[function [Psi,dPsi] = FindApproximateWaveFunction(data,coeff,sigma,x)

% finds the approximate wave function\Parzen function and its gradient.

% data - matrix with data. each row corresponds to one data point.

% coeff - a weight for wach row in data

% sigma - scalar, the parameter that appears in the Parzen wavefunction.

% x - matrix with points where the wave function will be evaluated. Each row is a point. If x is empty, then x = data.
%V - the wave function. It is a column vector with size(x,1) elements.

% dv - the gradient of the wave function at the points x. It has the same size as x.

if isempty(x)
X = data;
end

Psi = zeros(size(x,1),1);
dPsi = zeros(size(x));

size(x,1)

difference = (repmat(x(ii,:),size(data,1),1) - data);
squaredDifference = sum(difference.”2,2);

gaussian = exp(-(1/(2*signa*2))*squaredDifference);
Psi(ii) = sum(coeff.*gaussian);

dPsi(ii,:) = -1*sum(difference.*repmat(coeff.*gaussian,1,size(data,2))*2*signa"2);

e  FindEntropy

m m m .m m py.m x | Fi

lfunction [S,dS] = FindEntropy(data,sigma,x)

% finds the entropy and its gradient for quantum clustering

% data - matrix with data. each row corresponds to one data point.

% sigma - scalar, the parameter that appears in the Parzen wavefunction.

% x - matrix with points where the potential will be evaluated. Each row is a point. If x is empty, then x - data.
%S - the entropy. It is a column vector with size(x,1) elements.

% ds - the gradient of the entropy at the points x. It has the same size as x.

if isempty(x)
x = data;
end

s = zeros(size(x,1),1);
ds = zeros(size(x));
for 1i-1:size(x,1)
difference = (repmat(x(ii,:),size(data,1),1) - data);
squaredDifferance = sum(difference.”2,2);
gaussian = exp(-(1/(2*signa*2))*squaredDifference);
laplacian = sum(gaussian.*squaredDifference); % this is not the true Laplacian, since I omit a constant additive term from the potential

parzen = sum(gaussian);
V = (1/(2*signe*2))*laplacian/parzen;
S(ii) = V + log(abs(parzen));

ds(ii,:) = (1/parzen)*sum(difference.*repmat(gaussian,1,size(data,2)).*(2*sigma"2*V-repmat(squaredDifference,1,size(data,2))));

e  FindEntropyStochastic

Lm m py.m m x m m m >

lfunction [S,dS] = FindEntropyStochastic(data,sigma,x,sz)

% finds the estimation for the entropy and its gradient for quantum clustering

% data - matrix with data. each row corresponds to one data point.

% sigma - scalar, the parameter that appears in the Parzen wavefunction.

% x - matrix with points where the potential will be evaluated. Each row is a point. If x is empty, then x = data.

% sz - a number between ® and 1. The entropy and gradient will be calculated based on a random sample of size "sz*size(data,1)’ of data points
% S - the entropy. It is a column vector with size(x,1) elements.

% dS - the gradient of the entropy at the points x. It has the same size as x.

if isempty(x)
x = data;

end

sz - ceil(sz*size(data,1));

S = zeros(size(x,1),1);
ds = zeros(siza(x));
for 1i-1:size(x,1)
inds - randi(size(data,1),52,1);
currentbata = data(inds,:);

difference = (repmat(x(ii,:),size(currentData,1),1) - currentData);
squaredDifference = sum(difference.~2,2);

gaussian - exp(-(1/(2*sigma"2))*squaredDifference);

laplacian = sum{gaussian.*squaredDifference); % this is not the true Laplacian, since I omit a constant additive term from the potential
parzen = sum(gaussian);

V = (1/(2*sigma~2))*laplacian/parzen;

S(ii) = v + log(abs(parzen));

ds(ii,:) = (1/parzen)*sun(difference.*repmat(gaussian,1,size{currentbata,2)).*(2* signa~2*V-repnat (squaredDifference, 1, size(currentbata, 2))));

and

end

° FindPotential
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< m x| m m mx m m

1 [Function [V,dv] = FindPotential(data,sigma,x)

2 % finds the potenatial and its gradient for quantum clustering

3 % data - matrix with data. each row corresponds to one data point.

4 % signa - scalar, the parameter that appears in the Parzen wavefunction.

s % x - matrix with points where the potential will be evaluated. Each row is a point. If x is empty, then x = data.

5 %V - the potential that gives the Parzen wavefunction as an eigenfunction. It is a column vector with size(x,1) elements.
7 % dV - the gradient of the potential at the points x. It has the same size as x.

s

9

o

10 - if isempty(x)
1 - x = data;

12 - end

13

1 - v = zeros(size(x,1),1);

15 - 4V - zeros(size(x));

16 - for 1i-1:size(x,1)

17 - difference = (repmat(x(ii,:},size(data,1),1) - data);

18 - squaredDifference - sum(difference.”2,2);

19 - gaussian = exp(-(1/(2*signa~2))*squaredDifference);

2 - laplacian - sum(gaussian.*squaredDifference); % this is not the true Laplacian, since I omit a constant additive term from the potential
2 - parzen - sum(gaussian);

2 - V(ii) = 1+(1/(2*signe~2))*laplacian/parzen;

23

2 - dv(ii,:) = (1/parzen)*sun(difference.*repmat(gaussian,1,size(data,2)).* (2*signa2*V(ii)-repnat (squaredDifference,1,size(data,2))));

25 - end

2

27 -

° FindPotentialStochastic

< m x| m x| FindEntropy.m m m m x m > +

1 [Function [V,dV] = FindPotentialStochastic(data,signa,x,sz)

2 % finds the estimated potenatial and its gradient for quantum clustering

3 % data - matrix with data. each row corresponds to one data point.

s % sigma - scalar, the parameter that appears in the Parzen wavefunction.

5 % x - matrix with points where the potential will be evaluated. Each row is a point. If x is empty, then x = data.

6 % sz - a number between @ and 1. The potential and gradient will be calculated based on a random sample of size sz*size(data,1)” of data points
7 %V - the potential that gives the Parzen wavefunction as an eigenfunction. It is a column vector with size(x,1) elements.

8 % dV - the gradient of the potential at the points x. It has the same size as x.

E]

o

10 - if isempty(x)
1 - x = data;

12 - end

13- sz = ceil(sz*size(data,1));

1

15

16 - V = zeros(size(x,1),1);

27 - 4V = zeros(size(x));

18 - for 1i-1:size(x,1)

1 - inds = randi(size(data,1),s2,1);

20 - currentData = data(inds,:);

2n

2 - difference = (repmat(x(ii,:),size(currentData,1},1) - currentData);

2 - squaredDifference = sum(difference.*2,2);

2 - gaussian = exp(-(1/(2*sigma*2))*squareddifference

25 - laplacian = sum(gaussian.*squaredDifference); % this is not the true Laplacian, since I omit a constant additive term from the potential
26 - parzen - sum(gaussian);

27 - V(i) - 1+(1/(2*sigma*2))*laplacian/parzen;

b

2 - dV(ii,:) = (1/parzen)*sun(difference.“repnat(gaussian,1,size(currentbata,2)).*(2"signa"2*V(ii)-repmat (squareddifference,1,size(currentbata,2))))s
EC end

30 - end

31

32 - Vo= V-1

33 - end

. FindWaveFunction

< | Fi m \ i m \ m x| Fi i ie.m x| g ion.m x| myGolorMap.m x| PerformFi

1 [function [Psi,dPsi] = FindWaveFunction(data,sigma,x)

2 % finds the wave function‘\Parzen function and its gradient.

3 % data - matrix with data. each row corresponds to one data point.

a % sigma - scalar, the parameter that appears in the Parzen wavefunction.

5 % x - matrix with points where the wave function will be evaluated. Each row is a point. If x is empty, then x = data.
6 % V - the wave function. Tt is a column vector with size(x,1) elements.

7 % dv - the gradient of the wave function at the points x. It has the same size as x.

8
9
e
1

- if isempty(x)

e - x = data;

1 - end

12

13 - Psi = zeros(size(x,1),1);

14 - i = zeros(size(x));

15 - 1:size(x,1)

16 - difference = (repmat(x(ii,:),size(data,1),1) - data);
17 - squaredDifference = sum(difference.”2,2);

18 - gaussian = exp(-(1/(2*sigma~2))*squaredDifference);
19 - Psi(ii) = sum(gaussian);

2

21

22 - dPsi(ii,:) = -1*sum(difference.*repmat(gaussian,l,size(data,2))*2%sigma"2);
23 - end
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° FindWaveFunctionStochastic

< FingPotentalm m i m x| getAppra tanm « | myColomMapm | PeromFinaiClustening.m « | PerfomGDOC m

Function [Psi,dPsi] = FinddaveFunctlonStochastic(data,sigma,x,sz)
ted wave function\Parzen function and its gradient, using a sample of data points.
% matrix with data. each row corresponds to one data point
% signa - scalar, the parameter that appears

% x - matrix with points where the wave function will be evaluated. E
X

x

z

rou s a polnt. Tf x
e calculated based on a r

s empty, then x = data.
don sample of si

ze(data,1)’ of data points

Sz - a nusber between @ and 1. The wave function and gr
V - the wave function. It is a colusn vector with size(x,1) elements.
oV - the gradient of the wave function at the points x. It has the same size as x

o = i isempty(x)
1z - = data;
1 nd
1 - 51 = cedl(szsize(data,1));
B
17 Psi = zeros(size(x,1),1);
1 - dpst - zeres(slze(x));
19 - for ii-1:size(x,1)
2 - inds = randi(size(data,1),52,1);
n currentbata = data(inds,:);
2 - difference - (repmat(x(il,:},size(currentData,1),1) - currentData);
2 - squaredDifferance - sun(difference.”2,2);
25 gaussian = exp(-(1/(2*signa~2))*squaredDifferance);
2 Psi(i1) = sun(gaussian);
2 - dPsi(ii,:) = -1°sun(difference.repuat(gaussian,1,size(currentData,2)) "2 signa"2);
. end
° getApproximateWaveFunction

< m x| m x| onm | i m x| g Lm x | myColorMap.n

1 function [nevData,coeff] = getApproximateWaveFunction(data,sigma,voxelSize)

2 % finds one representative data point for each voxel, and assigns a weight to each such data point.

3 % data - matrix with data. each row corresponds to one data point.

a % sigma - scalar, the parameter that appears in the Parzen wavefunction.

s % voxelSize - scalar, the size of the size of one wvoxel.

6 % out:

7 % newData - marix. A new set of data points, with only one data point per voxel.

i % coeff - vector, same size as size(newbata,1). The weight\coefficient of the corresponding new data point.

a

10 - newData = unigue(floor(data/voxelSize)*voxelSize+voxelSize/2, rous');

1

12 - N = zeros(numel(newData));

13 - N = squareform(pdist(newbata))."2;

14 - No= =N

15 - N = exp(N/(4*signa"2));

16

17 - M = zeros(numel(newData),numel(data});

18 - M = pdist2(newData,data).”2;

19 - M= -

20 - M = exp(M/(4*signa~2));

21

22 - € = N\M;

23

24 - coeff = sum(C,2);

25

26 - coeff - size(data,1)*coeff/sum(coeff);

27

28 - end

° myColorMap

< FindPotential.m | FindPotentialStochastic.m | FindWaveFunction.m FindWaveFuncii m Bl Function.m myCalorMap.m x| |
1 lfunction [m]=myColorMap({seuil,varargin)

2 % mycolermap - custom the jet colermap to display X% of the data

3 %  [m]=mycolormap(X)

4 % [m]=mycolormap(X,CM) CM is a colormap

5

6 — if nargin

7

8 - m=ones{160-seuil,3)*[.2 .7 1;6 @ @;@ @ 0];

9 - m= [m ; ones(2*seuil,3)*.5];

10 - m= [m ; ones(l@@-seuil,3)*[1 .4 .2;0 @ 6;@ 8 @]];

1

12 - 1=.3;

fERS m=hot(118);

14 - m= [m(1:188,:)*(1-1)+ones(18@,3)*1];

15 - m= [fliplr(flipud(m)) ; ones(2*seuil,3)*1 ; m];

16

17 - else

18 - n=varargin{1};

19 - m=[ n(l:ceil(length(n)/2),:); ones(2*seuil/1@@*length(n),3)*.5 ; n(ceil(length(n)/2):end,:)];
28

21 - end

e  PerformFinalCLustering
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< FincPotentalm +| FinGPolentaiSiehasie.m | Fralaver unchonm = | FRoNaweF choicchaste m | QUATroSmalENaveFuncion m = | myCacrpm | PefomEraiCust

[Fonction clusters = PerfornfinslCiustering(éata, stepSize, th)
nal clustering of data after perforning quantus clustering.
- matrix, the result of perforwing 0C
ize - the step size used by QC. this step site is the resoluti
% th - we cluster together paints that are uithin & distance of the
le | %o
X clusters - a vector with

ster together points that are wit

lusters' mumbers are ordered Larges

unber of rows as ‘data’, such th

var')) || (dsespty(th)) || (th==8)

- if (~exist(
the

e

- &nd
B clusters - zeres(size(data,1),1);

a1

ce
- distances - squarefora(pdist(data));
& ~isempry(1)

7 - inds = Find(clustarsesa);
clusters(inds(distances(11, Inds) <o thistepsize))

ool
= if - find(elusters--,1, first');
end

[~,inds] = sort(accumarray(clusters, 1), ‘descend’);
- [~ inds] = sort(inds);
- clusters - nds(clusters);

e  PerformGDQC

m % PerbemGOOC M >+ 0

< Zotentialm x| m x| Lm i i m \m x| myColorMapm x| PerformFinalClusteringm » | PeformGDQC.m x | QC.m +
1 [function [x,xHistory] = PerformGDQC(data,sigma,rep, stepSize,clusteringType,recalculatePotential,normalizeData, datalnitialPosition,normalizeGradient, stochasticsz
2 % performs gradient descent on data using potential from quantum clustering.

3 % data - matrix with data. each row corresponds to one data point.

4 % sigma - scalar, the parameter that appears in the Parzen wavefunction.

s % rep - scalar, maximal number of steps of gradient descent. default: 280

6 % stepSize - scalar, gradient will be multiplied by this number to perform each gradient descent step. default: 'sigma/7’
7 % clusteringType - char, either 'V',"S' or 'P’ for minimizing the potential, maximizing the entropy or maximizing the wavefunction. default: 'S"
8 % recalculatePotential - boolen. The gradient on each step will be derived from the potential using the current replica points (not initial data points). defaul
9 % normalizeData - boolean, Each data point will be normelized to norm 1 on each gradient descent step. default: false

10 % dataInitialPosition - matrix with same column number as 'data’. Each row is a point to be moved by the gradients. If empty, 'data’ will be used. default: ‘dat
1 % normalizeGradient - boolean. The gradient is normalized to unit norm before multiplied by "stepSize’. default: 'data’
12 % stochasticSz - scalar. If this is non-empty, a stochastic version of the algorithm will be used, in which the gradient is calculated based on a random sample
13 % howOftenToTestIfDone - scalar. once in how many steps to check wheter a point is dome moving. This is done by comparing the current value of the potentiallent
14 % out:

15 % x - the replica points after gradient descent evolution.

16 % optional output: xHistory - a 3d matrix with size [size(x,1),size(x,2),rep]. xHistory(:,:,ii) contains the points after the (ii-1)'th step of gradient descent
17

18

19 - if ~exist('stepSize’,'var’) || isempty(stepSize)

20 - stepSize = sigma/7;

2 - end

22

23 - if ~exist('rep’, var') || isempty(rep)

2 - rep = 208;

25 - end

26

7 - if ~exist(’clusteringType’, 'var') || isempty(clusteringType)

28 - clusteringType = "V';

29 - end
3e
31 - if ~exist('recalculatePotential’,'var') || isempty(recalculatePotential)
32 - recalculatePotential = false;

5 = end

34

35 - if ~exist('normalizeData’,'var') || isempty(normalizeData)

36 - normalizeData - false;

37 - end

38

39 - if mexist('dataInitialPosition’,'var') || isempty(dataInitialPosition)
20 - dataInitialPosition - data;
41 - end
42
43 - if ~exist('normalizeGradient®,'var’) || isempty(normalizeGradient)
a8 - normalizeGradient = true;
45 = end
46

47 - if ~exist(’stochasticSz®, var')

48 - stochasticsz = [];

49 - end

58

s1- if ~exist(’voxelSize',var')

52 - voxelsize = [];

53 - end

54

55 - if ~exist('howoftenTeTestIfDone’, 'var') || isempty(howoftenToTestIfDone)

56 - howOftenToTestIfDone = 1;

57 - end

B

59

60 - switch clusteringType

61 - case 'V

6 - maximizeEntropy = false;

6 - maximizeWaveFunction = false;

64 - case 'S"

65 - maximizeEntropy = true;

66 - maximizeWaveFunction = false;

67 - case 'P"

68 - maximizeEntropy = false;

69 - maximizeWaveFunction = true;

70 - end

71

72 - if ~isempty(voxelSize)

- [data,coeff] - getApproximateWaveFunction(data,sigma,voxelsize);

74 - end

75

76 - x = dataInitialPoesition;

77

78 - if normalizeData

79 - data = normr(data);

20 - x = normr(x);
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83 - if (nargout»=2)

84 - xHistory = zeros(size(x,1),size(x,2),repsl);

85 - xHistory(:,:,1) = x5

86 - end

&7

88 % initialize preV to have the previous values of V\S\Psi, so that can be compared to current values on each step of algorithm to check if arrived at ext
89 - prewv = inf(size(x,1),1);

o

a1

% these are the indices of replicas that are currently sill moving
inds = 1:size(x,1);

% master loop

for
if isempty(voxelsize)
if recalculatePotential
if maximizeEntropy
if isempty(stochastiesz)
[s,dx] = FindEntropy(x,sigma,x);
else
[S,dx] = FindEntropyStochastic(x,sigma,x, stochasticsz);
end
if normalizeGradient
dx = normr(dx);
end
X = X + stepSize*dx;
= -1%s;
elseif maxinizewaveFunction
if isempty(stochasticsz)
[P.dx] - FindWaveFunction(x,sigma,x);
else
[P,dx] = Find x,51gns, x, stochasticsz);
end
if normalizeGradient
dx = normr(dx);
15 - end
11 X = x + stepSizedx;
V- -17p;
- else
if isempty(stochasticSz
[V,dx] - FingPotentlal(x,sigma,x);
- else
[v,dx] = Findrotentialstachastic(x,signs,x,stochastiesz);
- end
if normalizeGradient
dx = normr(dx);
9 - end
X = x - stepsizetdx;
V-
- end
else
= 1f maximizeEntropy
- if isempty(stochasticsz)
1 [5,dx] = FindEntropy(data,sigma,x(inds,:));
37 - else
[5,dx] = FindEntropyStochastic(data,signa, x(inds, :),stochasticsz);
end
if normalizeGradient
dx = normr(dx);
end
x(inds,:) = x(inds,:) + stepsize*dx;
Vo= -1%s;
elseif maximizeWaveFunction
if isempty(stochasticsz)
[P,dx] - FindwaveFunction(data,sigma,x(inds,:));
else
[P.dx] = FindWaveFunctionstochastic(data,signa,x(inds, ), stochasticsz);
end
if normalizeGradient
dx = normr(dx);
end
x(inds,:) = x(inds,:) + stepSize*dx;
Vo= -1*P;
else
if isempty(stochasticSz)
[V,dx] = FindPotential(data,signa,x(inds,:));
else
[V,dx] = FindPotentialStochastic(data,sigma,x(inds,:),stochasticsz);
end
if normalizeGradient
dx = normr(dx);
end
- x(inds,:) = x(inds,:) - stepsize*dx
- V=V
- end
168 - end
169 - else

170 - if recalculatePotential

71 - if maximizeEntropy

172 - if isempty(stochasticsz)

- [S,dx] = FindApproximateEntropy(x,coeff,signa, [x;datal)

- else

- [s.dx] = FindapproximatestochasticEntropy(x,coeff,signa, [x;data], stochasticsz)
176 - end
177 - if normalizeGradient

- dx = normr(dx);

- end

- X = x + stepSize*dx;

- V= -1%5;

- elseif maximizeWaveFunction

- if isempty(stochasticsz)

a- [P.dx] = FindApproximatelaveFunction(x,coeff,signa, [x;data])

- else

- [P,dx] - FindApproximatestochasticiaveFunction(x,coeff,signa, [x;data],stochasticsz)
- end

- 1f normalizeGradient

- dx = normr(dx);

- end
- X = x + stepsize*dx;
- V= -1%p;

193 - else
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if isempty(stochasticsz)
[v,dx] = FindApproximatePotential(x,coeff,signa,[x;data]);
else
[v.dx] = FindApproximateStochasticPotential(x,coeff,sigma,[x;data],stochasticsz);
end
if normalizeGradient
dx = normr(dx);
end
X = x - stepSize*dx;
V=V
end
else
if maximizeEntropy
1f isempty(stochasticsz)
[s,dx] = FindApproximateEntropy(data,coeff,signa,x(inds,:));
else
[S.dx] = FindApproximateStochasticEntropy(data,coeff,sigma,x(inds,:),stochasticsz);
end
if normalizeGradient
dx = normr(dx);
end
x(inds,:) = x(inds,:) + stepSize*dx;
- -1%5;
elseif maximizeWaveFunctien
if isempty(stochasticsz)
[P,dx] = FindApproximateMaveFunction(data,coeff,sigma,x(inds,:));
else
[p,dx] = FindAppreximateStochasticWaveFunction(data,coeff,signa,x(inds,:),stochasticsz);
end
if normalizeGradient
224 - dx = norar(dx);
225 - end
226 - X(inds,:) = x(inds,:) + stepSize*dx;
227 - Vo= 1P
228 - else
229 - if isempty(stochasticsz)
230 - [V,dx] = FindpproximatePotential(data,coeff,sigma,x(inds,:));
231 - else
232 - [V.dx] = FindApproximataStochasticPotential (data,coeff,sigma,x(inds,:),stochastiesz);
233 - end
234 - if normalizeGradient
235 - dx = normr(dx);
236 - end
237 - x(inds,:) = x(inds,:) - stepSize*dx;
238 - V=V
239 - end
208 - end
201 - and
202 - if normalizeData
23 - x(inds,t) = normr(x(inds,));
244 - and
25
25 - if (nargout>=2)
247 - xHistory(:,
248 - end
249
250 % check if points can stop. This condition makes sense only uhen V\S\Psi are fixed, not changing with time as in the case of recalculatePotential
251 - if (nrecalculatePotential) & (mod(ii,howOftenToTestIfDone)==8)
252 - previnds = inds;
253 - inds = inds(prevv(inds)>v);
254 - if isempty(inds)
255 - break;
256 - end
257 % inds = 1:size(x,1);
258 - prevv(previnds) = V;
259 - end
260 - end
261 - if (nargout>=2)
262 - XHistory = xHistory(:,:,1:(ii+1));
263 - end
264 - L|end
° QcC
< otentalm x| F chastc.m a boum | FmdWaveFunclionStochaste. m ncionm = | myColorMap.m = | PerformFinalCiustering.m » | PerformBDAC.M | GC m +
1 % load example data set. This data set is generated by the black and white image “data.bmp™, and the image can be edited using Microsoft paint.
2- |0 -see;
3o signa=1;

%im « imread('data.bmp’);

in = importdata(’sbsentesisa_at_workz.csv', ;% 1)
in = in.data

8 [row,col] = find(im == 8);|

)~ data - [col(:).rou(:));

- reg(111);

n data = data(randi(size(data,1),n,1),:};

12 - data = datassigna*randn(size(data));

1 data = unigque(data, ‘rows’)-1;

14

15 % parameters

! signa = 5; % g dth of gausslans

17 - |rep = 300; % number of steps for gradient descent

1 stepsize - signa/7; X step size for gradient descent

19 - clusteringType = ‘V'; % either 'v','s’,"P’ for minimizing patential/saximizing entropy/maximizing wave function
% recalculatePotential = false; % whether to use new replicas location for calculating a new wavefunction each step?
21~ normalizeData - false; ¥ whether to normall a to the unit sph h step?

22 - normalizeGradient = true; X whether to normalize gr ing by step size?
2 voxelsize = []; % voxel size for approx. QC. can be [] far the non-approx algari

stochasticSz = []; % gradient will be estimated based on this relative part of the data points, chosen at random each step for each replica. can be [] for the m
2 howOftenTeTestIfDone = 1; X how often to perform a check of whether stop condition of replica is fullfilled? This could be 1, unless using stochasticsz and then t!
7 [x,xHistory] = PerfornGDQC(dsta,signa,rep, stepSize, clusteringType,recalculatePotential, nornalizedata, [],nornalizeGradient, stochasticsz, voxelSize, houoftenToTestIfD
29 - clusters = PerforsFinalClustering(x,stepSize);
3e
31
32 - DisplayQC(xHistory,clusters);

Appendix F: Multiple Linear Regression (Python)

import pandas as pd
from pandas import DataFrame

import matplotlib.pyplot as plt
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from sklearn import linear_model
import statsmodels.api as sm
School = pd.read_csv(r'C:\Users\school2.csv',sep=";")

df = DataFrame(School,
columns=['school’,'sex’,'age’,'add2ess’, 'famsize','Ps121us’,'Medu','Fedu','Mjob",'Fjob','reason’,'guardian’, 'traveltim
e','studytime’, 'failures’, 'schoolsup’, 'famsup’,'paid’, 'activities','nursery’,'higher','internet’,'romantic’, 'famrel’, 'freeti
me’,'goout’,'Dalc’,'Walc','health’,'absences’,'G1','G2",'G3"])

print (df)

#Checkng Linearity

plt.scatter(df['G1'], df['G3'], color="red')

plt.title('G3 Vs G1', fontsize=14)

plt.xlabel('G1', fontsize=14)

plt.ylabel('G3', fontsize=14)

plt.grid(True)

plt.show()

plt.scatter(df['G2'], df['G3'], color="green’)

plt.title('G3 Vs G2', fontsize=14)

plt.xlabel('G2’, fontsize=14)

plt.ylabel('G3', fontsize=14)

plt.grid(True)

plt.show()

#Multiple Linear Regression

X =df[['G1','G2']] # here we have 2 variables for multiple regression. If you just want to use one variable for simple
linear regression, then use X = df{'Interest_Rate'] for example.Alternatively, you may add additional variables
within the brackets

Y =df['G3']

# with sklearn

regr = linear_model.LinearRegression()
regr.fit(X, Y)

print('Intercept: \n', regr.intercept_)
print('Coefficients: \n', regr.coef )

# prediction with sklearn
New_G1=0.15

New_G2 =0.90

print (‘Predicted G3: \n', regr.predict([[New_G1 ,New_G2]]))
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# with statsmodels

X =sm.add_constant(X) # adding a constant
model = sm.OLS(Y, X).fit()

predictions = model.predict(X)

print_model = model.summary()

print(print_model)

Appendix G: Logistic Regression (Python)

import pandas as pd
import numpy as np
from pandas import DataFrame
from sklearn import preprocessing
import matplotlib.pyplot as plt
plt.rc("font", size=14)
from sklearn.linear_model import LogisticRegression
from sklearn.cross_validation import train_test_split
from sklearn.feature_selection import RFE
import seaborn as sns
sns.set(style="white")
sns.set(style="whitegrid", color_codes=True)
School = pd.read_csv(r'C:\Users\school2Log.csv',sep=";")

df = DataFrame(School,

columns=['school’,'sex’,'age’,'add2ess’, 'famsize','Ps121us','Medu’,'Fedu’,'Mjob','Fjob','reason’,'guardian’, 'traveltim

e','studytime’, 'failures’, 'schoolsup', 'famsup’, 'paid’, 'activities','nursery’,'higher’,'internet’,'romantic’, 'famrel’, 'freeti
me','goout’,'Dalc’,'Walc','health’,'absences’,'G1",'G2","y'])

print (df)

df = df.dropna()

print(df.shape)

print(list(df.columns))

df-head()

#Create dummy variables

#That is variables with only two values, zero and one.

cat_vars=['school’,'sex’,'age’,'add2ess’, 'famsize','Ps121us','Medu’,'Fedu','Mjob','Fjob','reason’,'guardian’, 'travelti
I

me’,'studytime’, 'failures’,'schoolsup’,'famsup’,'paid’, 'activities’,'nursery’,'higher’,'internet’,'romantic’, 'famrel’, 'freet
ime','goout’,'Dalc’,'Walc’,'health’,'absences’,'G1','G2']



for varin cat_vars:
cat_list="var'+'_'+var
cat_list = pd.get_dummies(df{var], prefix=var)

datal=df.join(cat_list)

df=datal

cat_vars=['school’,
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sex’,'age’,'add2ess’, 'famsize','Ps121us','Medu’,'Fedu','Mjob','Fjob', 'reason’,'guardian’, 'travelti

me’,'studytime’, 'failures’,'schoolsup’, 'famsup’,'paid’, 'activities','nursery’,'higher','internet’,'romantic’, 'famrel’, 'freet

ime','goout’,'Dalc’,'Walc','health’,'absences’,'G1','G2']
df_vars=df.columns.values.tolist()

to_keep=[i for i in df vars if i not in cat_vars]

#Our final data columns will be:

df final=df[to_keep]

df _final.columns.values

prosorin = df_final.columns.values

print(prosorin.shape)

prosorin[0]
prosorin[40]
prosorin[54]
prosorin[86]
prosorin[109]
prosorin[135]
prosorin[136]
prosorin[137]
prosorin[138]
prosorin[139]
prosorin[140]
prosorin[141]
prosorin[135]
prosorin[151]
prosorin[152]
prosorin[153]
prosorin[154]
prosorin[155]
prosorin[156]
prosorin[157]

prosorin[158]
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X =df _final.loc[:, df final.columns I="y']
y =df final.loc[:, df final.columns =="y']
#Over-sampling using SMOTE

#With our training data created, I'll up-sample the no-subscription using the SMOTE algorithm(Synthetic Minority
Oversampling Technique). At a high level, SMOTE:

#1. Works by creating synthetic samples from the minor class (no-subscription) instead of creating copies.

#2. Randomly choosing one of the k-nearest-neighbors and using it to create a similar, but randomly tweaked,
new observations.

from imblearn.over_sampling import SMOTE

o0s = SMOTE(random_state=0)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
columns = X_train.columns

os_data_X,o0s_data_y=os.fit_sample(X_train, y_train)

os_data_X = pd.DataFrame(data=0s_data_X,columns=columns )
os_data_y=pd.DataFrame(data=os_data_y,columns=['y'])

# we can Check the numbers of our data

print("length of oversampled data is ",len(os_data_X))

print("Number of no subscription in oversampled data",len(os_data_y[os_data_y['y']==0]))
print("Number of subscription",len(os_data_y[os_data_y['y']==1]))

print("Proportion of no subscription data in oversampled data is
"len(os_data_y[os_data_y['y'|==0])/len(os_data_X))

print("Proportion of subscription data in oversampled data is
"len(os_data_y[os_data_y['y'|==1])/len(os_data_X))

#Now we have a perfect balanced data! You may have noticed that | over-sampled only on the training data,
because by oversampling only on the training data,

#none of the information in the test data is being used to create synthetic observations, therefore, no information
will bleed from test data into the model training.

#Recursive Feature Elimination

#Recursive Feature Elimination (RFE) is based on the idea to repeatedly construct a model and choose either the
best or worst performing feature, setting the feature aside

#and then repeating the process with the rest of the features. This process is applied until all features in the data
set are exhausted. The goal of RFE is to select features

#by recursively considering smaller and smaller sets of features.
df_final_vars=df final.columns.values.tolist()

y=['y']
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X=[i for i in df_final_vars if i not in y]

logreg = LogisticRegression()

rfe = RFE(logreg, 20)

rfe = rfe.fit(os_data_X, os_data_y.values.ravel())
print(rfe.support_)

print(rfe.ranking_)

cols=['reason_2','failures_0','goout_3','absences_5','G1_10''G1_11''G1_12''G1_13''G1_14''G1_15''G1_16''G1
_10','62_10','62_11''62_12','G2_13','G2_14','G2_15''G2_16''G2_17']

X=o0s_data_X[cols]

y=os_data_y['y']

#lmplementing the model

import statsmodels.api as sm

logit_model=sm.Logit(y,X)

result = logit_model.fit(method="bfgs’)

print(result.summary())

#Logistic Regression Model Fitting

from sklearn.linear_model import LogisticRegression

from sklearn import metrics

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
logreg = LogisticRegression()

logreg.fit(X_train, y_train)

#Predicting the test set results and calculating the accuracy

y_pred = logreg.predict(X_test)

print('Accuracy of logistic regression classifier on test set: {:.2f}".format(logreg.score(X_test, y_test)))
#Confusion Matrix

from sklearn.metrics import confusion_matrix

confusion_matrix = confusion_matrix(y_test, y_pred)

print(confusion_matrix)

#The result is telling us that we have 6124+5170 correct predictions and 2505+1542 incorrect predictions.
#Compute precision, recall, F-measure and support

#To quote from Scikit Learn:

#The precision is the ratio tp / (tp + fp) where tp is the number of true positives and fp the number of false
positives. The precision is intuitively the ability of the classifier to not label a sample as positive if it is negative.

#The recall is the ratio tp / (tp + fn) where tp is the number of true positives and fn the number of false negatives.
The recall is intuitively the ability of the classifier to find all the positive samples.
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#The F-beta score can be interpreted as a weighted harmonic mean of the precision and recall, where an F-beta
score reaches its best value at 1 and worst score at 0.

#The F-beta score weights the recall more than the precision by a factor of beta. beta = 1.0 means recall and
precision are equally important.

from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred))

#Interpretation: Of the entire test set, 74% of the promoted term deposit were the term deposit that the
customers liked. Of the entire test set, 74% of the customer’s preferred term deposits that were promoted.

#ROC Curve

from sklearn.metrics import roc_auc_score

from sklearn.metrics import roc_curve

logit_roc_auc =roc_auc_score(y_test, logreg.predict(X_test))

for, tpr, thresholds = roc_curve(y_test, logreg.predict_proba(X_test)[:,1])
plt.figure()

plt.plot(fpr, tpr, label="Logistic Regression (area = %0.2f)' % logit_roc_auc)
plt.plot([0, 1], [0, 1],'r--')

plt.xlim([0.0, 1.0])

plt.ylim([0.0, 1.05])

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('Receiver operating characteristic')

plt.legend(loc="lower right")

plt.savefig('Log_ROC')

plt.show()

#The receiver operating characteristic (ROC) curve is another common tool used with binary classifiers. The dotted
line represents the ROC curve of a purely random classifier; a good classifier stays as far away from that line as
possible (toward the top-left corner).

Appendix H: Quantum Regression (Python)

import numpy as np

import pandas as pd

from pandas import DataFrame
import matplotlib.pyplot as plt
from sklearn import linear_model

import statsmodels.api as sm
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School = pd.read_csv(r'C:\Users\school2normNew.csv',sep=";")

df = DataFrame(School,
columns=['school’,'sex','age’,'add2ess’, 'famsize','Ps121us’,'Medu','Fedu’,'Mjob','Fjob’,'reason’,'quardian’, 'traveltim
e','studytime’, 'failures’, 'schoolsup’,'famsup’, 'paid’, 'activities','nursery’,'higher", 'internet','romantic’, 'famrel’, 'freeti
me’,'goout’,'Dalc’,'Walc’,'health’,'absences’,'G1','G2",'G3"])

#print (df)

Parad = (-1,-0.1, 0.2, 0.4, 0.1, 0.2, 0.3, 0, 0.5, 0.2, 0.4, 0, 0.2, 0.2, 0.4, 0.7, 0.3, 0.3, -0.2, 0.2, 0.2, 0.1, 0.2, 0, 0, O,
0.1,0.1,0.2,0.2,0,0.5,0.3,0.3,0.2,0.1, 0.4, 0.3, 0.1, 0.4, 0.1, 0, 0.4, -0.1, 0, 0, 0.3, 0.7, 0.1, 0.3, 0.4, 0.6, 0, 0.3,
0.3,0.2,0.5,0.5,0.4,0.6,0.7,0,0.3, 0.4, 0.3, 0.6, 0.1, 0, 0.1, 0.5, 0.3, 0.1, 0.3, 0.3, 0.1, 0.1, 0.2, 0.3, -0.1, 0.2, 0.1,
0,0.2,03,0.3,0.2 03,0.5 02 -0.1,-0.1, 0.4, 0.2, 0.3, 0.1, 0.3, -0.1, 0.3, 0.2, 0.2, -0.1, 0.6, 0.2, 0.1, 0.6, 0, G, 0.3,
0.2,0.5,0.3,0.1,-0.2, 0.8, 0, 0.6, 0.6, 0.4, 0.2, 0.4, 0.4, 0.4, 0.4, 0.2, 0.2, -0.1, 0, -0.1, 0.4, 0.3, 0, 0, 0.1, 0.1, 0.3,
0.5,-0.1,0.3,0.2,0.3,0,0.4,0.1,0.2, 0.2, -0.1, 0, 0.3, -0.2, -0.1, -0.1, 0.5, 0.2, 0.3, 0, -0.1, 0.2, 0.1, 0.1, 0.3, 0.1, -
0.1,0.2,0.1,-0.1,0.3, 0.1, 0.3, -0.3,-0.1, 0.1, 0.2, 0, -0.1, -0.2, -0.3, 0.2, -0.1, -0.2, -0.2, -0.1, 0.7, 0.2, 0.6, -0.1,
0.6,0.1,0.4,0.4,0,0.3,0.1,0,0.1,0.1, 0.1, 0.7, 0.4, 0.4, 0.1, 0, 0.3, 0.2, -0.1, 0.2, 0.2, 0, 0.1, 0.3, 0.4, 0.3, 0, 0.4,
0.1,0.4,0.1,0.4,0.3,0.3,-0.2, 0.1, 0.4, 0.2, 0.1, 0.2, 0.3, 0.3, 0.2, 0.2, 0.4, 0.1, 0, 0.2, 0.2, 0.1, 0.2, 0.3, 0, 0.5, 0.2,
0.7,0,-0.1,0.5,0.4, 0.2, 0.3, 0.3, -0.1, 0.2, 0.6, 0.1, 0.4, 0, -0.1, -0.2, -0.3, 0, 0.4, 0.1, 0.2, 0.3, -0.1, -0.2, 0.1, 0.5,
0.5,0.5,0.2,0.4,0.4,0.1,0.3,0.1, 0, 0.2, 0.5, 0.1, -0.1, -0.3, 0, 0.1, -0.3, -0.1, -0.3, 0.4, 0.2, -0.1, 0.2, 0.4, 0, 0.1,
0.1,0.1,0.1, 0.1, 0.6,-0.1, 0, 0, 0.5, 0, 0, 0.5, 0.1, -0.2, 0.5, 0.1, 0, 0, -0.2, 0.1, 0.6, 0.3, 0.6, 0.4, 0.5, 0.2, 0.2, 0.1,
0.4,0.3,-0.1,0,0,0.1,0.3,0.7,0.2, 0.2, 0.2, 0.2, 0.8, 0.3, 0.4, 0.7, 0.5, 0.7, 0.8, 0.4, 0.4, 0.4, 0.3, 0.6, 0.8, 0.4, 0.2, -
0.3,0.6,0.8 -0.1,0.4,0,0,0.2, 0.1, 0.5, 0.4, 0.2, 0.5,0.1, 0.1, 0.2, 0.1, 0.4, 0.5, 0.2, 0.1, -0.2, 0, 0.2, 0, 0.4, 0.1,
0.7,0.4,0.4,0.3,0.7,0.1,0.3,0.5,0.1, 0.1, 0.1, 0, 0.5, 0.5, 0, 0, 0.4, 0.1, 0.2, 0.4, 0.4, 0.2, 0.6, 0, 0.1, 0.4, 0.5, 0.4,
0.1,0.2,0.2,0,0,-0.1,-0.1,0.3, 0.3, 0.2, 0.4, -0.1, 0.1, -0.1, 0.6, 0.4, 0.3, -0.3, 0.4, -0.2, 0, 0, 0.2, 0, 0, 0.6, -0.4, 0,
0,0,-0.4,0.3,0,0,-0.4,0.2, 0,04, -0.3,-0.2, 0.2, -0.3,-0.1, -0.3, 0.1, -0.2, 0.6, 0.1, 0.5, 0, -0.1, 0, -0.1, -0.1, 0.3, 0,
0.3,0,0.1,0.3,0.3,0.4,0.1,-0.1, 0, 0.4, 0.3, 0.3, 0.3, 0.2, 0.4, 0, 0, 0.2, 0, 0.2, -0.3, -0.1, -0.1, -0.1, -0.1, -0.1, 0.3,
0.1,-0.1,-0.3,-0.3,-0.2, 0.1, -0.3, 0.2, -0.1, -0.2, 0.4, 0.4, 0, 0.4, 0.7, -0.4, 0.4, 0, 0.4, 0.2, 0.1, 0.1, 0.1, 0, 0.6, 0.5,
0.1,-0.3,-0.2,-0.3,-0.1, 0.4, 0.4, -0.2, -0.2, -0.4, -0.2, -0.2, -0.5, -0.3, 0.5, 0.3, 0, -0.1, 0.1, 0.3, 0, -0.1, 0.4, 0.1, -
0.1,0.3,0.2,0.1,-0.1,-0.1, 0.1, 0, -0.1, 0.2, -0.2, 0.3, 0, 0.1, 0.7, 0.2, 0.3, -0.1, 0.1, 0, 0.3, -0.1, -0.3, -0.2, 0.2, 0, 0,
0.1,-0.3,0.1, 0, -0.1, -0.6, -0.4, 0.6, -0.3, -0.2, 0.5, -0.3, -0.2, 0, -0.1, 0, -0.2, -0.1, -0.2, -0.4, -0.4, 0.2, 0, -0.2, -0.2,
-0.3,-0.2,-0.3,-0.3,0.2,0.1,0.2,0.8,0.7,0.7,-0.1, 0, 0.2, 0.2, -0.2, 0.1, -0.5, -0.1, -0.5, 0.8, 0.1, -0.2, 0.1, -0.2, 0.4,
0,0,0.2,0.5,04, 009,06, 0.3, 0.5,0.3,-0.2,0.5,-0.2, 0, -0.3,-0.1, 0, -0.3, 0.5, 0, -0.3, 0.3, 0.6, -0.2, 0.7, -0.3, 0.4, -
0.5,-0.3, 0.4, -0.4,-0.3, 0, 0.5, 0.1, 0, 0)

Parad = np.array(Parad)

Parad2 =(0.1,0.1,0.2,0.4,0.3,0.3,0.3,0.3,0.7,0.3,0.4,0.3,0.2,0.3,0.5,0.7, 0.4, 0.4, -0.3, 0.2, 0.4, 0.2, 0.4, 0,
0,020.20.1,030.2,01,05,05,02,0.2,0.1,04,0.3,0.2,0.2,0,0.1,0.5,0,0.1,0.1,0.3,0.7,0.3,0.2, 0.3,
0.6,-0.1,0.2,0.3,0.2,0.5, 0.6, 0.4, 0.6, 0.6, 0.6, 0, 0.3, 0.2, 0.6, 0.2, 0,0.1,0.5,0.1,0,0.1,0.4,0.1,0.1,0.1, 0.3, 0,
0.1,0.2,-0.1,0.1,0.3,0.2,0.2,0.1,0.5,0.1, 0, 0.1, 0.3,0.2,0.4,0.2,0.3, 0.1, 0.2, 0.3, 0.3, -0.2, 0.6, 0.2, 0, 0.6, 0, O,
0.4,0.1,0.4,04,0.1,0,08,0,04,06,05,01,04,04,0.3,0.3,0.3,0.1,-0.1,0.1,0.1,0.5,0.3,0.2,-0.2, 0.1, 0.3,
0.2,04,0.1,0.1,0.1,05,003,0201,01,0004,-0.1,0.1,-0.1,0.3,0.1,0.3,0.1,-0.4,0.2,0,0.1, 0.3, 0.1, -
0.2,01,-1,0,030.1,03,-0.2,0,0.1,0.1,-0.9,0,-0.1,-0.2, 0, -0.2, -0.2, -0.2, 0.1, 0.8, 0.3, 0.7, 0, 0.8, 0, 0.3, 0.5,
0.1,04,0,0.1,0.3,0.1,0.3,0.7,0.4,0.6,0.4,0.1,0.6,0.4,0,0.3,0.2,0.2,0, 0.2, 0.6, 0.4, 0.2, 0.6, 0.1, 0.5, 0.2,
0.5,0.3,0.3,-0.2,0.2,0.5,0.3,0.2,0.2,0.2,0.3,0.1,0.1,0.5,0,0,0.3,0.3,0.1,0.2, 0.4, 0, 0.6, -0.2, 0.7, 0.1, 0.1,
0.6,0.2,0.3,0.3,04,-0.1,0.2,0.6,0,0.3,0,0,-0.3,-0.2, -0.1, 0.5, 0, 0.1, 0.3, -0.2, -0.2, 0, 0.5, 0.4, 0.5, 0.2, 0.5,
0.5,0.2,05,0.1,0,0.1,06,0.1,0.3,-0.5,0,0.1,-0.3,0,-0.4,0.2,0.3,0,0.3,0.7,0.1, 0.1, 0.4, 0.4, 0.3, 0.4, 0.6, O,
0.2,0.2,0.5,0.1,0.2,03,0.3,-0.1,0.6,0.4,0.2,0.4,0,0.2,0.6,0.3,0.8, 0.5,0.6,0.2,0,0.2,03,05,0,0,0.1, 0,
0.3,0.8,0.3,0.4,0.4,0.2,0.8,0.4,0.50.7,0.6,0.8 0.9, 0.5,0.5,03,04,0.7,0.7,0.5,0.3,-0.2, 0.6, 0.8, 0.1, 0.5,
0.1,0.1,0.5,04,0.7,0.7,0.5,0.7,0.4,0,0.3,0.4,0.7,0.7,0.3,0.4,0.1,0.1,-0.1,0,0.3,0,0.7,0.5, 0.4, 0.3, 0.7, 0,
0.3,0.50.1,0.2,0,0,0.5,0.50.2,0.2,0.4,0.4,0.5,0.5,0.6,0.3,0.7,0.4,0.4,0.7,0.7, 0.4, 0.3, 0.5, 0.6, 0.1, 0.3,
0.2,0.2,0.50.7,05,0.7,0,05,0.1,0.8,0.7,04,0.1,0.7,0,0.3,0.1,0.2,0,0.1, 0.7, -0.1, 0.1, 0.1, 0, -0.3, 0.4, 0.1,
0,-02,020.206,-1,-0.1,04,-0.2,0.1,-0.1,0.1,-0.1,0.7,0.3,0.5, 0.1, 0.1, -0.2, -0.2, -0.1, 0.5, 0.1, 0.3, 0, 0.1,
0.4,04,0.2,01,-0.2,0.1,04,0.3,0.3,0.2,02,06,0,0.1,04,-0.2,0.1,-0.2,0,0, 0.1, -0.1, 0.1, -0.2, 0.1, 0, O, -
01,0,0,-0.1,0,0,-0.1,0.3,0.4,0, 04, 0.6,-0.3,0.3,-0.1,0.4,0.3,0.1,0,0,-0.1,0.8, 0.7, 0, -0.3, -0.2, -0.3, 0, 0.6,
0.5,-02,-1,-0.2,0,-0.2,-0.4,-0.2,0.6,0.4,0,-0.1,0.1,-0.1, 0, -0.2, 0.6, 0.2, 0, 0.4, 0.2, 0.1, 0, 0.1, 0.1, 0.2, -0.2,
0.2,-0.2,06,0.1,0.1,0.8,0.3,0.3,0,0.2,0,0.3,0.1,0,0,03,0,0,0.2,-1,0,-0.1,-0.1, -1, -0.1, -0.2, -0.2, -0.1, -
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0.3,0,0,00101,0-01,0,-0.2,-0.3,-1,0.1,-0.2,-1,-0.2,-0.1, 0, -0.3, 0.4, 0.3, 0.4, 0.8, 0.7, 0.8, -1, 0.1, 0.4,
04,0,03,-1,0,-1,0.8,0.2,0.1,0.2,-1,0.5,0.1,0,0.2,0.5,04,0.8,0.5,0.3,0.5,0.3,-0.1,0.6,-0.1, 0, -1, 0, 0.2, -
0.1,0.7,0.2,-0.1,04,0.6,-0.1,0.9,-1,0.6,-1,-1,0.5,0.1, 0, 0, 0.6, -0.1, 0, 0.1)

Parad2 = np.array(Parad2)

#X = df['G1'] # here we have 2 variables for multiple regression. If you just want to use one variable for simple
linear regression, then use X = df{'Interest_Rate'] for example.Alternatively, you may add additional variables
within the brackets

#y = df['G3']
m=649
X = Parad
y = Parad2
#Xnum = pd.to_numeric(X, errors="raise’, downcast="float’)
#X = X.values.reshape(-1,1)
#y = y.values.reshape(-1,1)
X =np.array(X)
y = np.array(y)
#np.random.seed(0)
#m =8
#X = np.linspace(-0.95,0.95,m)
#y = X**2
import gsimulator as pq
from gsimulator import RX, RY, RZ
n_qubits =3
def input_prog(sample):
p = pq.Program(n_qubits)
for jin range(n_qubits):
p.inst(RY(np.arcsin(sample[0])), j)
p.inst(RZ(np.arccos(sample[0]**2)), j)
return p
from qclimport ising_prog_gen
ising_prog = ising_prog_gen(trotter_steps=1000, T=10, n_qubits=n_qubits)
depth =3
def output_prog(theta):
p = pq.Program(n_gqubits)
theta = theta.reshape(3,n_qubits,depth)
foriin range(depth):

p +=ising_prog
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forjin range(n_qubits):
rj = n_qubits-j-1
p.inst(RX(theta[0,rj,i]), j)
p.inst(RZ(theta[1,rj,i]), j)
p.inst(RX(theta[2,r},i]), j)
return p
def grad_prog(theta, idx, sign):
theta = theta.reshape(3,n_qubits,depth)
idx = np.unravel_index(idx, theta.shape)
p = pg.Program(n_gqubits)
for iin range(depth):
p +=ising_prog
for jin range(n_qubits):
rj = n_qubits-j-1
ifidx == (0,rj,i):
p.inst(RX(sign*np.pi/2.0), j)
p.inst(RX(theta[0,rj,i]), j)
ifidx == (1,rj,i):
p.inst(RZ(sign*np.pi/2.0), j)
p.inst(RZ(theta[1,rj,i]), j)
ifidx == (2,rj,i):
p.inst(RX(sign*np.pi/2.0), j)
p.inst(RX(theta[2,r},i]), j)
return p
from gsimulator import Z
from gclimport QCL
state_generators = dict()
state_generators['input'] = input_prog
state_generators['output'] = output_prog
state_generators['grad'] = grad_prog
initial_theta = np.random.uniform(0.0, 2*np.pi, size=3*n_qubits*depth)
operator = pq.Program(n_qubits)
operator.inst(Z, 0)
operator_programs = [operator]

est = QCL(state_generators, initial_theta, loss="mean_squared_error",
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operator_programs=operator_programs, epochs=20, batch_size=m,
verbose=True)
est.fit(X,y)
results = est.get_results()
print(results)
#X_test = np.array()
#X_test = np.linspace(-1.0,1.0,50)
#y_pred = est.predict(X_test)
X test=X
y_pred = est.predict(X_test)
print(y_pred)
import matplotlib.pyplot as plt

plt.plot(X, y, 'bs', X_test, y_pred, 'r-')

Appendix I: Classical methods of Clustering Analysis (k-Means, Hierarchical and Model-
based method)

e Package installation and Data preparation:

install. packages ("devtools")
devtools: :install_github({"rdtaylor /quantumClustering”)
Tibrary(guantumClustering)

#Firstly Import Dataset (see right on the screen) as Excel file
mydata <- absenteeism_at_work2

str{mydata)

mydata

is.data. frame (mydata)

[Tl I N RS W N )

10

11 +# Prepare Data

12 mydatac]l <- na.omit(mydata) # listwise deletion of missing
13 mydatacl <- scale(mydatacl) # standardize variables

> str{mydata)

Classes ‘thl_df’', ‘tb1’ and 'data.frame’: 740 obs. of 20 variables:

§ Reason Tor absence pnum 26 0 23 7 23 23 22 2319 22 ...

§ Month of absence rnum 7777777777 ...

$ Day of the week tnum 33455666 22.

$ Seasons thum 1111111111...

$ Transportation expense D num 289 118 179 279 289 179 361 260 155 235 ...
$ Distance from rResidence to work: num 36 13 51 5 36 51 52 50 12 11 ...

§ service time Dnum 13 18 18 14 13 18 3 11 14 14 ...

$ age :num 33 50 38 39 33 38 28 36 34 37 ...

$ work load average/day © num 239554 239554 239554 239554 239554 ...
$ Hit target : num 7 97 97 97 97 97 97 97 97 97 ...

$ Disciplinary failure :num 0100000000 .

$ Education tum 1111111113,

§ son shum 2102201421,

§ social drinker :num 1111111110,

§ social smoker thum 0001000000,

$ Pet tnum 1000104001 ...

$ weight D num 90 98 B9 68 90 89 80 65 95 BE ...

§ Height Donum 172 178 170 168 172 170 172 168 196 172 ...
$ Body mass index Donum 30 31 31 24 30 31 27 23 25 29 ...

$ absenteeism time in hours tnum 40242284408 ...

e  k-Means Clustering method:
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15 # Partioning (k-Means) method

16 ## Determine number of clusters (determine the suitable number of clusters)
7 wss =- (nrow(mydatacl)-1)*sum(apply(mydatacl,2,var))

18 for (i in 2:15) wss[i] =- sum(kmeans(mydatacl,

19 centers=1)Swithinss)
20 plot(l:15, wss, type="b", xlab="Number of Clusters",
21 ylab="within groups sum of squares™)

14000
1
o

12000
1

Within groups sum of squares
10000
1

8000
1

T T T T T T T
2 4 6 8 10 12 14

Number of Clusters

23 ## K-Means Cluster analysis

24  fit <- kmeans(mydatacl, 14) # 14 cluster solution

25 ## get cluster means

26 aggregate(mydatacl,by=1ist(fitScluster),FUN=mean)

27 ## append cluster assignment (column in the first dataset)
28 mydatac]l =- data.frame(mydatacl, fiticluster)

29 mydatac]

30 fitdcluster

Figure 27: Cluster means

= aggregate(mydatacl,by=list(fit$cluster),FuN=mean)

Group.1l Reason for absence Month of absence Day of the week Seasons
1 1 -0.75191640 -0.14894691 -0.15992749 -0.15253630
2 2 -0.27799223 -0.20630981 0.07791948 -0.23613598
3 3 -0.10468877 0.13196030 0.03383200 -0.02345327
4 4 0.10987743 1.31078900 0.01968965 1.253762141
5 5 0.09647757 0.13147769 0.03888681 -0.10051777
6 6 0.05169414 -0.26519347 0.25866946 0.03810105
7 7 -0.68571144 0.37123666 0.03043717 0.39460918
8 8 0.19669204 -0.21078692 -0.326215378 -0.10756544
9 9 -0.62763958 0.26378615 -0.58940472 0.06366976
10 10 -0.02563807 0.18753547 -0.20388972 -0.12442951
11 11 0.05905912 0.28497245 0.48694542 0.18474516
12 12 -0.81332186 0.07191025 -0.14108653 -0.04010915
13 13 0.13105172 -0. 84269822 0.02220178 -0.36132958
14 14 0.46297706 -0.22985321 -0.01894514 -0.16416669
Transportation expense Distance from Residence to work Service time Age
1 1.17408753 -0.95664780 -1.4733160 -0.72062262
2 -0.32279408 -0.62666849 0.4467099 0.31443912
3 0.18205204 -1.21579468 0.3635439 0.17635943
4 0.02409371 -0.23318069 -0.7583988 -1.26015935
5 0.72203595 0.01279350 0.2565753 0.58019559
a -0.63223785 -0.24473498 -0.8105260 -0.99555896
7 -0.62701024 -0. 68957518 0.8466864 1.50491471
B8 -1.36372962 -1.27679795 -0.2631898 -0.04051693
9 -0. 34615555 -0. 88244296 0.2420436 0.63105497
10 1.55448938 1.41288453 -2.2073737 -1.14508575
11 0.98458673 0. 81681551 -0.2973983 -0.26239539
12 1.42466600 0.72775118 -0.2566739 0.72434357
13 -0.07933826 -0.08827062 -0.7698016 -1.24086558

14 -0.58253694 1.41702441 1.2970329 0.28980586
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work load Average/day Hit target Disciplinary failure Education son

-0.09554314 0.340580978 0.31353545 1.3767168 -0.927564046
0.13765210 0.190472301 0.10106637 0.3281583 0.566329486
-0.29058915 0.285456322 -0.07520427 2.7572064 0.117642714
0.07855969 -0.200900635 0.01365052 -0.4335642 0.034796832
0.07441408 -0.232550885 -0.20590388 -0.4335642 0.213759464
-0.13489309 0.091801012 -0.23888415 2.5371533 -0.927564046
-0.12821070 -0.512748684 1.16057883 -0.4335642 -0.002050318
0.27125514 0.079290112 -0.23888415 -0.4335642 -0.324462887
-0.28757946 0.516131803 -0.23888415 -0.4335642 0.472961141
-0.24375898 0.001564348 -0.23888415 -0.1086419 -0.017222675
-0.14703372 -0.117741155 0.15570128 -0.4335642 2.486216095
0.10387215 0.090157544 1.33945755 -0.4335642 0.502972395
0.43209139 0.2B3881332 -0.23888415 -0.4335642 -0.03347877
-0.17989247 0.129586608 -0.23888415 -0.4335642 -0.919716275

E\DW"JG‘lU‘IPWNI—‘

=
BRI

Social drinker Social smoker Pet wWeight Height Body mass index
-1.14486958 -0.28037622 -0.56585720 0.07246756 1.3065687 -0.41320657
-0.16215491 3.56181647 -0.4B805446 -0.85854191 0.1721594 -0.91187489
-0.84603237 -0.28037622 0.30510121 0.76485234 0.2264487 0.50749016
-1.14486958 -0.28037622 0.95129616 -0.77893124 -0.5350710 -0.61134369

0.42068058 -0.28037622 0.01156684 -0.07107950 -0.3405410 0.06839937
-1.14486958 -0.28037622 -0.56585720 -1.78790649 -0.1847334 -1.79141585
0.77142403 -0.28037622 -0.40149892 1.53674414 0.1991388 1.48711796
-0.464081086 -0.28037622 -0.56585720 0.62502781 1.2B858562 0.08994919
0.09645421 0.01517706 -0.21574489 0.33163761 1.0134068 -0.10413319

10 0.B7228158 -0.28037622 . 22702621 -0.08519888 0.188B0922 -0.17985897

11 0.87228158 -0.28037622 -0.56585720 -0.99238735 -0.6404090 -0.74135164

12 -1.14486958 3.56181647 2.79355382 -0.32429745 -0.4687909 -0.12464726

13 -1.14486958 -0.28037622 0.76165199 -0.88565930 -0.5930661 -0.68718166

14 0.B82011388 -0.28037622 -0.52662048 0.82299330 -0.3461483 1.05301096
Absenteeism time in hours

1 -0.069336468

2 -0.092417434

3 -0.124901755

4 -0.317951440

5 0.019111859

G

&

a9

Wl ahow B

78}

-0.106843037
-0.260619970
-0.091840409

6.174064709

10 -0.003699972
11 0.028448515
12 -0.171140012
13 -0.197930419
14 -0.194789475

Figure 28: Append cluster assignment

Absenteeism. time.in.hours fit.cluster

1 -0.21936274 5
2 -0.51941530 7
3 -0.36938902 14
4 -0.21936274 2
5 -0.36938902 5
6 -0.36938902 14
7 0.08068981 10
8 -0.21936274 11
9 2.48111022 8
10 0.08068981 3
11 0.08068981 11
12 0.08068981 11
13 0.08068981 11
14 -0. 44440216 14
15 -0.21936274 14
16 0.08068981 5

7 -0.36938902 14
18 0.08068981 14
19 0.08068981 13
20 -0.36938902 5
21 0.08068981 1
22 -0.44440216 14
23 2.48111022 10
24 -0.21936274 11 S
25 0.08068981 5 ;é 3-22322351 g
26 0.00567667 10 -U.

7 _0. 44440216 5 39 0. 08068981 12
28 -0.21936274 > 40 -0.21936274 11
29 0.08068981 s 4 -0. 36938902 13
30 -0.36938902 14 4 -0.21936274 8
31 0.08068981 14 43 -0.21936274 li
32 0.08068981 12 44 0. 08068981 7
33 -0.21936274 3 4 -0. 35938902 8
34 0. 08068981 12 46 -0.29437588 8
35 -0. 36938902 14 ¥ -0.29437588 14
16 -0.44440216 10 [ reached getoption("max.print") -- omitted 693 rows ]
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Figure 29: The cluster of each observation
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variables
) ## distance matrix

deletion of

method
istwise

euclidean
ward.D")
"red™)
bkt (%, "ward D'}

1
Cluster Dendrogram

hica

mydata) # 1

mydatacl2 <- scale(mydatacl2) # standardize

#Hierarchical Method (ward)
14) ## cut tree into 14 clusters

dendogram with red borders around the 14 clusters

baorder

# Prepare Data yux Hierarc
(
14,

method

44 plot(fit2) ## display dendogram

.omit
k

Hierarchical method.

## wWard Hierarchical Clustering

d <- dist(mydatacl2, method
groups <- cutree(fit2, k

## draw
rect.hclust(fit2,

fit2 «- hclust(d,

5
38 mydatacl2 <=- na
39
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Cluster Dendrogram

Helght

d
hcust (7, "ward D)

e  Model-based Method:

50 # Prepare Data for Model based method

51 mydatacl3 =- na.omit(mydata) # listwise deletion of missing
52 mydatacl3 =- scale(mydatacl3) # standardize variables

53 # Model Based Clustering

54 library(mclust)

55 fit3 =- mclust(mydatacl3)
56 plot(fit3) ## plot results
57 summary(fit3) ## display the best model

> fit3 <- mMclust(mydatacl3)

fitting ...

|
> plot(fit3) ## plot results
mModel-based clustering plots:

1: BIC
2: classification
3: uncertainty
4: density
Selection:
s
8
g
Ell EVE
2
g
& - Vi VEE
) EEl WE
@ g4
]
VEI EEV
S | . - Ev VEV
g
? o ]
p—— T wi EwW
e .
g A
g1 SR EEE wyv
¥ ==y
=
T T T T T
1 2 3 4 5 [}

e (Classification:

Number of components

| 100%
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e  Plotting and Validating Cluster Solutions:

#Plotting Cluster solutions
## K-Mmeans Clustering with 5 clusters
fitl <- kmeans(mydatacl, 14)

## Cluster Plot against 1st 2 principal components

## vary parameters for most readable graph

Tibrary(cluster)

clusplot{mydatacl, fitlicluster, color=TrRUE, shade=TRUE,
Tabels=2, Tines=0)

## Centroid Plot against 1st 2 discriminant functions
Tibrary(fpc)
plotcluster (mydatacl, fitlicluster)

#validating Cluster Solutions

##comparing 2 cluster solutions

Tibrary(fpc)

cluster.stats(d, fitlcluster, fit25cluster)|

CLUSPLOT( mydatacl )

These two components explain 27.97 % of the point vanability.

e  Centroid Plot against first 2 discriminant functions:



Anestis Kosmidis

LA ]

10
L

Figure 30: Comparison between k-Means and Hierarchical methods (d = Euclidean matrix distance)

> t]uster.staﬁstd, fiti$cluster, fﬂtiSc]uster)
$°n°
[1] 740

§cluster. number
[1] 14

$cluster.size
[1] 46 132 38 56 59 39 33 78 56 13 14 32 35 109

$min. cluster.size
[1] 13

$noisen
[1] 0

$diameter
[1] 7.083279 10.186640 7.298741 5.74B245 9.365575 B8.788980 §&.071288 6.529532
[9] B8.234788 8.830087 9.061927 8.464899 6.431626 8.589190

$average. distance
[1] 3.226061 5.313859 3.605969 2.024050 4.737803 4.860760 4.251936 2.492743 4.287303
[10] 6.319077 5.829528 4,245846 2.400233 4.378930

$median. distance
[1] 3.133211 5.423988 3.769823 3.019806 4.677781 4.834979 4.267165 2.438616 4.304418
[10] 6.491025 6.060566 4.165717 2.111520 4.325076

$separation
[1] 2.606884 2.314298 1.280342 1.715971
[10] 2.314298 4,313251 3.952607 1.715971

606884 4.168811 1.280342 1.281971 2.948516
. 894536

[

$average. toother
[1] 6.628284 6.461962 6.082998 5.6851090 6.385154 6.995295 6.118337 5.911019 6.483181
[10] 8.916640 8.055619 7.187842 5.718022 5.738673

$separation.matrix

[,1] [,2] [.3] [.4] [.5] [.6] [.7] [.8] [.9]
[1,] 0.000000 4.577528 5.993571 3.372399 2.606884 5.190021 5.931441 5.991693 5.731458
[2,] 4.577528 0.000000 3.643200 3.335939 3.274370 5.005622 3.173328 2.994628 5.308592
[3,] 5.993571 3.643200 0.000000 4.714387 4.849510 5.822048 1.280342 1.281971 4.943906
[4,] 3.372399 3.335939 4.714387 0.000000 3.556872 4.814984 3,398240 4.348781 3.751313
[5,] 2.606884 3.274370 4.849510 3.556872 0.000000 5.195618 3.910960 4.844578 4.878997
[6,] 5.190021 5.005622 5.822048 4.814984 5.195618 0.000000 5.189940 5.501745 4.864360
[7,] 5.931441 3.173328 1.280342 3.398240 3.910960 5.189940 0.000000 3.628618 4.495744
[8,] 5.991693 2.994628 1.281971 4.348781 4.844578 5.501745 3.628618 0.000000 4.944759
[9,] 5.731458 5.308592 4.943906 3.751313 4.878997 4.864360 4.495744 4.944759 0.000000
[10,] 5.539840 2.314298 4,556827 5.589505 5.336025 4.,352215 5.604864 5.317279 4.759233
[11,] 7.095956 6.195789 6.749593 5.384302 6.252521 4.313251 5.135918 6.539746 6.091020
[12,] 6.544866 5.277740 5.743610 4.111725 5.064696 6.087484 5.856871 5.743610 4.858986
[13,] 3.938615 3.335939 4,425671 1.715971 3.705652 4,945919 3.383374 4.771910 3.927849
[14,] 4.620265 2.894536 3.131208 3.145586 3.773008 4.168811 3.381795 3.110936 2.948516
[,10] [,11] [,12] [,13] [,14]
[1,] 5.339840 7.095956 6.544866 3.938615 4.620265
[2,] 2.314298 ©.195789 5.277740 3,335939 2.894536
[3,] 4.356827 6.749393 5.743610 4.425671 3.131208
[4,] 5.589505 5.384302 4.111725 1.715971 3.145586
[3,] 5.336025 6.252521 5.064696 3.705652 3.773608
[6,] 4.352215 4.313251 6.087484 4,945919 4,168811
[7,] 5.604864 5.135918 5.856871 3.383374 3.381795
[8,] 5.317279 ©.539746 5.743610 4,771910 3.110936
[9,] 4.759233 6.091020 4.858986 3.927849 2.948516
[10,] 0.000000 ©€.004223 5.917028 5.263860 4,529564
[11,] 6.004223 0.000000 5.342212 5.681018 5.480931
[12,] 5.917028 5.342212 0.000000 4.114461 3.952607
[13,] 5.263860 5.681018 4.114461 0.000000 3.171334
[14,] 4.529564 5.480931 3.952607 3.171334 0.000000
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$ave.between. matrix

[,1] [.2] [,3] [,4] [,5] [.6] [,7] [,8] [,9]

[1,] 0.000000 7.107603 7.246837 5.010962 5.474347 6.794313 7.151782 6.826761 6.856499

[2,] 7.107602 0.000000 5.898221 6.098732 6.307218 7.161153 5.953644 5.592615 7.153344

[3.] 7.246837 5.898221 0.000000 6.224383 6.828857 7.324430 5.783390 4.158386 6.540859

[4,] 5.010962 6.098732 6.224383 0.000000 5.603635 6.402301 5.704294 5.545343 5.67305%4

[5.] 5.474347 6.307218 6.828857 5.603635 0.000000 7.021704 6.286238 6.434934 7.003011

[6,] 6.794313 7.161153 7.324430 ©6.402301 7.021704 0.000000 6.890566 6.927239 6.959227

[7,] 7.151782 5.953644 5.7833090 5.704294 6.286238 6.890566 0.000000 5.466495 6.244896

[8,] 6.826761 5.592615 4.158386 5.545343 6.434934 6.927239 5.466495 0.000000 6.305594

[9,] ©.856499 7.153344 6.540859 5.673054 7.003011 6.959227 6.244896 6.305594 0.000000

[10,] 9.451331 B.0663386 9.003097 B.811275 8.928902 9.285055 8.847221 B.789690 9.080441

[11,] 8.740434 B.726849 8.427128 7.261609 &.248881 7.083493 7.499713 8.240449 8.082704

[12,] 7.562753 B.043194 7.433173 5.882529 7.215786 8.402539 7.551099 7.142377 6.861106

[13,] 5.316399 6.155951 5.796720 3.958815 5.687657 0.652745 5.713745 6.141965 5.584157

[14,] 6.355833 5.907370 5.173976 5.089624 5.997228 6.566253 5.451789 4.915527 5.320202
[,10] [,11] [,12] [,13] [,14]

[1,] 9.451331 B8.740434 7.562753 5.316399 6.355833

[2,] 8.665366 8.726849 §.043194 6.155951 5.907370

[3,] 9.003097 8.427128 7.433173 5.796720 5.173976

[4,] 8.811275 7.261609 5.882529 3.958813 5.089%024

[5,] 8.928902 B8.248881 7.215786 5.687657 5.997228

[6,] 9.285055 7.083493 8.402539 6.652745 6.566253

[7,] 8.847221 7.499713 7.551099 5.713745 5.451789

[8,] 8.789690 8.240449 7.142377 6.141965 4.915527

[9,] 9.080441 8.082704 6.861106 5.584157 5.320202

[10,] 0.000000 10.463745 9.872630 8.847530 8.451350

[11,] 10.463745 0.000000 7.564186 7.223570 7.621738

[12,] 9.872630 7.564186 0.000000 5.805351 ©.294936

[13,] 8.847530 7.223570 5.805351 0.000000 5.089995

[14,] 8.451350 7.621738 6.294936 5.089995 0.000000

$average. between
[1] &.318257

$average.within
[1] 4.318725

$n. between
[1] 246837

tn.within
[1] 26593

$max. diameter
[1] 10.18664

tmin. separation
[1] 1.280342

$within. cluster.ss
[1] 7301.809

$clus. avg. silwidths

1 2 3 4 5 6 7
0.33850169 -0.03718046 0.13474953 0.22717601 0.08936052 0.21021035 0.17208535
8 9 14
0.40155355 0.18216492 0.18491071 0.14170839 0.24442184 0.40477645 0.03719016

$avg.silwidth
[1] 0.1616317

$g2
NULL

fg3
NULL

$pearsongamma
[1] 0.3747736

Sdunn
[1] 0.1256883

$dunn2
[1] 0.6264862

Sentropy
[1] 2.464264

Swh.ratio
[1] 0.6835311

$ch
[1] 57.19517

Scwidegap
[1] 4.425775 4.464624 4.754578 2.972990 4.959918 5.383833 4.971354 4.820274 4.774110
[10] 6.137389 5.587074 6.419219 4.738387 4.783293

Swidestgap
[1] 6.419219

$sindex
[1] 2.062431

Scorrected.rand
NULL

$vi
NULL
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Appendix J: Quantum Clustering Statistics

> cluster.stats(d, fitSOSc]uster5
$'n”
[1] 740

Scluster. number
[1] 50

Scluster.size
[t] 10 & 815 5 21319 27 13 21 119 20 37 26 7 214 11 73 15 13 16 4 10 16 4
[29] 16 21 5 7 15 32 18 13 © 18 222 21 351115 6 12013 7 9

smin. cluster.size
[1] 1

$noisen
[1] O

$diameter

[1] 13.832977 B8.886341 12.232701 13.808416 2.837661 5.662069 9.480929 13.922394
[9] 12.715959 5.632132 13.463793 NA 12.70B883 14.471445 14. 831838 14.799597
[17] 9.271680 10.656476 14.423607 12.331761 15.208115 13.609850 11.659058 14.484483
[25] 11.045163 12.890754 13.180605 8&.656734 15.149545 13.760696 12.504036 11.977694
[33] 14.487477 14.730695 14.400095 13.561771 10.935733 13.498085 174137 13.659125
[41] 14.461169 15.227484 9.545256 10.863645 9.252812 NA 12.914762 12.808472
[49] 13.660893 9.860713

wn

Saverage. distance

[1] 8.261582 4.500943 7.841124 6.660253 1.661123 5.662069 6.005294 7.673132
[9] ©6.941237 1.839546 5.617246 NaN  6.713623 7.735085 7.248312 7.186483
[17 6.689973 10.656476 5.756755 7.163586 §8.248B673 7.678911 5.986321 7.604239
[25] 6.968027 7.188442 7.546739 5.322820 8.636576 6.309452 7.850911 6.707375
[33] 6.780551 7.967044 7.836291 7.503970 6.195921 6.397894 5.174137 7.632097
[41] 7.713686 7.624837 4.942301 6.554822 4.613440 NaN  7.011461 6.692306
[49] 7.384147 6.360089
$median. distance

[1] &.351320 2.175154 §.887820 6.984795 2.103642 5.662069 6.374031 7.530100

[9] 7.351727 1.406792 2.919236 NA  6.760472 7.619259 7.257573 7.083274
[17] ©.753574 10.656476 5.326361 7.209744 B8.652966 7.581326 5.904525 7.383295
[25] 7.482155 6.324571 8.098367 5.462293 8.536102 6.323408 8.197390 7.567219
[33] ©6.450849 7.687667 7.925559 7.282169 6.878555 6.134333 5.174137 7.576797
[41] 7.427500 7.915854 2.904001 6.866299 3.196389 NA  7.343904 7.176090
[49] 7.389406 7.294177
$separation

[1] 1.1572835 2.0184651 0.5828658 0.5592334 1.1818870 2.5941443 1.9309154 0.7281363

[9] 0.5592334 0.2932619 0.6071292 1.7593631 0.5828658 0.6401271 0.4887410 0.4887410
[17] 0.7426936 0.9655440 0.7345924 0.8599965 0.4138933 0.6505448 0.5335437 0.4287414
[25] 0.7748724 1.1168768 0.8601851 1.2819709 0.8601851 0.4138933 0.9991224 1.2027398
[33] 0.5335437 0.4029162 0.8599965 0.2932619 0.7345924 0.8255786 0.9428895 0.6376213
[41] 0.8360932 0.9586612 0.9655440 0.4029162 1.3653881 1.5216948 1.3462900 1.1432062
[49] 0.8171653 0.4989190
$average. toother

[1] 8&.808362 9.308607 8&.082541 §.155753 7.736758 10.506106 8.560653 8.214101
[9] 7.773072 6.986174 B8.602329 8.614522 8.088263 8.162165 7.757176 7.924700
[17] 8.027200 B8.654434 B8.051288 B.188652 8.267195 8.363610 7.964605 8.055791
[25] &.109972 §.792730 §.371525 §.030918 8.982156 §.129349 B8.066062 8&.658808
[33] 7.855743 B8.302372 8.440138 B8.537470 B8.072068 7.949845 7.375444 8.033449
[41] 8.408345 B8.106458 7.962033 B8.026651 7.363817 7.292175 7.820730 7.913594
[49] 8.205961 7.964477



$separation.matrix

[1.]
[2,]
[3,]
[4,]
[5.1
[6.]

[e.]

[.1]
0. 000000
- 592557
. 859673
. 554846
. 785440
.122880 1
710671
. 028808
. 781643
.215619
. 275996
730999
.377924
. 573144
. 897448
- 404009
.126670
. 948899
. 387929
-9232329

[,9]
. 7816427
. 3077853
. 0143966
.5582334
. 2468275
1126874
.9309154
.2348079
. 0000000
4881853
. 8946012
. 7680661
. 5634041
.6564145
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. 2244384
.1130987
. 5472291
7760474
. 7951732
. 5099896
[,17]
L1266704
.4828628
. 0217902
. 5299961
. 6502129
. 63846091
.3001599
.0950389
. 5472291
. 8953373
. 7281194
. 9213822
. 4458867
. 9071508
7784048
L1759751
. 0000000
. 2468741
. 5661698
. 6970877
[,25]
. 6742094
.1951639
.2351093
. 0696365
.1811026
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. 9567155
. 7462216
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-9535751

[.2]
592557
000000
374689
985389
783060
815918
598152
872587
307785
217789
481416
406739
51077
717478
646442
538892
482863
691821
525152
720106
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54068811
1733259
4881853
0000000
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8154954
1357461
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. 2129070
. 6134503
. 8953373
5464051
.4365853
5792253
[,18]
. 948899
. 691821
.991427
817467
592350
808497
. 916601
.152022
776047
346403
520484
086662
.473607
554999
. 932800
518286
246874
000000
. 085789
. 377927
[,26]
. 715651
. 315988
.144366
. B65962
399064
. 386614
.190857
. 763064

Ll I, VYO N

FJun O F o omounoen b b b B o

. B596727
.3746888
. 0000000
. 0296922
.5619383
. 6687935
6676440
4853735
0143966
0234257
5945120
0440341
5828658
4324047
9631092
336077
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9914273
9609191
6703018

[,3]

Rl NSl S VYRV TV, N N N e B S e

[,11]
2759956
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0000000
6470305
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3784849
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. 7471300
. 2687452
. 7281194
5204843
. 4679905
. 8381655
[,19]
. 3879290
. 5251516
. 9609191
. 9448070
.1344327
. 5494129
. 2677050
. 5498484
.7951732
.4365853
. 4679905
. BE7E506
. 0352159
.2529314
. 9651352
. 7345924
. 5661698
.DB57886
. 0000000
. 1386865
[,27]
1.908977
4.2440023
1.5985299
3.4702478
5.7906115
6
4
4
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5548460
9853886
0296922
0000000
3565083
1904111
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7508340
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3891942
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9446070
.7930724
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406739
044034
037543
505955
707031
175849
270710
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815495
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000000
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.180634
. 559861
921382
. 086662
. 687851
493827

[,20]

. 9233292
. 7201061
.6703018

7930734

.0865312
. 6111969
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4118942
5099896
3792253
8381655
4938273
5012590

. 8843981

9195336

.1973650

6970877
3779269

.1386865
. 0000000

[,28]
. 281971
L772799
253006
957216
. 765345
.492399
.488415
333916

77
777

2.6072991 1
3.2665785 3
3.4458867 0.
1. 3
4.0352159 3
1.5012590 3

.1584120
. 0184651
. 0626208

.1375142
. 6178126
. 8188387

. 2263342
.1944190
. 7650601
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. 8904049

. 0148467

. 6232615
L 2740462
. 5094675

[.53] [.6]
785440
783060 1
561038
356508
000000
787963
337872
917084
246827
030464
009518
505955
520628
4324026
448858
034467
650213
592350
134432
086531

[,13] [,14]
3779241
5107754
5828658
7520
5206276
6986836
3767920
9718678
5634041
1357461
1981305
7593631
0000000
4252405

.122880
.B15918
. 668794
190411
787963
. 0oooo0
735393
842162
112687
226504
006144
707031
698684
843304
B84068
879849
638469
808497
549413
611197
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5731438
7174780
4324047
7508340
4340261
8433042
4690751
7745543
6564145
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3784849
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0000000
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4736069

[,21]

8361108
1818870
5941443

3
5
2
1
3
g
4
1
0
6994358 5
2344925 5.
2685480 4
3

3

1

1

1

4

2

3

3575839
3875469
5624015
9542216

[,29]
5272219

2
4
0006000 2
9118229 3.
3328582 5
g
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[.7]
L 710671
. 598152
. 667644
. 805961
. 337872
.735393
000000
984015
930915
540681

175849
376792
489075
481933
294451
300160
916601
267705
037725
[,15]
2.8974477
3.6464424
1.9631092
1.6030912
3.4488584
6. 8840676
3.4819326
0.7281363
1
2
1
4
2
1
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.2244384
.2128070
. 7471300
.1806336
. 6072991
.2579182

. 2579182 0
.1872152 0
9071508 0.
. 5549987 3
. 2529314 0
. 8843981 2

[,22]

. 5715957 4
. 9358851 &
. 4927711 2
. 5789925 3
. 5251718 4
. 7679077 B
. 5065475 3
.6363911 1
. 6505448 2
. 7137468 5.
5
4
2
1
1
2
1
2
3
3

5836260

.4042918
. 3526898
. 5041464
. 348077
. 9010846
. 9061135
. 4408060
. 2319858
. B170456

[,30]

. 6843824 2
. 6786546 4
.1919530 4
6575459 3.
. 0240482 6
. 7164846 9
. 6792560 5
. 0437125 3

[,8]

4.0288075
3.8725872
3.4853735
2.1729425
3.9170837
8.8421617
3.9940149
0. 0000000
1.2349079
4,1733259
397541 3.
5
3
1
0
0
1
4
1
4

0871943

. 2707102
. 9718678
.7745543
. 7281363
. 8667874
. 0950389
.1520224
. 5408484
.4118942

[,16]
3.4040085
3.5388916
3.336077
1.3891942
2.0344675
E. 8798490
3.2944512
0.8667874
1.1130987
3.6134503
3.2687452
5.5598608
3.2665785
3.1872152

. 0000000
.4887410

7784948

. 9328004
. 9651352
. 9195336

[,23]

. 6008687
.4098344
.7012931
. 5323112
. 7498365
. 8662015
. 5288833
. 8125686
. 3460848

4280432

.0221093
. 8632496
.6357795
. 2134649
L4763477
. 9524821
.1588343
. 9554358
.3638852
. 2563587

[,31]

. 9375301
.4816388
. 2267389

4355134

. 2244292
. 7284756
L7228122
.3519236

.4887410
. 0000000
.1759751

5182859

.7345924
.1973650

[,24]

.1083527
.4489455
. 2260750

6452375
3561355

.7529101

3665369

. 7464891

3218080
421977
8556763

. 6791908
.9092915

7692708

.1185909
. 7084341

4424478
3313129
8979855

. 6283909

[,32]

.183150
.417423

469408
023051
316902

.996354
.456339
. 643254
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[9.]
[10,]
[11,]
[12,]
[13,]
[14,]
[15,]
[16,]
[v,]
[1s,]
[1e,]
[20.]

[1.]
[2.]
[3.1
[4.]
[5.]1
[6,]
7.1
[8,]
9.1
[10,]
[11,]
[1z,]
[13,]
[14,]
[15,]
[16,]
[17,]
[18,]
[19,]
[20,]

[1.]
[2.]
[3.1]

14,1

[10,]
[11,]
[12,]
[13,]
[14,]
[15,]
[16,]
[17,]
[18,]
[19,]
[20.]

1,]
[2,]
[3.]
[4,]
[5.]
[6.]
[7.1]
[8.]
[9.]
[10,]
[11,]
[12,]
[13,]
[14,]
[15,]
[16,]
[17,]
[18,]
[19,]
[20,]
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. 6644105
.2922371
.33330922
6487101
2428639
. 9508946
LTT748724
9424180
1936865
. 2730289
1781676
. 7569240
[.33]

. 1354856
.4009919
. 8706319
. 3920747
. 3435432
.7594743
L4575464
.5523495
. 6428266
. 7461504
.4510882
.B252870
.1525563
L 6401271
. 8827202
. 9068371
. 7426936
.3350395
.0131288
. 6203596

[,41]

.1903663
. 6976639
. 9031609

3467862
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9910162
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6054571
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794525
181651
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.4973556
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4817462
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2112052 1.
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.4380830 1.

1581700
0118862
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4061398
0661281
9477800
0087670
9813906
4270072
8117497
3555856
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6323646

[,50]
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6580560
3040084
2328613
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0935011
1781676
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. 7193046
. 6550791
. 3870397
. 7998656
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8378108
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. 0516049
. 6298755
4678665
.B357923

[,35]
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. 8425258

1
5
1
3
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2.1945859
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4
1
3
2
3
3
1
4
0
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.4382814
. 5148088
.1286465
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. 9258093
. 3979209
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.1888921
. 8599065

[,43]

. 916671
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. 690678
.694272
. 798797
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.942112
.211001
. 705269
.BBB976
. 965544
.935022
.463709
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.B0D2458
.456302
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4
2
4
]
1
220752 4.
3
3
4
2
3
2

[,36]

.1572835
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. 7046916
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L7422284
. 0545517
. 6610599
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. 9255381 2

[,37]
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. 3903617
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. 7450682
L 7417894
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. 0544895
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. 3213153
. 2503356
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. 7345924
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. 8662984
. 9338694
. 7964625

[,45]
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2.808956
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4.402562
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9
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275434
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922577

[.38]

2.8350301
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1.5070473
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1.8084973
1.5938052
4.0772186
3.
4
3
3
1
1
1
3
0
4

6930435

. 7125359
.1350932
. 5876575
. 3848028
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.B758028
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.B255786
. 0435325
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. 572443
. 846442
. 806042
. 690083
. 805049
. 095376
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. 941982
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. 7536881
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8771212
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L 0872731
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$ave. between.matrix

[,1] [.2] [.3] [,4] [,5] [.8] [.7] [.8]

[1,] 0.000000 10.531421 §.590315 B8.662136 9.238715 11.066364 9.101520 9.342027
[2,] 10.531421 0.000000 9.453848 10.758010 7.403696 11.685937 9.033263 8.628090
[3,] 8.590315 9.453848 0.000000 8.123591 7.357672 10.512727 8.599461 8.533744
[4,] 8.662136 10.758010 §.123591 0.000000 B8.105581 10.582832 8.578485 7.987384
[5,] 9.238715 7.403696 7.357672 8.105581 0.000000 9.794178 §.081789 7.446031
[6,] 11.066364 11.685937 10.512727 10.582832 9.794178 0.000000 11.105095 10.846328
[7,] 9.101520 9.033263 §.599461 8.578485 B.081789 11.105095 0.000000 8.515742
[8,] 9.342027 B8.628B090 §.553744 7.987384 7.446031 10.846328 8.515742 0.000000
[9,] 8.714579 9.124964 7.841857 7.121596 7.036352 10.281518 7.683935 7.529577
[10,] 7.233263 8.448395 6.722044 7.383692 7.292562 9.782218 7.738348 7.3540801
[11,] 9.748555 7.917766 8.750239 90.634017 7.845207 10.551387 10.454822 8.350863
[12,] 9.442916 8.730040 7.816061 9.099308 5.758211 7.316992 9.420596 9.040644
[13,] 8.487534 B.892024 7.148681 B.447525 6.616774 10.273368 B8.697017 8.636666
[14,] 8.957158 9.530440 8.413457 B8.256017 8.065527 10.307720 8.013692 8.201127
[15,] 8.775433 B.622418 7.812294 7.610090 7.120006 10.307919 B8.162160 7.477313
[16,] 8.810605 9.293520 7.910858 7.264056 7.347350 10.666498 7.847439 7.634628
[17,] 9.264920 8.885169 7.952495 §.099207 5.987846 10.125406 7.634267 7.884617
[18,] 9.229517 B8.818117 8.242043 9.389880 8.373157 10.547345 0.128211 9.091871
[19,] 8&.308109 10.606741 8.032359 6.635692 B8.434472 11.149658 7.339491 7.860026
[20,] 8.366499 9.200238 7.810477 8.762254 7.987540 10.22977 9.399396 8.726288
[.9] [,10] [.11] [.12] [,13] [,14] [.15] [.16]
[1,] 8.714579 7.233263 9.748555 0.442016 B.487534 B8.957158 8.775433 8.810605
[2,] 9.124964 B.448395 7.917766 B.730040 B8.892924 9.530440 8.622418 9.293520
[3,] 7.841857 6.722044 B8.750239 7.816061 7.148681 8.413457 7.812294 7.910858
[4,] 7.121596 7.383692 9.634017 9.099308 B8.447525 8.256017 7.610090 7.264056
[5,] 7.036352 7.292562 7.845207 .758211 6.61677 8.065527 7.120006 7.347350
[6,] 10.281518 9.782218 10.551387 7.316992 10.273368 10.307720 10.307919 10.666498
[7,] 7.683935 7.738348 10.454822 0.420596 8.697017 8.013692 8.162160 7.847439
[8,] 7.529577 7.540801 8.350863 0.040644 B.656666 8.201127 7.477313 7.654628
[9,] 0.000000 6.669943 B8.833665 B.436634 7.933845 7.528037 7.182861 7.171251
[10,] 6.669943 0.000000 7.528436 8.097373 6.689695 6.973970 6.595511 6.878914
[11,] 8.833665 7.528436 0.000000 B8.327106 8.441207 8.947751 7.954633 8.976253
[12,] 8.436634 B.097373 8&.327106 0.000000 6.746948 9.014403 §.320735 B8.905855
[13,] 7.933845 6.689695 8§.441207 6.746948 0.000000 8.376048 7.858989 8.133855
[14,] 7.528037 6.973970 8.947751 9.014403 8.376048 0.000000 7.773685 8.034254
[15,] 7.182861 6.595511 7.954633 8.320735 7.85B8989 7.773685 0.000000 7.300337
[16,] 7.171251 6.878914 8.976253 8.905855 8.153855 8.034254 7.300337 0.000000
[17,] 7.439048 7.760263 B.712841 7.345481 7.769092 7.962532 7.474967 7.520851
[18,] 8.880243 7.519056 B8.392076 B8.700954 8.120077 B8.981899 8.439283 B8.678677
[19,] 7.039435 7.036496 10.227828 0.B874322 §.515909 7.971591 7.492994 &.902265
[20,] 8.353583 ©6.002703 7.BGBBOB B.252393 7.542938 §£.602885 &.002387 8.418819
[.17] [.18] [.19] [.20] [.21] [.22] [,23] [.24]
[1,] 9.264920 9,229517 8&.308109 §.366499 9.114551 8.971874 8.267077 8.496460
[2,] B.885169 8.818117 10.606741 9.200238 B.749706 10.579064 10.718004 10.489110
[3,] 7.952495 8.242043 8.032359 7.810477 B.265711 §.094286 8.020084 7.994709
[4,] B8.099207 9.389880 6.635692 B8.762254 B.574040 7.450741 7.431572 7.661716
[5,] 5.987846 8.373157 8.434472 7.987540 7.588616 7.633044 8.560384 7.972608
[6,] 10.125406 10.547345 11.149658 10.229772 10.504225 10. 908647 10.707835 10. 373427
[7,] 7.634267 9.128211 7.339491 9.399396 §£.597968 8.447879 7.361431 8.992030
[8,] 7.884617 9.091871 7.860026 8.726288 B8.258328 8.197231 8.123942 B8.20277
[9,] 7.439048 B.BB0243 7.039435 8.353583 7.978748 7.644062 7.216927 7.G68BEE
[10,] 7.760263 7.519056 7.036496 6.002703 7.139798 7.860824 7.030011 6.785734
[11,] 8.712841 8.392076 10.227B828 7.B6BB98 B5.143534 9.797183 9.934037 B.641620
[12,] 7.345481 8.700934 9.874322 8.252393 B.5369430 B&,881293 9.510488 B§.904395
[13,] 7.769092 B.120077 8&.515909 7.542938 8.147270 8.404311 8.252527 8.140878
[14,] 7.962532 B.981899 7.971591 8.602885 8.356431 8.509876 7.223323 B8.047995
[15,] 7.474967 B.439283 7.492994 8.002387 7.823731 7.906437 7.722949 7.686901
[16,] 7.520851 B.678677 6.902265 8.418819 8.081952 7.635433 7.573395 7.828584
[17,] 0.000000 8.767393 7.958940 8.665671 8.050127 7.680275 7.872978 8.100626
[18,] 8.767393 0.000000 9.314336 7.734250 B8.680272 09.237422 B§.584268 B8.938170
[19,] 7.958040 9.314336 0.000000 8.955835 B8.445540 7.302612 6.839864 7.643483
[20,] 8.665671 7.734250 B.955835 0.000000 B§.262550 B&.BB80096 §.444836 B§.166679
[.25] [.26] [.27] [.28] [,29] [,30] [.31] [.32]
[1,] B.B84B861 £.968465 §£.400615 7.931101 8.922903 9.186212 B5.327799 9.774386
[2,] 10.387961 11.929702 8.8537852 B.286338 9.237534 7.650671 9.488573 7.5383882
[3,] B.267080 8.838914 7.725696 8.008496 8.460989 8.036887 8.214516 8.723337
[4,] ©6.973940 8.078713 8.455010 8.540604 9.216060 9.178202 8.042628 9.031481
[5,] 8.131311 9.643511 7.766931 7.244929 8.122911 7.349708 B8.468212 7.180404
[6,] 11.131486 11.262456 10.519054 9.956982 11.480724 10.300485 10.900799 9.986018
[7,] 7.950416 9.382597 8£.447404 B8.967083 8.917297 9.400673 &.195705 10.002279
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Quantum Statistics and Data Analysis

[13,] 8.278950 8.193477

[14,] 8.024934 B8.046254

[15,] 7.8B3214 7.216762

[16,] 7.833846 7.740940

[17,] 7.754321 7.B16425

[18,] B.7B7477 B.362868

[19,] 7.759546 8&.748226

[20,] &.524312 7.852285

[ reached getoption("max.print") -- omitted 30 rows ]

$average. between

[1] 8.155469

$average.within

[1] 7.452884

$n. between

[1] 264812

$n.within

[1] 8618

$max. diameter

[1] 15.22748

$min. separation

[1] 0.2932619

$within. cluster.ss

[1] 20690.04

$clus. avg. s1lwidths
1 2 3 4 5 6

-0.255213123 0.297268777 -0.370231678 -0.145225479 0.709201242 0.220760176
7 8 9 10 11 12

0.041606660 -0.338108099 -0.293120978 0.580200982 0.036198625 0.000000000
13 14 15 16 17 18

-0.350515295 -0.322423430 -0.366409941 -0.308136076 -0.213400620 -0.473024603
19 20 21 22 23 24

-0.063499396 -0.368B75047 -0.399282431 -0.286176574 -0.087142747 -0.307882603
25 26 27 28 29 30

-0.247748559 -0.078425431 -0.344663759 -0.008130706 -0.3606886588 -0.255980824
31 32 33 34 35 36

-0.390369106 -0.138572777 -0.260566757 -0.371176458 -0.374469777 -0.198074499
37 38 39 40 41 42

-0.141791789 -0.230894183 0.016833289 -0.359106302 -0.244496363 -0.315780287
43 44 45 46 47 48

0.138542007 -0.192758270 0.174282322 0.000000000 -0.302067963 -0.242209418

49 50
-0.234380641 -0.269472739

$avg.silwidth
[1] -0.2408222

$g2
NULL

$g3
NULL

$pearsongamma
[1] 0.04777693
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Sdunn
[1] 0.01925872

fdunn2
[1] 0.4256791

$entropy
[1] 3.646736

fwb.ratio
[1] 0.9138512

$ch
[1] 4.214156
fcwidegap
[1] 8.351320 B.398008 8.217636 £.593945 2.086924 5.662069 6.868184 6.757830
[0] 6.082538 5.168279 8.585887 0.000000 6.913267 8.835472 6.203351 6.308852
[17] 6.151083 10.656476 7.318232 6.514183 7.476342 6.883933 6.593165 6.185192
[25] 9.721613 B8.555570 6.783535 B8.265477 7.564265 6.568892 8.057994 0.874780
[33] 6.513373 7.008605 6.998036 §&.371282 7.116128 6.929925 5.174137 6.101178
[41] 6.838734 7.534261 7.913943 6.568020 B8.963878 0.000000 6.021215 6.5159332
[49] 7.389406 7.293791
$widestgap
[1] 10.65648
$sindex
[1] 0.5152458
$corrected. rand
NULL
$vi
NULL
clusters50s5100 <- gclmydata, sigma=100, steps=21, min_d_factor=2,

n_clusters_max=50, verbose=FaLsE)

= cluster.stats(d, c1ust€r55051005
$'n’
[1] 740

$cluster. number
[1] 37
$cluster.size
[1] 36 33 32 32 29 28 25 24 23 22
[29] 18 15 15 15 15 12 12 11 3

$min. cluster.size

[11 3
$noisen

[1] O
$diameter

[1] 14.390554 14.390749 14.140623

[9] 14.799597 13.659125 15.399716
[17] 12.232701 13.930992 14.674408
[25] 11.270377 14.484483 14.758325
[33] 10.011573 12.564675 10. 387813
$average.distance

[1] 7.471395 7.186359 7.427193 7
[10] 7.632097 §.303925 7.464250 &
[19] 7.510312 7.673132 7.254512 &
[28] 7.546739 §.636576 7.933186 6
[37] 6.783501

22

22 21 21 20 20 20 19 19 19

14.730695 13.832977 14.619498 15.
12.535824 13.760696 14.461169 12.
13.922394 11.179792 12.738068 14.
13.180605 15.149545 14.443628 13.
12.331761 9.054391
.967044 7.715350 6.990234 6.836806
.300452 7.713686 7.011461 7.735085
. 695469 7.B36291 6.397894 6.577790
.660253 6.780551 6.312699 7.766697

18 18 18 18 16 16 16

430741 9.545256
914762 14.471445
400095 13.498085
808416 14.487477

4.689323 6.917003
7.037241 7.447345
7.604239 7.516925
6.685629 7.163586
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$median.distance

[1] 8.529238 7.780276 7.287524 7.687667 7.766872 7.133617 6.909474 5.667276 6.870111
[10] 7.576797 8.079722 7.560631 6.322408 7.427500 7.343904 7.619259 7.368268 8.407601
[18] 7.452357 7.530100 7.379576 6.313119 7.925559 6.134333 6.879452 7.383295 7.254138
[28] 8.098367 8.536102 7.282169 6.984795 6.450849 7.118027 7.763106 7.180393 7.200744
[37] 6.070794

$separation

[1] 0.6071292 0.4138933 0.4029162 0.4029162 0.5828658 0.8188387 0.7345924 0.2932619

[9] 0.4887410 0.6376213 0.6505448 0.4989190 0.4138933 0.8360932 1.3462900 0.6401271
[17] 0.5828658 0.8329964 0.7650601 0.7281363 1.9309154 0.5335437 0.8599965 0. 8255786
[25] 0.4887410 0.4287414 0.8329964 0.8601851 0.8601851 0.2932619 0.5592334 0.5335437
[33] 0.5592334 0.7650601 0.8188387 0.8599965 3.5182839

$average. toother

[1] 8.451135 8.487476 B.322183 B8.302372 8.335850 B.176421 7.998882 7.455540 7.880133
[10] 8.033449 §.447767 7.959746 8.129349 8.408345 7.820730 B.162165 7.856035 6.015633
[19] 7.852352 §.214101 8.795726 7.999256 8.440138 7.949845 7.638963 8.055791 §.196063
[28] 8.371525 §.982156 8.550578 B.155753 7.855743 7.725920 B.123626 7.816461 §.188652
[37] 8.273792
$separation.matrix

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 0.0000000 1.2344925 1.1420931 0.6071292 3.2759956 3.8299705 3.4679905 2.5230939
[2,] 1.2344925 0.0000000 1.5214328 1.2813536 2.1584120 3.7877298 3.3865336 1.2881564
[3,] 1.1420931 1.5214328 0.0000000 0.4029162 3.0073327 3.46862523 3.0153073 2. 5684166
[4,] 0.6071292 1.2813536 0.4029162 0.0000000 2.9312900 3.3598816 2.9406918 2.6984901
[5,] 3.2759956 2.1584120 3.0073327 2.9312900 0.0000000 3.8343103 3.3213153 1.0638841
[6,] 3.8299705 3.7877298 3.4662523 3.3598816 3.8343103 0.0000000 0.9542216 3.9250841
[7,] 3.4679905 3.3865336 3.0153073 2.9406918 3.3213153 0.9542216 0.0000000 3.4365853
[8,] 2.5230939 1.2881564 2.5084166 2.6984901 1.0638841 3.9250841 3.4365853 0.0000000
[9,] 3.2687452 3.3537080 2.7381214 2.7046401 3.2665785 1.3575839 0.7345924 3.6134503
[10,] 0.6378643 0.6537258 1.1168768 0.9538779 2.6528015 3.4984092 3.4032905 2.1108479
[11,] 3.0049059 3.2196429 2,3820298 2.5167169 3.1831496 2.4479930 1.7607778 3.6818042
[12,] 2.7851292 2.6980562 2.3673032 1.4817462 3.4458867 1.3875469 1.1781676 3.1689957
[13,] 1.1357736 0.4138933 1.5291663 1.2364017 2.3749952 3.6401666 3.3369984 1.5105372
[14,] 2.5681055 2.8396178 2.9297949 1.6052000 3.9899742 3.3218517 3.7563169 3.6047365
[15,] 2.3989368 2.0915008 2.1480961 1.8643179 2.7247646 2.2327063 2.6218488 2.4962796
[16,] 2.3784849 2.3319566 2.6544966 1.3440848 3.4252405 3.1638124 3.2503356 2.9421124
[17,] 2.8024580 2.0626208 2.5265960 2.2905214 0.5828658 3.2882449 2,5976890 1.3602295
[18,] 2.0087670 1.5201958 1.2780119 1.2922590 2.2112052 2.6379374 2.1145976 1.9477800
[19,] 1.7471300 1.5898117 1.1767304 1.0524240 2.6072991 2.3833527 2.0643118 2,2110007
[20,] 3.0871943 3.1794234 2.7630644 2.2094299 3.9718678 1.0178126 1.5498484 3.7987969
[21,] 5.4814157 4.8677987 5.1908574 4.4973556 4.3767920 2.0184651 2.7417894 4.6942716
[22,] 2.4430441 2.1724731 2.6018345 1.1342599 2.6357795 3.1843351 3.3638852 2.5847631
[23,] 2.0800140 1.1150850 2.2494376 1.9594914 1.5148088 4.2488196 4.1888921 1.1083978§
[24,] 3.6930435 3.5181423 3.1138274 3.1057875 2.8350301 1.7205320 0.8255786 3.9527860
[25,] 2.8887689 3.1744640 2.4463099 2.3953143 3.4741950 1.3556488 0.9651352 3.5494101
[26,] 0.8556763 1.4447881 0.5263483 0.4287414 2.9092915 3.4106971 2.8979855 2.421977
[27,] 2.0518042 1.7975322 2.2806337 1.1557257 2.4842267 3.9336475 3.4963848 2,2913858

[,9] [,10] [,11] [,12] [,13] [,14] [,15] [,16]

[1,] 3.2687452 0.6378643 3.0049059 2.7851292 1.1357736 2.5681055 2.398937 2.3784849

[2,] 3.3537080 0.6537258 3.2196429 2.6980562 0.4138933 2.8396178 2.091501 2.3319566

[3,] 2.7381214 1.1168768 2.3820298 2.3673032 1.5291663 2.9297949 2.148096 2.6544966

[4,] 2.7046401 0.9538779 2.5167169 1.4817462 1.2364017 1.6052000 1.864318 1.3440848

[5,] 3.2665785 2.6528015 3.1831496 3.4458867 2.3749952 3.9899742 2.724765 3.4252405

[6,] 1.3575839 3.4984092 2.4479930 1.3875469 3.6401666 3.3218517 2.232706 3.1638124

[7,] 0.7345924 3.4032905 1.7607778 1.1781676 3.3369984 3.7563169 2.621849 3.2503356

[8,] 3.6134503 2.1108479 3.6818042 3.1689957 1.5105372 3.6047365 2.496280 2.9421124

[9,] 0.0000000 2.9388331 1.3314247 0.9424180 3.3057762 3.3089154 2.385207 3.1872152
[10,] 2.9388331 0.0000000 2.8221715 2.6221923 0.6376213 2.5331210 2.056467 2.3054409
[11,] 1.3314247 2.8221715 0.0000000 1.9061135 3.2932870 3.7146276 2.902921 3.5041464
[12,] 0.9424180 2.6221922 1.9061135 0.0000000 2.6068771 1.0087768 2.343307 0.B8915087
[13,] 3.3057762 0.6376213 3.2932870 2.6068771 0.0000000 2.5228212 2.383067 2.1337088
[14,] 3.3089154 2.5331210 3.7146276 1.0087768 2.5228212 0.0000000 2.481273 0.8360932
[15,] 2.3852067 2.0564668 2.9029211 2.3433069 2.3830674 2.4812730 0.000000 2.1981760
[16,] 3.1872152 2.3054409 3.5041464 0.8915087 2.1337088 0.8360932 2.198176 0.0000000
[17,] 2.7918503 2.2977706 2.4927711 3.0217902 2.1919530 3.9031609 2.452226 3.4167994
[18,] 2.0197324 1.5445020 1.7897789 1.6368392 1.7736615 3.9021881 1.622591 1.8117497
[19,] 1.8351312 1.2074612 1.9505626 1.5317679 1.49564990 1.6832040 1.346290 1.2579182
[20,] 0.8667874 2.9419557 1.6363911 1.0518627 3.0437125 1.6930215 2.635184 1.7745543
[21,] 3.2944512 5.0713812 4.4174232 3.3001599 4.6786546 3.6969029 3.712988 3.4690751
[22,] 2.9524821 2.0836829 2.9834217 1.1588343 2.0659552 1.6174607 2.342106 1.0901111
[23,] 3.9258093 1.5483589 3.2568170 3.3226038 1.5248503 3.6655618 2.865692 3.1286465
[24,] 1.1379972 3.4084648 1.2027398 1.8758028 3.5609281 3.8371953 2.941405 3.5876575
[25,] 0.4887410 2.6935414 1.3480771 0.4989190 3.0475756 3.0284161 2.144543 2.9104041
[26,] 2.7084341 1.1068910 2.2543679 2.4424478 1.4909326 2.9130154 2.234511 2.7692708
[27,] 3.2274019 1.8126281 2.9920441 2.3307260 2.0536592 2.5041285 2.847338 1.9847352
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Quantum Statistics and Data Analysis

[,33] [,34] [,35] [,36] [,37]

[1,] 3.3848159 2.5859558 3.8946012 2.8381655 4.423738
[2,] 3.4228491 2.1670088 3.4944§58 1.8904049 3,751002
[3,] 2.7539804 2.5809022 3.8798589 2.8893617 4.493669
[4,] 1.8941509 1.8736572 2.7945252 2.6997501 4.707954
[5,] 3.8448839 2.5914060 3.5634041 1.5012590 3.719989
[6,] 2.4533189 3.4196440 0.8188387 4.7906742 5.490291

7,1 1.7951732 3.0143556 1.2468275 4.1386865 4. 5440984
[8,] 3.9024145 2.3329721 3.4853622 1.4637095 3.837244
[9,] 1.1130987 3.0004581 1.6997574 4.1973650 5.014878
[10,] 2.9084056 2.0450398 3.5917921 2.5524338 4.467062
[11,] 0.6505448 3.3522411 32.9802894 3.7707201 5.107465
[12,] 1.6644105 1.0539945 1.5472291 4.0461088 4.511402
[13,] 3.1275434 2.0446749 3.2710883 2.2922577 4,219489
[14,] 3.5217267 1.7697752 1.9751886 4.4608382 4.783698
[15,] 3.0655591 2.2625782 2.0807986 3.4919819 4.556859
[16,] 3.2486927 1.1944190 1.6564145 3.8843981 4,906549
[17,] 3.0143966 2.7249437 3.7104810 1.6703018 4.105957
[18,] 2.0661281 0.9586612 2.6778765 3.3564397 4,909568
[19,] 2.0442096 0.7650601 2.2996684 2.9195336 4.467226
[20,] 1.2349079 1.8883036 2.2051266 4.4118942 4.694028
[21,] 4.4996930 3.6444658 1.9309154 5.7201061 6.194222
[22,] 3.0468798 1.1765562 2.0725681 3.2563587 4.69555%4
[23,] 2.6203898 2.58409522 4.0166106 0.8599965 4.324702
[24,] 1.5938052 3.5216316 3.4351354 4.0435325 5.178385
[25,] 1.2244384 2.9367463 2.7189819 4.2125959 5.447132
[26,] 2.3218080 2.5240280 3.8308976 2.6283909 3.974919
[27,] 3.1036959 1.5232314 3.1268146 2.6323646 4.454673
[ reached getoption("max.print") -- omitted 10 rows ]

fave. between. matrix

[.1] [.2] [.3] [.4] [.5] [.6] [.7] [.8] [.9]

[1,] 0.000000 7.474736 B.779108 7.843537 B.733434 9.146619 9.004143 7.439420 B.669275
[2,] 7.474736 0.000000 9.135763 7.953938 B8.413628 9.311369 9.165676 7.050241 8.B817487
[3,] B.779108 9.135763 0.000000 B.635234 B.664263 8.243661 B.017266 7.8539345 7.943459
[4,] 7.843537 7.953938 8.655234 0.000000 8.544851 8.740952 B8.631192 7.601959 8.364305
[5,] B8.733434 8.413628 8.664263 B.544851 0.000000 8.649897 8.304075 7.020365 8.387237
[6,] 9.146619 9.311369 B.243661 B.740952 B.649897 0.000000 7.163792 7.986799 7.133106
[7,] 9.004143 9.165676 8.017266 B.631192 8.304075 7.163792 0.000000 7.792722 ©.925786
[8,] 7.439420 7.050241 7.859345 7.601959 7.020365 7.986799 7.792722 0.000000 7.531931
[9,] B.669275 8.B17487 7.943459 B.364305 B.387237 7.133106 6.925786 7.531931 0.000000
[10,] 7.968585 B.207168 7.809279 7.952651 8,291717 8§.214733 8.132045 7.295299 7.982405
[11,] &.880014 9.029104 8.578299 8.623438 8.705959 §.133955 7.900032 B.178805 7.715476
[12,] B.198179 B.302619 B.410294 7.969799 E.437594 7.557549 7.638920 7.376E75 7.3726090
[13,] 7.044991 6.737751 B8.965701 7.452545 8,200968 8§.900163 8.B01571 6.835357 B8.465443
[14,] 8.366360 B8.530654 8.791214 8.140204 8.958089 §.468439 8.462624 B.023684 8.256515
[15,] B.188B10 B.172758 7.736920 8.175248 E.002151 7.587646 7.549321 6.756844 7.487109
[16,] B.559649 B.778729 B8.179311 8.257451 B.576431 8.128542 8.038280 7.574966 7.998339
[17,] 8.356621 B.265243 7.975978 8.131297 7.510931 7.953743 7.626673 6.808211 7.669446
[18,] B.550563 B.567618 7.728848 8.438615 B.177400 B.002565 7.863572 6.975484 7.675047
[19,] 7.693075 7.707528 B8.214079 7.723743 8.175405 8.053674 7.993990 6.883580 7.724794
[20,] B.446747 B8.630239 8.497642 8.275315 8.892997 7.786703 7.749455 B.001648 7.493636
[21,] 9.608461 9.448283 9.656410 9.128009 9.032739 7.748874 B.1409049 8.414612 B.242287
[22,] 8.887841 9.182962 7.551871 8.373087 8,272934 7.7B8049 7.532701 7.710681 7.664243
[23,] B.3224262 B.006251 B.656409 8.404133 7.973724 9.196066 B.766059 6.823934 B.638869
[24,] 9.121994 9.296310 7.800842 8.675694 8.131311 7.240301 6.659722 7.829688 6.872773
[25,] B.209169 B8.393631 7.789467 7.986837 B8.174580 7.071427 6.794219 7.281562 6.631874
[26,] B.231837 B.526481 7.516873 8.2568B80 B.263492 B.200778 7.851924 7.369631 7.785384
[27,] B.784782 B.956634 7.781233 8.371167 8.300193 B8.352901 B8.130136 7.561341 7.983235
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