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Hepiinwny

2V mopovoa Simhouatikny epyoacio Bo pedetnoovpe Tig £vvoles Tov KPavTikov mAociov Kot tng
tomkOTNTAS. Apyikd Ba vdpet pia Tapovsiaomn twv evvoldv 1 omoia Bo akoAovOnbel and o
TOPOVGIOCT) TV CUAVTIKOTEPWOV BE@PNUATOV GYETIK®V LE TO BENA, OnAadn Tov BewpnpaTog Tov
Bell kot tov Oewpnuatoc tov Kochen kot Specker. Kotomwv, 6o mpoceyyicovpe Tig
npoavapepBeiceg évvoleg amd v okomid g Oewpiag ypdoowv, kot Ba cvveyicovue
VTOSEIKVOOVTOG TO CTUOVTIKOTEPO CUUTEPACUATO Kol TPoUTOBECELS YOP® amd TNV VTOPEN NG
TOTKOTNTAG KOl TOV TAUGIOK®OV oYEcE®V. TEAOG, Oa LEAETGOVLE TIG LOVOYAUIKES GYECELS TTOV
SOVOVTAL VO ELPOVIGTOVV OVAUECO OTIC OVIGOTNTEG OVIYVELOTG UN-TOTIKMOV KOl TAUICIOKOV
QOIVOLEVMVY, Kol B TOPOVGLAGOVUE UEPIKE EVOLOUPEPOVTH TOPOUOEIYLOTO KOl EPOPUOYES OV
EKUETAAAEDOVTOL TIG TOAPOATAVE® LOVOYOUIKES OYECELS.

Abstract

In this master thesis we are going to study the concepts of contextuality and locality. At
first there is a presentation of the notions of locality and quantum contextuality, followed
by the presentation of the most important theorems related to the subject, namely the Bell
theorem and the Kochen-Specker theorem. Afterwards, we will approach the notions of
locality and contextuality from a graph-theoretical point of view, and we will proceed by
showing some important statements and conditions about them. Finally, we are going to
study the monogamous relations that may appear between the corresponding local and non-
contextual test inequalities, and we will present some interesting examples and applications

that utilize the aforementioned monogamous relations.
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0 Prologue

The discovery of the quantum nature of light and subatomic particles changed
decidedly the way we perceive the world. Suddenly, we realized that our understanding
about the fundamental laws of the universe was far from the realistic, and that the solid
theoretical structure we have created in order to study the world around us, started to
rumble. Many philosophical discussions and scientific debates took place until the first
concrete theories, which would allow us to acquire answers through experimental methods,
to appear. The counterintuitive explanations that the Quantum theory provided, made it
one of the most well tested physical theories in the history of science. From the very
beginning of its formulation, many leading scientists at the time had serious objections
about the rightness of the theory. Therefore, the study of the fundamental principles that
underlie the quantum theory has become one of the most important topics for research in

these days.




1 Locality

1.1 About the EPR Paradox

When the Quantum Mechanics theory initially formulated, many scientists
considered that the explanation of physical reality provided by Quantum Theory was
incomplete. In a 1935 paper [Einstein et al 1935] Einstein, Podolsky and Rosen proposed a
thought experiment in order to show that the wave function does not contain complete
information about physical reality, and hence the Copenhagen interpretation is
unsatisfactory. The original EPR paradox questions the predictions of quantum theory,
given that it is impossible to know both the position and the momentum of a quantum

particle.

The EPR argument is the following [EPR 1935, Kumar 2011]: Let two particle
systems I and II interact and then separated with each other, so they can be in an “entangle
state” in which measuring particle’s I position or momentum predicts particle’s II position
or momentum respectively and vice versa. This is a case which quantum theory clearly
allows. As the Heisenberg’s uncertainty principal states, it is impossible to measure to
measure both the exact momentum and exact position of a specific particle. Now, let us
consider Alice who makes measurements on system I, and Bob who makes measurements
on the remote isolated system II. If Alice measures the exact position of particle I, she can
work out immediately the exact position of particle II. Alternatively, if Alice decides to
measure the exact momentum of particle I, she can immediately derive the exact momentum
of Bob’s particle. Consequently, the particle II would have simultaneously exact values of
position and momentum, something that is impossible according to Heisenberg’s principle.
Therefore, the Einstein, Podolsky and Rosen, conclude that the Quantum mechanical

description of physical reality given by wave functions is not complete.

In order to resolve the paradox, Einstein, Podolsky and Rosen proposed the existence
of a more “complete” theory which contains variables corresponding to “all elements of
reality”. In that theory, “Hidden Variables” that are inaccessible to us, provide a way to

account for all observable behavior and thus avoid indeterminism. The Hidden Variables




theories [Wheeler, Zurek 2014] are deterministic theories in opposition to the fundamental

probabilistic nature of the Quantum Mechanics (QM).

This is a good point to note something about the assumptions made by the EPR. In
order to construct this thought experiment, Einstein, Podolsky and Rosen made a crucial
assumption: by simply measuring particle I, Alice does not disturb or influences particle II,
which, after all, can be far away and isolated from influences of the rest of the universe.
They took this argument as perfectly normal case of scientific common-sense reasoning
applied in a specific theory. But the story does not end here. In 1964 John Bell [Bell, 1964]
realized that if the “local-realistic” assumption of EPR holds, an actual experiment would

give different results from the case in which a non-local correlations theory holds.

1.2 What is the relation between Locality, Realism and Bell

Inequalities?

In physics, “local realism” [Clauser, Shimony 1978] is the belief that the physical
world exists independently of any possible observer, and that any physical effect can be
described as an interaction of any distinct point with its direct neighboring points.
Essentially, local realism is the combination of the principle of Locality with the assumption

of realism.

As mentioned above, the principle of locality states that an object is directly
influenced only by its immediate surroundings. This principle seems to be a very natural
and reasonable conclusion that anyone who studies classic physics could end up with. A
physical theory that includes the principle of locality is said to be a “local theory”. Locality
has evolved out of the field theories of classical physics, and has a close relation with the
special theory of relativity, which limits the propagation speed of all possible information
to the speed of light.

On the other hand, Realism, in the sense of physics, [Norven 2007] is the idea that
nature exists independently of the observer. However, the notion of realism is not well
defined or globally accepted, and many scientists consider the use of term “Outcome
Determinism” (OD) [Stanford Encyclopedia of Philosophy| as a more suitable notion for
describing the essence of the argument. Outcome Determinism stating that the “hidden

state” A uniquely determines the outcome of any experiment, and quantum uncertainty




relations are due to our inability to specify those states. The conditional probabilities

p (x% yP|1) take the extremal values 0 or 1.
VA a,b & Vx* € X,,Vy?P €Yy, p(X% =x%4Y%=y%A=2) € {0,1} (OD)

However, with the formulation of the Quantum theory some cases arose that seemed to defy
the principle of local realism. Many scientists considered that a Hidden Variable (HV) model
would be a more suitable theory for explaining the physical evidence than the Copenhagen
interpretation which supported the probabilistic nature of quantum mechanics. The basic
concept of a hidden variable model is the existence of a value 4 which contains the entirety
of the properties of the system. By defining the variable space A which is the totality of all
possible values 4, a HV theory assumes the existence of a probability distribution p(4) of
the hidden states of A and the existence of joint probability distribution p (x§ |/1) for every
A € A, which gives the probability of the x° to be the experimental outcome result given

that the system is in hidden state A and the measurement settings are S.

In 1964 John Bell, in order to derive an inequality that will distinguish local from
non-local effects, made an assumption known as “Factorizability condition” (F) or as “Bell
locality” [Bell 1981], which every HV model should satisfy. Let us consider the case of a
pair of physical systems labeled as 1 and 2. The Factorizability condition states that if each
pair of systems is characterized by a hidden value A, then for any measurement settings a,
b on the systems 1 and 2 respectively, and for every A € A, there exist probability functions
p, (x%|2), p,(¥?]2), such that p (x% y?|1) = p,(x%|1) p,(y?|1), where x and y be the
measurement results for systems 1 and 2 respectively. Bell derived the Factorizability
condition from a condition he called “Principle of Local Causality” [Norsen 2011]. Principle

of Local Causality states the following:

“The direct causes and effects of events are nearby, and even the indirect causes and effects

are no further away than permitted by the velocity of light.”

Because the previous statement is not suitable for a more mathematical description

of the theory, Bell introduced a “sharpened” version of the principal:

A theory will be said to be locally causal if the probabilities attached to values of a physical
theory’s elements that corresponds to something physically real contained within a space-
time region 1 are unaltered by specifications of values on other elements of the same physical

theory within a space-like separated region 2, when what happens in the backward light




cone of 1 is already sufficient specified, for example by a full specification of physical theory’s

elements contained within a space-time region 3 [Stanford Encyclopedia of Philosophy].

Summarizing, a HV theory assumes the existence of a complete state space A that
completely determines the results of any experiment with given settings, and satisfies the
conditions of Factorizability (locality), and Outcome Determinism (realism). Bell,
considering these two assumptions manage to derive a no-go theorem in order to examine
if a hidden variable theory is a valid case for quantum mechanics. He generated an inequality
and proved that if a HV theory governs the quantum mechanics, this inequality should be
satisfied. If on the other hand, there was a case in which the inequality is defied, at least

one of the assumptions of Outcome determinism or Factorizability must be wrong.
In this point, we should mention two interesting theorems:
1.2.1 Theorem (Suppes, Zanotti 1976)

For the special case of perfect correlations between outcomes of the two experiments,
that is when the outcome of an experiment in one system determines completely the
outcome of the experiment in the other, (OD) condition must be satisfied if the (F)

condition is.

This theorem applies to the specific case Bell considered in 1964, in which the two systems
was perfectly anti-correlated. Although (OD) is not generally being assumed, the theorem

below shows that we could assume it.
1.2.2 Theorem (Fine 1982)
The following are equivalent:

1. There is a deterministic HV model.




There is a factorizable, stochastic model.
There is one joint distribution for all observables, returning the experimental
probabilities.

4. There are well-defined, compatible joint distributions for all pairs and triples for
commuting and non-commuting observables.

5. The Bell inequalities hold.

From the theorems above we can conclude that the Locality (F), the Outcome
Determinism (OD), the existence of a joint distribution of all observables and the

satisfaction of Bell inequalities, are equivalent notions.

1.3 Bell theorem

In 1964, John Bell, in order to provide a way to distinguish local-realistic from non-
local-realistic effects, formulated a framework and derived an inequality that indicates non-
local-realistic correlations. More precisely, when Bell’s inequality is defied, we observe a
non-local effect. In the present section we will show a proof of a No-go theorem of Bell’s

type as presented in the Stanford Encyclopedia of Philosophy.

For the construction of the conceptual framework consider an ensemble of pairs of
systems, with the individual systems in each pair being labeled as 1 and 2. Different
experiments may be performed on each system. Let us call the variables that describe the
experiment settings on system 1 as a, a’ and the variables of the experiment settings on
system 2 as b and b'. It is not assumed that these parameters capture the complete state
of the experimental apparatus. We denote with x the result of an experiment, performed
with some setting a, on system 1, which furthermore takes values from a discrete set X, of
real numbers in the interval [—1,1]. Likewise, we denote with y the result of an experiment
on system 2 with some setting b, which also takes values from a discrete set Y, in the
interval [—1,1]. The sets of potential outcomes may depend on the experimental settings.
Also, note that the restriction of the values of the outcome labels is of no physical
significance, and is a choice made only for convenience. Bell’s original version of the theorem

assumed experiments with only two possible outcomes labeled 1.

Assuming that a Local Hidden Variable theory is a valid case, the following conditions
should be satisfied:




1. There is a hidden variable space A, which is the collection of all the possible hidden
values 4. The hidden values A contain the entirety of the properties of the system at
the moment of generation and remain inaccessible to observers.

2. We have an appropriate choice of subsets of A to be regarded as the measurable
subsets, forming a measurable space to which probabilistic considerations may be
applied. That considerations are that:

a. There is a normalized distribution p of A with [ L pA)dA =1

b. For every pair of settings a, b and every A € A there is a probability function
p (x%, yP|1) which take values in the interval [0,1] and satisfy the
Jooprecxanrp P 47710 = 1.

3. The values observed by observers A and B are functions of the measurement settings
(local detector) and the hidden parameter only: x% = x(a, 1) and y? = y(b, 1). That
means that the experiment outcome variables x and y are conditional independent
given the hidden state A, and thus the Bell’s “Factorizability” condition holds. We
remind that the Factorizability (F) condition states the following:

For any a,b,A, there exist probability functions
p; (x%|2) and p,(y?|A), such that (F)

p (x% yPI2) = py (x| D) p, (Y2 D).

Now we can proceed by defining the marginal probabilities:

p,(x42) = fp(x“,yblxl) dy (1.3.1a)
Yp

p, (1) = fp(xa,ybll) dx® (1.3.1b)
Xa

Also we define as A;(a, b) and By(a,b) the expectation values, for the hidden value A, of
the outcomes of experiments on system 1 and 2, respectively, when the settings are a, b.
That is:

A;(a,b) = fx“ p1(x*|A) dx® (1.3.2a)

Xa

——
\]
-



By(a,b) = fy” p,(y?12) dy® (1.3.2b)

Yp

We also define the expectation value of the product x*y? of outcomes:

E;(a,b) = ﬂ x%yP p (x%,y?|2) dx*dy® (1.3.3)

XaXYb

Note that all the expectation values above are functions of the hidden parameter A and the

experiment settings a, b.

Also, one can easily see that if the Factorizability condition (F) is satisfied, then the

following is also true:
EA(CL, b) = A)L(Cl) Bl(b) (134&)

For simplicity, we will denote the expectation values A;(a) and B;(b) as A(a, ) and B(b, 1)

respectively. Therefore the previous relation becomes:
E;(a,b) = A(a, 1) B(b, 1) (1.3.4b)

For the purpose of deriving the inequality we will use the special case of two possible

experimental outcomes, that is X, = ¥, = {£1}, the same that Bell originally used.
Now consider the quantities:
Sy(a,a’,b,b") = |Ey(a,b) + E;(a,b")| + |E;(a’,b) — E;(a’,b")| (1.3.5)

We will define the expectation values of the E; functions with respect to the preparation

distribution p of complete state A:

Cp(a,b) = [ Eieb)p() di= [ AGa,2) B2 p(2) A (1.3.60)
A A

C@,b) = [ Ea@, b)) di = [ AG@,2) B, 2)p) a2 (1.3.6b)
A A

6@ = [ Exab)p) a2 = [ A2 BB p() A (13.60)
A A

6@ = [ B@ ) pWar= [ 4@ DBE DDA (1360
A A

——
o
-



The C,(a,b) denote the theoretical correlation of the two systems predicted by any HV
theory, and in the special case of a bivalent experiment, such as Bell’s, simply shows the
expected value of a variable that indicates if the experimental outcomes of the two systems

with the given settings a, b agree or not respectively.
Let S, denote the corresponding relation between the expectation values C:
Sy(a,a’',b,b") = |Cp(a, b) + C,(a, b’)| + |Cp(a’,b) — Cp(a’,b’)| (1.3.7)

We will also define the expectation value of the S;(a, a’, b, b") with respect to A as:
E(Sy(a,a', b, b)) = j Su(a a’,b,b") p(A) dA (1.3.8)
4

Since the absolute value of the average of any random variable cannot be greater than the

average of its absolute value, is clear that:
Sy(a,a’,b,b") < E(S;(a,a’,b, b)) (1.3.9)

Now, we will prove the first part of the theorem that follows from the Factorizability

condition:
Sy(a,a’,b,b") = |Ey(a,b) + E;(a,b")| + |E;(a’,b) — E;(a’,b)| =
|ACa, 2)B(b,A) + A(a, A)B(", V)| + |A(a’,1)B(b, 1) — A(a',1)B(b', V)| =
|A(a, D(B(b, 1) + B, )| + |A(a’, D)(B(b,A) — B(b', 1))| =
|A(a, D)||1B(b,2) + B(b", )| + |A(a’, V) ||B(b,A) — B(b', )|

(1.3.10)

Knowing that the quantities A(a, 1) and A(a’, 1), lie in the interval [—1,1], we can conclude
that:

Sa(a,a’,b,b") < |B(b,A) + B(b', )| + |B(b,A) — B(b', 1) (1.3.11)

It is easy to check that:

BB, 2) + BX, D +|B(b, ) = B, DI < 2max(BB,DLIBGL DD 5 1)

Since B(b,4) and B(b', 1) also lie in the interval [—1,1] from (1.11) and (1.12) we conclude
that:

vie 4,  S(a,a’,b,b’) <2 (1.3.13)

——
Ne)
-



Since this bound holds for every value of A, it must also hold for the expectation value of
SAZ

E(Sy(a,a',b, b)) <2 (1.3.14)

So, we conclude that the basic Bell inequality that any hidden variable model should satisfy

1S:
Sy(a,a’,b,b") <2 (1.3.15)

Using the triangular inequality, we can also derive another inequality, namely the CHSH
inequality (Clauser et al. 1969), which is mostly used in the experimental applications or

the literature.
2>5,(a,a',b,b') = |Cp(a, b) + C,(a, b’)| + |Cp(a',b) - Cp(a',b')|
> |Cp (a,b) + C,(a,b") + C,(a’,b) — C, (a',b')|
Summarizing, if a HV model describing the interactions between two bivalent systems, the
correlations must satisfy the CHSH inequality:
22 |Cp(a, b) +C,(a,b") + C,(a’,b) — Cp(a',b')| (1.3.16)

The final step of proving the Bell-type theorem is to exhibit a quantum mechanical
system and a set of quantities for which the statistical predictions violate the CHSH

inequality. Consider a pair of spin-% particles that is produced in the following pure state:

1 1
7 @11 — = 1-1): ® 1), (1.3.17a)

Where |1) and |—1) are denoting the spin-up and spin-down eigenstates of spin respectively.

l¥) =

The measurement of spin is performed on an arbitrary direction n. We can write the state

of the system simply as:

) =i|1—1>—i2|—11) (1.3.17b)

2 2

We can perform different spin measurements (Stern-Gerlach experiments) on this paired
system with different directions. Each measurement is performed with respect to an axis
which indicates the orientation of the measuring device, and can always has one of two
possible outcomes: spin-up labeled with +1 and spin-down labeled with -1. If the
experiments are done with the axes of the two devices aligned, the results are going to be

always opposite. If the axes are perpendicular, the results are going to be probabilistically

10 J
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independent. In the general case, the directions of the measurements are given by two unit

vectors d and b , which in our case constitutes the experimental settings.
a = (sin 8, cos ¢, ,sin , sin ¢, , cos §,) (1.3.18a)

b = (sin 6, cos @, , sin 6, sin @, , cos H;) (1.3.18b)

The spin operator of a bivalent system along an arbitrary direction 7, is according to

quantum theory:

( cosf sinfe

sinfe® —cosf ), where 7 = (sinfcos¢,sinfsing,cosf) (1.3.19)

Then, the expectation value of the product of the outcomes is given by
Ey (a, I;) = (PlolQ®aZ|Y) = — cos b, cos B, — cos(@p, — @p) sinf, sinf, (1.3.20)

Let us now take the vectors 1, a and b to be coplanar, and thus let, without the loss of

generality, @, = @p. Then the expectation value take the form
E,(d,b) = — cos 6y, (1.3.21)
where 6,, = 8, — 0, is the angle between vectors a and b.

We choose four coplanar unit vectors 6,57, I;,E such that Oy, = 0, =0, = ¢ and
therefore 6,7 = 3¢. Then, we are plugging the respective expected values into the

expression for S. This choice yields:

Sy = |Ey(@.b) + By (a.b) + B, (a,b) — E, (@)
= |cos B,y + cos B, + cos B,y — cos O,y (1.3.22)
= |3cos ¢ — cos 39|
If we choose the angle ¢ accordingly, the expression (22) exceeds the CHSH bound, with

. . . V3
maximum violation at = iZ . For these angles we have:

Sy (%) = 2VZ>2 (1.3.23)

That means, that if the Copenhagen interpretation is correct, an actual experiment on a
pair of %-spin systems would provide experimental evidence for disproving the hidden
variable theory. The definite answer to that question came in 2015 (Hensen et al. 2015)
when the experimental confirmation of Bell’s theorem was conducted without any logical

loopholes.
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2 Contextuality

2.1 What is Quantum Contextuality?

As we have stated before, a big question that has concerned many scientists is
whether or not we have the ability to assume the existence of objects and their properties,
even when they have not been measured. This question started to have an actual meaning
with the formulation of quantum mechanics and the phenomena that quantum theory
describes. As we saw in previous sections, many scientists considered that the probabilistic
nature of quantum mechanics was due to the theory’s incompleteness, and thus the idea of
a deterministic hidden variable theory governing the quantum world became more
attractive. The explicit premise of the Hidden variables model is the principle of Value
definiteness (VD) [Stanford Encyclopedia of Philosophy]:

All observables defined for a Quantum Mechanical system have definite
(VD)
values at all times.
Value definiteness is motivated from the assumption that the experiments are revealing
values that exist independently of being measured. That suggests, a seemingly innocuous

assumption, that of non-contezstuality (NC) [Stanford Encyclopedia of Philosophy]:

If a Quantum Mechanical system possesses a property (value of an

(NC) observable), then it does so independently of any measurement context, i.e.
independently of how that value is eventually measured.

In 1964 Bell showed that there are cases of paired quantum systems, where a hidden
variable model could never predict the systems behavior. After that, Kochen and Specker
[Kochen-Specker 1967] proved a theorem that establishes a contradiction between (VD) and
(NC), given that there is a 1-1 correspondence between properties of a quantum system and
projection operators on the system’s associated Hilbert space. That feature of quantum
mechanics, i.e., the fact that measurements of quantum observables cannot simply be

thought as revealing pre-existing values, is known as Quantum Contextuality (QC). More
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generally, contextuality refers as the property of a physical theory, that a measurement’s
outcomes are not solely determined by the choice of the measured quantity and the
measured system’s state variables. Contextuality arises when a theory such as quantum
mechanics, cannot be described by a joint probability distribution over a single probability
space. That indicates the existence of experimental scenarios of that theory, where the
statistics of observables cannot be described by a common joint probability distribution.
However, there are subsets of the observable space, where the observables are indeed jointly
measurable (commeasurable), and thus, a joint distribution can be constructed for that
subset. From now on, we shall refer to such a set of commeasurable observables as
observables that correspond to the same measuring context. One, may see the measuring
context of a complete set of binary questions, whose answers are related to whether or not
the post-measuring state lies in a specific subspace of the system’s associated Hilbert space.

More formally we can define the notion of quantum measurement context as follows:
2.1.1 Definition (Gudder, 2019)

A quantum measuring context, is a complete set of one-dimensional projections onto the
subspaces of the system’s associated Hilbert space. These subspaces are generated by
pairwise orthogonal unit vectors. By complete set we mean that the set of these subspaces

constitutes an orthogonal decomposition of the system’s associated Hilbert space.

In other words, one might say that a theory is contextual, when a joint probability
distribution that reproduces statistics of some contexts, cannot reproduce statistics of others
at the same time [Grudka et al 2014].

It seems that contextuality, is a generic property of the logic that describes quantum
theory. In fact, Bell’s non-locality may be viewed as a special case of the more general
phenomenon of contextuality, in which measurement contexts contain measurements that
are distributed over space-like separated regions. This follows from the Fine-Abramsky-

Brandenburger theorem that we is mentioned below.

Contextuality frameworks

Since its first demonstration by Bell-Kochen-Specker, the study of contextuality has
developed into a major topic of interest, which led to the formulation of a number of more
powerful mathematical frameworks, that were aim to generalize and study the concept of

contextuality. The most important frameworks for contextuality are the following:
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Contextuality-by-default framework

Contextuality-by-default consists a more natural way for someone to perceive the
concept of contextuality. This framework utilizes probability theory and more specifically
the theory of random variables [Dzhafarov et al 2016]. The Contextuality-by-default
framework relates the “measurement contexts” with the “random variable contents”,
showing that contextuality is not just a feature of quantum theory, but a more general

theory that can be applied and related to many different phenomena.
Sheaf-theoretic framework

Sheaf theory is primary concerned with the study of cohomology theories of general
topological spaces with “general coefficient systems”, providing a common method of
defining and comparing different cohomology theories [Brendon 1997]. The sheaf-theoretic
approach to contextuality [Abramsky-Brandenburger 2011] is a general mathematic setting,
completely independent of the notion of Hilbert space, which strengthens the concept of
Bell’s non-locality and Kochen-Specker’s quantum contextuality, and allows results to be
proved in considerable generality. Thus, the sheaf-theoretic contextuality can be applied
beyond quantum theory to any situation in which empirical data arises in contexts. In
essence, contextuality arises when empirical data is locally consistent but globally
inconsistent. This framework, also gives rise in a natural way to a qualitative hierarchy of

contextuality:
Probabilistic Contextuality < Possibilistic Contextuality < Strong Contextuality

These three properties form a strict hierarchy, with the stronger one to imply the
weaker ones, but not vice versa. For instance, Bell non-locality [Bell 1964], is weaker than
Hardy non-locality (Hardy 1993), which is weaker than GHZ model [Greenburger et al
1990]. Abramsky and Brandenburger showed that the Kochen-Specker theorem is a strong
contextuality theorem, and they provide a connection to graph theory defining the K-S

contextuality in purely graph theoretic terms.

An interesting result of this theory, is the realization that the Factorizability
condition of a hidden variable model, is a general property which subsumes both Bell-
locality and a form of non-contextuality at the level of distributions as special cases. This
means that the whole issue of non-locality and non-contextuality can be described in terms

of obstructions to the existence of certain global sections. Another interesting point of the
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theory, is that the property of compatibility corresponds to a form of a generalized no-

signaling principle, which the quantum theory of course satisfies.

As we have stated before, Arthur Fine showed that in a scenario where the CHSH
inequality holds, a factorizable hidden variable model exists if and only if a noncontextual
hidden variable model exists, in the sense of the existence of a joint distribution for the
observables outcomes [Fine 1982]. This equivalence was proven to hold more generally in
any experimental scenario by Abramsky and Brandenburger. For this reason, the fact that

we can consider nonlocality as a special case of contextuality may be referred to as Fine-
Abramsky-Brandenburger theorem (FAB):

(FAB) Non-locality is a special case of contextuality.
Operational framework

An extended notion of contextuality can also be applied to preparations and
transformations as well as to measurements, within a general framework of operational
physical theories [Spekkens 2005]. The term of operational physical theory, refers to a theory
that describes the set of possible experiments that can be done with physical devices, and
gives predictions about the probabilities of the outcomes in these experiments [Chiribella
2010]. With respect to measurements, this framework, removes the assumption of
determinism of value assignments that is present in the standard definitions of
contextuality. However, this breaks the interpretation of nonlocality as a special case of
contextuality, and does not treat irreducible randomness as non-classical. In this framework
the detection of non-locality is equivalent to the detection of contextuality, something that
comes in opposition to the other contextuality frameworks. One way to partially resolve
this issue, is to distinguish two shorts of locality according to the theory [Howard 1985]:
Separability and local causality. A failure of local causality within the framework of a

separable model does indeed imply a measurement of contextuality.
Graph-Theoretical framework

Another way to study the contextuality of different physical theories, is via Graph
theory [Cabello et al 2014]. Within this framework experimental scenarios are described by
graphs, and certain invariants of these graphs were shown to have a particular physical
significance. The two basic graph types that this theoretical framework utilized, are the
compatibility graphs and the exclusivity graphs. A compatibility or an exclusivity graph is

a graph associated to a physical’s system experimental scenario in the following way: The
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vertices in both graph types represent some of the system’s observables that we are currently
interested in. The edges of a compatibility graph represent the existence of a compatibility
relation between the connected observables, i.e. they are jointly measurable. On the other
hand, the edges of an exclusivity graph represent exclusivity relations, i.e. relations that
satisfy the principle of consistent exclusivity (Cabello 2012). The principle of consistent
exclusivity states that the sum of probabilities of pairwise exclusive events cannot exceed
1. The study of quantum contextuality can be conducted via the assignment of a truth
value to each observable-vertex of a graph associated to a specific system. Contextuality
may be witnessed in measurement statistics through the violation of non-contextuality

inequalities.
Hypergraph framework

The Hypergraph theory provides a more refined way to describe the concept of
contextuality than the graph-theoretical one [Acin et al 2015]. Although the basic idea is
the same as in the graph theoretical approach, in this framework, the compatibility relations
between observables are described via hyperedges, providing a more complete picture of the

contextual nature of a theory’s compatibility relations.

Quantifying Contextuality

There are many ways to quantify and measure contextuality. One approach is to
measure “how much” a non-contextuality inequality is violated. Some known inequality
examples are the KCBS inequality [Klyachko et al 2008] that we will analyze later, the Yu-
Oh inequality [Yu-Oh 2011], or a Bell-type inequality [Bell 1964]. Another and more general
way to measure contextuality is the contextuality fraction [Abramsky et al 2017]. For
instructive reasons we will now present a short description about what contextuality fraction
is.

First of all, we should clarify some notions. We will call measuring scenario an
abstract description of a particular experimental setup, which consists of the triple (X, M, 0)
where: X is a set of finite measurements, O is a finite set of outcome values for each
measurement, and M is a set of subsets of X. Each C € M is called a measurement context,
and represents a set of compatible measurements, i.e. a set of measurements that can be
performed together. For each measurement context C, there is a probability distribution e,
on the joint outcomes of performing all the measurements in C; that is, on the set 0¢ of

functions assigning an outcome in O to each measurement in C [Abramsky et al 2017].
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Given two empirical models e and e’ on the same measurement scenario, and 1 €
[0,1], one can define the empirical model de + (1 — A)e’ by taking the convex sum of
probability distributions at each context. Compatibility is preserved by this convex sum,
hence it yields a well-defined empirical model. Abramsky, Barbosa and Mansfield, wondered
what fraction of a given empirical model e admits a non-contextual explanation. By using

the empirical model which defined above, they ended up with a decomposition of each.

Let us consider a set of measurement statistics e, consisting of a probability
distribution over joint outcomes for each measurement context. Based on the previous
empirical model, we may factor the measurement model e into a non-contextual part eN¢

and some remainder e’, according to the following decomposition:
e=2e" + (1 - 2)e’

The maximum value of A over all such decompositions is the noncontextual fraction
of e denoted NCF(e), while the remainder CF(e) =1 — NCF(e) is the contextual fraction
of e. The basic idea behind that definition is that we look for a non-contextual explanation
for the highest possible fraction of the data, and what is left over is the irreducibly
contextual part. Indeed, for any such decomposition that maximizes A, the leftover e’ is
proven to be strongly contextual. This measure of contextuality takes values in the interval

[0,1], where O corresponds to non-contextuality, and 1 corresponds to strong contextuality.

Finally, we should also mention that Quantum Contextuality has been identified as
a source of quantum computational speedups and quantum advantage in quantum

computing [Howard et al 2014].

2.2 Compatible observables

In order to study contextuality, we first need to understand what are the compatible
observables and what the act of measuring two compatible observables implies. While in
classical theories, the succession of the observables we measure does not have any impact
on the results we obtain, in Quantum theory this is not the case. In many scenarios,
measuring observables in different succession would provide us with different results.
Consider for example the case where we perform measurements of two observables A and B
on a system, with the following way: We first perform a measurement of the observable A,
then of the observable B, and finally we measure the observable A once more. In a classical

theory, one would expect that the outcomes of the measurements of A prior and after the

17 )

——



measurement of B to be the same. However in quantum mechanics that is not always true.
There are quantum observables whose order of measurement does not play any role on the
results, and there are others that gives us different results depending on the order we
measure them. We will call the ability to measure two or more observables simultaneously,
and therefore in any order, commeasurability or compatibility, and the corresponding
observables compatible. The ability to jointly measure a set of observables, implies the
ability to construct a joint probability distribution for the measurement outcomes. The fact
that we can construct a joint probability distribution over a set of mutually compatible

observables is of great importance as we shall see in the process.

More formally, we shall say that the observables A;, i € I, are compatible if there
exists an observable B and Borel functions f;, i € I, such that A; = f;(B), Vi € I (Kochen-
Specker 1967). It is clear, that if this statement is true, one can measure simultaneously the
observables A; by measuring B and applying the function f; to the measured value. In the
case of quantum mechanics, the above definition coincides with the pairwise commutability
of the observables’ associated operators. This can be easily seen by applying the spectral

decomposition theorem.

We may also define an algebra over a set of compatible observables as following: If
A; and A, are compatible, is implied that A; = f;(B) and A, = f,(B). Then we can easily
define the observables (u;A; + yA4,) and A, A, for all real uq, u,, as:

tAg + 1Ay = (U1 fi + uafo)(B) (2.2.1)

A4, = (f1/2)(B) (2.2.2)

By defining the linear combinations and the products of compatible observables, the set of

all observables acquires the structure of a partial algebra, which we will define later.

Having stated all the necessary notions for observables’ compatibility, we are going

to present a useful theorem about the quantum observables compatibility:
2.2.1 The Compatibility Theorem (Shankar, 1994)

Let us have two observables A and B, and their associated operators A and B respectively.

Then the following statements are equivalent:

e A and B are compatible observables.
e A and B share a common eigenbasis.
e A and B commute, that is [/I,E] = 0.
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This is a very useful theorem, especially in the cases of finite dimensional quantum systems

that we are going to study in the next sections.

2.3 Kochen & Specker Theorem

After the efforts of John Bell to construct an inequality that identifies the existence
of non-local correlations, it became clear that quantum mechanics is not compatible with a
hidden variable theory. Kochen and Specker, believed that the notion of Bell’s non-locality
is not limited on the spatial separated multipartite systems, and that constitutes a more
fundamental property of Quantum mechanics which can be extended to the measurements
of every quantum system. Gleason has already proved in 1957 that the assignment of
probabilities on the measurement outcomes is independent of the measurement context
[Gleason 1957]. This theorem provided a new baseline for the interpretation of Quantum
mechanics, since the aforementioned property, known as Gleason’s property, underlies all
the Quantum theoretical scenarios. Kochen and Specker initially assumed the existence of
a hidden variable model that allows the joint measurement of all the involved observables
of an at least three-dimensional arbitrary quantum system. Then they showed that this

assumption leads to contradictions.

Hidden Variable Model

However, a natural question that arises is what do we mean by asking whether this
quantum description can be embedded into a classical theory, or be replaced by a theory of

hidden variables?

First, let describe the basic framework of a physical theory. Let O be the set of the
theory’s observables, i.e. the physical quantities we are measure, and § be the set of the
system’s possible states. Additionally, we have a function P that assigns to each observable
A and each state Y a probability measure P{;}, with which we can calculate the expectation

value of the observable A for the state ¥ in the usual manner:

Expy(4) = f AdPj(2) (2.3.1)

States are generally divided into pure and mixed states. Roughly speaking, the pure states

describe a maximal possible amount of knowledge about the physical system in question,
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while the mixed states give only incomplete information and describe our ignorance of the
exact pure state the system is actually in. In a classical theory, given that ¢ is a pure state,

the probability P,I,A assigned to each observable is an atomic measure concentrated on a real
number a. That is, P,I,A (U)=1ifa € U and P{;}(U) = 0 if a & U. Therefore, we can introduce

the phase space £ of pure states, where each observable A becomes associated with a real

valued function f, : 2 - R given by f,(¥) = a.

In the case of a well-defined Quantum mechanical system, the set of observables O
is represented by a set of self-adjoint operators of a Hilbert space H, while the set of pure
states S is the set of all the unit Hilbert rays. For each observable A € O we denote by E4(+)

(projection valued) the spectral measure of A, and we have the spectral decomposition:

A= JAdEA(A) (2.3.2)

o(4)

Where o0(A) denotes the spectrum of A. More generally, the operator u(A4) for a Borel

function u : R — R has the representation:

() = f u(2) dEA(2) (2.3.3)
o(4)

Then we have that
Py (U) = (EAU)Y, ¥) (2.3.4)

Where Y is any unit vector in the one-dimensional linear subspace corresponding to the

pure state |¢). Hence, by the spectral theorem we obtain

Bxpy() = )y = [ 24 WD) = (v,v) (2.3.5)

o(4)

Therefore, the minimal requirement for the existence of a Hidden Variable model, is that
there should exist a measurable space (2, F), where F denotes the g-algebra of measurable

subsets of £2, and two maps
03Aw f,: 2 — R, measurable (2.3.6)
§ 3 |y} ¥ py, : probability measure on (2, F) (2.3.7)

such that the probability distributions are reproduced:
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(KS1) Py (U) = uy (f71(V)) (2.3.8)

The first map assigns “values” to each observable. The second one, assigns a probability

measure to every pure state, such that the value of Pl‘fl))(U) expresses the probability the

outcome of measuring observable A for a system in the state ), to lie inside the measurable

real subset U. In particular, the expectation values have to agree:

@y =wap)= [ 2aP) = [ fu @iy @) (23.9)

a(4)

As long as not more is required, we can introduce a hidden variable model which is quite
“natural” from probability theory’s perspective. Kochen and Specker provided us with that
model via the mathematical construction of a phase space 2 for which (2.3.6) and (2.3.7)

are satisfied:

N=R° ={wlw:0—>R}, F=8B° (2.3.10)
Where B is a o-algebra of R, and the two maps f; and ) are given by

fa(w) = w(A) , canonical projection

ty = Tlaco P{,j , product measure

Then (KS1) is indeed satisfied

wy (fi () = py {olfy(w) € UY) = py({wlw(4) € UY) = Py(U) (2.3.11)

Note that in the construction of this phase space, we consider the functions f; to be
measurable with respect to the probability measure py. Thus, according to probability
theory these observables can be interpreted as random variables for each state [y).
Furthermore, it is easily understood that in this representation the observables appear as
independent random variables. However, the observables of a physical theory are not always
independent, and therefore we have to add some additional condition, in order to adapt this

mathematical construct to a physically interesting theory.
2.3.1 Definition (Kochen-Specker 1967)

We define the observable g(A) for every observable A and a measurable function

g : R — R by the formula

PIYW) =Pi(gT W), VpES (2.3.12)
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If we assume that every observable is determined by the function P, i.e. P{;} = Pg, vy €

S = A = B, then the formula (2.3.12) defines the observable g(A). This definition coincides

with the definition of a function of an observable in both quantum and classical mechanics.

Notice that the measurement of g(A) is independent of the theory considered, as one
can consider the value g(a) as a measurement outcome of the observable g(4), if the
measured value of observable A is a. Thus, the set of observables acquires an algebraic
structure, and the introduction of hidden variables should preserve this structure. Therefore

it is very natural to require that a hidden variable model should also satisfy

(KS2) foy = 9(fa) (2.3.13)
for every measurable function g : R — R and every observable A € O.

This second condition has far reaching consequences. It should be regarded as an

alternatively to Bell’s locality assumption (Straumann 2018).
The following remark will be important.

2.3.2 Remark (Straumann 2018)

If A, A, € O are two commuting observables then the following are true
fara, = fa, * fa, (2.3.14)
fasva, = fa, + fa, (2.3.15)
Proof:

Since the Ay, A, are commuting self-adjoint operators we know from a theorem [von
Neumann 1955] that they can represented as real measurable functions of a single self-

adjoint operator B:
A, =uy(B) , A, = u,(B) , where uq,u, are measurable real functions
Then we have that:
Ay A; = u(B) u(B) = (uy - up)(B)
Thus, for the product we have

fAlAz = f(ul-uz)(B) = (u; - uy) o fs = (uy 0 fB) - (uy °fB)
= fuu®  fu8) = fa, " fa,
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The additivity follows similarly.

Note that in Bell’s work, the product rule or Factorizability condition follows for separated

situations from his locality assumption, however not only for compatible observables.

The algebraic structure of the Compatibility relation

The pure states of a quantum system can be represented by one dimensional linear
subspaces of a Hilbert space whose dimension is given by the number of possible outcomes
we can observe. On the other hand, the observables are represented by Hermitian operators
on that space, and all the observed outcomes upon measurement are the eigenvalues of the
observable’s associated operator. The pre-measuring state determines the probability that
each outcome occurs, and the post-measuring state always lie on the corresponding
eigenspace of the eigenvalue that we measured. Additionally, we know that when two
observables are compatible, their associated operators commute, and that the set of
commuting operators is not transitive. Therefore, if we want to study the logic that underlies
the quantum measurement outcomes, we need to study the logic of Hilbert space’s linear

subspaces, and the properties of the operator’s compatibility relation.

In their original paper, Kochen and Specker [Kochen-Specker, 1967] in order to
describe a logical procedure for assigning truth values to the measurement outcomes of the
observables, they devised the notion of a partial algebra. A partial algebra is basically the

algebraic structure that describes the set of observables of a quantum system.
2.3.3 Definition (Kochen-Specker 1967)

A set A forms a partial algebra over a field K if there is a binary relation of Compatibility
on (© € A X A, the operations of addition +:@— A and multiplication *:(®— A, a scalar

multiplication -: K X A — A, and an element 1 € A, satisfying the following properties:

1. The relation @ is reflexive and symmetric, i.e.a@a,anda @ b = b ©@ a, Va,b €
A.
a@ 1, Va€eEA.
The relation © is closed under the operations, i.e. If a; @ a;, V1 <i,j <3 = (a; +
a,) ® as, (a1a,) © a; and da; @ a3, VA € K.

4. If a; @aj, V1 <i,j <3, then the values of the polynomials in a,, a,, az form a

commutative algebra over the field K.
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Of special interest are the cases in which the field K is the field of real numbers R, and the
field of two elements Z,. For the case of a partial algebra over Z, we may define the Boolean
operations in terms of the ring operations in the usual manner: a’' =1 —a, aAb =ab,
aVb=a+b—ab.Itfollows that if a; © a;, V1 < i,j < 3, then the polynomials in a,, a,,

az form a Boolean Algebra.
2.3.4 Definition (Kochen-Specker 1967)
We shall call a partial algebra over Z, a partial Boolean algebra.

What makes a partial Boolean algebra interesting, is the fact that the set of
idempotent elements, i.e. the elements for which a? = a is true, of a partial algebra B, forms
a partial Boolean algebra. That is deduced from the familiar fact that the set of idempotents

of a commutative algebra forms a Boolean algebra.

Now, let H,, be a complex Hilbert space of dimension of n, and H(H,,) be the set of
all self-adjoint operators on H,,. If we take the relation of compatibility to be the relation
of commutativity then H(#,) forms a partial algebra over R. Thus the set B(#,) of the
orthogonal projections of H, forms a partial Boolean algebra. Because every projection
corresponds uniquely to a closed linear subspace of H,, we may alternatively consider
B(J{,) as the partial Boolean algebra of the closed linear subspaces of H,, with the
operation a A b to be the intersection of the subspaces a and b, and the operation a V b to

be the direct sum of these subspaces. That is:
aANb=anb
avb=a@®b (2.3.16)
a’ denotes the orthogonal complement of a

Notice that since each observable is characterized from the eigenspaces of its associated
Hermitian operator, the set O of observables of a physical theory forms a partial algebra
over R due to the relation of compatibility. If observable P is a projector, or alternatively
an idempotent element of O, then it follows from the definition of P2, that the measured
values of the observable P can only be 1 or 0. By labelling these values as truth and falsity
respectively, we may consider each such projection observable as a proposition of the theory
(von Neumann 1955). Thus, the set of propositions of a physical theory forms a partial

Boolean algebra. This implies that:
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The propositions of quantum mechanics form a partial Boolean sub-algebra B
of B(H,) (Kochen-Specker 1967).

In order to compare structurally two partial algebras U,V we are going to define a

homomorphism between them.
2.3.5 Definition (Kochen-Specker 1967)

A map f:U — V between two partial algebras over a common field K is a homomorphism

if for every a, b € U such that a ® b and for every u, A € K, the following are true:

L. f(a) ® f(b),

2. f(ua + Ab) = uf(a) + Af (b),
. f(ab) = f(a)f (b),

4 f(D)=1.

w

It is obvious that we defined the homomorphism in such a way that the relation of

compatibility is preserved.

The Hidden Variable model on Compatible Observables

As we stated above, the basic assumptions which Kochen and Specker made for a Hidden

variable model can be summarized in the existence of a phase space where:

1. There is always a state distribution, and every observable A of the set of observables

O is unambiguously mapped onto a real number such that:
(KS1) P$(U) = uw(fA_l(U)) , where U € R measurable
2. Values of all observables in O conform to the following constraint:

(KS2) fgay = g(fa) , for every measurable real function g.

Now let us see what a hidden variable model implies for the partial algebra of
quantum observables. Consider the set R? of all function from the hidden space £ into the
R, i.e. R? = {f|f : 2 — R}. It is obvious that R? with the usual operations of function
addition and multiplication, forms a commutative algebra over R. From remark (2.3.2), it
is clear that if anyone assumes a hidden variable model, then the partial algebra Q of

quantum mechanical observables becomes a partial algebra of functions f : 2 — R with the
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same partial function operations as in the case of R?. That implies that there must be an
injective homomorphism from the partial algebra Q into the commutative algebra R2. The

conclusion of Kochen and Specker was the following:

A necessary condition for the existence of hidden variables for quantum
mechanics is the existence of an embedding of the partial algebra Q of quantum

mechanical observables into a commutative algebra.

Now if ¢ : B < C is an embedding of a partial algebra 9B into a commutative algebra C, it
follows immediately that the restriction of ¢ onto the partial Boolean algebra of idempotent
elements of B, is an embedding into the Boolean algebra of idempotent elements of C. Thus,
the existence of hidden variables implies the existence of an embedding of the partial

Boolean algebra of quantum-mechanical propositions into a Boolean algebra.

If we assume the existence of a hidden state space (2, so that the partial algebra of
quantum mechanical observables Q is embeddable by a map f into the algebra R?, then
each hidden state w € R? defines a homomorphism h : Q — R with h(4) = f;(w), which
physically speaking may considered as a prediction function which simultaneously assigns a
predicted measured value to every observable. Thus, the existence of hidden variables
implies the existence of a large number of prediction functions. Every homomorphism from
a partial to the real numbers, is by restriction a homomorphism of the partial Boolean
algebra of idempotents onto Z,. The following theorem characterizes the embedding of a

partial Boolean algebra into a Boolean algebra in terms of its homomorphisms onto Z,.
2.3.6 Theorem (Kochen-Specker 1967)

Let B be a partial Boolean algebra. A necessary and sufficient condition that B is
embeddable in a Boolean algebra B is that for every pair of distinct elements a,b € B there
is a homomorphism h : B — Z, such that h(a) # h(b).

Proof:

(=) Suppose that ¢ : B - B is an embedding. Since @(a) # @(b) if a # b, there exists by
the semi-simplicity property of Boolean algebras [Halmos 1963], a homomorphism g : B —
Z, such that (g o @)(a) # (g o ¢)(b). Hence h = g o ¢ is the required homomorphism of B

onto Z,.

(&) Let S be the set of all non-trivial homomorphisms of B onto Z,. Define the map ¢ :
B - Z5 ={f|f : S— Z,} by letting B3 awr g:S —> Z, such that g(h) = h(a), VhES.
Then it easily checked that ¢ is an embedding of B into the Boolean algebra Z;.
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The previous theorem essentially states that if a partial Boolean algebra is
embeddable into a Boolean algebra, one can find a way to assign truth values “0” and “1”
to every element of the partial Boolean algebra, such that two compatible elements could

never take the “1” value simultaneously.

A useful way to visualize is via an orthogonality graph. An orthogonality graph is a graph
of orthogonal relations on Hilbert space, meaning that every vertex represents a 1-
dimensional Hilbert subspace, and every edge denotes the orthogonality relation between

the connected vertices.

After the introduction of the basic framework, we can finally formulate the Kochen &

Specker theorem.

Kochen Specker proof

K-S Theorem (Kochen-Specker 1967)
If dim3 > 2, an embedding, satisfying (KS1) and (KS2), is in general not possible.

Let B(H) denote the partial Boolean algebra of the propositions of linear subspaces
of H. In order to prove the K-S theorem, we will consider an orthogonality graph of the
rays belonging to the Hilbert space H . In this graph, each vertex represents a Hilbert space’s
ray, and each edge denotes the orthogonal relation between the corresponding rays of the
connected vertices. It is easy perceivable that this graph represents a finite Boolean sub-
algebra of B(H). So, we are going to show that there is always a sub-algebra D of B(H),

such that there is no homomorphism from D to Z,.

As it turns out the Kochen-Specker can be reduced to a “coloring type problem”,
meaning that if a hidden variable theory is the case, one can assign binary values to any
orthogonality graph of a system with dimH > 2, in a way that every neighborhood of the

graph has exactly one element with the value 1.

It is obvious that if such a graph, where an assignment of truth values is impossible,
exists for a 3-dimensional Hilbert space, it also exists for higher dimensions, since the

addition of extra edges in the graph, can only make our proof simpler.

2.3.7 Definition
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We will say that a graph G is realizable on a finite dimensional Hilbert space H, when G
constitutes a graph of the rays’ orthogonal relation on H. That means, that there is an
assignment of unit elements of H to the vertices of G, such that distinct elements are
associated with distinct vertices, and the orthogonality relation between two elements is

denoted by an edge connecting the corresponding vertices.

Therefore, in order to prove K-S theorem we shall show that there is a realizable
graph on the 3-dimensional Euclidean space E3, in which an assignment of binary values

on the vertices that satisfy the above conditions is not possible.

For simplicity, we will consider that the points that the graph vertices represent lie unit

sphere S.
2.3.8 Lemma

The following graph G, is realizable on S.

ag

Fig. 2.3.1 Graph of orthogonal relations in R3

In fact, it can be proven that if A, and Ag are the corresponding unit vectors of the vertices
a, and aq respectively, and the angle 8 between those vectors is satisfying the relation 0 <

6 < arcsin G), then the graph G; is realizable on S.

Proof

Let u : V(G;) = S be an injective map that maps each vertex a; of the G; to a point 4; =
u(a;) on the unit sphere S. Now, let us assume that 6, the angle between u(a,) and u(a,),
is any acute angle. Since u(ag) is orthogonal to u(ay) and u(ay), and u(a;) is orthogonal
to u(ag), u(a,) must lie in the plane defined by u(a,) and u(ag). Moreover, since the u(a,)

is orthogonal to u(ay), we have that the angle ¢ between u(a,) and u(ay) is ¢ = % +0.

Let us chose the u(a,) such that the central angle ¢ = %— 6.
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Now, let u(as) =t and u(ag) = k and then choose another vector ] such that f,f,E form a
complete set of orthonormal vectors. Given that, the vector u(a,) being orthogonal to 1,

may be written as:

u(ay) = ﬁ G+ XE) , for a suitable x € R.

Similarly, u(a,) being orthogonal to k, may be written as:

u(a,) = \/%7 (t+ yj), for a suitable y € R.

Then, the orthogonality relations of the graph yield:
u(az) = u(as) X u(a,) = ﬁ (—Xf+ E),
u(az) = u(as) X u(a,) = \/%7 yr—7),

Now, u(ay) is orthogonal to u(a,) and u(a,), so:

u(ay) xulay) B 1
lula) xula)ll 1+ 2% + x2y2

u(ay) = (—xyt +xj — I:)

Similarly, u(a,) is orthogonal to u(as) and u(a,), so:

u(ay) X u(as) B 1
”u(a4) X u(a3)|| B \/1 + y? + x2%y?

u(a,) = (=1 —yj —xyk)
Recalling now that the usual inner product of two unit vectors just equals the cosine of the
angle between them, we get:
xy
VA +x2 + x2y2)(1 + y2 + x2y?)

u(ao) u(a;) = cos @ =

But since ¢ = g — 0, we get that:

Xy
VA +x% 4+ x2y2) (1 + y? + x2y?)

sinf =

By using elementary calculus we can easily show that the previous expression achieves a

maximum value of 1/3 for x = y = +1. Hence, the graph G; is realizable if 0 < sinf < % or

equivalently when 0 < 6 < arcsin (é)

2.3.9 Lemma
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The following graph G5 is realizable on S.

\i / °
P1 ’
<\ p p

Fig. 2.5.2 Graph G, of orthogonal relations in R3, which is constructed with
isomorphic copies of graph G,

Proof:

——
—
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The graph G, can be constructed by combining isomorphic copies of the graph G; in
the following way: First consider a realization of graph G; for an angle of 18°. Since 8 =

1”—0 < arcsing = 0.3398 the graph G; is indeed realizable on the unit sphere S. Now, choose

three orthogonal points Py, Qy, Ry on the unit sphere and place interlocking copies of G,
between every two of them, such that every instance of point aq of one copy, is identified
with the instance of a, of the next copy. These copies of G, are placed between every two
of the initial three orthogonal points Py, Qy, Ry, in a way that the movement from a specific
instance of point a; of one copy to the respective instance of point a; of its immediate
interlocking neighbor copy, is equivalent to a rotation by 18° about the axis that goes
through the origin and the third of the initial orthogonal points. Due to the fact that
Py, Qo, Ry are orthogonal, we can fit five copies of G; between any two of them, since @p o, =

©Ppor, = PooR, = % = 56. In this way, five interlocking copies of G; are spaced between, say,

P, and Qy and all five instances of ag are identified with R,. Also, anyone can see that the
orthogonality between the points ay and aq of each copy that is placed between Py and Q,,
and Ry is evidently conserved. Of course, similar results are yielded about the placement of

interlocking copies of G; between Py — Ry and Qg — R,.

Fig. 2.3.3 A figure showing how 15 copies of Gy are
placed between three orthogonal points in the 3-
dimensional unit sphere.
A more rigorous way to express the exact position of the point a, of every G;-copy
is by assuming an injective map u : V(G,) — S that maps each vertex v; of the G, to a point
V; = u(v;) on the unit sphere S. Let u(py) = Py, u(qy) = Qx, u(ry,) = Ry, for 0 < k < 4, be

the corresponding unit vectors to the vertices of G,, as shown in the diagram (Fig. 2.3.3).
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Now, we can define the corresponding points of the vertices noted on the diagram above as

following;:
P, = cos—nf+ sink—nj
10 10
. km -
Qx = COSE] + sinEk
Ry, = cosk—nf+ sink—nE
10 10

where 0 < k < 4, and 1, ], k be a complete set of orthonormal vectors on R3.

It is pretty obvious that the initial three orthogonal points Py, Qy, Ry that we mentioned

before correspond to the vertices py, qq, 7y respectively, according to the diagram.

O

As we have stated before, each graph of orthogonal relations on E? is associated with
a partial Boolean sub-algebra B(E3) of the linear subspaces of E3. Let T be the image of G,
under the injective map u, consisting of 117 points on S. Now, let D be the partial Boolean
sub-algebra generated by T in B(E?). This corresponds to completing the graph G, so that
every edge lies in a triangle. In the resulting graph the points and edges correspond to one

and two dimensional linear subspaces of B(E?3) respectively.

Now, consider a homomorphism h : D — Z,, where D is a partial Boolean sub-algebra
of B(E3). If s4,5,,53 are three mutual orthogonal rays of D, then the following must be

true:

h(s;) Uh(s,) Uh(s3) =h(s;Us,Us;) =h(E3) =1, and
(2.3.17)
h(s) Uh(s;)) =h(s;Us;)) =h(0)=0,1<i#j<3

Hence, exactly one of every three mutually orthogonal lines is mapped by h onto 1. Now

we can finally prove the K-S theorem
2.3.10 Theorem
The finite partial Boolean algebra D has no homomorphism onto Z,

Proof

Let assume that such a homomorphism exists. As we have seen, such a homomorphism h :
D — Z, induces a map h* : T — {0,1} that satisfies the condition (2.3.17).
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Therefore, we should assume that there is a map g: G, — {0,1} satisfying condition
(2.3.17). That means that there is at least one way to “color” binary the vertices of G,. Let
us now, observe how this map g acts on a copy of G; as a subgraph of G,. Suppose that
g(ap) = 1, then it follows that g(ag) = 1. That happens, because if g(as) = 0, then since
g(ag) = 0 we must have g(a;) = 1. Hence, g(a,) = g(a,) = g(as) = g(a,) =0, so that
g(as) = g(ag) = 1, a contradiction.

Fig. 2.3.4 A Gy coloring that shows the contradiction

This means that if the instance of point a, of a copy of G; is “colored” with 1, then
the instance of point ag of the same copy, also takes the value of 1. This observation,
constitutes the backbone of proving Kochen and Specker theorem, because since the instance
of aq of a copy is identified with the instance of a; in the neighboring copy, is implied that
if one of these instances of point a, take the value of 1, then all the other instances of point

a, must take the same value as well.

Fig. 2.3.5 Showing that each copy of ay, should take the
same color as the ay of the neighboring copy.
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Now, since pg, o, and 1y lie in a triangle in G,, exactly one of these points is mapped
by g onto 1, say g(ry) = 1. Hence, by the above argument we find g(ry) = g(r;) = g(ry) =
g(rs3) = g(r) = glpy) = 1. But g(py) = 1 contradicts the condition that g(ry) = 1, and

that proves the theorem.

O

This theorem implies that there is no map of the unit sphere S onto {0,1} satisfying
the condition (2.3.17), and hence no homomorphism from B(E®) onto Z,. This result, can
be obtained more simply either by a direct topological argument or by applying the
Gleason’s theorem [Gleason, 1957].

A system to apply the K-S theorem

Having proved that there is no embedding from the set of quantum propositions onto
a Boolean algebra, we need to provide an example of a quantum system in which we can
apply the K-S theorem. Let consider a qutrit, i.e. a system with a three dimensional
associated Hilbert space, and more specifically a spin-1 system. In this case the “spin” can
be described by the vector of the spin projection operators S = (Sx,.S'y,SZ)7 where the
directions of x,y and z be the direction of the usual three mutual orthogonal rays. In the

usual representation, we have:

1(0 1 o> 1(0 —i 0) <1 0 0)
Se=—=|1 0 1), S=—=(i 0o -i|], S,=[0 0 o
VZ\o 1 o V2o 1 o 00 -1

We can define the spin projector operator of the system, on the direction of the unit vector
v=(a,b,c), as S5 =S¥ = aS, + bS, + ¢S,, where of course lal? + |b|? + |c|? = 1. One

can easily show that the squares of the spin projector operators Sy, Sy, S, are commuting:
[S2,52] = [s2,52] = [S2,52] =0 (2.3.18)
And thus S7, S, SZ form a set of compatible observables.

Now, we will show that there is an embedding ¢ of the partial Boolean algebra B(E?3)
into the partial Boolean algebra B of quantum mechanical proposition. Let P be a projection
operator belonging to a 3-dimensional eigenspace. For every 1-dimensional linear subspace
v of E3 there corresponds a spin projector operator S,. We will define the ¢ as following:
Let @(E®) = P and ¢(0) = 0. Now, let ¢(v) = PSZ, for every 1-dimensional subspace v,

and p(w) = P(1 - S‘il), for every 2-dimensional subspace w, where the w* denotes the
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orthogonal complement of w. To show that ¢ is an embedding it clearly suffices to prove
that if a and b are orthogonal 1-dimensional subspaces of E3, then [PS2, PSZ] = 0. But this

is already true since
[PS2,PSZ] = PS2PSZ — PSEPS2 = P(S2SE — SES2) = P[S2,SE] =P0 =0

Note that the projection operator PS?2 is an element of B and corresponds to the proposition

P,: “For every spin-1 system, the total angular momentum in the direction of a is not 0”.

This concludes the proof of Kochen and Specker theorem.

2.4 KCBS inequality

As we have seen, the existence of an inequality which indicates contextual effects
when violated, is extremely useful. The CHSH inequality for a system of two qubits, is such
an example. The violation of CHSH indicates the existence of non-local correlations, which
is a special case of contextual correlations on a paired system. Having the results of the K-
S theorem in mind, we are going to present another inequality, that its violation indicates
contextual correlations of the measurements on a single qutrit system, known as KCBS
inequality (Klyachko et al 2008).

Let us consider a spin-1 system

Let consider a cyclic quintuplet of unit vectors {€;};ez, with €; L €;14, Vi € Zs. We will

call it a pentagram.

0

Fig. 2.4.1 Five cyclically orthogonal vectors in E3
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Also, consider the spin-1 vector § = (Sx,Sy,SZ) with

1(0 1 o> 1(0 i 0) (1 0 0)
Se=—(1 0 1), S==(i 0o -i|], S,=|0 0 0
V2o 1 0 V2o i o 0 0 -1

and the spin projection operator S, =S -#; onto the direction of #;. The orthogonality
between the #; with successive indices, implies that the respective squares of S, commute:

As

As As

[Sfi,SfiH] =0, Vi €Zs. Now, consider the observables A; = ZSfi — 1, since it is more
convenient to deal with them due to the fact that each of them take values a; = £1. The
relation of these observables can be represented by an exclusivity graph, where the vertices
represent the observables and the edges represent the exclusivity relation between two

compatible observables.

That means, after a measurement, these observables will give a positive value of +1 if the
state of the system lies in their corresponding subspace, or -1 if it does not. However, due
to the orthogonality relations, there cannot be two connected vertices that both take the

value of +1 simultaneously. Knowing all that, we can construct the following polynomial:
a,a, + a,as + aza, + a,as + asaq (2.4.1)

where the a; denote the outcome of measuring observable A;, and it is either +1 or -1. It is
easy to show that the minimum value the polynomial (2.4.1) can take, satisfying the rule
A

As As
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of exclusivity above, is -3. Ideally, we would like all the monomials a;a;,; to take the
minimum value, that is -1, but something like that is impossible since at least two
neighboring vertices have to take the value of -1 simultaneously, otherwise we would end

up with two +1 neighboring vertices.
So, we have that:
a,a, + a,as + aza, + a,as + asa; = —3 (2.4.2)

Assuming now the existence of a hidden variable joint distribution that would let
our observables to take the a; values simultaneously, we can take the respective expectation

value of the relation (2.4.2). Thus we arrive at the inequality:

We will call this inequality, KCBS or pentagram inequality, and its violation will indicate
the absence of a hidden observable joint distribution, and the existence of contextual

relations.

Now, we are going to give a set of observables that follows the above scenario, and
thereafter we will find a vector state |Y) that violates the KCBS inequality. Consider the

following family of vectors:

|vg) = cos (41{;) |0) + sin (?) |1) + /cos (g) |2) (2.4.4)

All these vectors are cyclically orthogonal similar to (Fig.2.4.1). Now, consider the following

observables
|Ui)<vi|
A, =2——-1 2.4.5
' (Ui|vi) ( )
The KCBS operator is:
KCBS = A1A, + A,As + AzA, + A A + AA, (2.4.6)

If we take |¢) = |2) then the (KCBS), = (2|KCBS|2) = —3.94427 < -3

2.5 No Disturbance Principle

As we have mentioned in the Bell’s inequality section, the Bell’s factorizability

condition is derived from a more fundamental principle called Principle of local causality.
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Local causality states that any cause and effect between spatially separated systems is
restricted by the velocity of light. However, multipartite quantum systems do not obey the
principle of local causality, as the related experiments have shown. However there is a
principle, similar to local causality, which poses less restrictions and the quantum theory
indeed satisfies. This principle is called the No-Signaling (NS) principle and expresses the
impossibility of sending information faster than a specific finite speed, and more specifically
the speed of light. This principle is deeply rooted in our existing understanding of the
physical world, and sets a more general framework in which we consider our current physical
theories, and also restrict the structure of the possible future ones. This principle implies
that the correlations between distant partners cannot be used to send information, as is the
case for quantum correlations. Mathematically a correlation is expressed through a joint
probability distribution P(a, b|x,y), where a and b are outcomes of two separated parties,
given that x and y are their free choices of measurement settings respectively. Therefore
the non-signaling condition implies that the marginal probabilities are independent of the
partner’s choice: P(alx,y) = X, P(a,blx,y) = P(alx). [Pawlowski 2009]

(NS) P(alx,y) = ) P(a,blx,y) = P(alv) (2.5.1)
b

However, there is an even more fundamental principle than NS, which any physical
theory should satisfy: The No Disturbance Principle (ND)[Ramanathan et al 2012] is a
generalization of the no-signaling principle that refers to compatible observables instead of
space-like separated observables. To formulate the ND principle mathematically, let us
consider a physical system on which one can perform several different measurements
A,B,C, ... etc. Let us assume that observables A and B are compatible, and also that A and
C are compatible. That means that measurements on the observable pair A and B and on
pair A and C can be jointly performed. This implies the existence of the joint probabilities
p(A=a,B=>b) and p(A=a,C =c), where a, b and ¢ denote the outcomes of the
corresponding measurements. The ND principle is the condition that the marginal
probability p(A = a) calculated from the joint distribution p(4 = a, B = b) is the same as
that calculated from the p(A = a,C = c). More specifically, the relation that holds is:

(ND) Yph=aB=b=) pA=aC=0=pl=0a (2.5.2)
b c

The ND principle is related to the fact that in any measurement experimental scenario, one
may assign a probability value to each event independently of the context of measurement.

Since this property is satisfied by any known physical theory, Quantum mechanics is not
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an exception. This principle initially formulated by Gleason [Gleason 1957], and thus we

may also refer to it as Gleason’s property.

3 Graph-theoretical approach to Contextuality.

3.1 Useful Graph-theoretical notions and theorems

As we saw on the Kochen — Specker proof, graph theory provides us with a suitable
framework for describing any measuring scenario, and at the same time, equips us with a
very useful theoretical “toolkit” for the study of non-local and contextual correlations. In
the next sections we will provide graph theoretical description for many different
experimental scenarios, while to approaching the notion of contextuality from a graph-
theoretical point of view. However in order to do that we need to clarify some notions,

provide definitions, and mention some important theorems we will use.

A graph is a structure amounting to a set of objects in which some pairs of the
objects are in some sense “related”. A simple undirected graph is a pair G = (V(G),E (G)),
where V(G) is a set whose elements are called vertices, and E(G) is a set of two-sets of
vertices, i.e. E(G) = {{x, v}hix,y € V(G)}, whose elements are called edges. From now on we

will refer to simple undirected graphs simply as graphs. Now let give some useful definitions:
3.1.1 Definition

An induced subgraph of a graph G is another graph, formed from a subset of the vertices

of G and all of those edges connecting pairs of vertices in that subset.
3.1.2 Definition

The complement of a graph G, is the graph G with the same vertex set but whose edge set

consists of the edges not present in G.
3.1.3 Definition
Clique of a graph G is any complete subgraph of G.

3.1.4 Definition
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We will call circuit graph, a graph that its edge set forms a path such that the first node of
the path corresponds to the last.

3.1.5 Definition

We will call chordless cycle, or simply cycle, a circuit graph whose circular paths are all of

the same length.
3.1.6 Definition

A maximal clique of a graph G, is a clique that cannot be extended by including one more

adjacent vertex, meaning it is not a subset of a larger clique.
3.1.7 Definition

The clique number w(G) of a graph G is the size of a maximum clique of G, i.e. the number

of vertices in the largest maximal clique of G.
3.1.8 Definition

The chromatic number y(G) of a graph G, is the smallest number of different colors needed

to color the vertices of G so that two adjacent vertices never share the same color.
3.1.9 Definition

The vertex clique covering number 8(G) of a graph G is the minimum number of cliques in

G needed to cover the vertex set of G.
3.1.10 Definition

Perfect graph is called a graph in which the chromatic number of every induced subgraph
equals the size of the largest clique in that subgraph. Equivalently we can say that a graph
G is perfect if and only if we have that y(G[S]) = w(G[S]), VS € V(G), where G[S] denotes
induced subgraph of G with a vertex set S.

3.1.11 Weak Perfect graph theorem (Lovasz 1972)

In graph theory, the perfect graph theorem states that an undirected graph G is perfect if

and only if its complement graph G is also perfect.
3.1.12 Strong Perfect graph theorem (Chudnovsky et al. 2006)

The strong perfect graph theorem states that G is a perfect graph if and only if neither of

G or G contains an induced cycle of odd length greater or equal to 5.
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3.1.13 Lovasz Sandwich Theorem (Lovasz 1986)

The Lovéasz “sandwich theorem” states that the Lovasz number of a graph always lies

between the graph’s clique number and the graph’s chromatic number. More precisely:
w(G) <9(G) < x(6) (3.1.1)
3.1.14 Remark

Notice that in a graph G, a set of vertices is independent if and only if the corresponding
vertices of the complement graph form a clique. That means that these two notions are

complementary, and thus:
a(G) = w(G) (3.1.2)
3.1.15 Theorem (Lovéasz 1979)

It is proved that the Lovéasz number 9(G) of a graph G provides an upper bound on the
graph’s Shannon capacity ©(G), and therefore the following relation holds:

a(G) <0(6) <9(6) (3.1.3)
3.1.16 Definition

The Shannon capacity @(G) of a graph G, is a graph invariant defined from the number of

independent sets of strong graph products, namely:
0(6) = sup Ya(G") = lim Y/a(G¥) (3.1.4)
k —00
where G¥ is the strong product of G with itself k times.

3.1.17 Remark

By coloring a graph G with x(G) different colors, we basically perform a vertex
decomposition into the fewer possible independent sets. Notice that these sets of vertices
correspond to a clique decomposition with the fewer possible components of the graph
complement G. Hence, we conclude that the clique covering number of a graph is given by

the chromatic number of its complement graph, and vice versa. Therefore:

x(G) =6(G) (3.1.5)

Now, we will proceed by formulating the basic framework for the study of the non-

contextuality test inequalities.
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3.2 Graphs for non-contextuality test inequalities

There are two types of graphs that can be associated to any measurement scenario
and therefore to any given non-contextuality inequality [Cabello, 2010]. The first one
consists of graphs that indicate the compatibility relations between a set of observables that
we are interested in, and thus we call them compatibility graphs. The graph’s vertices
represent the observables that are measured in the experiment, while the edges denote the
compatibility relation between the connected vertices, namely the ability to jointly measure
the corresponding observables. Every possible subset of vertices that can be jointly
measured, like a graph edge, is defining a measurement context or simply a context. The
other type of graphs, called exclusivity graphs, are graphs that indicate the exclusivity
relations between the outcome events regarding a measurement. Here the vertices represent
events that may occur upon a measurement of a context, while the edges denote the mutual
exclusivity relation between the event-vertices they connect. The events which are
represented by  vertices, usually take the form {A; =a;,.., 4; =q;} or
{ay, ., ay |4y, ., Ay, }, meaning that for a context defined by (Al-l, Ay ), which is a set
of pairwise compatible observables we measure simultaneously, the outcome of measurement
for the observable Al-]. is a;; for every j =1, ..., k. In many cases, an event occurring in a
composite system may be expressed as {x;, xj, ... |i, ], ... }, where x; is referring to the outcome
of measuring the i-th observable of the first subsystem, x; is referring to the outcome of
measuring the j-th observable of the second subsystem and so on. For example, in a Bell-
type scenario, with P(a, bli, j) we denote the probability of the event “the result a has been
obtained when measuring A;, and the result b has been obtained when measuring B;”, while
with P(A; = a) we denote the probability of the event “the result obtained for measuring
A; was a”. For a given experimental scenario, we can use either the exclusivity graph of all
possible events or any of the induced subgraphs of this graph in order to derive a
noncontextual inequality. From now on we will be referring to the exclusivity graph of all
possible events as global exclusivity graph of the scenario, while any of the induced
subgraphs will be simply labeled as exclusivity graph. When we construct noncontextual
inequalities we usually use dichotomic observables, namely observables that take two
distinct values, which in quantum mechanics represent the binary answer to the question
“if the post measuring state of the system lies in a specific linear subspace of the system’s

associated Hilbert space”. From now on, we will mainly consider as possible outcomes for
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measuring an observable either the values {0,1}, or {—1,1}, depending on our objective. Now

let see some useful examples about compatibility and exclusivity graphs.

CHSH scenario’s graphs

One of the most well-known quantum-theoretical set-ups is the Bell scenario, where
measurements performed in a pair of two entangled qubits. In this scenario we have two
measurement settings for each qubit subsystem; let say Ay, A; for the first qubit and B, B;
for the second. The observables take the values {—1,1} upon measurement and every
observable of the first system is compatible with every observable on the second one, while
none of the observables on the same system are compatible with each other. This set-up

can be described by the following two graphs:

1

Fig.3.2.1 Compatibility graph of the
CHSH scenario

Fig.5.2.2 Global Exclusivity graph of the CHSH scenario

The exclusivity relations of the exclusivity graph arise from the acceptance that the
no-signaling principle holds, which is a special case of a more general principle that governs
Quantum theory, the No-Disturbance (ND) principle. In other words, if we measure a
context that corresponds to A; and then a different context that also corresponds to A; we
must find the same outcome a; in both cases. That means that the events {1, ali,j} and
{—1,b|i, k} are disjoint. However, for constructing the corresponding inequality, we make
use of an induced subgraph of the global exclusivity graph like the following [Cabello et al,
2014]:
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1,1/0,0

1,-11,0 -1,-1/0,1

1,-11.1

-1,1)1,1

1,1|0,1 11110

-1,-110,0

Fig.3.2.3 CHSH exclusivity graph used for the

derivation of the inequality.
KCBS scenario’s graphs

Another important quantum-theoretical set-up is the KCBS scenario, which is
related to the fact that a quantum system with an associated Hilbert space of dimension
three or higher displays contextual “behavior”. The default KCBS inequality refers to a
qutrit system, and is formulated by making use of five cyclic compatible dichotomic
observables which take the values {0,1} (or {—1,1}, it depends from our objective) upon
measurement. The compatibility relations between the observables can be seen in the graph

below.

Ay Ag

Fig.3.2.4 KCBS scenario's Compatibility
graph
As we have seen, the observables in a KCBS scenario represent 1-dimensional
subspaces of the system’s associated Hilbert space that are successively orthogonal.

Therefore, two orthogonal subspaces not only correspond to compatible observables but
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they also correspond to mutual exclusive events. That means that two consecutive
observables A; and A;,;, with respect to modulo 5 addition, can never take the value 1 at
the same time. Therefore, we can construct the following two exclusivity graphs depending

on the observables we jointly measure.

0,0[0,1

A= A,=1

Ay=1 As=1

Fig.3.2.5 KCBS exclusivity graph for the

measurement of Ai

0,03,4 0,0[2,3

Fig.3.2.6 KCBS exclusivity graph for the joint measurement (Ai,Ai+1)

However, for the formulation of the corresponding inequalities, we use either the
graph with the measurements of {A4;}, or the following induced subgraph of the case we

jointly measure on a context defined by {4;, A;+1}:

1,001

1,0/14,0 1,011,2

1,013,4 1,0/12,3
Fig.3.2.7 Exclusivity graph of the KCBS inequality.
It is an induced subgraph of the graph in Fig.#
Note, that because of the mutual exclusiveness of the compatibility relations, the

exclusivity graphs of (Fig.3.2.5) and (Fig.3.2.7) end up the same with the compatibility
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graph. For this reason, one may find cases in literature, where the non-contextual bound of

a KCBS type inequality is derived directly from the compatibility graph.

3.3 Deriving the non-contextual bounds and constructing

the inequalities

In order to derive a non-contextuality test inequality, we need to determine an upper
or a lower bound of a specific expression, beyond which, the existence of noncontextual
correlations is impossible. As we have said before, a non-contextual model would require
the existence of a joint probability distribution over all the observables we measure. This
means, that the occurrence of any event appearing in the expression’s exclusivity graph,
would prevent the occurrence of all the events which are disjoint with it, namely all the
events that are connected to it via an edge that indicates exclusivity. Therefore the
maximum number of events that can occur in a noncontextual model are given by the
maximum number of pairwise nonadjacent vertices in the scenario’s exclusivity graph, i.e.
the graph’s independence number [Cabello et all 2014]. By applying the mutual exclusivity
principle on the scenario’s events, we further get that the total sum of the probabilities

corresponding to these events must be at most equal to the graphs independence number.

For instance, if Geysy and Ggeps are the exclusivity graphs of the CHSH and KCBS
scenarios, illustrated in figures (3.2.3) and (3.2.5), the non-contextual bounds for the
corresponding inequalities are a(Geysy) = 3 and a(Ggeps) = 2 respectively. That makes

the noncontextual inequalities to take the following form:

pP(1,10,0) + P(—1,-1/0,0) + P(1,1]0,1) + P(—1,—-1]0,1) + P(1,1|1,0)

(CHSH) + P(—-1,-1[1,0) + P(1,-1]|1,1) + P(-1,1|1,1) < 3 (3.3.1)
NCHV
5
(KCBS) D Pa=1) < 2 (3.3.2)
, NCHV
i=1
These expressions can easily be restated into the more familiar forms of:
(CHSH) (AoBo) + (AoBy) + (A1 By) — (AlBl)NCSHV 2 (3.3.3)
or equivalently
— >
(CHSH) (AoBy) + (AoB;1) + (A1 By) (A1B1)NC_HV 2 (3.3.3b)
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for the CHSH inequality; and into the form
(KCBS) (A145) +(A,A3) + (A344) + (A445) + (AsAy) NCZHV -3 (3.3.4)

For the KCBS inequality, by using the probabilities appearing on the expressions (3.3.1)

and (3.3.2) in order to derive the corresponding expected values.
For instance, for the CHSH scenario, by taking into account that
(4;Bj) = P(1,11i,j) + P(—1,-1li,j) — P(=1,1]i,j) — P(1,—11i, /) (3.3.5)
And also that
P(1,1li,j) + P(—1,-1li,j) + P(-1,1]i,j)) + P(1,-1]i,j) =1 (3.3.6)
one may write the expected value (4;B;) as following:
+(A;Bj) = 2[P(1, £1]i,j) + P(=1,F1li,j)] — 1 (3.3.7)

From this, we can easily rewrite the relation (3.3.1) in the form (3.3.3a). The expression
(3.3.3b) can be derived in a similar manner with the above, if we consider a different induced
subgraph of the original exclusivity graph that contains all possible events. For instance if

we choose to derive our inequality from the following exclusivity graph:

1,-1101

-1,1/0,0 1.101,1

-1,-1/1,0 1,111,0

1,-111,1 1,-110,0
-1,110.1

Fig. 3.3.1 A CHSH exclusivity graph of (3.3.3b)
type

which is also an induced subgraph of the global exclusivity graph, we would end up with
the following probability inequality:
p(1,-1/0,1) + P(-1,1|1,1) + P(1,1|1,0) + P(1,-1]0,0) + P(—1,1]0,1)

(CHSH) +P(1,-111,1) + P(-1,-1/1,0) + P(-1,1]0,0) =< 3
NCHV

(3.3.8)

And thus with the relation (3.3.3b).
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On the other hand, for the KCBS scenario, we need to consider the case where we
are using {—1,1} as the possible outcomes of the dichotomic observables. We may also use

the following expression instead of the expression (3.3.2):
5
(KCBS) Z P(1,—1]ii+1) < 2 (3.3.9)
L NCHV

These two relations are equivalent, since from the ND principle and the mutual
exclusiveness indicating by the compatibility graph, is implied that P(4; =1) =
P(1,—1]i,i + 1). Now, one may write the expected value (4;4;,1) as:

(AjAiy1) = P(=1,-1]i,i+ 1) = P(1,-1]i,i + 1) = P(=1,1]i,i + 1)  (3.3.10)
Also notice that upon a joint measurement {4;, A;;1}, the relation
(—1,-1l,i+1D)+PQA,-1li,i+ 1)+ P(—1,1]i,i+1) =1 (3.3.11)

holds, since {A; = 1,441 = —1}, {A; = =1, 4,41 = —1} and {4; = —1,4;;, = 1} are all the

possible disjoint events that may occur. Considering that, we can write
(AjA; 1) =1-=2[P(1,-1]i,i+ 1) + P(—1,1]i,i + 1)] (3.3.12)

By summing up the expectation values of all five 2-sets of successively compatible

observables, we obtain

5 5

Z(AiAiH) =5-— 42 P(1,-1]i,i+ 1) (3.3.13)

i=1 i=1
And from here, one can easily conclude that

5
(KCBS) Z(AL-AL-H) = -3 (3.3.14)
i=1
Which is exactly the relation (3.3.4).
[ s ]



3.4 1 Probability: assignment and inequality’s maximum

violation

Consider a scenario described by a compatibility graph G. If C € V(G) is a vertex
set that corresponds to a measurement context of G, we can assign a joint probability
distribution on € and therefore we can assign a probability p; to each vertex v; € C given
that we are measuring the context C. However, if our theory satisfies the ND principle, we
can assume that the marginal probability p; of the vertex v; should be the same
independently of the context it came from. Therefore, we can assign a probability p;,
independently of context, on every vertex v; of the graph G. Notice that upon a context’s
C measurement, the events these probabilities are representing are pairwise disjoint, since

at most one outcome i € C can occur. Thus the following condition must be satisfied:
Z pi=1 (3.4.1)
i€C
Also notice that this probability assignment is not necessary unique, and there can be many
possible assignments that satisfy the above conditions. From now on, we will refer to such

a probability assignment as a probabilistic model of the scenario with compatibility graph
G.

3.4.1 Definition (Acin et al, 2015)

Let G be compatibility graph of a contextuality scenario. A probabilistic model on G is an
assignment p : V(G) - [0,1] of a probability p(v) to each vertex v € V(G) such that

Zp(v) =1 vC (3.4.2)

where C is a measuring context of G.

Notice, that for any subset of the set of vertices that corresponds to a context, such

as an edge of the compatibility graph, the following is true:

Y @) =1 Ve€eE©) (3.4.3)

vEe

All the possible probabilistic models of a scenario G, can be represented as a convex polytope

in the n-dimension Euclidean space, defined by the aforementioned inequalities.
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In the case of Quantum mechanics, this probability assignment is achieved through
a set of rank-1 projection operators P; which correspond to the event that “the post
measuring state lies on the Hilbert ray represented by vertex v;”. The eigenvalues of these
projectors are either 0 or 1, and thus they can be considered as binary propositions [Cabello
et al, 2010].

Consider for example a contextual testing scenario, and its corresponding exclusivity
graph G. Each one of the events €; which is presented in this scenario, is associated with a
projection operator P; which indicates whether or not the event &; occurs by giving the
truth values 0,1 upon measurement. For a given state [1), the expectation value (P;)y, =
(Y|P;[yp) provide us with the probability of the event &; to occur. This assignment of (P )y,
to every vertex is a probabilistic model of G that depends on the initial state |y). Notice
that this assignment of probabilities is independent of the context. This condition, is the
one that underlies Gleason’s theorem [Gleason, 1957], and thus we call it Gleason property.
Since this assignment is a probabilistic model, from (3.4.3) is implied that for every edge

{i,j} of the exclusivity graph G the following must be true:
(Po)y + Py <1,V(,)) EEG),VIY)EH" = P, +P; <1 (3.4.4)
Therefore, the condition that underlies a quantum probabilistic model is: P; + P; < 1.

By summing up all the expectation values (P;), we get:
By = Z (Pi)y (3.4.5)

Note that this expression is basically our non-contextuality test operator. Since all the
possible probabilistic models lie in a convex polytope on an n-Euclidean space, it is easy to
conclude that the expression (3.4.5) takes its maximum value on an extremal point of the

polytope.

As we have seen, each exclusivity graph G gives rise to a non-contextual inequality
with a non-contextual bound equal to the graphs independence number a(G). The violation
of that inequality implies a non-contextual correlation, as well as the inability to construct
a joint distribution over all our variables. However, a reasonable question that may arise,
is which the maximum possible violation for such an inequality is. The answer is that the
maximum possible violation is given by the exclusivity graph’s G Lovasz number 9(G)
(Cabello 2010). First, let us define the Lovasz number 9(G) of a graph G:

3.4.2 Definition (Cabello 2010)
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An orthogonal representation (OR) of a graph G, is a set of unit vectors associated to the

vertices such that two vectors are orthogonal iff the corresponding vertices are adjacent.
3.4.3 Definition (Cabello 2010)

The Lovasz number 9(G) of graph G is defined as the following maximum value:

9(6) = H;if%‘;'(‘/"”i”z (3.4.6)

where the maximum is taken over all unit vectors |i) in the n-dimensional Euclidean space
E™ and over all possible ORs V = {|v;):i € {1,..n}} of G. Without loss of generality it

suffices to consider the dimension n of the E™ to be equal to the number of graph’s vertices.

To prove that the Lovasz number determines the maximum possible value that a
test operator can take, we need to make a few notices. First, notice that for a given
probabilistic model, the expectation value is always maximized on an extremal point of the
associated polytope i.e. on a pure state. Let the maximizing state be ). Then, notice that

for each projector operator P; that assigns the probability (P;)y, = (Y|P;[1)) to the vertex i,

M, such that the
(Y|PiY)

expectation value (P;)y, can be written as (P;)y, = [(W|v;)|2. Actually that makes the

we can choose a suitable unit vector |v;), given by |v;) =

operators P; to be the projectors |v;){v;|. This collection of |v;), is in fact an orthogonal
representation of G, and the maximum value of By, is given by the previous definition of the

Lovasz number.

3.5 Some observations about the quantum contextuality

graphs

As we have seen until now, we can associate any experimental scenario of quantum
theory to an exclusivity graph G, where the non-contextual bound is provided by the graph’s
independence number a(G), while the maximum contextual violation, or the ND-bound, is
given by the graph’s Lovasz number 9(G). We can distinguish the exclusivity graphs into
two classes, and thus the experimental scenarios into two categories. First, we have the
graphs G for which a@(G) < 9(G). These graphs clearly allow a violation of the non-
contextual bound and hereafter we will refer to them as contextual graphs (CG). The second

class, constitutes of those graphs G for which @(G) = 9(G). Since the upper bound of these
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graphs is the same as their non-contextual bound, they do not permit the appearance of
contextual correlations, and therefore we will call them non-contextual graphs (NCG). From
a probabilistic point of view, the NCGs permit the construction of a joint probability
distribution for the observables’ outcomes, while the CGs do not allow the existence of a

model that can be explained through a joint probability distribution.

Having in mind the graph-theoretic notions and theorems we mentioned previously,
we will proceed by proving a theorem and making some remarks about the contextuality

graphs.
3.5.1 Theorem (Cabello et al 2012)

Let G be the exclusivity of a non-contextuality inequality. If G is a perfect graph, then G is

a NCG and, as consequence, the inequality is never violated by Quantum Theory.
Proof

If G is perfect, then by definition w(G) = y(G). On the other hand, according to Lovasz
sandwich theorem we know that w(G) < 9(G) < x(G) for any graph G. Hence, G being
perfect implies that w(G) = 9(G) = x(G). Given that w(G) = a(G), we obtain that a(G) =
9(G), which means that if G is perfect, then G is NCG. From the weak perfect graph
theorem, we obtain that since G is perfect, then G is perfect too. Therefore, by repeating
the previous argument the other way around we conclude that G is a NCG as well. This

finishes the proof.

3.5.2 Corollary 1 (Cabello et al 2012)

From the previous proof, we can also derive the more general conclusion: if G is a perfect
graph, the a(G) = 9(G).

3.5.3 Corollary 2 (Cabello et al 2012)

If G is the exclusivity graph of a non-contextual inequality that can be violated by Quantum
theory, namely a CG, then G is not perfect. Consequently, by the strong perfect graph

theorem, G must contain odd cycles and/or odd anti-cycles as induced subgraphs.
3.5.4 Remark 1 (Cabello et al 2012)

Notice that there could be a case in which a non-contextuality inequality is never violated

by the Quantum theory, but at the same time it contains another non-contextuality
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inequality which can be violated by Quantum theory. This means that even if the exclusivity
graph of the initial inequality is a NCG, there may be induced subgraphs of this graph that
are CG.

3.5.5 Remark 2

No odd cycle or a complement of an odd cycle has another odd cycle or complement of an
odd cycle as an induced subgraph. This suggests that odd cycles and their complements

could be used as a basis for an exclusivity graph decomposition.

Now we can also prove another proposition about the perfect graphs, which is going to be

useful later:
3.5.6 Proposition

If G is a perfect graph, then its independence number is equal to its vertex clique covering
number , i.e. a(G) =6(G).

Proof

From the weak perfect graph theorem we have that, since G has to be perfect, since G is a
perfect graph. Similarly to the proof of (3.5.1), we can show that G being perfect implies
that w(G) = 9(G) = x(G). However, we already know that y(G) = 8(G), and thus 9(G) =
0(G). Because G is perfect, from (3.5.2), we also know that a(G) = 9(G). Hence, we obtain
that a(G) = 6(G) for every perfect graph G.
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4 About Contextuality Monogamy

Inequalities like the KCBS are violated in any contextual theory such as Quantum
Theory, where a joint probability distribution over all observables does not exist. The
satisfaction of the KCBS inequality constitutes a necessary and sufficient condition for the
existence of a non-contextual model that describes the scenario’s set of five observables.
Knowing that Quantum theory is a contextual theory that satisfies the No — Disturbance
principle, a natural question arises: Is there a monogamy relation between two different
non-contextuality test inequalities that correspond to the same, or to different interacting
quantum systems? Seemingly, the answer is positive, therefore we will proceed by presenting
a general way to derive a monogamy relations, and then we will provide an example of a
KCBS inequality monogamy which is derived from the ND principle [Ramanathan et al,
2012}, in a similar way in which Bell inequalities monogamy derived from the No — Signaling

principle [Pawloski et al, 2009].

Before presenting the method of the contextual monogamy identification, we need
to clarify what exactly we mean when we say: “monogamy relation between non-contextual

inequalities”.
Definition of Monogamous Contextuality (Ramanathan et al. 2012)

We will define as Contextual Monogamy the following: A set of measurements is said to

have monogamous contextuality if it can be partitioned into disjoint subsets, each of which
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can by themselves reveal contextuality, but they cannot all simultaneously be contextual.
In the case of locality and non-contextuality test inequalities, is implied that there are at
least two disjoint sets of observables on the same system from which exactly one violates

its corresponding test inequality.

4.1 A generalized method to derive monogamy relation for

contextuality inequalities.

In order to acquire a better understanding about the mechanisms that govern the
quantum contextuality, we are going to present a generalized method for deriving
monogamy relations for contextual and non-local inequalities by using some graph-theoretic
notions. This method was initially illustrated by Ramanathan et al. in their paper:

“Generalized Monogamy of contextual inequalities from the no-disturbance principle”.
First, we need to define some notions and prove some statements.
4.1.1 Definition

A graph G is called chordal if every cycle of length four or more in G has a chord in G.
Equivalently, we can say that a chordal graph is a graph that does not contain an induced

cycle of length greater than 3.

4.1.2 Remark

Chordal graphs is a specific case of perfect graphs.
4.1.3 Proposition

Every three connected vertices in a compatibility graph produce a joint probability

distribution.

Proof:
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First, notice that the set of events that correspond to an edge measurement, forms a clique
on the scenario’s exclusivity graph. By constructing the exclusivity graph that corresponds
to the measurement of two neighboring edges of the compatibility graph, one can easily see

that the largest hole or anti-hole that this graph contains is of length 4.

0.0A.B 0.11A.B

1,0B,C 0,0B.C

Fig. 1 The compatibility graph (left) and the corresponding exclusivity graph (right),
for the case of three dichotomic observables.
That is also true for any compatibility’s graph triangle, since any collection of events
distributed in the different context cliques, would result in a 4-length hole or anti-hole at

most.

Fig. 2 The exclusivity graph of a compatibility triangle of
three dichotomic observables. The largest induced cycle is of
length 4.
According to (3.5.3), this implies that any three connected vertices in a compatibility graph

can be measured in the same context and induces a joint probability distribution.
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Any induced cycle of a chordal subgraph has a exactly length 3. That means that we are
able to decompose every chordal graph into connected 3-cliques which induce a joint
distribution, and that the corresponding exclusivity graph will have at most 4-legth holes
and anti-holes. The probability distribution construction is explained with the following

proposition.
4.1.4 Proposition (Ramanathan et al. 2012)

Any chordal compatibility graph G representing a set of n measurements, admits a joint

probability distribution for these measurements.
Proof:

By assumption, we have that compatibility graph G does not contain any induced cycles of
length greater than three. Let us denote the set of vertices of G by V(G) = {vy, ..., v,}. Now
let us define the following collections of subsets of V(G): With K5 we will denote the set of

cycles of length 3 or more in G, i.e. K3 = {K?Ei)}, , Where K3(i) € Uk23(V(G))k, such that

i€l;

the vertices belonging to K3(i) are defining a cycle. With K, we will denote the set of edges
of G that are not subgraphs of any graph Kgfi), ie. K, = {Kz(i)} , where Kz(i) EEG) =

i€l,
V2(G) =V (G) X V(G) and Aj € I5 : Kz(i) c ng). With K; we will denote the set of vertices
of G that are not subgraphs of any graph Kgi) or Kz(j), ie. Ky = {Kl(i)} , Where Kl(i) c

iel;
{{v}:v € V(G)} and A(j,k) €I, XI5 : Kl(i) c Kz(j) or Kl(i) c Kgfk). Notice that these three
sets induce a partition of the set of edges of G, since each one of the edges of a chordal
graph belongs to one and only one of the sets K;, K,, K5. However, an edge may be appear
multiple times within a set K; as a subset of its elements, while the vertices of G may appear
multiple times on different sets. Let K = K;UK,UK;. We construct the joint probability

distribution for the set of n measurements in G as following;:

|Ks| TylK2] 7plK1l O] ) (k)
B | ey j=21 l—[k=11P(K3L )P (KZJ )P(Kl )
P(vy,...,vp) = K] ; NIKONK D20
I P(KONKO)I I

i<j=1

(4.1.1)

Where |A| denotes the cardinality of the set A and P(K ONK (f))[[K(l)nK(])iw]] denotes the
probability of the set of vertices that are at the intersection of the two elements K@ and
K9 in the case where KONKY) = @. For any element K® € K we can derive a marginal
probability distribution P(K (i)) from the joint probability distribution by summing over all
elements of K other than K®. This summation over the elements KU € K \{K (i)} is
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performed starting out starting with those elements KU which are disjoint with K@ i.e.
KONKD # @. One can immediately see that in the resulting expression after that first
summation all the terms in the denominator Hyilj:l P(K ONK (j)) precisely cancel with all

the terms in the numerator except for P(K (i)). That completes our constructive proof.

O

This proposition basically suggests that any measuring scenario that is described via
a chordal compatibility graph forbids the construction of a contextual model that violates
the non-contextual bounds. We are going to use this interesting fact in order to formulate
a method for the derivation of monogamy relations between contextuality inequalities
(Ramanathan et al 2012). Given a compatibility graph that represents a set of n
noncontextual inequalities, where R is their non-contextual bound, we are going to look for
a vertex decomposition into m chordal subgraphs, each of which admits a joint probability
distribution, such that the sum of the corresponding NC-bounds of these subgraphs is equal
to n - R. If however the inequalities are not the same and have different bounds, let say ny
of them have a non-contextual bound Ry, n, of them have a non-contextual bound R, ... ,
and ng of them have a non-contextual bound Ry, then we will try to choose the subgraphs
such that the sum of their independence number is X, ngRy. Note that each one of the
vertices of the initial compatibility graph have to be included into a chordal subgraph of
the decomposition, with no vertex appearing in more than one subgraph, while the edges
between different subgraphs may be neglected. If we are able to carry out a vertex
decomposition like this, we end up with a monogamy relation between the initial n
noncontextual inequalities. That is, because only one of them may be violate its
corresponding non-contextual bound while preserving the system’s total restrictions imposed
by the chordal subgraph decomposition. Note, that in the case where some vertices belong
to multiple noncontextual inequality scenarios, we have to take account of the vertex
multiplicity, i.e. we need to include this vertex as many times as the number of the

inequalities it belongs, in order to perform the aforementioned decomposition.

Let be a little more enlightening about why is that true. As we have seen, the ND
principle allows us to construct joint probability distributions and at the same time ensures
us that the measuring probability of each observable is the same whether it is derived from
a joint probability of a chordal subgraph component or from measuring the contexts given
by the edges of the compatibility graph. We also know that there is a noncontextual relation
between the observables of a chordal subgraph, since every such subgraph emits a joint

probability distribution. That implies that the observables of a theory satisfying the ND
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principle would never violate the non-contextual bound of the chordal subgraph that they
belong. For the case of an KCBS-type scenario this bound is the independence number of
this particular subgraph. As an immediate corollary of that, we have that the total sum of
the observable probability distributions must be bounded by the sum of all the non-
contextual bounds of the n inequalities we have begun with. But since the graph vertices
can also be decomposed into the corresponding subgraphs of the n inequalities, is implied
that at most one contextual inequality can be violated and satisfy the previous restriction
imposed by ND principle at the same time. Thus we have a monogamy relation between

those non-contextuality test inequalities.

Note, that while many contextual inequalities involve rank-1 projectors and thus the
edges of the corresponding compatibility graphs denote also a mutual exclusiveness relation,
this assumption is not necessary for the derivation of monogamies. A representative example

is the derivation of the Bell inequality monogamy (4.4).
4.1.5 Proposition (Ramanathan et al. 2012)

Consider a compatibility graph representing a set of n KCBS-type contextual inequalities
each of which has non-contextual bound R. Then, this graph gives rise to a monogamy

relation using the outlined method if and only if its vertex clique cover number is n - R.
Proof:

Let G be a compatibility graph representing a system which contains n KCBS-type
inequalities K; <R, j = 1,2,...,n, with non-contextual bound R. The condition that the
vertex clique covering number is n - R is clearly sufficient for the existence of monogamy,
as each clique has independence number of 1, and cliques are the only graphs with
independence number 1. Thus, a vertex decomposition of the compatibility graph into n

cliques gives rise to the monogamy relation Z’}zl K; < nR.

Therefore there exists one decomposition into subgraphs that gives rise to a
monogamous relation. Now, let consider an arbitrary chordal decomposition into m chordal

subgraphs {Gi}ie{l,z mj- Since chordal graphs have no induced cycles of length greater than

.....

three, is implied that each chordal graph is also a perfect graph. Hence, for every chordal

component G; of our initial compatibility graph G, the following relation holds:
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where a(G;) and 68(G;) are graph’s G; independence number and vertex clique cover number
respectively. However the a(G;) is also denoting the ND-bound of the chordal graph G;.

Therefore, the monogamy relation by the vertex decomposition into chordal subgraphs

becomes:
m m
Z 6(G) = Z a(G) <n-R (4.1.3)
=1 i=1

This result is quite obvious, since each chordal subgraph can decomposed further into a set
of cliques. This proves that the condition that the vertex clique cover number be equal to
n - R is both necessary and sufficient for a compatibility graph to result in a contextual

monogamy relation by the method outlined before.

4.2 KCBS inequalities monogamy relations

Let us remember the KCBS inequality again. It was originally introduced in order
to test the “quantumness” of a single three — level system, and it basically constitutes a
restrictive relation on the probabilities of pairwise mutually exclusive events. The KCBS

inequality reads:

-

p(4;,=1) <2 (4.2.1)
i=0

Where the A;,i € Zs, represent five cyclically compatible observables which take binary

values upon measurement. That means that each observable 4;, takes a value a; € {—1,1}

when measured, and also that is possible to determine the joint probabilities p(a;, a;41) for

every i € Zs. Furthermore, the events {4; = 1} and {4;;, = 1} are mutually exclusive Vi €

ZSa that is: a4 = 0.

Now, we are going to formulate a specific scenario (Ramanathan et al 2012) in which
two KCBS inequalities are involved, and then we are going to show the existence of a

monogamy relation between them according to the outlined method above.
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In order to do that, Consider two sets of cyclically compatible and exclusive
measurements {4;} and {A’;} similar to the one we mentioned above, in a way that each set
gives rise to a KCBS inequality. Furthermore, let assume that the triples {44,4"y, 4’1} and
{A;,A,, A"} are jointly measurable and mutually exclusive. Therefore, in addition to the
joint probabilities p(a;, a;;+1) and p(a’;, a’i;1) one can also determine the joint probabilities

p(aq,a’y,a’y) and p(as, a,s, a’,). The compatibility graph that describes this setup is:

A[J AVO

A

A Aq Ay 3

2

Fig. 4.2.1 Compatibility graph that includes two KCBS inequalities

according to the scenario above.

Notice that we are able to perform a vertex decomposition on this graph such that
each one of the induced subgraph components be a chordal graph. An example of such a

decomposition is the following:

A
0 A
O A )
4 A 4
Ay
A
A , A
3 Ay 3
Ay

Fig. 4.2.2 The chordal subgraph decomposition according to the theory we introduced on the previous section

The independence of each component is 2, and thus the total ND-bound of the initial graph
is 4 which the same as its NC-bound. Therefore we should have a monogamy relation

between the two KCBS inequalities. Let explain this in more detail.

Due to the fact that Quantum theory satisfies the ND principle, we know that the
probabilities p(4; = a;) and p(A’; = a';) of the events {4; = q;} and {4'; = a’;} to occur

should be the same independently of the measuring context. That allows us to set a fixed
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probability value for the occurrence of the events {4; = 1} and {A’; = 1}. Let now assume
that p(A, = 1) = p and p(4’, = 1) = q. Since the events {4, = 1}, {4’y = 1}, {4’ = 1} are
disjoint, is implied that: p(4, = 1) + p(A’; = 1) + p(A’; = 1) < 1, and therefore,

pAy=1D+pA1=D<1-p
In a similar way, the mutual exclusiveness of {A; = 1}, {4, = 1}, {4’, = 1} implies that
p(A3 =1 +p(4,=1)<1-¢q

We already know that the families of events {4; = 1}; and {4'; = 1}; are cyclically exclusive

and therefore the following relations hold:
pA; =D +p4y =D <1
p(Ai=1D+pA'y, =1 <1
Now, by only assuming that the ND principle holds, we can conclude the following:
pA=D+pA,=D<1=

p(A ;=D +pA, =D +pA3=1D+p4,=1)<2—-q=
pAo=1D+ pA; =D +pA, =D +pA;=D+pAy,=1)<2-qg+p=

4
Yp=1<2-q+p
i=0

In the same way we can derive a similar inequality for the second family of observables:

4
ZP(Ai=1)S2—q+p
i=0

By summing up these two inequalities, we finally take our monogamy relation,

5 5
D =D+ pAi=1)<4
i=1 =1

This relation is derived directly from the ND principle, and states that if someone tries to
violate the KCBS inequality for one of the two observable families that we described above,
then his measurements outcomes will be necessarily satisfying the KCBS inequality for the

other observable family.
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Now, we are going to present a setup, meaning a collection of observables, for which
the above monogamous relation applies within the quantum theory. First, note that the
observables for the optimal violation of KCBS inequality for a single qutrit system are rank-
1 projectors spanning the three-dimensional real space. For our case, consider two families
of observables {4;} and {4}} on a four-dimensional space, where the set of projectors {A;}
spans dimensions 1,2 and 3, and the set of projectors {A;} spans dimensions 2,3 and 4. These
projectors can be chosen accordingly, to obey the constraints of commutability and mutual
exclusiveness as required be the KCBS compatibility graphs. A set of ten vectors in a 4-
dimensional space that produces a set of projectors which corresponds to the measuring

scenario (Fig.4.2.1) is given below (Ramanathan et al 2012):

lvy) = (1,0,0,0)7, |v,) = (0,1,0,0)7, |vs) = (cos@,0,sind,0)T,

lv,) = (sin@sinf,cos@,—singcos,0)", |vs) = (0,singcosh,cosq,0)T
and

|v'1) = (0,0,0,1)7, |v',) =(0,cosa,sina,0)?, |

|v'3) = (0,sin B sina,—sin B cosa,cos B)T,

|v',) = (0,sinysind,—siny cos§,cosy)T, |v's) = (0,sinycosé§,sinysind,0)T

where sin(a — §) # 0, cos(a¢ — §) # 0 and tan B tany cos(a — §) = —1. The projectors {4;}
and {A}} are given by:

_ lv; (v, ] r_ [V (V']
a (vilv;)’ L (v';[v';)

These observables correspond exactly to the measurement configuration in (Fig.4.2.1).

A;

4.3 Monogamy examples derived from Compatibility graphs

Now, we are going to study some simple examples on how to decompose a
compatibility graph into chordal subgraphs. The following graphs correspond to systems

where the observables behavior can be described via a set of KCBS type inequalities:
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Example 1

A measurement configuration that gives rise to 2 KCBS inequalities

/-'\'3 A‘4

N
\'/

X

3 A4
Fig. 4.3.3 Two overlapping KCBS
compatibility graphs connected via

A

exclusive relations

Notice that in this case we have two vertices that take part in both KCBS
inequalities. Therefore in the chordal graph decomposition we will include them twice inside
the components. Another way to resolve the issue of decomposition while having a graph
with overlapping vertices, is two replace any overlapping vertex with a pair of compatible
but not mutual exclusive vertices, where each of these two vertices has exactly the same
neighbors with the one they replaced. Thus, the decomposition of this graph is the following
two chordal subgraphs:

A4 A2 A5

Fig. 4.3.2 The 2 induced chordal subgraph components

Since every edge of the initial graph denotes also mutual exclusiveness, we can
compute the ND-bounds of these subgraphs by their independence number, which is 2 for
both of them. That means,

p(A; =1 +p(A3=1) +p(As=1) +p(4s=1) +p(4'; = 1)1\%2
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pA, =) +pAs=1)+p4; =1)+pA'5=1)+p', = 1)1\% 2

By summing them, we get the monogamy relation:

K(A)+K(') <4
ND

The joint probability distributions for each chordal subgraph, by applying the method from
proposition 1, are:
p(ay, az,a'3)play, a’s,a’)play, @'y, as)

p(ay, az)p(a,, a;)

p(a'y, ay,a3)p(a’'y, as,a4)p(a’y, ay, as)
p(a'p a3)p(a’1, a,)

play, a,,a’s,ad'y, as) =

p(a'y, ay, as,a4,as) =

Example 2

A measurement configuration that gives rise to 2 KCBS inequalities with the following

compatibility graph:

Fig. 4.3.3 two KCBS' compatibility graphs connected via exclusive relations

By performing the chordal subgraph decomposition we obtain the following induced

subgraphs:
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A'3 A'4

Fig. 4.3.4 The 2 induced chordal subgraph components of (Fig. 4.3.3)

Since the edges denote mutual exclusiveness we can conclude that the ND-bound of
each subgraph is given by their independence number, which is 2 in both cases. Therefore,

the ND-bound of the initial graph is 4 and thus we obtain a monogamy relation.

The joint probability distributions for each chordal subgraph, by applying the

method from proposition 1, are:

p(a,,a’,,a'3)play, a’s,a'y)p(ay, a'y, a’s)
P(ap aé)P(ap aﬁ})

! ! ! !
p(a,,a’y,a's,a'y,a’s) =

p(a'y,a,a3)p(a’y, as, a,)p(a’y, ay, as)
P(a'p as)P(a'p a4)

p(a'y, ay, a3,a4,as) =

Example 3

Let us study a case where three KCBS inequalities are involved. The measurement
configuration is given the compatibility graph below, where the edges denote also exclusivity

relations:
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Fig. 4.3.5 The compatibility graph of a three KCBS inequalities scenario

We can perform a vertex decomposition of this graph into four induced chordal subgraphs:

B
C, Cg 4

1 5
A2 C2
Aq
52 C4
3

B
A5

Fig. 4.3.6 The 4 induced chordal subgraph components of (Fig. 4.3.5)

The two chordal subgraph components on the left have independence number 2, while the
other two on the right have independence number 1. That makes the total ND-bound of
the initial graph 6 which is exactly the total NC-bound of the three KCBS inequalities.
That indicates a monogamous relation between the three KCBS inequalities described by

the initial compatibility graph.

The joint probability distributions for each chordal subgraph, by applying the

method from proposition 1, are:
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p(ay, by, bs)p(ay, ¢, ce)
p(a;)
p(as, as, c,)p(as, as, by)
p(as, a,)

p(ap bl' b5' C]J CS) =

p(as, aq, by, cy) =

p(aZ'b3;b4) ) p(a5rc2rc3)

Example 4

Now, let see an example of a monogamous relation between a classic KCBS
inequality, and a KCBS-type inequality with more than five observables. The first inequality
is a classic KCBS inequality:

5
Zp(Ai =1)<2
i=1

The second inequality scenario includes seven cyclic compatible {4';} observables while the

events {A'; = 1} and {A’;,; = 1}, with respect to modulo 7 addition, are disjoint:

7
Z p(d';=1) <3
i=1

Notice that the above inequality can indeed violated by quantum theory, since the
corresponding exclusivity graph is a cycle with length seven, and thus a contextuality graph.
Its compatibility graph is also a 7-cycle. The compatibility graph that describes our scenario

is the following:

Fig. 4.3.7 Compatibility graph of a scenario involving a 5-KCDBS and a 7-KCDBS inequality.
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Also notice that in our example, the vertex A; takes part in both inequalities, and thus we
will include it twice in the vertex decomposition. Hence we can construct the following two

induced chordal subgraphs:

AT Ay

A

3

Fig. 4.3.8 The 2 induced chordal subgraph components of graph in (Fig. 4.3.7)

The left subgraph component has an independence number of 3, and the right subgraph
component has an independence number of 2. Hence, the total ND-bound for the scenario
is 5, which is exactly the sum of the corresponding inequalities NC-bounds. That ensures

the monogamy relation.

The joint probability distributions for each chordal subgraph, by applying the

method from proposition 1, are:

play,a’y,a’g, a’s,a'y,a’s,as) =

_ p(ay,a'7,as)p(a’;, a’e, as)p(a’s, a's, as)p(a’s,a’s, as)pla’y, a’s)

- p(a';, as)p(a’s, as)p(a’s, as)

p(ay, az a’;)p(ay, as,a’y)plas, as,a’;)
p(ay, a’;)plas, a’y)

p(ay,az,as,a4,a';) =

Example 5

In this scenario, we will see the monogamy of a classical KCBS inequality with a
KCBS-type with nine observables. Note that the corresponding Hilbert space of the system,

in cases with more than five cyclical observables, needs to have dimensions greater than
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three. As in the previous example, a KCBS scenario with nine cyclical compatible
observables induces a contextuality exclusivity graph, and thus the corresponding inequality
can be violated by the Quantum theory. This scenario is described via this compatibility

graph:

Fig. 4.3.9 Compatibility graph of a scenario involving a 5-KCBS and a 9-KCBS inequality.

By performing a vertex decomposition with the outlined method we obtain the

following two induced chordal subgraphs:

Fig. 4.3.10 The 2 induced chordal subgraph components of graph in (Fig. 4.3.9)

The ND-bound of these subgraphs are 2 for the left, and 4 for the right one. The total ND-
bound of the compatibility graph is 6 which is the same as its NC-bound. Therefore, a

monogamy relation holds.
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The joint probability distributions for each chordal subgraph, by applying the

method from proposition 1, are:

p(ay, as, by)p(a,, ay, by)p(ay, as)
p(ay, by)

p(ai,a,,as,a4,as,by) =

p(a4; b2; b3' b4' b5' b6' b7' b8; b9) =

_ p(by, by, ay)p(bs, by, a)p(by, bs, a)p(bs, be, as)p(be, by, as)p(by, bg, a,)p(bg, by)
p(bs, a)p(by, a)p(bs, a,)p(be, a,)p(by, a,)

4.3.1 Remark

If A, B and C are three pairwise compatible observables and A, B, € are their
corresponding operators, then the joint probability distribution when performing a
measurement with an initial state [}, is given by: p(a, b, ¢) = (Y|P, P, P.|y), where P,, P, P,
are the projector operators of the eigenspaces of A, B and C that correspond to outcomes

a, b and c respectively.

4.4 CHSH monogamy

In this section we are going to show that a monogamy relation, similar to the ones
we study before, is underlying any Bell scenario. More specifically we are going to show
that the quantum correlations between three qubit systems, which is the simplest case,
exhibit a monogamous behavior. This proposition is analogous to the monogamy of
entanglement (Coffman et al, 2000), however, in our approach we will make use of the
system’s compatibility graph and the method illustrated in the section ..... in order to obtain

a monogamy relation of two CHSH inequalities.
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Let, Alice, Bob and Charlie be three observers, with each one of them performing
measurements on a qubit-system with two possible settings. Bob and Charlie simultaneously
try to violate a Bell-CHSH inequality with Alice using two measurement settings each.
Therefore, our scenario consists of six observables and two CHSH sub-scenarios: one CHSH
inequality that describes the correlations in the Alice-Bob system, and another one for the
Alice-Charlie system. If we denote the measurements performed by Alice as A; and A,, by
Bob as B; and B,, and by Charlie as C; and C,, the spatial separation guarantees that any
set of observables {Ai,B-}, {A;, C.}, or {B]-, Ck} corresponds to compatible measurements,
though not mutually exclusive, while the measurement pairs {4,,4,}, {B1, By} and {B;, B,}
cannot be jointly performed. Additionally, we will consider that the outcome of a
measurement will be either 1 or -1. The compatibility graph that describes the above

scenario is the following:

82 C2

Fig. 4.4.1 Compatibility graph of measuring
three qubit subsystems. Here the edges do not

denote mutual exclusiveness

Notice that contrary to the KCBS cases, the edges in this compatibility graph do
not imply mutual exclusiveness between the corresponding events. This compatibility graph
gives rise to two separate CHSH tests, for which the following inequalities hold:

B(Al;Az; Bli BZ) = P(1'1|A1' Bl) + P(_l: _1|A1, Bl) + P(1;1|A1; Bz) +

P(_l, _1|A1, Bz) + P(1,1|A2, Bl) + P(_l, _1|A2, Bl) + P(]., _1|A2, Bz) + (4.4.13,)
P(-1,1l4,,B,) < 3
LHV

B(Al;Az; C1; CZ) = P(1'1|A1' Cl) + P(_l: _1|A1; Cl) + P(1;1|A1; Cz) +
P(_l, _1|A1, Cz) + P(1,1|A2, Cl) + P(_l, _1|A2, Cl) + P(l, _1|A2, Cz) + (4.4.1b)

P(-1,1]4,,C,) < 3
LHV
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By using the method outlined in the section ... We can decompose the scenario’s

compatibility graph into two isomorphic induced chordal subgraphs G; and G,:

A
B1 A1 1. A3
@
A2 Cz 82 A2
Fig. 4.4.3a Induced chordal Fig. 4.4.3b Induced chordal
subgraph G1 subgraph G2

Each of these subgraphs induces a joint probability distribution, and thus any
associated inequality that come of these graphs cannot be violated by the Quantum theory.
In order to check if the derivation of a monogamous relation is achievable, we need to
compute the NC-bounds from the appropriate corresponding exclusivity graphs. By
“appropriate” we mean that the choice of events used for the generation of the two
exclusivity graphs, have to be the same as the ones appearing in the original CHSH

inequalities.

Hence, the exclusivity graphs of the chordal subgraph components for the initial

collection of events are:

1.1/A,.B, 1,11A,.C,

-1,-1A,,C, 1A, -1,-1A,.B,

111A;.C, 1,11A,.B,

1.11A5,C,

_1,-1|A.],B1 -1.-1 |A1,C1
Fig. 4.4.3 Ezxclusivity graphs corresponding to events from measurements from the chordal subgraphs

As we can see, the exclusivity graphs are both isomorphic to the original CHSH
exclusivity graph. Their independence number, and therefore their NC-bound, is equal to

3. That, gives rise to the following inequalities:
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P(1,1|A4, By) + P(—=1,—-1|Ay, By) + P(1,1|4,,B;) + P(—1,-1|A,, By) +
P(1,114,,C;) + P(—1,-1]4;,C,) + P(1,-1|A,,C;) (4.4.2a)
+ P(=1,1|4,C,) < 3
NHV

P(1,1|A4,Cy) + P(—1,-1]44,Cy) + P(1,1|A,, Cy) + P(—=1,-1]4,,C) +
P(1,14,,B;) + P(—1,-1|A4, By) + P(1,—1|4,, B,) (4.4.2b)
+P(-1,1|4,,B,) < 3
NHV

However, unlike the original case of CHSH, here the compatibility graphs allows us to

construct the following two joint probability distributions, for G1 and G2 respectively:

p(ay, by, c;)p(ay, by, c;)

as, az, by, ;) = 4.4.3a

p1(ay, az, by, c;) p(by, Cy) ( )
p(ay, by, c)p(ay, by, cyp)

a{, a,,b,,c;) = 4.4.3b

pz(ay, az, by, cq) p(by, 1) ( )

Also, the no-signaling principle ensures us that any marginal probability distribution we
can measure, is the same independently from the joint distribution it came from. This allows
us to write the probabilities appearing in the inequalities (4.4.2a) and (4.4.2b) as marginals
of the joint distributions p;(ay,a,, by, c,) and p,(aq, a,, by, ;) respectively. By replacing
the events of the inequalities with the corresponding sum of disjoint elementary events that
take art in p; and p,, one can easily see that the NC-bound of these inequalities is equal to
their ND-bound. By summing up these two non-contextual inequalities we obtain a third

non-contextual inequality with an ND-bound of 6:
P(1,11A4,B,) + P(—1,—-1|A, By) + P(1,114,,B,) + P(—1,—-1|A4,,B,) +
P(1,114,,Cy) + P(—1,-1|A,,C,) + P(1,—1|A,,C,) + P(—1,1]|4,,C,) +
P(1,1|A,,C) + P(—1,—-1]A.,C) + P(1,1|A,,C)) + P(—1,—-1]|A,,C) +
p(1,1|4,,By) + P(—-1,-1|A,,B,) + P(1,—-1|A,,B,) + P(—1,1|4,, By) 1\% 6

(4.4.4)

However, notice that the left-hand side of the inequality is the sum of the two initial CHSH

expressions:
B(Ay, A3, By, By) + ,3(141'142»61»62)1\% 6 (4.4.5)

And this is exactly the expression that establishes the monogamous relation between the
two CHSH inequalities, as only one of them may be violated. If both of them ought to be
violated, then there would also be also a violation of the bound acquired from the No-

Disturbance principle, and this is impossible in the context of Quantum theory.
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4.5 ' Monogamy. relation between Contextuality and

Nonlocality

Finally we are going to show that there is monogamy relation between the KCBS
and CHSH inequalities, on a paired qutrit-qubit system [Kurzynski, 2014]. In order to prove
that we need to consider the following scenario: Alice (observer A) and Bob (observer B)
share pairs of correlated systems, and are able to perform binary measurements on these
systems. Let these systems be qutrits for Alice and qubits for Bob. Alice is able perform
five measurements {44, ..., As} on her system, from which, every two consecutive observables
A;, Ai;q1, with respect to the sum modulo 5, are compatible with each other. On the other
hand, Bob is able to perform two measurements {B;,B,} on his system, which are
incompatible with each other, but at the same time each B; is compatible with all the Alice’s
observables A;. Also, each of Bob’s and Alice’s measurements have only two possible
outcomes: +1 or —1. The compatibility relations among the seven measurements are
illustrated in the figure below [Kurzynski, 2014]:

Fig. 4.5.1 The compatibility graph of the paired qutrit-qubit

scenario. The edges (A;, Ajy1) also denote mutual exclusiveness,

while the edges (A;, B;) denote only compatibility
For each pair of systems that Alice shares with Bob, she randomly chooses to measure two
compatible observables A; and A;,;;, while Bob chooses to measure only one of his
incompatible observables. After repeating the experiment many times, Alice and Bob can

evaluate the following correlations, that is the mean values of the products of outcomes:
(AiAi+1),(AiB)), (AiAi11B)) (4.5.1)

Where i € Zs and j = 1,2. These correlations can be used in used in two different tests. The

first one is a test of the KCBS non-contextuality inequality on Alice’s qutrit system, i.e.,
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K = (A345) + (Az43) + (A34,) + (A445) + (AsAy) vaw 3 (4.5.2)

The second one is a test of CHSH Bell inequality between Alice’s and Bob’s subsystems,

i.e.,
Bap = (Ai41B1) + (Ai11B2) + (Ai1B1) — (Ai-1B>) L%V_ 2 (4.5.3)
Where A;,; and A;_; can be any two incompatible measurements from Alice’s set.

The violation of either the KCBS or the CHSH inequality implies that the
corresponding correlations cannot be described by a non-contextual or a local hidden
variable model respectively. On the other hand, the satisfaction of these inequalities would
make the existence of a hidden variable theory (HV) a possible scenario. Also, since the No
Disturbance (ND) principle is a general condition satisfied by all the current physical
theories, is implied that this particular scenario must have an ND-bound that imposes a
restriction upon the possible outcomes that we can acquire in the context of Quantum
theory. As we have seen, we can consider that Bell’s non-locality constitutes a special case
of contextuality, and as an immediate result we can consider that Bell type inequalities are
also non-contextuality inequalities [Abramsky et al, 2011]. That, allows us to subtract or
take the sum of both inequalities in order to produce a new non-contextuality inequality.
Taking the sum of the KCBS and CHSH inequalities associating with the system that we

have described above, we get:

CD = (A14;) + (A245) + (A34,) + (A445) + (AsA;) + (A4 1By)

4.5.4
+(A;11B2) + (A;—1B1) — (4;_1B3) NCZHV— 5 ( )

However, the ND-bound of the inequalities sum is not given by summing up their
individual bounds. We can find this bound, by finding vertex subsets of the scenario’s

compatibility graph, which induce non-contextual graphs, meaning graphs that correspond

1
i 5

et

s
@P---=—=——————————-
Y

w
()

Fig. 4.5.2 Decomposition into induced chordal subgraphs
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to inequalities inviolable by an ND theory. As we have seen from proposition (4.1.4), this
can be achieved by finding chordal subgraph components of the initial graph. Let see an

example of such a decomposition:

Where the continuous-line edges denote mutual exclusiveness additional to compatibility,

while the dashed-line edges denote only the compatibility relation.

Now, according to the decomposition above, we can split the terms of the inequality (4.5.4)

into two new components Cl(i) and Cz(i), such that:
cP+c? > -5 (4.5.5)
Where
C1(i) = (Ai41B1) + (Aiy14ir2) + (Aip2di2) + (Ai24; 1) + (A1 B1) (4.5.6a)
C3) = (A1 AD) + (A1 A)) + (A1 By) — (A1 B,) (4.5.6b)

Also, note that the expressions (4.5.6a) and (4.5.6b) have the same form as the KCBS and
CHSH expressions respectively. Due to the fact that these expressions are structurally the
same as the aforementioned non-contextual inequalities, we can derive their corresponding
non-contextual bounds in a similar way to the one we used for the KCBS and CHSH
scenarios. One can easily see, that the non-contextual bounds end up to be the same as the
ones in the test inequalities. However, unlike the original inequalities, in these cases, the
compatibility graphs describing the corresponding scenarios are chordal graphs and thus
non-contextual graphs, meaning that the non-contextual bound is also the bound provided
by acceptance of the ND principle. Therefore, the bounds of Cl(i) and Cz(i) for any theory
satisfying the ND principle are

V)
;" =-3

2 (4.5.7a)
V)
C,” = -2

) > (4.5.7b)

This came from the fact that we are able to construct a joint probability distribution for
all the measurement statistics involved in Clm and CZ(L). This can be achieved, by applying
the method illustrated in the previous section. Following the constructive proof of (4.1.4),

one can derive the following joint probability distributions:

For Cl(i),
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p(aiz1, aiy2, b)) (@111, ai_2, b)p(ai_1, i1z, by)

Aii1,Aivy, Qi 1, Ai—n, b)) = 4.5.8
p(@is1, ivz, @i-1,a;-5, by) (a0, bOp (a1, b) ( )
And similarly for Cz(i),
a;, a;_1,b a;, aiy1, b
p(a;-1, a;, aiy1, b2) =p( v 3i-1, )P (@ 341, b2) (4.5.9)

P(Cli, bZ)
Where we denoted p(a;) =p(4; =a;) for simplicity. Note, that the above joint

distributions also recover all the measurable marginal distributions. For example, one may

calculate the marginal p(a;_q, a;) from p(a;_4, a;, a;41, b;) in the following way:

Z (a;-1,a q; b)=z Zp(ai,ai_l’bZ)p(ai’aiﬂ:bz)
PR i 2 p(a;, by)

Ajt+1,b2 bz \@i+1

Z p(a;, a;—1,by) = pla;_1, a;)
73

Of course, we can also calculate the probability p(a;;q,a;) as well:

z (ai_1,a;, a; b)zz zp(ai‘ai_l'bZ)p(ai;ai+1,b2) _
P S p(a;, by)

aj—1,bz bz \@i-1

z p(ai' Ait+1, bZ) = p(ai+1l ai)
b,

Notice that in both derivations we assumed that

Z p(ail Ai+1, bZ) = Z p(ai; a1, bZ) = p(ai' bZ) (4510)
Ait+1 aj—1
which is exactly the ND principle. Note that since these probabilities are defined within ND

theories, we can recover any measurable marginal that is compliant with the ND principle.

The existence of a joint probability distribution for Cl(i) and Cz(i) guarantees that the
inequalities (4.5.7a) and (4.5.7b) are always satisfied within an ND theory, and thus their
sum is also bounded from below by -5.

c? + CZ(")NZD -5 (4.5.11)

This implies that in any ND theory there is a monogamy relation between the KCBS and

CHSH inequalities, i.e. at most one of them can be violated:
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Ka + Bag 1\% =5 (4.5.12)

5 Conclusions

In this thesis we presented and analyzed the concepts of non-locality and
contextuality and we studied the monogamous relations that may appear between different
non-locality or non-contextuality testing inequalities. We analyzed the Bell-Kochen-Specker
theorem, and showed why a hidden variable model cannot describe effectively the quantum
correlations. We also presented the basic non-contextuality and locality test inequalities,
and approached the concept of contextuality from a graph-theoretical point of view. We
classified the kinds of compatibility and exclusivity graphs into those who induce a non-
contextual model and to those who do not. Then, we show a method illustrated by
Ramanathan et al, for the derivation of a monogamy relation between different inequalities,
and finally, we applied that method, and we constructed, or presented, some interesting

examples of contextual monogamous relations.

5.1 Added value — Interesting Applications

The detection of a monogamous relation between two or more non-contextual
inequalities, provides us with knowledge about the restrictions that quantum theory imposes
to the transmissions of quantum signals. Very shortly we will mention two possible

applications that point out the added value of the theoretical structure we presented.
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Qubit networks

As we have seen in section 4.4, the quantum correlations in a system of many paired
qubits are bounded by a monogamous relation. That is a fundamental restriction which is
imposed by quantum theory, and if we aim to create functional qubit networks [Tran et al,
2018], we need to take account of it. Quantum networks are not only essential for quantum
communications [Kimble, 2008], but for quantum computation as well [Caleffi et al, 2018].
The qubit-type systems are the most basic quantum systems we employ in order to construct
quantum processors. By linking multiple quantum processors we could create quantum

computing clusters and therefore more computing potential.
QKD

An interesting application that make use of the contextuality monogamies relations
is the quantum key distribution (QKD). The most usual QKD protocol is the BB84
[Bennett, Brassard, 1984] protocol, where one party prepares a state and transmits it to the
other party who performs suitable measurements to generate a key. However, it is possible
to devise a QKD protocol between two different parties, by utilizing the KCBS scenario of
contextuality as a resource [Singh et al, 2017]. We are now going to swiftly present the basic

idea behind this model’s security.

This QKD protocol [Singh 2017], use the KCBS monogamy relation in order to ensure a
secure transmission. Consider two separated parties, Alice and Bob, that want to share a
secret key securely, and an eavesdropper Eve who tries to obtain information about the
correlation between Alice and Bob and the associated key. The compatibility graph that

describes this scenario, is the following:
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In this graph, the blue pentagon {A;} denotes the KCBS sub-scenario between Alice
and Bob, while the red pentagon {B;} denotes the KCBS sub-scenario between Alice and
Eve. According to the theory we have presented, we can try to decompose this graph into
two induced chordal subgraphs with total ND-bound equal to the initials graph NC-bound.

Therefore we obtain:

Az B, Bs Ag

The total ND-bound of these two subgraphs is 4 which is exactly the total NC-bound of the
scenarios compatibility graph. Hence we obtain a monogamous relation between the
correlations distributed to the pair Alice — Bob and Alice — Eve. This fact is the basis for a
security analysis that will inform us about the existence of an eavesdropper and whether or

not the key distribution is successful.

5.2 Our contribution

By studying the related scientific publications, we worked on presenting a summary
of the most important theorems on quantum contextuality and contextuality monogamy.
Our original contribution is summarized to the following: We constructed the examples 3,
4 and 5 in the section 4.3, showing some interesting cases for the figures (Fig.4.2.2),
(Fig.4.5.2),(Fig.3.2.2) and (3.2.6) according to the related theory, we wrote the related
analysis for the CHSH’s monogamy case in the section 4.4 (the decomposition was taken

from [Ramanathan 2012]), and we formulated the proposition (4.1.3).
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