ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ ΤΟΜΕΑΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΚΑΙ ΥΔΡΟΓΕΩΛΟΓΙΑΣ

$XAPA\Lambda AM\Pi O\Sigma \Sigma TAMATIA \Delta H\Sigma$

ΓΕΩΤΕΧΝΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΣΥΝΘΗΚΩΝ ΕΥΣΤΑΘΕΙΑΣ ΟΡΥΓΜΑΤΩΝ ΕΚΣΚΑΦΗΣ ΘΕΜΕΛΙΩΣΗΣ ΣΤΗΝ ΠΕΡΙΟΧΗ ΤΗΣ ΠΑΠΑΦΗ ΘΕΣΣΑΛΟΝΙΚΗΣ ΚΑΙ ΔΙΕΡΕΥΝΗΣΗ ΚΑΤΑΛΛΗΛΩΝ ΜΕΤΡΩΝ ΑΝΤΙΣΤΗΡΙΞΗΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΘΕΣΣΑΛΟΝΙΚΗ 2021

ΓΕΩΤΕΧΝΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΣΥΝΘΗΚΩΝ ΕΥΣΤΑΘΕΙΑΣ ΟΡΥΓΜΑΤΩΝ ΕΚΣΚΑΦΗΣ ΘΕΜΕΛΙΩΣΗΣ ΣΤΗΝ ΠΕΡΙΟΧΗ ΤΗΣ ΠΑΠΑΦΗ ΘΕΣΣΑΛΟΝΙΚΗΣ ΚΑΙ ΔΙΕΡΕΥΝΗΣΗ ΚΑΤΑΛΛΗΛΩΝ ΜΕΤΡΩΝ ΑΝΤΙΣΤΗΡΙΞΗΣ

ΧΑΡΑΛΑΜΠΟΣ ΣΤΑΜΑΤΙΑΔΗΣ

Φοιτητής Τμήματος Γεωλογίας, ΑΕΜ : 5730

ΓΕΩΤΕΧΝΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΣΥΝΘΗΚΩΝ ΕΥΣΤΑΘΕΙΑΣ ΟΡΥΓΜΑΤΩΝ ΕΚΣΚΑΦΗΣ ΘΕΜΕΛΙΩΣΗΣ ΣΤΗΝ ΠΕΡΙΟΧΗ ΤΗΣ ΠΑΠΑΦΗ ΘΕΣΣΑΛΟΝΙΚΗΣ ΚΑΙ ΔΙΕΡΕΥΝΗΣΗ ΚΑΤΑΛΛΗΛΩΝ ΜΕΤΡΩΝ ΑΝΤΙΣΤΗΡΙΞΗΣ

Υποβλήθηκε στο Τμήμα Γεωλογίας Εργαστήριο Τεχνικής Γεωλογίας-Υδρογεωλογίας

Επιβλέπων Καθηγητής:

Παπαθανασίου Γεώργιος

© Χαράλαμπος Σταματιάδης, Τμήμα Γεωλογίας Α.Π.Θ., 2021 Με επιφύλαξη παντός δικαιώματος.

ΓΕΩΤΕΧΝΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΣΥΝΘΗΚΩΝ ΕΥΣΤΑΘΕΙΑΣ ΟΡΥΓΜΑΤΩΝ ΕΚΣΚΑΦΗΣ ΘΕΜΕΛΙΩΣΗΣ ΣΤΗΝ ΠΕΡΙΟΧΗ ΤΗΣ ΠΑΠΑΦΗ ΘΕΣΣΑΛΟΝΙΚΗΣ ΚΑΙ ΔΙΕΡΕΥΝΗΣΗ ΚΑΤΑΛΛΗΛΩΝ ΜΕΤΡΩΝ ΑΝΤΙΣΤΗΡΙΞΗΣ

$\label{eq:constraint} Feqtexnikh a eigeneration endering of the second statement of the second state$

ΠΑΠΑΦΗ ΘΕΣΣΑΛΟΝΙΚΗΣ ΚΑΙ ΔΙΕΡΕΥΝΗΣΗ ΚΑΤΑΛΛΗΛΩΝ ΜΕΤΡΩΝ ΑΝΤΙΣΤΗΡΙΞΗΣ

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς το συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν το συγγραφέα και δεν πρέπει να ερμηνευτεί ότι εκφράζουν τις επίσημες θέσεις του Α.Π.Θ.

ΕΥΧΑΡΙΣΤΙΕΣ

Αισθάνομαι την ανάγκη βρισκόμενος σε αυτήν τη θέση να εκφράσω την απέραντη ευγνωμοσύνη μου σε κάποιους πολύ σημαντικούς ανθρώπους. Κάθε ένας από αυτούς έβαλε ένα ξεχωριστό λιθαράκι για να συντεθεί το πολύχρωμο ψηφιδωτό της φοιτητικής μου σταδιοδρομίας.

Πρώτους από όλους, θα ήθελα να ευχαριστήσω τους γονείς μου, οι οποίοι αναμφίβολα έδειξαν σε εμένα εμπιστοσύνη και με στήριξαν από την πρώτη στιμή όσον αφορά την επιλογή της συγκεκριμένης επιστημονικής κατεύθυνσης που προσφέρει η Σχολή μου. Η υλική και κατά κύριο λόγο η ψυχολογική στήριξη τους είναι ανεκτίμητη και για το λόγο αυτό η παρούσα διπλωματική εργασία είναι εξ ολοκλήρου αφιερωμένοι σε αυτούς. Μαρία και Αντώνη σας ευχαριστώ για όλα!

Δεν θα μπορούσα, ακόμη, να μην αναφερθώ στον αδελφό μου, Γιάννη, για τις συμβουλές του σε κάθε μου προβληματισμό αναφορικά με θέματα του Πανεπιστημίου και μη. Το ευρύτερο οικογενειακό, αλλά και φιλικό μου περιβάλλον ήταν παρόν στις όμορφες, αλλά και δύσκολες στιγμές που βρέθηκαν στην πορεία των φοιτητικών μου χρόνων.

Τέλος, θέλω να εκφράσω το σεβασμό και τις ιδιαίτερες ευχαριστίες μου στους καθηγητές μου. Πιο συγκεκριμένα, στον κ. Γεώργιο Παπαθανασίου και κ. Νικόλαο Χατζηγώγο, διότι ο πολύτιμος χρόνος που μου αφιέρωσαν και η βαθιά και εξειδικευμένη γνώση του αντικειμένου από αυτούς με ώθησαν στο να επιδείξω έναν ιδιαίτερο ζήλο για την ολοκήρωση του συγκεκριμένου πονήματος. Η συμβολή τους είναι σημαντική, οι εποικοδομητικές τους υποδείξεις, η καθοδήγηση, η υπομονή και η εμπιστοσύνη τους προς το πρόσωπό μου έκαναν εφικτή την ολοκλήρωση αυτής της διπλωματικής εργασίας.

Περιεχόμενα

ПЕРІЛНҰН	9
ABSTRACT	10
ΚΕΦΑΛΑΙΟ 1 : ΕΙΣΑΓΩΓΗ	
1.1 ГЕNIKA	11
1.2 ΒΑΣΙΚΟΙ ΣΤΟΧΟΙ ΚΑΙ ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΔΙΠΛΩΜΑΤΙΚΗΣ ΔΙΑΤΡΙΒΗΣ	12
ΚΕΦΑΛΑΙΟ 2 : ΣΤΟΙΧΕΙΑ ΤΗΣ ΈΡΕΥΝΑΣ	
2.1 ΠΑΡΟΥΣΙΑΣΗ ΕΡΕΥΝΑΣ	13
2.1.1 TEXIKH EK Θ E Σ H - Θ E Σ H EPEYNA Σ	13
2.1.2 ΠΕΡΙΓΡΑΦΗ ΕΡΕΥΝΑΣ	15
2.3 ΜΟΡΦΟΛΟΓΙΚΟ ΑΝΑΓΛΥΦΟ - ΥΔΡΟΓΡΑΦΙΚΟ ΔΥΚΤΙΟ- ΡΕΜΑΤΑ	16
2.3.1 ΕΥΡΥΤΕΡΗΣ ΠΕΡΙΟΧΗΣ	16
2.3.2 ΘΕΣΗΣ ΕΡΕΥΝΑΣ	19
2.4 ΓΕΩΛΟΓΙΚΕΣ ΣΥΝΘΗΚΕΣ	20
2.4.1 ΕΥΡΥΤΕΡΗΣ ΠΕΡΙΟΧΗΣ	20
2.4.2 ΘΕΣΗΣ ΕΡΕΥΝΑΣ	
2.5 ΡΗΓΜΑΤΑ ΣΕΙΣΜΙΚΟΤΗΤΑ ΚΑΙ ΣΕΙΣΜΙΚΗ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑ	30
2.5.1 ΕΥΡΥΤΕΡΗΣ ΠΕΡΙΟΧΗΣ	
2.5.2 ΘΕΣΗΣ ΕΡΕΥΝΑΣ	
ΚΕΦΑΛΑΙΟ 3 : ΠΡΟΓΡΑΜΜΑ ΕΡΕΥΝΗΤΙΚΩΝ ΕΡΓΑΣΙΩΝ	
3.1 ΔΕΙΓΜΑΤΟΛΗΠΤΙΚΕΣ ΓΕΩΤΡΗΣΕΙΣ	
3.2 ΕΠΙ ΤΟΠΟΥ ΔΟΚΙΜΕΣ	42
3.3 ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΔΟΚΙΜΕΣ	43
3.4 ΤΕΧΝΙΚΕΣ ΠΡΟΔΙΑΓΡΑΦΕΣ	44
ΚΕΦΑΛΑΙΟ 4 : ΑΞΙΟΛΟΓΗΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΕΡΓΑΣΙΩΝ	
4.1 ΣΤΡΩΜΑΤΟΓΡΑΦΙΑ ΚΑΙ ΥΠΟΓΕΙΑ ΝΕΡΑ	45
4.2 ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΤΙΜΕΣ ΠΑΡΑΜΕΤΡΩΝ ΣΤΡΩΜΑΤΩΝ	
4.3 ΓΕΩΤΕΧΝΙΚΟ ΠΡΟΦΙΛ ΣΧΕΔΙΑΣΜΟΥ	53
ΚΕΦΑΛΑΙΟ 5 : ΕΥΣΤΑΘΕΙΑ ΠΡΑΝΩΝ ΕΚΣΚΑΦΗΣ	
5.1 ΕΙΔΟΣ ΚΑΙ ΜΕΤΡΑ ΒΕΛΤΙΩΣΗΣ ΓΕΩΤΕΧΝΙΚΩΝ ΣΥΝΘΗΚΩΝ	54
5.2 ΕΠΙΤΡΕΠΟΜΕΝΗ ΤΑΣΗ ΕΝΑΝΤΙ ΘΡΑΥΣΗΣ ΕΔΑΦΟΥΣ	
5.3 ΕΚΤΙΜΗΣΗ ΚΑΘΙΖΗΣΕΩΝ - ΔΕΙΚΤΗ ΕΔΑΦΟΥΣ	
5.4 ΥΠΟΛΟΓΙΣΤΙΚΟΙ ΕΛΕΓΧΟΙ ΕΥΣΤΑΘΕΙΑΣ ΠΡΑΝΟΥΣ	59
ΚΕΦΑΛΑΙΟ 6 : ΓΕΩΤΕΧΝΙΚΟΣ ΣΧΕΛΙΑΣΜΟΣ ΜΕΤΡΩΝ ΑΝΤΙΣΤΗΡΙΞΗΣ ΕΚΣΚΛ	ΑΦΗΣ ΤΩΝ
ΠΡΑΝΩΝ - ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ	
6.1 ΑΠΑΙΤΗΣΕΙΣ ΣΧΕΔΙΑΣΜΟΥ ΑΝΤΙΣΤΗΡΙΞΗΣ	66
6.2 ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ- ΜΙΚΡΟΠΑΣΣΑΛΟΙ	68
6.3 ΠΡΟΤΑΣΗ ΑΝΤΙΣΤΗΡΙΞΗΣ	72
ΚΕΦΑΛΑΙΟ 7 : ΣΥΜΠΕΡΑΣΜΑΤΑ	
ΒΙΒΛΙΟΓΡΑΦΙΑ	77
ПАРАРТНМАТА	

ΛΙΣΤΑ ΕΙΚΟΝΩΝ

Εικόνα 1: Γεωγραφική θέση της έρευνας	13
Εικόνα 2: Θέση έρευνας	14
Εικόνα 3: Δορυφορική εικόνα της θέσης έρευνας	14
Εικόνα 4: Απόσπασμα τοπογραφικού διαγράμματος οικοπέδου έρευνας	15
Εικόνα 5: Υδρολογική λεκάνη συγκροτήματος της Θεσσαλονίκης πρώτα ρέματα	17
Εικόνα 6: Υδρολογική λεκάνη Θεσσαλονίκης	19
Εικόνα 7: Υδρολογική λεκάνη Θεσσαλονίκης πιο σύγγρονη αποτύπωτη	19
Εικόνα 8: Γεωτεκτονικό σγήμα των Ελληνίδων ζωνών	21
Εικόνα 9: Λιθοστρωματογραφικές στήλες ενοτήτων της Περιροδοπικής ζώνης	22
Εικόνα 10: Στρωματογραφική στήλη περιοχής Θεσσαλονίκης	26
Εικόνα 11: Λεπτομερής γεωλογικός χάρτης περιοχής Θεσσαλονίκης	27
Εικόνα 12: Απόσπασμα Γεωλογικού γάρτη περιογής έρευνας	
(Φύλλο Θεσσαλονίκη, ΕΑΓΜΕ., κλ.1:50.000)	28
Εικόνα 13: Απόσπασμα Τεχνικογεωλογικού γάρτη ευρύτερης περιογής Θεσσαλονίκης (ΕΑΓΜΕ).	29
Εικόνα 14: Δορυφορική εικόνα όπου αποτυπώνονται τα νεοτεκτονικά ρήγματα περιογής	
πις Θεσσαλονίκης	31
Εικόνα 15: Ρήνματα της ευρύτερης περιογής της Θεσσαλονίκης	
Εικόνα 16. Επίκεντοα σεισμών που έπληξαν την πόλη της Θεσσαλονικής	33
Εικόνα 17 [.] Χάρτης ζωνών σεισμικής επικινδυνότητας της Ελλάδας (ΦΕΚ 1154Β' 12-8- 2003)	34
Εικόνα 18: Απόσπασμα Σεισμοτεκτονικού γάρτη Ελλάδος (ΕΑΓΜΕ).	
Εικόνα 19: Κάτοψη του περινράμματος του οικοπέδου και επισήμανση θέσεων των γεωτρήσεων	40
Ξικόνα 20: Στοωματονοαφική τομή Γεώτοησης 1	45
Εικόνα 21. Στοωματογραφική τομή Γεώτοησης 2	46
Εικόνα 22. Στοωματογραφική τομή Γεώτοησης 3	47
Εικόνα 23: Στοωματογραφική τομή Γεώτοησης 4	48
Εικόνα 25. Δτρωματογραφική τομή Γομή Γουρήσης Γ Εικόνα 24: Απεικόνιση των γεωλονικών τομών	<u> 10</u> <u>4</u> 9
Εικόνα 25: Στοφματονοαφική τομή Α-Α'	49
Εικόνα 26: Στοωματογοαφική τομή Β-Β'	<u>12</u> 50
Εικόνα 20. Στρωματογραφική τομή Ε-Ε'	<u>50</u> 50
Εικόνα 28: Γραφικά αποτελέσματα υπολογισμού φέρουσας ικανότητας με πεδιλοδοκό B'=1 5m	<u>90</u>
$\frac{1}{100}$ As $\frac{1}{100}$	56
$\frac{1}{2}$ Εμέλιωσης D=4,05m επι των στρωσεών SI-C2.	
$\frac{1}{100}$ (με περικα αποτεπερματά υποπογισμού φερουσας ικανοτητάς με περιπούσκο $B = 1.5 \text{ m}$	<u>56</u>
$\frac{1}{2}$ Εμέλια 30: Γραφικά αποτελέσματα υπολογισμού φέρουσας μευνότητας με πεδιλοδοκό B ² =1.5m	
$\frac{1}{1000}$ (με με μετικού από του στούσεου C1 C2	57
$\frac{\partial c}{\partial c}$ μελιωσής <u>D=0,05 m ελι των στρωσεων C1-C2</u>	<u>57</u> 58
E(KOVU 51. Παραμειρικός υπολογισμός κασιζησεών για πεσιλοσοκό $B = 1,511$	<u></u>
Eucova 52. Ratowij two rewtpiloews ac entoipavoi two npowie ekokawije	60
Elkova 55. Hpoqta 1, Undrained ookiui, F.S. > 1 .	<u>00</u> 61
ELEVEN 34. HPOPUL 1, MOIN COULDING OOKLUI, F.S. < 1	<u>01</u> 61
Elkova 35. Hpoqta 2, Ondramed ooktuij, F.S. < 1.	01
Elkova 30: Προφίλ 2, Monr Coulomb Sociut, F.S.<1	0 <u>2</u> 62
Elkova 57. Προφίλ 2, Moni Coulomb, σοκιμή με Αναστροφές αναλοδείς	02
Eικονα 38: Προφιλ 3, Undrained σοκιμή, F.S.> 1	
<u>Εικονα 39: Προφιλ 3, Mont Coulomb δοκιμη, με F.S.<1</u>	
Eικονα 40: Προφιλ 3, Monr Coulomb δοκιμη, με Αναστροφες αναλυσεις	04
Eικονα 41: Προφιλ 4, Undrained δοκιμη, F.S.> 1	
Eικονα 42: Προφιλ 4, Monr Coulomb δοκιμη, με F.S.<1	
<u>Εικόνα 43: Προφίλ 4, Mohr Coulomb δοκιμή, με Ανάστροφες αναλύσεις</u>	<u>65</u>

Εικόνα 44: Διατάξεις μικροπασσάλων
Εικόνα 45: Παραδείγματα μικροπασσάλων
Εικόνα 46: Προφίλ 2, Mohr Coulomb, F.S>1 μέ την συμμετοχή των μικροπασσάλων70
Εικόνα 47: Προφίλ 3, Mohr Coulomb, F.S>1 μέ την συμμετοχή των μικροπασσάλων71
Εικόνα 48: Προφίλ 4, Mohr Coulomb, F.S>1 μέ την συμμετοχή των μικροπασσάλων71
Εικόνα 49: Προσομοίωμα μοντέλου μικροπασσάλου για την εκσκαφή
Εικόνα 50: Ανάλυση ευστάθειας πρανούς 2 μετά την τοποθέτηση του πρότυπου πασσάλου
Εικόνα 51: Ανάλυση ευστάθειας πρανούς 3 μετά την τοποθέτηση του πρότυπου πασσάλου
Εικόνα 52: Ανάλυση ευστάθειας πρανούς 4 μετά την τοποθέτηση του πρότυπου πασσάλου

ΛΙΣΤΑ ΠΙΝΑΚΩΝ

Πίνακας 1: Οι γεωλογικοί σχηματισμοί της Θεσσαλονίκης από την επιφάνεια προς το βάθος	.27
Πίνακας 2: Ενεργά, πιθανά και μη ενεργά ρήγματα της ευρύτερης περιοχής της Θεσσαλονίκης	.31
Πίνακας 3: Σεισμοί που έπληξαν την πόλη της Θεσσαλονίκης	33
<u>Πίνακας 4: Κατηγορίες εδαφών κατά τον ΕΝ 1998-1</u>	36
Πίνακας 5: Εργαστηριακά αποτελέσματα φυσικών παραμέτρων επιμέρους στρωμάτων	51
Πίνακας 6: Εργαστηριακά αποτελέσματα μηχανικών παραμέτρων επιμέρους στρωμάτων	51
<u>Πίνακας 7: Μηχανικές παράμετροι επί μέρους στρωμάτων βάσει της τιμής N(spt)</u>	
Πίνακας 8: Συγκριτικά αποτελέσματα μηχανικών παραμέτρων των εργαστηριακών	
και επί τόπου δοκιμών	52
Πίνακας 9: Γεωτεχνικές παράμετροι σχεδιασμού	53
Πίνακας 10: Στοιχεία των πρανών εκσακφής	54
Πίνακας 11 : Προτεινόμενες τιμές του δείκτη εδάφους ks κατά Terzaghi	59
Πίνακας 12: Απαιτούμενα χαρακτηριστικά εφαρμοζόμενων μέτρων αντιστήριξης	72

ΠΕΡΙΛΗΨΗ

Για τη μελέτη θεμελίωσης ενός οικοδομικού έργου καθοριστικό ρόλο παίζει ο σχεδιασμός της γεωτεχνικής έρευνας που παρέχει τις απαραίτητες πληροφορίες του υπεδάφους θεμελίωσης ώστε να διενεργηθούν οι απαιτούμενοι έλεγχοι οι οποιοί είναι : έλεγχος φέρουσας ικανότητας , έλεγχος καθιζήσεων και έλεγχος ευστάθειας απαιτούμενων εκσκαφών. Οι παραπάνω γεωτεχνικοί έλεγχοι είναι απαραίτητοι για την εκπόνηση μελετών θεμελίωσης και αντιστήριξης.

Στην παρούσα Διπλωματική γίνεται αξιολόγηση των αποτελεσμάτων γεωτεχνικής έρευνας που εκτελέσθηκε σε περιοχή της Θεσσαλονίκης στα πλαίσια ανέγερσης ενός οικοδομικού έργου. Στην συνέχεια και με βάση το γεωτεχνικό μοντέλο της περιοχής έρευνας διεξάγονται έλεγχοι φέρουσας ικανότητας, καθιζήσεων και ευστάθειας προσωρινών εκσκαφών με τη χρήση ειδικού λογισμικού γεωτεχνικών εφαρμογών. Τέλος τα αποτελέσματα των γεωτεχνικών ελέγχων αξιοποιούνται για τις τελικές προτάσεις θεμελίωσης του οικοδομικού έργου και αντιστήριξης των προβλεπόμενων εκσκαφών.

ABSTRACT

For the study of the foundation of a construction project, the design of the geotechnical research that provides the necessary information of the foundation subsoil plays a decisive role in order to carry out the following inspections, which are: bearing capacity control, subsidence control and stable fixed excavation control. The above geotechnical inspections are necessary for the elaboration of foundation and support studies.

In the present Dissertation, you shall be evaluated the results of a geotechnical survey carried out in an area of Thessaloniki in the context of the construction of a construction project. Then, based on the geotechnical model of the research area, tests of bearing capacity, subsidence and stability of temporary excavations are carried out using special software of geotechnical applications. Finally, the results of the geotechnical inspections are utilized in the final proposals for the foundation of the construction project and the support of the planned excavations.

ΚΕΦΑΛΑΙΟ 1 : ΕΙΣΑΓΩΓΗ

1.1 ГЕNIKA

Η σύνταξη της παρούσας διπλωματικής διατριβής έγινε στα πλαίσια κατασκευής οικοδομικού έργου για την δημιουργία εγκαταστάσεων και χώρων κοινής οφέλειας στην περιοχή της Παπάφη, για την ολοκλήρωση των προπτυχιακών σπουδών στο εργαστήριο Τεχνικής Γεωλογίας και Υδρογεωλογίας του Αριστοτελείου Πανεπιστημίου Θεσσαλονίκης με τρόπο σύμφωνο με τις σχετικές Δημόσιες Τεχνικές Προδιαγραφές (ΥΠΕΧΩΔΕ, Ε106-85) και τις αντίστοιχες οδηγίες και προδιαγραφές της A.S.T.M. (American Society for Testing and Materials).

Αντικείμενο της διπλωματικής εργασίας είναι η παρουσίαση και αξιολόγηση των αποτελεσμάτων της γεωτεχνικής έρευνας η οποία έγινε για τη διερεύνηση των συνθηκών θεμελίωσης των προβλεπομένων εγκαταστάσεων κοινής ωφέλειας στη περιοχή της Παπάφη, οι διάφορες δοκιμές - διαστασιολογήσεις μέσω ειδικών προγραμμάτων καθως και η παρουσίαση του προτεινόμενου μοντέλου αντιστήριξης των πρανών.

1.2 ΒΑΣΙΚΟΙ ΣΤΟΧΟΙ ΚΑΙ ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΔΙΠΛΩΜΑΤΙΚΗΣ ΔΙΑΤΡΙΒΗΣ

Αντικείμενο της διπλωματικής διατριβής αποτέλεσε η διερεύνηση και ο προσδιορισμός των συνθηκών του υπεδάφους που επικρατούν στη θέση θεμελίωσης των υπό μελέτη κατασκευών (όπως στρωματογραφίες, ύπαρξη υπόγειων νερών, τα φυσικά χαρακτηριστικά του εδάφους, τα μηχανικά χαρακτηριστικά του εδάφους κ.α.). Τα στοιχεία της έρευνας αξιολογούνται προκειμένου αφενός να εκτιμηθούν οι τιμές των μηχανικών παραμέτρων που απαιτούνται στη μελέτη της μηχανικής συμπεριφοράς του υπεδάφους, αφετέρου να διατυπωθούν τεκμηριωμένες προτάσεις που αφορούν στο σχεδιασμό της θεμελίωσης και των ενδεχόμενων μέτρων αντιστήριξης του έργου (όπως τα χαρακτηριστικά της αντοχής και της συμπιεστότητας του εδάφους, η φέρουσα ικανότητα σχεδιασμού θεμελίωσης και η επιτρεπόμενη τάση, ο δείκτης εδάφους, η κατάταξη βάση σεισμικής επικινδυνότητας, κ.α.).

Στη συνέχεια, τα παραπάνω στοιχεία εισάγονται στην οριστική γεωτεχνική μελέτη σε ελέγχους φέρουσας ικανότητας, καθιζήσεων και ευστάθειας εκσκαφών, έτσι ώστε να διερευνηθούν τυχόν απαιτούμενα μέτρα βελτίωσης-προστασίας των προβλεπόμενων έργων.

Επιπρόσθετα διερευνώνται όλοι οι πιθανοί γεωτεχνικοί κίνδυνοι που μπορεί να προκύψουν, όπως θέματα διαχείρισης υπόγειων υδάτων, σεισμικότητα της περιοχής, περιπτώσεις πτώσης πρανών κατά την εκσκαφή κ.α.

Στην διπλωματική αυτή εργασία αξιολογούνται τα αποτελέσματα της γεωτεχνικής έρευνας που εκτελέσθηκε από τον Δρ. Χατζηγώγο Νικόλαο την περίοδο του Οκτωβρίου-Νοεμβρίου 2021 με την διεξαγωγή τεσσάρων δειγματοληπτικών γεωτρήσεων. Παράλληλα αξιολογούνται και τα αποτελέσματα των εργαστηριακών δοκιμών σε αντιπροσωπευτικά δείγματα των γεωτρήσεων τα οποία εκτελέσθηκαν στα Εργαστήρια Εφαρμοσμένης Γεωλογίας και Υδρογεωλογίας του Τμήματος Γεωλογίας του Α.Π.Θ και στα εργαστήρια της ΙΟΝΙΑΝ LABS Α.Ε. κατά την περίοδο Σεπτεμβρίου έως Οκτωβρίου 2021.

Η παρούσα διπλωματική εργασία χωρίζεται σε 7 κύρια κεφάλαια τα οποία θα αναφερθούν συνοπτικά παρακάτω :

- (Κεφάλαιο 1) Εισαγωγή της διπλωματικής : βασικά στοιχεία για αυτήν, τους στόχους της και σύντομη παρουσίαση των κεφαλαίων της.
- (Κεφάλαιο 2) Όλα τα στοιχεία που αφορούν την έρευνα και ανάλυση της μορφολογίας και του δικτύου των υδάτων, της γεωλογίας, των ρηγμάτων και της σεισμικότητας. Στα παραπάνω γίνεται ξεχωριστή αναφορά στην ευρύτερη περιοχή και στη θέση της έρευνας.
- (Κεφάλαιο 3) Παρουσίαση αναλυτικά του προγράμματος των ερευνητικών εργασιών το οποίο αποτελείται από τις δειγματοληπτικές γεωτρήσεις, τις επί τόπου και εργαστηριακές δοκιμές αλλά και τις τεχνικές προδιαγραφές.
- (Κεφάλαιο 4) Παρουσίαση και αξιολόγηση των ερευνητικών εργασιών μέσα από την στρωματογραφία του εδάφους, τα υπόγεια νερά, τις εργαστηριακές τιμές των παραμέτρων των στρωμάτων και το γεωτεχνικό προφίλ σχεδιασμού.
- (Κεφάλαιο 5) Μελέτη ενδεχόμενων αστοχιών στις εκσκαφές των πρανών με ανάλυση του κάθε προφίλ εκσκαφής.
- (Κεφάλαιο 6) Διαστασιολόγηση αποτελεσμάτων και προτάσεις μέτρων αντιστήριξης των πρανών.
- (Κεφάλαιο 7) Συμπεράσματα πτυχιακής εργασίας.

ΚΕΦΑΛΑΙΟ 2 : **ΣΤΟΙΧΕΙΑ ΤΗΣ ΕΡΕΥΝΑΣ**

2.1 ΠΑΡΟΥΣΙΑΣΗ ΕΡΕΥΝΑΣ

2.1.1 ΤΕΧΙΚΗ ΕΚΘΕΣΗ - ΘΕΣΗ ΕΡΕΥΝΑΣ

Η παρούσα τεχνική έκθεση αφορά την έρευνα σχετικά με την πρόταση δημιουργίας χώρου εγκαταστάσεων κοινής ωφέλειας σε Ο.Τ. στη περιοχή Παπάφη του Δήμου Θεσσαλονίκης.

Το οικόπεδο εμβαδού 4.645,64 τ.μ., στο οποίο πρόκειται να κατασκευαστούν οι εγκαταστάσεις κοινής ωφέλειας, βρίσκεται εντός σχεδίου πόλεως του Δήμου Θεσσαλονίκης. Στην περιοχή υπάρχει υψομετρική διαφορά μεταξύ μερικών σημείων του νοτιοδυτικού και του βορειοανατολικού άκρου του οικοπέδου, της τάξεως των 4,81 μ.. Επίσης, το μέγιστο επιτρεπόμενο ορίζεται στα 14m². ύψος οικοδομής. Παράλληλα, ορίζεται και ένας μη οικοδομήσιμος κοινόχρηστος χώρος στο οικόπεδο, ο οποίος καταλαμβάνει εμβαδό 759,88 τ.μ.. Η επιτρεπόμενη κάλυψη, λοιπόν, του οικοπέδου ανέρχεται σε ποσοστό 40% επί του υπόλοιπου εμβαδού (3.885,76 τ.μ.), δηλαδή αφορά στα 1.554τ.μ., ενώ η μέγιστη συνολική επιτρεπόμενη δόμηση είναι της τάξης των 4.700,0 τ.μ. < 6.216,0 τ.μ.

Στη θέση αυτή θα κατασκευασθούν εννέα κτίρια κοινής ωφελείας τα οποία θα θεμελιωθούν σε ενιαία εκσκαφή και θα περιλαμβάνουν υπόγειους χώρους δύο επιπέδων, στάθμευσης και αποθήκευσης. Η θεμελίωση θα είναι ενιαία για όλα τα κτίρια και θα περιλαμβάνει μία εκσκαφή μέχρι το απόλυτο υψόμετρο +27.26m, πέντε πλευρών και γωνιών βάσει της οποίας διαμορφώνονται αντίστοιχα πέντε τεχνητά ορύγματα ύψους από 4,90 έως 8,40m περίπου.

Στις Εικόνες 1,2 και 3 που ακολουθούν παρουσιάζονται αντίστοιχα η γεωγραφική, η φωτογραφική και η δορυφορική απεικόνιση της θέσης του έργου, ενώ στην Εικόνα 4 παρουσιάζεται απόσπασμα του τοπογραφικού διαγράμματος του οικοπέδου μελέτης.

Εικόνα 1: Γεωγραφική θέση της έρευνας.

Εικόνα 2: Θέση έρευνας.

Εικόνα 3: Δορυφορική εικόνα της θέσης έρευνας.

Εικόνα 4: Απόσπασμα τοπογραφικού διαγράμματος οικοπέδου μελέτης.

2.1.2 ΠΕΡΙΓΡΑΦΗ ΕΡΕΥΝΑΣ

Στην εργασία αυτή παρουσιάζονται και αξιολογούνται τα αποτελέσματα της γεωτεχνικής έρευνας η οποία έγινε για τη διερεύνηση των συνθηκών θεμελίωσης των προβλεπόμενων εγκαταστάσεων κοινής ωφέλειας στο Ο.Τ. που περικλείεται απο τις οδούς Αλοννήσου – Μυκόνου – Άνδρου – Σιδηροκάστρου (πρώην στάβλοι Παπάφη).

Αντικείμενο της μελέτης αποτέλεσε η διερεύνηση και ο προσδιορισμός των συνθηκών που επικρατούν στη θέση θεμελίωσης των υπό μελέτη κατασκευών (στρωματογραφία, υπόγεια νερά, φυσικά χαρακτηριστικά υπεδάφους, μηχανικά χαρακτηριστικά υπεδάφους κ.λπ.). Τα στοιχεία αυτά συνθέτονται και αξιολογούνται προκειμένου αφενός μεν να εκτιμηθούν οι τιμές των παραμέτρων που απαιτούνται στη μελέτη της μηχανικής συμπεριφοράς του υπεδάφους (χαρακτηριστικά αντοχής και συμπιεστότητας εδάφους, φέρουσα ικανότητα σχεδιασμού θεμελίωσης - επιτρεπόμενη τάση, δείκτης εδάφους, κατάταξη από άποψη σεισμικής επικινδυνότητας, κ.λπ.), αφετέρου δε να διατυπωθούν τεκμηριωμένες προτάσεις που αφορούν στο σχεδιασμό της θεμελίωσης της και της αντιστήριξης των πρανών εκσκαφής.

Στη μελέτη εφαρμόζονται οι παρακάτω έλεγχοι:

- Ο έλεγχος της φέρουσας ικανότητας της θεμελίωσης της δεξαμενής.
- Ο έλεγχος των καθιζήσεων της θεμελίωσης.
- Η εκτίμηση του δείκτη εδάφους.
- Οι έλεγχοι ευστάθειας των πρανών εκσκαφής.
- Έλεγχοι διαστασιολόγησης θεμελίωσης και μέτρων αντιστήριξης εκσκαφών

Προδιαγραφές εκπόνησης της Έρευνας

Για την εκτέλεση των ερευνητικών εργασιών, την αξιολόγησή τους και την εφαρμογή των γεωστατικών υπολογισμών πάρθηκαν υπόψη:

- «Οι τεχνικοί όροι εκτέλεσης εδαφοτεχνικών ερευνών»: Δ.20192/22.1.1966
- «Οι προδιαγραφές εργαστηριακών και επιτόπου δοκιμών εδαφομηχανικής»: E105-86, E106-86 (ΦΕΚ/955/B31.12.1986).
- «Οι προδιαγραφές αξιολόγησης»: ΦΕΚ 1221 Β/30.11.1998, ΔΜΕΟ/δ/0/1759/12.11.1998.

- Διεθνείς τεχνικές προδιαγραφές και γραφήματα συσχετισμού μεταξύ μηχανικών εδαφικών παραμέτρων και αποτελεσμάτων επιτόπου δοκιμών.
- Ο Ευρωκώδικας 7 ΕΝ 1997-1 « Γεωτεχνικός σχεδιασμός Μέρος 1».
- Το Εθνικό Προσάρτημα στον Ευρωκώδικα 7.
- Ο Ευρωκώδικας 7 ΕΝ 1997-2 « Γεωτεχνικός σχεδιασμός Μέρος 2».
- Ο Ευρωκώδικας 7 ΕΝ 1997-3 « Γεωτεχνικός σχεδιασμός Μέρος 3».
- Ο Ευρωκώδικας 8 ΕΝ 1998-5 «Αντισεισμικός σχεδιασμός. Μέρος 5».
- Ο Ευρωκώδικας 8 ΕΝ 1998-1 «Αντισεισμικός σχεδιασμός κατασκευών. Μέρος 1: Γενικοί κανόνες, σεισμικές δράσεις και κανόνες για κτίρια».

Γεωερευνητικές εργασίες

- Στοιχεία τεσσάρων (4) δειγματοληπτικών γεωτρήσεων βάθους 10-20m έκαστη.
- Στοιχεία μέτρησης υπόγειας στάθμης σε δύο (2) εγκατεστημένα πιεζόμετρα.
- Στοιχεία που προέκυψαν από εργαστηριακούς ελέγχους πάνω σε αντιπροσωπευτικά δείγματα που πάρθηκαν από τη γεώτρηση.

2.3 ΜΟΡΦΟΛΟΓΙΚΟ ΑΝΑΓΛΥΦΟ - ΥΔΡΟΓΡΑΦΙΚΟ ΔΙΚΤΥΟ ΠΕΡΙΟΧΉΣ ΕΡΓΟΥ - ΡΕΜΑΤΑ

2.3.1 ΕΥΡΥΤΕΡΗΣ ΠΕΡΙΟΧΗΣ

Η περιοχή της Θεσσαλονικης με βάση το υδρογραφικό δίκτυο χωρίζεται σε πέντε διαφορετικές υδρολογικές λεκάνες. Η πρώτη εξ' αυτών είναι του Ανθεμούντα έκτασης 318 km² και ανάπτυξη BΔ-NA. Η δεύτερη λεκάνη είναι αυτή του πολεοδομικού συγκροτήματος της Θεσσαλονίκης έκτασης 66 km² η οποία υποδιαιρείται σε υπολεκάνες ακόμη πιο μικρής έκτασης και αντιπροσωπεύουν χείμαρρους ή ρέματα της πόλης. Η τρίτη λεκάνη είναι αυτή του Δενδροποτάμου έκτασης 175 km² και με ανάπτυξη κατά κύριο λόγο BΔ-NA αλλά και B-N. Η τέταρτη λεκάνη έκτασης 54,5 km², διαχωρίζεται και αυτή σε μικρότερες που αντιπροσωπεύουν τα διάφορα ρέματα του Ν. Ρύσιου έως και το Αγγελοχώρι με την διεύθυνση αυτών των υπολεκανών να είναι B-N. Η πέμπτη και τελευταία είναι της Θέρμης, έκτασης 58,3 km² και γενικής διεύθυνσης BA-NA (Ζερβοπούλου, Παυλίδης 2005).

Βάσει της επεξεργασίας των τρισδιάστατων μοντέλων εδάφους DEM των υδρολογικών αυτών λεκανών προκύπτουν κάποια συμπεράσματα για το ανάγλυφο της περιοχής :

Κατά τον Φουρνιάδη (2002) στο βόρειο τμήμα της υδρολογικής λεκάνης του Ανθεμούντα (λεκάνες 1 και 4), εντοπίζονται μέσα υψόμετρα 605 μέτρων και φτάνουν έως και 1.210 μέτρα έντονων κλίσεων (15-350 στο μεγαλύτερο ποσοστό), ενώ αντίθετα στο νότιο τμήμα οι κλίσεις είναι πολύ πιο ήπιες (<150) καθώς τα μέσα υψόμετρα αγγίζουν τα 450 και φτάνουν μέχρι και τα 900 μέτρα. Συμπερασματικά η υδρολογική λεκάνη του Ανθεμούντα χαρακτηρίζεται ως πεδινή – λοφώδης. Για αυτήν του Δενδροποτάμου παρατηρούνται υψόμετρα που αγγίζουν έως και τα 720 μέτρα με τις πιο έντονες κλίσεις να παρατηρούνται στο βόρειο τμήμα. Τέλος τα υψόμετρα της λεκάνης της Θεσσαλονίκης είναι ακόμα πιο χαμηλά με το μέγιστο να φτάνει τα 560 μέτρα.

Η συνολική αποτύπωση του υδρογραφικού δικτύου πραγματοποιήθηκε στηριζόμενη σε χάρτες της Γ.Υ.Σ. κλίμακας 1:50.000 σε εικόνες και αεροφωτογραφίες. Εξαιτίας όμως της έντονης ανάπτυξης οικισμών στις υδρολογικές λεκάνες της Θεσσαλονίκης και της Περαίας χρειάστηκε να χρησημοποιηθούν χάρτες 1:5.000 οι οποίοι είχαν αποτυπωθεί το 1938 και 1980 αντίστοιχα. Σημαντική ήταν η συμβολή αεροφωτογραφιών που λήφθηκαν το 1939 και 1945 κατά κύριο λόγο για το πολεοδομικό συγκρότημα της Θεσσαλονίκης.

Εικόνα 5: Υδρολογική λεκάνη του συγκροτήματος της Θεσσαλονίκης όπως αποτυπώνεται στις οι αεροφωτογραφίες του 1939 και 1945 αλλά και τα πρώτα ρέματα της πριν από την πυκνή δόμηση όπως προέκυψαν ύστερα. (Vitti 1990, Δημητριάδης 1983, Λεβεντάκης 2003, Μπλιώνης 1996, Στεφανίδης 2000). Επίσης φαίνεται η παλιά ακτογραμμή της πόλης ανατολικότερα στην νέα παραλία (Vouvalidis et al. 2005).

<u>Ρέματα:</u>

Από τα ρέματα της Θεσσαλονίκης κυρίαρχη είναι η περιφερειακή τάφρος η οποία διέρχεται μέσα από την πόλη και έχει έκταση 9 χιλιομέτρων με πορεία από Βορρά προς Νότο. Κατά μεγαλύτερο ποσοστό είναι τεχνητή, όμως αξιοποιεί και τις κοίτες παλαιότερων φυσικών ρεμάτων όπως αυτό της Τούμπας. Ρόλος της περιφερειακής τάφρου είναι η απομάκρυνση των υδάτων που δέχεται από τις λεκάνες απορροής έξι διαφορετικών ρεμάτων που διέρχονται από το εσωτερικό της πόλης της Θεσσαλονίκης. Η πορεία της ξεκινάει από την περιφεριακή οδό πάνω απο την Κατσιμίδη (Σέιχ Σου) και την ακολουθεί παράλληλα για μερικά χιλιόμετρα. Συνεχίζει διασχίζωντας την Γ. Λαμπράκη, κατεβαίνει προς τον Δήμο Πυλαίας- Χορτιάτη και φτάνει στην περιοχή της Καλαμαριάς όπου και εκβάλλει τελικά στον Θερμαϊκό κόλπο (Τσουμαλάκος 2017, ΕΥΔΕ 2003).

Ακόμη υπάρχουν τα ρέματα τοπικού χαρακτήρα τα οποία παρουσιάζονται παρακάτω (Τσουμαλάκος 2017, ΕΥΔΕ 2003):

- Ρέμα Ρήγα Φεραίου, αναπτύσσεται στα δυτικά του Δήμου Θεσσαλοίνκης, ακολουθεί πορεία από ανατολικά προς δυτικά και εκβάλλει στο Θερμαϊκό κόλπο.
- Δυτικά Τείχη Θεσσαλονίκης, τεχνητή τάφρος (στοιχείο οχυρωματικών έργων).
- Ρέμα Ευαγγελίστριας, οριοθετεί το ιστορικό κέντρο της πόλης, αποτελούσε φυσική τάφρο των ανατολικών τοιχών της πόλης και χωρίζεται σε δύο κλάδους.
- Ρέμα Ελευθερών και Μάτση ή Ρέμα Σαράντα Εκκλησιών, αναπτύσσεται σε δύο κλάδους, ένας εντός δασικής έκτασης και ένας εντός κατοικημένης περιοχής των Σαράντα Εκκλησιών με ακόμη μικρότερους κλάδους. Τελικά τα δύο ρέματα συναντώνται μεταξύ των οδών Αγίου Δημητρίου και Σ. Κυριακιδη.
- Ρέμα Δόξης, έιναι το όριο της Δ-ΒΔ πλευράς της Τριανδρίας με πορεία από ΒΑ προς ΝΔ και τμήματα αυτού φαίνονται πάνω στην Νέα Εγνατία.
- Ρέμα Ορτανσίας (Τριανδρίας), δύο κλάδοι όπου τελικά γίνονται ένας μεγαλύτερος και αποτελούν το όριο μεταξύ Τριανδρίας και Άνω Τούμπας.
- Ρέμα Τυπά, στην προέκταση της οδού Παπάφη χωρίς να έχει διαμορφωθεί ακόμα.

Στο μεγαλύτερο ποσοστό των παραπάνω ρεμάτων υπάρχει περιοδική και τμηματική παρουσία νερού στην επιφάνεια τους. Ωστόσο χαρακτηριστικές είναι οι πιέσεις που έχουν δεχτεί και που συνεχίζουν να δέχονται μέχρι και τώρα αλλά και η υπογειοποίηση τους. Η παρουσία των ρεμάτων αυτών είναι αισθητή και μαρτυράται από τη μορφολογία και τα πετρώματα που συναντώνται στην περιοχή της Θεσσαλονίκης και πιο συγκεκριμένα στην περιοχή της Παπάφη όπου γίνεται η έρευνα (Τσουμαλάκος Σ. 2017, ΕΥΔΕ 2003).

2.3.2 ΘΕΣΗΣ ΕΡΕΥΝΑΣ

Το μορφολογικό ανάγλυφο της περιοχής μελέτης του έργου μπορεί γενικά να χαρακτηρισθεί πεδινό βάσει απόλυτου υψομέτρου (0-150m), (Dikau,1989) με ήπιες κλίσεις. Η θέση του έργου έχει απόσταση περίπου 1,2 km από την ακτή και περιλαμβάνει μία εκσκαφή πέντε πλευρών και γωνιών βάσει της οποίας διαμορφώνονται αντίστοιχα πέντε τεχνητά ορύγματα ύψους έως 6,0m περίπου (Εικόνα 4).

Το υδρογραφικό δίκτυο της ευρύτερης περιοχής μελέτης δεν είναι εμφανές λόγω της οικιστικής ανάπτυξης και η διαχείριση της επιφανειακής απορροής γίνεται μέσω του δικτύου συλλογής όμβριων υδάτων της πόλης. Το ευρύτερο υδρογραφικό δίκτυο των απολήξεων των περιμετρικών λόφων έχει γενική διεύθυνση BA-NΔ, είναι παράλληλης μορφής και αποτελείται από υδατορέματα και χειμάρρους 1^{ης} έως 2^{ης} τάξης.

Εικόνα 6: Υδρολογική λεκάνη Θεσσαλονικης (Ζερβοπούλου , Παυλίδης , 2005)

2.4 ΓΕΩΛΟΓΙΚΕΣ ΣΥΝΘΗΚΕΣ

Για την μελέτη του συγκροτήματος της Θεσσαλονίκης μελετήθηκαν δεδομένα από χάρτες του ΕΑΓΜΕ (Ι.Γ.Μ.Ε) απο τους Kockel και Mollat (1968, 1972, 1977), Αντωνιάδη (et al 1978) καθώς και από τους Σαπουντζή (1969) και Mercier (1966). Λόγω της πυκνής δόμησης της πόλης τα δεδομένα δεν επαρκούσαν και την λύση έδωσαν οι υδρογεωτρήσεις και οι γεωτρήσεις πυρηνοληψίας σε πολλαπλά βάθη και σε διάφορα μέρη μέσα στην πόλη (Αττικό Μετρό Α.Ε. 2006, Τσότσος 1992, Παπαχαρίσης 1980, Anastasiadis 2001, κ.α.). Οι εργασίες αυτές ξεκαθάρισαν το τοπίο και έκαναν σαφή την γεωλογία του πολεοδομικού συγκροτήματος της Θεσσαλονίκης σε μεγάλο βαθμό, παρ'όλα αυτά υπάρχουν ακόμα μέρη για τα οποία δεν υπαάρχουν ασφαλή και πλήρη συμπεράσματα και παραμένουν ασαφή.

2.4.1 ΕΥΡΥΤΕΡΗΣ ΠΕΡΙΟΧΗΣ

Κατά την Ζερβοπούλου (2010) αρχίζοντας από το υπόβαθρο της περιοχής και από την παλαιότερη ζώνη μέχρι τα πυριγενή πετρώματα και τα ιζήματα εμφανίζονται :

<u>Υπόβαθρο:</u>

Σερβομακεδονική Ζώνη : ανήκει στην Ελληνική Ενδοχώρα και αποτελούσε ηπειρωτική μάζα με πιθανή προέλευση από τη λιθοσφαιρική πλάκα της Λαυρασίας. Στην περιοχή μελέτης εμφανίζεται η σειρά Βερτίσκου. με γνευσίους, μαρμαρυγιακούς σχιστολίθους και λεπτές ενστρώσεις μαρμάρων. Στο ανώτερο τμήμα συναντώνται μεταγάββροι, μεταδιαβάσες και αμφιβολίτες. Συχνά παρεμβάλλονται με τεκτονικές επαφές και σερπεντινικά σώματα τα οποία αποτελούν μέλη ενός οφειολιθικού συμπλέγματος. Η ηλικία των αρχικών ιζημάτων – πετρωμάτων της ενότητας είναι προπερμική, ενώ η μεταμόρφωση των ανώτερων μελών της ενότητας από ραδιοχρονολογήσεις βρέθηκαν πολλές ηλικίες στα πετρώματα από Παλαιοζωικό μέχρι και το Κρητιδικό, οι οποίες αποδίδονται σε ανάδρομες μεταμορφώσεις.

Περιροδοπική Ζώνη : ανήκει στις Εσωτερικές Ελληνίδες και αποτελούσε την ηπειρωτική κατωφέρεια από τις μάζες της Ελληνικής Ενδοχώρας και ειδικότερα της ζώνης Σερβομακεδονικής προς την ωκεάνεια περιοχή της ζώνης του Αξιού. Η ανάδυση της ζώνης έγινε κατά το Κατώτερο – Μέσο Ιουρασικό. Οι ενότητες που εμφανίζονται στην περιοχή μελέτης είναι από την νεότερη προς την παλαιότερη οι: Άσπρης Βρύσης – Χορτιάτη και Μελισσοχωρίου – Χολομώντα.

Η ενότητα Άσπρης Βρύσης – Χορτιάτη (εικόνα 9) έχει πλάτος 4-8km και αποτελείται από εναλλασσόμενα στρώματα μαρμάρων και μετακλαστικών ιζημάτων Περμοτριαδικής ηλικίας και γραφιτικούς φυλλίτες, χλωριτικούς – επιδοτιτικούς και σερικιτικούς σχιστόλιθους με φακοειδείς ενστρώσεις μαρμάρων. Μέσα στο τμήμα αυτό παρεμβάλλονται και τα οφειολιθικά σώματα (βασικά και υπερβασικά πετρώματα γάββροι, σερπεντινίτες, διορίτες, διαβάσες). Στη σειρά αυτή απαντώνται επίσης και μεταμορφωμένα πετρώματα όξινης μαγματικής προέλευσης. Πρόκειται για διορίτες, γρανοδιορίτες και γρανίτες, που μεταμορφώθηκαν στην πρασινοσχιστολιθική φάση, που έλαβε χώρα πριν από 113m.y. (Κάτω – Μέσο Κρητιδική), και δημιούργησαν τους πράσινους επιγνεύσιους της Θεσσαλονίκης (ακτινολιθικοί, επιδοτιτικοί, χλωριτικοί γνεύσιοι και αμφιβολιτικοί, βιοτιτικοί γνεύσιοι) που εναλλάσσονται με τα μεταιζήματα (φυλλίτες, σερικιτικούς σχιστόλιθους μάρμαρα, σιπολίνες, επιδοτιτικούς – χλωριτικούς γνεύσιους) (Σαπουντζής 1969). Τα πετρώματα αυτά θα αναφερθούν αναλυτικά και παρακάτω ως εκρηξιγενή.

Η ενότητα *Μελισσοχωρίου – Χολομώντα* (εικόνα 9) έχει πλάτος 5-15km και χαρακτηρίζεται από σχιστόλιθους, ασβεστόλιθους, ασβεστιτικούς φυλλίτες και ψαμμίτες που περνούν προς τα πάνω σε

έναν τυπικό φλύσχη με ολισθόλιθους. Πιο αναλυτικά: το κατώτερο τμήμα της αποτελούν μάρμαρα και ανακρυσταλλωμένοι ασβεστόλιθοι με παρεμβολές φυλλιτών και σερικιτικών σχιστολίθων ηλικίας Μέσο – Άνω Τριαδικής. Προς τα πάνω ο ορίζοντας αυτός γίνεται καθαρά φυλλιτικός. Το ανώτερο τμήμα ηλικίας Κάτω – Μέσο Ιουρασικού, αποτελείται από τον φλύσχη με τουρβιδιτικές εναλλαγές μετα-ιζημάτων (ψαμμίτες, μάργες, ασβεστόλιθοι κ.λπ.) μέσα στα οποία παρατηρούνται μεγάλοι ολισθόλιθοι τριαδικών μαρμάρων. Ο φλύσχης αυτός αναφέρεται με το όνομα Φλύσχης Σβούλας.

Εικόνα 8: Γεωτεκτονικό σχήμα των Ελληνίδων ζωνών :

Rh: Μάζα της Ροδόπης, Sm: Σεφβομαχεδονιχή μάζα, CR: Πεφιφοδοπιχή ζώνη, (Pe: Ζώνη Παιανίας, Pa: Ζώνη Πάιχου, Al: Ζώνη Αλμωπίας) = Ζώνη Αξιού, PI: Πελαγονιχή ζώνη, Ac: ΑττιχόΚυχλαδιχή ζώνη, Sp: Υποπελαγονιχή ζώνη, Pk: Ζώνη Παφνασσού - Γχιώνας, P: Ζώνη Πίνδου, G: Ζώνη Γαβφόβου - Τφίπολης, I: Ιόνιος ζώνη, Px: Ζώνη Παξών ή Πφοαπούλια, Au: Ενότητα "Ταλέα όφη - πλαχώδεις ασβεστόλιθοι" πιθανόν της Ιονίου ζώνης. (Mountrakis et al. 1983).

Υπόμνημα: 1. Κρυσταλλοσχιστώδες υπόβαθρο της Σερβομακεδονικής μάζας, 2. Πράσινοι γνεύσιοι Θεσσαλονίκης, 3. Σχιστόλιθοι και φυλλίτες, 4. Πυροκλαστικά πετρώματα, 5. Μεταψαμμίτες και χαλαζίτες, 6. Μετακροκαλοπαγή, 7. Ασβεστιτικοί σχιστόλιθοι, 8. Αργιλικοί σχιστόλιθοι και μάργες, 9. Κερατόλιθοι, 10. Ολισθόλιθοι, 11. Ανακρυσταλλωμένοι ασβεστόλιθοι και μάρμαρα, 12. Μαργαϊκοί ασβεστόλιθοι, 13. Ψαμμιτικοί ασβεστόλιθοι, 14. Οφιολιθικά πετρώματα, 15. Ηφαιστειακά πετρώματα (ρυόλιθοι, πορφυροειδή), φ. Τεκτονική επαφή.

Εικόνα 9: Λιθοστρωματογραφικές στήλες ενοτήτων της Περιροδοπικής ζώνης. (Κατά Kockel et al 1971, 1972, Μουντράκης 1985).

Πυριγενή:

Σύμφωνα με την Ζερβοπούλου (2010) τα πετρώματα αυτά εμφανίζονται ως παρεμβολές μέσα στην ενότητα Άσπρης Βρύσης – Χορτιάτη, της Περιροδοπικής ζώνης. Διακρίνονται ανάλογα με την σχιστότητά τους σε:

Χωρίς σχιστότητα

Στα πετρώματα αυτά ανήκει ο γάββρος ηλικίας Άνω Ιουρασικού. Εμφανίζεται στην περιοχή της Ευκαρπίας και βορειότερα του Δήμου των Πεύκων. Είναι σε επαφή με την ψαμμιτομαργαϊκή σειρά του Νεογενούς στα νότια και την ενότητα Άσπρης Βρύσης – Χορτιάτη στα βόρεια. Ο γάββρος εμφανίζεται χονδρόκοκκος, τελείως ουραλιτιωμένος και σωσσυριτιωμένος (διοψιδικός πυρόξενος εξαλιωμένος σε βιοτίτη και ακτινόλιθο, κεροστίλβη, πλαγιόκλαστα, επίδοτο και επουσιώδη ορυκτά). Επίσης υπάρχουν λεπτόκοκκοι δολερίτες και ισχυρά εξαλλοιωμένοι και λατυποποιημένοι γάββροι. Από γεωτεχνικής πλευράς πρόκειται για βραχώδη σχηματισμό ισχυρά κατακερματισμένο από πυκνό δίκτυο διαρρήξεων. Καλύπτεται από μανδύα αποσάθρωσης πάχους μέχρι και 1m. Δίνει πρανή με σημαντικές κλίσεις αλλά με αστοχίες (καταπτώσεις βράχων, ολισθήσεις) μικρής έκτασης κάποιες φορές.

<u>Σχιστώδη</u>

Τα σχιστώδη εκρηξιγενή πετρώματα έχουν Μεσοζωική ηλικία και αποτελούν την Μαγματική Σειρά Χορτιάτη. Έτσι από τα νεότερα προς τα παλαιότερα συναντάμε:

 Τους γνεύσιους – επιγνεύσιους – πρασινοσχιστόλιθους. Εμφανίζονται στη βόρεια Θεσσαλονίκη (Γ' Δημοτικό Διαμέρισμα, Συκιές, όρια Νεάπολης, Άγ. Παύλο, Ευαγγελίστρια, Σαράντα Εκκλησιές) και συνεχίζουν βόρεια του Πανοράματος. Ο γνεύσιος είναι λευκοκρατικός, αλβιτικός
 – σερικιτικός – μικροκλινικός με γνευσιακό ή οφθαλμοειδή ιστό σε ενστρώσεις μέσα στα μεταϊζήματα παράλληλα προς το επίπεδο σχιστότητας. Οι επιγνεύσιοι είναι ανοιχτοκάστανοι ή πρασινωποί με καλή στρώση, ομοιογενείς με γνευσιακό ή οφθαλμοειδή ιστό και πράσινα χλωριτικά στρώματα. Εμφανίζονται ως ακτινολιθικοί – επιδοτιτικοί – χλωριτικοί – σερικιτικοί – κεροστιλβικοί – βιοτιτικοί – μοσχοβιτικοί σε συνδιασμούς. Κατά Σαπουντζή (1969) υποστηρίζεται ότι οι επιγνεύσιοι Θεσσαλονίκης έχουν προέλευση από χαλαζιακούς διορίτες των οποίων η μεταμόρφωση, όπως διαπιστώθηκε από ραδιοχρονολογήσεις έγινε πριν από 113m.y. Οι πρασινοσχιστόλιθοι είναι σκοτεινοπράσινοι και καστανωποί, λεπτόκοκκοι. Εμφανίζονται ως σερικιτικοί – χλωριτικοί – βιοτιτικοί – μοσχοβιτικοί – επιδοτιτικοί – ακτινολιθικοί – αλμανδινικοί σε συνδιασμούς. Από γεωτεχνικής πλευράς εμφανίζονται ως βραχώδεις σχηματισμοί, ισχυρά κατακερματισμένοι και ασθενώς αποσαθρωμένοι, έχουν ικανοποιητική γεωτεχνική συμπεριφορά, ενώ διατηρούν υψηλά σχεδόν κατακόρυφα τεχνητά πρανή με τοπικές μόνο και μικρής έκτασης αστοχίες (σφήνες). Η φυλλώδης δομή σε συνδυασμούς βρέθηκε σε γεωτρήσεις του Μετρό Θεσσαλονίκης στην περιοχή Αγ. Σοφίας βόρεια της Εγνατίας οδού και σε βάθος 39m κάτω από την επιφάνεια και από τις Ερυθρές Αργίλους.

- Τον γάββρο σε στρώματα μέσα στην μαγματική σειρά Χορτιάτη. Εμφανίζεται βόρεια και ανατολικά των συνοικισμών Αγ. Παύλου, Ευαγγελίστριας, Σαράντα Εκκλησιών και Τριανδρίας, είναι ουραλιτιωμένος, σωσσυριτιωμένος και μερικά εξαλλοιωμένος σε ταλκικό σχιστόλιθο. Από γεωτεχνικής πλευράς εμφανίζει τις ίδιες ιδιότητες όπως ο γάββρος προηγούμενα.
- Την γαββρική σειρά Λαναριού, η οποία εμφανίζεται στην περιοχή του Πανοράματος και συνεχίζει προς τα ΝΑ. Αποτελείται από γάββρο (βρονζίτης, υπερσθενής, πλαγιόκλαστα με ανορθίτη σε μεγάλο ποσοστό, αδιαφανή ορυκτά, δευτερογενή κεροστίλβη, ζωισίτη, επίδοτο και ακτινόλιθο). Ολιβινικό γάββρο, υπερσθενικό γάββρο, αυγιτικό νορίτη και κεροστιλβικό γάββρο.
- Την υπερβασική σειρά με δουνίτες και περιδοτίτες η οποία εμφανίζεται σε στρώμα μέσα στον ασβεστιτικό φλύσχη βόρεια του πολεοδομικού συγκροτήματος της Θεσσαλονίκης, στην περιοχή της Κοινότητας Εξοχής και νοτιότερα αυτής, νοτιότερα του Πανοράματος, ανατολικά του Τριαδίου και βόρεια της Νέας Ραιδεστού. Από γεωτεχνικής πλευράς έχουν μέτρια γεωμηχανική συμπεριφορά, χωρίς την εμφάνιση αστοχιών πρανών.

Ιζήματα :

Τα ιζήματα της περιοχής καλύπτουν το υπόβαθρο. Η περιγραφή τους εμπλουτίζεται με στοιχεία τα οποία προέρχονται από γεωτρητικά δεδομένα. Ξεκινώντας από τα νεώτερα προς τα παλιότερα συναντάμε (Ζερβοπούλου, 2010):

<u>Τεταρτογενές:</u> (ΟΛΟΚΑΙΝΟ)

- Τις αποθέσεις στις κοίτες ποταμών και χειμάρρων, οι οποίες αποτελούνται από αμμούχες αργίλους, άμμους και ψηφίδες. Τις συναντάμε στην περιοχή Ευκαρπίας και Σταυρούπολης κατά μήκος του ρέματος Δενδροποτάμου. Εντός του Πολεοδομικού Συγκροτήματος εμφανίζονται στην περιοχή του Νέου Σιδηροδρομικού Σταθμού. Από γεωτεχνικής πλευράς εμφανίζουν αυξημένη υδροπερατότητα με μεγάλες παροχές και μικρή επιφανειακή ανάπτυξη. Το πάχος τους κυμαίνεται ανάλογα με το τμήμα του υδρογραφικού δικτύου που καλύπτουν, αλλά δεν υπερβαίνει τα 10m. Στην περιοχή Επταπυργίου και Νεαπόλεως οι κροκαλολατύπες εξελίσσονται σε ερυθρωπές άμμους, χαμηλής διαγένεσης και ποικίλης προέλευσης.
- Τις προσχώσεις κοιλάδων τις οποίες συναντάμε στην περιοχή του Ανθεμούντα (Νότια της Θέρμης και Ν. Ραιδεστού). Αποτελούνται κυρίως από αμμούχες αργίλους. Από γεωτεχνικής πλευράς αναφέρονται και ως τεταρτογενή χαλαρά με επικράτηση αμμωδών οριζόντων και

αποτελούν χαλαρό έως μέτρια πυκνό σχηματισμό με συχνές και ταχείες μεταβολές της λιθολογικής σύστασης και κοκκομετρίας κατά την οριζόντια και κατακόρυφη ανάπτυξή του. Λόγω των μεταβολών εμφανίζει ισχυρή ανισοτροπία στη μηχανική συμπεριφορά του. Χαρακτηρίζεται από μέτρια έως υψηλή υδροπερατότητα. Στην περιοχή υπάρχει πληθώρα υδρογεωτρήσεων για την εκμετάλλευση του υδροφόρου.

Τις ολοκαινικές αποθέσεις οι οποίες εμφανίζονται στο μεγαλύτερο μέρος του πολεοδομικού συγκροτήματος της Θεσσαλονίκης (κέντρο, Ελευθέριο, Μενεμένη, Αμπελόκηποι) σε επαφή με την θάλασσα αλλά και στην περιοχή αεροδρομίου Δήμου Θερμαϊκού. Αποτελούν αδιαίρετες παράκτιες αποθέσεις (άμμοι, σύναγμα), προσχώσεις πεδιάδων και ερυθρές άργιλοι με ασβεστιτικά συγκρίματα. Στη βάση τους επικρατούν τα κροκαλοπαγή. Από γεωτεχνικής πλευράς αναφέρεται και ως αμμώδης - ιλυώδης ορίζοντας ενώ αποτελεί σχηματισμό μαλακό έως σταθερό με χαμηλή έως μέτρια υδροπερατότητα.

Στις ολοκαινικές αποθέσεις ανήκουν και οι ιστορικές επιχωματώσεις ή αρχαιολογικό στρώμα που εκτείνονται στην περιοχή του νότιου κέντρου (κάτω από την οδό Αγ. Δημητρίου) Θεσσαλονίκης και εντός των Βυζαντινών Τειχών κυρίως. Συνίστανται από υλικά που προέρχονται από οικιστικά τμήματα καθώς και από καταστροφές τους της Ρωμαϊκής και Βυζαντινής εποχής καθώς και της Τουρκοκρατίας. Τα θραύσματα αυτά είναι ανάμικτα με τον ιλυώδη ορίζοντα. Παράλληλα εμφανίζονται και στρώματα καύσης. Το πάχος τους κυμαίνεται από 3 έως 20 μέτρα κατά θέσεις. Κοντά και παράλληλα στην ακτογραμμή στις περιοχές Καλαμαριά, Αρετσού και Αεροδρομίου εμφανίζονται οι παράκτιες άμμοι που αποτελούν χαλαρό σχηματισμό μικρού πάχους (1-3m), με μεγάλο πορώδες και μηδενική έως πολύ χαμηλή συνοχή. Επίσης στην περιοχή της Νέας Παραλίας εμφανίζεται στρώμα λεπτομερών χαλαρών τεταρτογενών ιζημάτων με οργανικά. Διατηρεί υψηλά ποσοστά υγρασίας και δημιουργεί τοπικά υδροφόρους ορίζοντες περιορισμένης δυναμικότητας. Τα γεωτεχνικά χαραστηριστικά ποικίλουν ανάλογα με την σύσταση των ενστρώσεων. Βορειότερα της ακτής και μεταξύ των χειμάρρων ή ρεμάτων της Θεσσαλονίκης (περιοχή οδού Δελφών) συναντάμε σχηματισμό λιμναίων και ποταμοχειμάριων προσχώσεων με εναλλαγές άμμων και αργίλων πολύ μαλακών και πάχη που μπορούν να ξεπεράσουν και τα 50 μέτρα.

(ΠΛΕΙΣΤΟΚΑΙΝΟ)

- Το κατώτερο σύστημα αναβαθμίδων αποτελείται από χαλίκια και άμμο κάτω από αργιλώδες κάλυμμα. Το συναντάμε στις περιοχές Θέρμης και Ν. Ραιδεστού καθώς και στο Δερβένι.
- Το ανώτερο σύστημα αναβαθμίδων αποτελείται από ψηφίδες και κροκάλες με πηλό ή αμμώδη άργιλο. Το συναντάμε στις περιοχές Ασβεστοχωρίου και Εξοχής.

Από γεωτεχνικής πλευράς αναφέρεται και ως αποθέσεις κλειστών λεκανών. Αποτελεί σχηματισμό χαλαρό έως μέτρια πυκνό με πάχος που κυμαίνεται μέχρι μερικές δεκάδες μέτρα. Εμφανίζεται μόνο στην περιοχή BBA της κοινότητας Πεύκων (Τρία Πλατάνια). τα ριπίδια προσχώσεων, γενικότερης ηλικίας τεταρτογενούς . Από γεωτεχνικής πλευράς αναφέρονται και ως τεταρτογενή χαλαρά με επικράτηση των αδρομερών υλικών. Πρόκειται για χαλαρό, μέτρια πυκνό σχηματισμό, με μειωμένα γεωμηχανικά χαρακτηριστικά και αυξημένη υδροπερατότητα. Το πάχος του κυμαίνεται από 1-4m.

Νεογενές (ΑΝΩΤΕΡΟ ΜΕΙΟΚΑΙΝΟ – ΚΑΤΩΤΕΡΟ ΠΛΕΙΟΚΑΙΝΟ)

- Την ψαμμιτομαργαϊκή σειρά η οποία αποτελείται από εύθρυπτους έως πολύ συμπαγείς ψαμμίτες και τοπικά μικροκροκαλοπαγή με διασταυρωμένη στρώση. Πιο αναλυτικά άμμοι και υποκίτρινες ή υπόλευκες μάργες εναλλάσσονται με κροκαλοπαγή και αμμούχες μάργες. Τη σειρά αυτή την συναντάμε βόρεια και βορειοανατολικά του πολεοδομικού συγκροτήματος της Θεσσαλονίκης, στην περιοχή της Ευκαρπίας αλλά και μέσα στο πολεοδομικό (Νεάπολη, Συκιές, Καλαμαριά, Τούμπα, Χαριλάου, Δελφών) μέχρι την Θέρμη. Επίσης στην περιοχή του Δήμου Θερμαϊκού. Η ψαμμιτομαργαϊκή σειρά αντιπροσωπεύει ένα περιβάλλον απόθεσης αβαθές ποταμολιμναίο με εναλλαγές, σε μορφή στρωμάτων και φακών, ανοιχτοκάστανων συνεκτικών άμμων έως ψαμμιτών οι οποίοι γαρακτηρίζονται ως ημιβραγώδη πετρώματα και πολύ στιφρών έως σκληρών ασβεστιτικών αργίλων - μαργών, οι οποίες επίσης μπορούν να χαρακτηριστούν με τον γεωτεχνικό όρο ως μαλακός βράχος. Στον σχηματισμό αυτό παρατηρούνται και αμμώδεις στρώσεις με ηφαιστειακά υλικά προερχόμενα από τα ηφαιστειακά κέντρα του Βόρα της Αλμωπίας (Σαπουντζής 1969, Συρίδης, 1990). Σύμφωνα με τον Συρίδη (1990), τη σειρά αυτή αποτελούν αντίστοιχα ο σχηματισμός Γωνιάς και ο σχηματισμός Τριλόφου στα όρια Χαλκιδικής και νομού Θεσσαλονίκης. Στην περιοχή της Νέας Ελβετίας εμφανίζεται πρασινότεφρο αργιλικό στρώμα της ίδιας σειράς με παρουσία απολιθωμάτων θαλάσσιας προέλευσης και στρώσεων ξυλιτών σε βάθος 20m (περιοχή Βούλγαρη). Η ψαμμιτομαργαϊκή σειρά επικάθεται σύμφωνα πάνω στη σειρά Ερυθρών Αργίλων με κλίση 234/7,5 σύμφωνα με στοιχεία γεωτρήσεων (σχηματισμός Τρίγλιας, Συρίδης 1990). Από γεωτεχνικής πλευράς εμφανίζονται με αυξημένη υδροπερατότητα (K=10-5 στοιγεία Αττικό Μετρό), ημισυνεκτικοί και στιφροί έως πολύ συνεκτικοί ή σκληροί, στις θέσεις όπου η αργιλοψαμμιτική συνδετική ύλη γίνεται ψαμμιτομαργαϊκή έως ψαμμιτική. Στις θέσεις αυτές διατηρούν κατακόρυφα πρανή ύψους περισσότερο από 5m. Αποτελεί σχηματισμό που μελετήθηκε ιδιαίτερα για την κατασκευή του Μετρό Θεσσαλονίκης μια και μεγάλο μέρος του κινείται στον σχηματισμό αυτό (Ζερβοπούλου, 2010).
- Την σειρά ερυθρών αργίλων που αποτελείται από ερυθρές έως κεραμόχρωμες ιλυώδεις αργίλους με μαρμαρυγία, ασβεστιτικά συγκρίματα και οξειδώσεις μαγγανίου. Την συναντάμε βόρεια του πολεοδομικού συγκροτήματος Θεσσαλονίκης στις περιοχές Ευόσμου, Σταυρούπολης, Πολίχνης, μέσα στο πολεοδομικό (περιοχή Κέντρου κάτω από το αρχαιολογικό στρώμα, Άνω Τούμπα, Τριανδρία και Πυλαία) αλλά και ανατολικά αυτού μέχρι το Πανόραμα και την Θέρμη. Ο σχηματισμός αυτός βρίσκεται σε επαφή με το υπόβαθρο σε πολλές περιοχές, όπως με τους γνεύσιους – πρασινοσχιστόλιθους αλλά και με την γαββρική σειρά Λαναριού. Εμφανίζει μαζώδη δομή και αποτελείται από καστανέρυθρες αργίλους στιφρές έως σκληρές με παρεμβολές φακών κροκάλων και άμμων έως κροκαλοπαγών και λατυποπαγών. Αντιπροσωπεύει ένα γερσαίο περιβάλλον έντονα οξειδωτικό. Κατά τον Συρίδη (1990) ο σχηματισμός αυτός αποτελεί τον Σχηματισμό Τρίγλιας. Από γεωτεχνικής πλευράς αναφέρονται και ως νεογενή μεικτών φάσεων με επικράτηση των λεπτομερών, χαρακτηρίζονται από μέτρια έως υψηλή συνεκτικότητα που εξαρτάται από την λιθολογική σύσταση. Είναι πρακτικά στεγανός σχηματισμός, εκτός από την παρουσία υδροφόρων οριζόντων σε μορφή φακών ή στρώσεων στις αδρομερείς φάσεις, με αποτέλεσμα τον αρτεσιανισμό. Η υδροπερατότητα του σχηματισμού είναι K=10-5 (Στοιχεία Αττικό Μετρό). Αποτελεί επίσης σχηματισμό που μελετήθηκε ιδιαίτερα για την κατασκευή του Μετρό Θεσσαλονίκης μια και μεγάλο μέρος του κινείται και στον σχηματισμό αυτό.

0-15m 3-17m

<u>Τεχνητές αποθέσεις</u> Τεφρή άργιλος με όστρακα

Ποταμοχειμάριες και λιμναίες αποθέσεις

Ψαμμιτομαργαϊκή σειρά/ενότητα

Σχηματισμός Γωνιάς (χαρακτηριστική στρώση ηφαιστειακής άμμου)

Σχηματισμός Τριλόφου (χαρακτηριστική στρώση ξυλίτη)

Σειρά/ενότητα Ερυθρών αργίλων

Σχηματισμός Τρίγλιας (φακοί χαλικιών & άμμου)

(φακοί λατυποπαγών)

Υπόβαθρο

Διδ. Διατριβή Ζερβοπούλου, 2010

Εικόνα 11: Λεπτομερής γεωλογικός χάρτης περιοχής Θεσσαλονίκης. Στον χάρτη αυτό τα πετρώματα του υποβάθρου εμφανίζονται συνοπτικά σε σχέση με τα νεότερα ιζήματα. Με κόκκινο χρώμα παρουσιάζονται τα υπό μελέτη ρήγματα. Όπου: F-Th Θέρμης, F-An Ανθεμούντα, F-PP Πυλαίας-Πανοράματος, F-As Ασβεστοχωρίου, F-E Ευκαρπίας, F-NAn Βόρειου Ανθεμούντα, F-MA Ν. Μεσημβρίας-Αγχίαλου, F-K Καλοχωρίου, F-GNSP Γερακαρούς-Νοκιμιδηνού-Στίβου Περιστερώνα και F-Ka Καλαμαριάς. Οι γωλογικοί σχηματισμοί έχουν προέλθει από ψηφιοποίηση χαρτών του ΕΑΓΜΕ (Ζερβοπούλου, 2009).

A Τεχνητές επχωματώσεις B1 Επιφανειακές παράκτιες και ποτάμιες αποθέσεις κυρίως στιφρή αμμώδους μυώδους μυχύω όως αργίλων έως αργίλως αργίλως αργίλως αργίλως αργίλως αργίλως αργίλως αργίλως αραγόλων έως αργίλων έως αργίλων έως αργίλων έως αργίλων έως αργίλων δης αργίλως αραγρικαριστου αραγολους υποργάθους υπορβάθου. <	ΣΧΗΜΑΤΙΣΜΟΣ	ПЕРІГРАФН
B1Επιφανειακές παράκτιες και ποτάμιες αποθέσεις κυρίως στιφρή αμμώδους ιλυώδους αργιλωόως άμμου, χαμηλής έως μέσης πλαστικότητας, πάχους 2-10m.B2Οπως B1, αλλά σε σχετικά χαλαρή κατάσταση με πάχος 3 έως 20 m.B3Οπως B1, αλλά με υψηλή πλαστικότητα και αντοχή, πάχους 2 έως 10 m.CΠολύ χαλαρή αμμώδης ιλύς έως ιλυώδεις άμμος με μεταβαλλόμενη περιεκτικότητα σε άργιλο και άμμο.DΠολύ χαλαρή αμμώδης ιλύς έως ιλυώδεις άμμος με μεταβαλλόμενη περιεκτικότητα σε άργιλο και άμμο.DΠολύ χαλαρή αμμώδης ιλύς έως ιλυώδεις άμμος με μεταβαλλόμενη περιεκτικότητα σε άργιλο και άμμο.DΠολύ χαλαρή αμμώδης ιλύς έως με ενδιάμεσες στρώσεις άμμου και υλύος, χαμηλής συμπιεστότητας.FΠολύ στιφρή έως σκληρή ιλυώδης-αμμώδης έως χαλικώδης προστερεοποιημένη μαργαϊκή άργιλος υπερκείμενη του βραχώδους υποβάθρο.GΠρασινοσχιστόλιθοι και γνεύσιοι που αποτελούν το βραχώδας υπόβαθρο.	A	Τεχνητές επιχωματώσεις
B2 Όπως B1, αλλά σε σχετικά χαλαρή κατάσταση με πάχος 3 έως 20 m. B3 Όπως B1, αλλά με υψηλή πλαστικότητα και αντοχή, πάχους 2 έως 10 m. C Πολύ χαλαρή αμμόδης ιλύς έως ιλυώδεις άμμος με μεταβαλλόμενη περιεκτικότητα σε άργιλο και άμμο. D Πολύ χαλαρή αμμόδης ιλύς έως ιλυώδεις άμμος με μεταβαλλόμενη περιεκτικότητα σε άργιλο και άμμο. D Αλλουβιακές αποθέσεις κυρίως αργιλικές με ενδιάμεσες στρώσεις άμμου και ιλύος, χαμηλής συμπιεστότητας. E Πολύ στιφρή έως σκληρή άργιλος, με χαλίκια. F Πολύ στιφρή έως σκληρή ιλυώδης-αμμώδης έως χαλικώδης προστερεοποιημένη μαργαϊκή άργιλος υπερκείμενη του βραχώδους υποβάθρου. G Πρασινοσχιστόλιθοι και γνεύσιοι που αποτελούν το βραχώδοες υπόβαθρο.	B1	Επιφανειακές παράκτιες και ποτάμιες αποθέσεις κυρίως στιφρή αμμώδους ιλυώδους αργίλου έως αργιλώδους άμμου, χαμηλής έως μέσης πλαστικότητας, πάχους 2-10m.
B3 Όπως B1, αλλά με υψηλή πλαστικότητα και αντοχή, πάχους 2 έως 10 C Πολύ χαλαρή αμμώδης ιλύς έως ιλυώδεις άμμος με μεταβαλλόμενη περιεκτικότητα σε άργιλο και άμμο. D Αλλουβιακές αποθέσεις κυρίως αργιλικές με ενδιάμεσες στρώσεις άμμου και ιλύος, χαμηλής αντοχής και υψηλή συμπεστότητας. E Πολύ στιφρή έως σκληρή άργιλος, χαμηλής έως μέσης πλαστικότητας, αμμώδης άργιλος με χαλικώ. F Πολύ στιφρή έως σκληρή ιλυώδης-αμμώδης έως χαλικώδης προστερεοποιημένη μαργαϊκή άργιλος υπερκείμενη του βραχώδους G Πρασινοσχιστόλιθοι και γνεύσιο που αποτελούν το βραχώδες υπόβαθρο.	<i>B2</i>	Όπως B1, αλλά σε σχετικά χαλαρή κατάσταση με πάχος 3 έως 20 m.
C Πολύ χαλαρή αμμώδης ιλύς έως ιλυώδεις άμμος με μεταβαλλόμενη περιεκτικότητα σε άργιλο και άμμο. D Αλλουβιακές αποθέσεις κυρίως αργιλικές με ενδιάμεσες στρώσεις άμμου και ιλύος, χαμηλής αντοχής και υψηλής συμπιεστότητας. E Πολύ στιφρή έως σκληρή άργιλος, χαμηλής έως μέσης πλαστικότητας, αμμώδης άργιλος με χαλίκια. F Πολύ στιφρή έως σκληρή άργιλος υπερκείμενη του βραχώδους υποβάθρου. G Πρασινοσχιστόλιθοι και γνεύσιοι που αποτελούν το βραχώδες μούδες υπόβαθρο.	<i>B3</i>	Όπως Β1, αλλά με υψηλή πλαστικότητα και αντοχή, πάχους 2 έως 10 m.
DΑλλουβιακές αποθέσεις κυρίως αργιλικές με ενδιάμεσες στρώσεις άμμου και ιλύος, χαμηλής αντοχής και υψηλής συμπιεστότητας.EΠολύ στιφρή έως σκληρή άργιλος, χαμηλής έως μέσης πλαστικότητας, αμμώδης άργιλος με χαλίκια.FΠολύ στιφρή έως σκληρή ιλυώδης-αμμώδης έως χαλικώδης προστερεοποιημένη μαργαϊκή άργιλος υπερκείμενη του βραχώδους υποβάθρου.GΠρασινοσχιστόλιθοι και γνεύσιοι που αποτελούν το βραχώδες υπόβαθρο.	С	Πολύ χαλαρή αμμώδης ιλύς έως ιλυώδεις άμμος με μεταβαλλόμενη περιεκτικότητα σε άργιλο και άμμο.
ΕΠολύ στιφρή έως σκληρή άργιλος, χαμηλής έως μέσης πλαστικότητας, αμμώδης άργιλος με χαλίκια.ΓΠολύ στιφρή έως σκληρή ιλυώδης-αμμώδης έως χαλικώδης προστερεοποιημένη μαργαϊκή άργιλος υπερκείμενη του βραχώδους υποβάθρου.GΠρασινοσχιστόλιθοι και γνεύσιοι που αποτελούν το βραχώδες 	D	Αλλουβιακές αποθέσεις κυρίως αργιλικές με ενδιάμεσες στρώσεις άμμου και ιλύος, χαμηλής αντοχής και υψηλής συμπιεστότητας.
F Πολύ στιφρή έως σκληρή ιλυώδης-αμμώδης έως χαλικώδης προστερεοποιημένη μαργαϊκή άργιλος υπερκείμενη του βραχώδους υποβάθρου. G Πρασινοσχιστόλιθοι και γνεύσιοι που αποτελούν το βραχώδες υπόβαθρο.	E	Πολύ στιφρή έως σκληρή άργιλος, χαμηλής έως μέσης πλαστικότητας, αμμώδης άργιλος με χαλίκια.
G Πρασινοσχιστόλιθοι και γνεύσιοι που αποτελούν το βραχώδες υπόβαθρο.	F	Πολύ στιφρή έως σκληρή ιλυώδης-αμμώδης έως χαλικώδης προστερεοποιημένη μαργαϊκή άργιλος υπερκείμενη του βραχώδους υποβάθρου.
	G	Πρασινοσχιστόλιθοι και γνεύσιοι που αποτελούν το βραχώδες υπόβαθρο.

Πίνακας 1: Οι γεωλογικοί σχηματισμοί της Θεσσαλονίκης από την επιφάνεια προς το βάθος.

2.4.2 ΘΕΣΗΣ ΕΡΕΥΝΑΣ

Η υπό έρευνα περιοχή τοποθετείται στο αστικό συγκρότημα της Θεσσαλονίκης και βάσει του χάρτη του ΕΑΓΜΕ, φύλλο Θεσσαλονίκη (Εικόνα 12), το υπέδαφος αποτελείται από σχηματισμούς του Νεογενούς και πιο συγκεκριμένα την Ψαμμιτομαργαϊκή σειρά της Θεσσαλονίκης αποτελούμενη από ψαμμίτες και μικροκροκαλοπαγή με διασταυρωμένη στρώση με υποκείμενες τις ερυθρές αργίλους Θεσσαλονίκης.

Οι σχηματισμοί στη θέση έρευνας περιγράφονται στον Τεχνικογεωλογικό χάρτη του ΕΑΓΜΕ. (Εικόνα 13) απο τον οποίο προκύπτει ότι εμφανίζονται:

Νεογενή μικτών φάσεων : αμμώδεις ιλύες έως ιλυώδεις άμμοι με μικρό ποσοστό αργίλου και ψηφίδες κατά θέσεις που σχηματίζουν τοπικά ορίζοντες μικρού πάχους. Αδρομερείς σχηματισμοί από ασύνδετα έως χαλαρά συνδεδεμένα κροκαλοπαγή κυρίως από ασβεστολιθικής σύστασης ψηφίδες και χάλικες. Καστανού χρώματος Αργολομαργαικοί σχηματισμοί. Μέτρια έως υψηλή συνεκτικότητα ανάλογα την λιθολογική σύσταση. Στεγανός σχηματισμός με παρουσία μεμονομένων δακοειδών υδροφόρων οριζόντων στις αδρομερείς φάσεις μικρής δυναμικότητας.

Εικόνα 12: Απόσπασμα Γεωλογικού χάρτη περιοχής έρευνας (Φύλλο Θεσσαλονίκη, ΕΑΓΜΕ., κλ.1:50.000) (1. Ψαμμίτες εύθρυπτοι έως πολύ συμπαγείς, τοπικά μικροκροκαλοπαγή με διασταυρωμένη στρώση και με κατά θέσεις μαργαικούς ορίζοντες. 2. Ερυθρές έως κεραμόχρωμες, ιλυώδεις άργιλοι με μαρμαρυγία και ασβεστιτικά συγκρίματα). Πλειστοκαινικές αποθέσεις μικτών φάσεων : Γενικά αργιλοϊλυώδη υλικά με ψηφίδες και χάλικες χαλαζιακής, γνευσιακής και σχιστολιθικής σύστασης και αραιούς ογκόλιθους κυρίως 5 αλλά και έως 40 cm σπανιότερα χαλαζιακής σύστασης.

<u>Ανώτεροι ορίζοντες</u>—> συνεκτικά έως ημισυνεκτικά αργιλομαργαικά υλικά ανοιχτοκαστανού χρώματος με άμμο ψηφίδες και αραιούς χάλικες.

<u>Ενδιάμεσοι ορίζοντες</u> > λεπτομερή αργιλομαργαικά υλικά ερυθροκαστανού χρώματος με ασβεστιτικά συγκρίματα, ψηφίδες και λίγους χάλικες.

<u>Βαθύτεροι ορίζοντες</u>—>κροκαλοπαγή πάχους 4-5μ που διαμορφώνονται σε πάγκους. Αποτελούνται κυρίως από πεπλατυσμένες ψηφίδες, χάλικες και κροκάλες μεγέθους μέχρι 25εκ. με επικρατέστερους αυτούς των 3-10εκ. γνευσιακής, σχιστολιθικής και χαλαζιακής προέλευσης ενώ η συνδετική ύλη είναι αργιλοψαμμιτική και ψαμμιτομαργαική έως ψαμμιτική.

Εμφανίζουν αυξημένη περατότητα και καλή γεωμηχανική συμπεριφορά και χαρακτηρίζονται σαν ημισυνεκτικοί έως πολύ συνεκτικοί στις θέσεις όπου η συνδετική ύλη γίνετε ψαμμιτομαργαική έως ψαμμιτική. Το ορατό πάχος κυμαίνεται από λίγα έως μερικές δεκάδες μέτρα.

Με βάση τα παραπάνω στοιχεία, το υπέδαφος κατατάσσεται στην κατηγορία Β-Γ, σύμφωνα με την ισχύουσα τροποποίηση των διατάξεων του Ελληνικού Αντισεισμικού Κανονισμού (ΦΕΚ 1154B', 12-8-2003).

Εικόνα 13: Απόσπασμα Τεχνικογεωλογικού χάρτη ευρύτερης περιοχής πόλης Θεσσαλονίκης (ΕΑΓΜΕ).

2.5 ΡΗΓΜΑΤΑ, ΣΕΙΣΜΙΚΟΤΗΤΑ ΚΑΙ ΣΕΙΣΜΙΚΗ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑ

2.5.1 ΕΥΡΥΤΕΡΗΣ ΠΕΡΙΟΧΗΣ

Η περιοχή της Θεσσαλονίκης όπως αναφέρθηκε και παραπάνω ανήκει από γεωτεκτονικής απόψης, στην Σερβομακεδονική και κατά κύριο λόγο στην Περιροδοπική ζώνη διευθύνσεως ΒΔ-ΝΑ εκ των οποίων η πρώτη ζώνη η οποία εμφανίζεται ως η περισσότερο ενεργός ζώνη του Βορειοελλαδικού χώρου με την υψηλότερη σεισμικότητα (κρυσταλλοσχιστώδης μάζα) εφιππεύει εξ΄αιτίας του τεκτονισμού που δημιουργήθηκε κατά το Τριτογενές την δεύτερη νεότερη ζώνη (ιζήματα Περμοτριαδικού) (Mercier et al.,1968, Μουντράκης 1985). Στο Νεογενές έγινε η δημιουργία των μεγάλων τεκτονικών βυθισμάτων και των λεκανών του Ανθεμούντα, Αξιού και Μυγδονίας ως αποτέλεσμα του εφελκιστικού πεδίου. Χαρακτηριστικό της περιόδου αυτής είναι το σημαντικής έκτασης εφελτυστικό πεδίο που δημιούργησε κανονικά και πλαγιοκανονικά ρήγματα κατά κύριο λόγο μέσα στα ιζήματα. Ταυτόχρονα προκάλεσε επαναδραστηριοποίηση σημαντικού αριθμού παλαιότερων ρηγμάτων και στα ιζήματα αλλά και στα πετρώματα του υποβάθρου (Μουντράκης, 1995, 1993).

Ο ρυθμός ολίσθησης της ζώνης από το 1902 έως και σήμερα είναι κατά μέσο όρο 1-2mm/yr, ενώ τοπικά αυξάνονται και στα 12mm/yr (Voidomatis et al., 1990, Μουντράκης, 1995).

Πιο συγκεκριμένα παρατηρούνται :

- ΔΒΔ-ΑΝΑ (Μειόκαινο), από τις οποίες τάσεις προέκυψαν κανονικά ρήγματα με διεύθυνση ΒΑ-ΝΔ και αριστερόστροφη συνιστώσα.
- Α-Δ, απενεργοποιημένα κανονικής διεύθυνσεως ως και οριζόντιας μετατόπισης B-Α ρήγματα (Pavlides et al., 1988).
- ΒΑ-ΝΔ (Πλειόκενο Κ.Πλειστόκενο), κανονικά ρήγματα ΒΔ-ΝΑ.
- Β-Ν (Μ. Πλειστόκενο Σήμερα), ρήγματα Α-Δ και επαναδραστηριοποιημένα παλαιότερα οριζόντιας συνιστώσας.

Τα περισσότερα ρήγματα της περιοχής ανήκουν στο σύστημα ΒΔ-ΝΑ και ΒΑ-ΝΔ. Στο αρχικό στάδιο οι παραμορφώσεις γινόταν σε προϋπάρχοντα ρήγματα ΒΔ-ΝΑ ή BBA-NNΔ κανονικά ή οριζόντιας μετατόπισης. Στο δεύτερο στάδιο μία νέα ομάδα από ρήγματα κανονικά Α-Δ αναπτύχθηκαν πάνω από το προηγούμενο δίκτυο (Μουντράκης, 1993, Pavlides et al., 1988, Tranos & Mountrakis 1998, Hatzfeld et al., 1986, Tranos 1998, Mercier et al., 1989, Voidomatis et al., 1990, Goldsworthy et al., 2002, Tranos et al., 2003).

Στο παρακάτω πίνακα θα παρουσιαστούν συνοπτικά τα ενεργά αλλά και πιθανά ενεργά ρήγματα του ευρύτερης περιοχής, τα οποία σε ενδεχόμενη ενεργοποίηση έχουν την δυνατότητα να προκαλέσουν σοβαρά προβλήματα στο Πολεοδομικό Συγκρότημα της Θεσσαλονίκης. Είναι κάποια που εμφανίζονται σε μεγάλη απόσταση από την Θεσσαλονίκη και άλλα που διέρχονται μέσα από αυτή.

Ενεργά Ρήγματα	Πιθανά ενεργά ρήγματα	Μη ενεργά ρήγματα
Ανθεμούντα	Θέρμης- Αεροδρομίου	Αγ. Δημητρίου
Ρηξιγενείς ζώνες Μυγδονίας Λεκάνης	Ρήγματα Βορείου Ανθεμούντα	Πεδίου Άρεως
Ν. Απολλωνίας- Ν. Μαδύτου	Ασβεστοχωρίου	Κυβερνείου
Σοχού	Ευκαρπίας	Ν. Ελβετίας
Πυλαίας-Πανοράματος	Καλοχωρίου	Καλαμαριάς
Στρατωνίου	Γοματίου-Ιερισσού	
Κερκίνης-Πετριτσίου	Αμουλιανής	
Αγχιάλου-Ν. Μεσημβρίας		
Σερρών		
Βαλάντοβου		

Πίνακας 2: Ενεργά, πιθανά και μη ενεργά ρήγματα της ευρύτερης περιοχής της Θεσσαλονίκης (ΖΕΡΒΟΠΟΥΛΟΥ, 2010).

Εικόνα 14: Δορυφορική εικόνα (Landsat7 ETM+ λήψη 2000) όπου αποτυπώνονται τα νεοτεκτονικά (παλαιότερα και νεότερα) ρήγματα της ευρύτερης περιοχής της πόλης της Θεσσαλονίκης σε ακτίνα 20km. (F-Th Θέρμης, F-An Ανθεμούντα, F-PP Πυλαίας– Πανοράματος, F-As Ασβεστοχωρίου, F-E Ευκαρπίας, F-NAn Βόρειου Ανθεμούντα, F-K Καλοχωρίου, F-GNSP Γερακαρούς–Νοκιμιδηνού–Στίβου-Περιστερώνα F-Ka Καλαμαριάς). Με κόκκινο χρώμα σημειώνονται τα νεοτεκτονικά ρήγματα και με διακεκομμένες γραμμές τα πιθανά ρήγματα. (Ζερβοπούλου, Παυλίδης, 2004)

Εικόνα 15: Ρήγματα της ευρύτερης περιοχής της Θεσσαλονίκης (F-Str Στρατωνίου, F-GI Γοματίου–Ιερισσού, F-KP Κερκίνης–Πετριτσίου, F-Th Θέρμης, F-An Ανθεμούντα, F-PP Πυλαίας–Πανοράματος, F-As Ασβεστοχωρίου, F-E Ευκαρπίας, FNAn Βόρειου Ανθεμούντα, F-MA N. Μεσημβρίας–Αγχίαλου, F-K Καλοχωρίου, F-So Σοχού, F-AM N. Απολλωνίας–Ν. Μαδύτου, F-Se Σερρών, F-Am Αμουλιανής, F-V Βαλάντοβο, F-GNSP Γερακαρούς– Νοκιμιδηνού–Στίβου-Περιστερώνα F-Ka Καλαμαριάς). Με κόκκινο χρώμα σχεδιάζονται τα ενεργά ρήγματα ενώ με διακεκομμένες γραμμές τα πιθανά ρήγματα. Τα ρήγματα αυτά σχεδιάστηκαν με βάση τα στοιχεία από τους Νεοτεκτονικούς χάρτες (Μουντράκη 1997, 1:100.000), τον χάρτη Ενεργών Ρηγμάτων του Ελληνικού Χώρου, περιοχή Μακεδονίας (Μουντράκης 1995, 1:300.000), τους χάρτες του ΕΑΓΜΕ (1:50.000), την αποτύπωση από δορυφορικές εικόνες και τέλος από στοιχεία υπαίθρου. Τα ρήγματα επανεκτιμήθηκαν και αξιολογήθηκαν από την ΖΕΡΒΟΠΟΥΛΟΥ (2010).

Παρακάτω παρουσιάζεται ο πίνακας με σεισμούς, ιστορικούς αλλά και πιο πρόσφατους, που δημιούργησαν σοβαρές βλάβες στην πόλη της Θεσσαλονίκης και ο αντίστοιχος χάρτης με τα επίκεντρα αυτών.

Ημερομηνία	Επίκεντρο	Περιοχή	Μέγεθος (Μ)	Μέγιστη Ένταση (MM)	Επικεντρική Απόσταση από Θεσσαλονίκη	Ένταση στη Θεσσαλονίκη
597	40.9 - 24.3	Σέρρες	6.8	VII Φίλιπποι	110	VI
620	40.7 - 23.5	Θεσσαλονίκη	6.6	VII Θεσσαλονίκη	40	
667	40.7 - 23.2	Θεσσαλονίκη	6.6	VII Θεσσαλονίκη	20	
700	40.7 - 23.1	Θεσσαλονίκη	6.6	VII Θεσσαλονίκη	12	
1395	40.9 - 22.2	Έδεσσα	6.7	VII Έδεσσα	70	VII
1430 (Φεβρουάριος)	40.7 - 23.2	Θεσσαλονίκη	6.0	VII	30	VII
1677	40.5 - 23.0	Θεσσαλονίκη	6.2	VII Βασιλικά	20	VII - VIIH
1759 (Ιούνιος 22)	40.6 - 22.8	Θεσσαλονίκη	6.5	ΙΧ Θεσσαλονίκη	15	IX
1829 (Μάιος 5)	41.1 - 24.3	Δράμα	7.3	Χ Δράμα	120	V+ - VI
1902 (Ιούλιος 5)	40.8 - 23.1	Θεσσαλονίκη	6.6	ΙΧ Άσσηρος	20	VII+
1904 (Απρίλιος 4)	41.8 - 23.1	Ν. Βουλγαρία	7.3	Χ Κρέσνα	130	VI
1905 (Νοέμβριος 8)	40.3 - 24.4	Χαλκιδική	7.5	ΧΆθως	120	VI
1931 (Μάρτιος 8)	41.3 - 22.5	FYROM	6.7	Χ Βαλάντοβο	85	VI
1932 (Σεπτέμβριος 26)	40.5 - 23.9	Χαλκιδική	6.9	Χ Ιερισσός	75	VI
1978 (Ιούνιος 20)	40.7 - 23.3	Θεσσαλονίκη	6.5	VII+ Στίβος	28	VII

Εικόνα 16: Επίκεντρα των παραπάνω σεισμών που έπληξαν την πόλη της Θεσσαλονικης(Λεβεντάκης , 2003, Kiratzi et al., 2004, Παπαζάχος & Παπαζάχου 1989/2003, Ambraseys 2009).

2.5.2 ΘΕΣΗΣ ΕΡΕΥΝΑΣ

Σύμφωνα με την ισχύουσα τροποποίηση των διατάξεων του Ελληνικού Αντισεισμικού Κανονισμού (ΦΕΚ 1154Β', 12-8-2003), η ευρύτερη περιοχή της Θεσσαλονίκης εντάσσεται στη ζώνη σεισμικής επικινδυνότητας Ι (Εικόνα 16), με μέγιστη σεισμική επιτάχυνση α=0,16g (όπου g, επιτάχυνση της βαρύτητας) με πιθανότητα υπέρβασης 10% στα 50 έτη.

Επίσης, σύμφωνα με τον σεισμοτεκτονικό χάρτη της Ελλάδας (Εικόνα 17), η περιοχή έρευνας δεν βρίσκεται στην άμεση γειτονία σεισμοτεκτονικών ρηγμάτων, τα οποία θα μπορούσαν να θεωρηθούν δυνητικώς ενεργά.

Εικόνα 17: Χάρτης ζωνών σεισμικής επικινδυνότητας της Ελλάδας (ΦΕΚ 1154Β', 12-8- 2003)

Εικόνα 18: Απόσπασμα Σεισμοτεκτονικού χάρτη Ελλάδος (ΕΑΓΜΕ). (Q/Qλ) Πρόσφατοι έως σύγχρονοι σχηματισμοί. Κυρίως προσχώσεις, υλικά του ελουβιακού μανδύα, ποτάμιες αποθέσεις, κώνοι κορημάτων, πλευρικά κορήματα, ριπίδια, θίνες, ηφαιστειακά συμφυρματοπαγή (λαγάρ Μήλου Qλ): Άμμοι, άργιλοι, αμμούχοι ή λυούχοι άργιλοι, κροκάλες και λατύπες, συνήθως χωρίς επιφανειακό υδροφόρο ορίζοντα. Χαλαροί σχηματισμοί και τοπικά ελάχιστα συνεκτικοί, λεπτοκοκκώδεις έως χονδροκλαστικοί, συνήθως χωρίς στρώση και με ταχεία και συχνή εναλλαγή των λιθολογικών φάσεων οριζόντια και κατακόρυφα. Φυσικά και μηγανικά χαρακτηριστικά κυμαινόμενα σε ευρέα πλαίσια, ανάλογα με τη λιθογική σύσταση και κοκκομετρική διαβάθμιση. Το πάχος τους κυμαίνεται από μερικά μέχρι μερικές δεκάδες μέτρα που κατά θέσεις υπερβαίνει τα 100μ.(Ν) Μάργες, μαργαϊκοί ασβεστόλιθοι, άργιλούχες μάργες, άργιλοι, άμμοι, ψαμμίτες, κροκαλοπαγή νεογενούς και κατά θέσεις πλειστοκαινικής ηλικίας. Τα μηχανικά τους γαρακτηριστικά κυμαίνονται ανάλογα με τη λιθολογική φάση που επικρατεί. Συνεκτικότητα μέτρια. Οι άργιλοι χαρακτηρίζονται συχνά από αξιόλογη συμπιεστικότητα, οι δε μάργες παρουσιάζουν καλύτερα ποιοτικά χαρακτηριστικά. Δεν απαντάται υδροφόρος ορίζοντας. Πάχος μερικές δεκάδες μέτρα. (Sch,gn,ph,mr) Κρυσταλλικοί σχιστόλιθοι, γνεύσιοι και αμφιβολίτες, φυλλίτες, χαλαζάτες, παλαιοζωϊκοί σχιστοψαμμίτες, ηφαιστειοϊζηματογενείς ημιμεταμορφωμένοι σχηματισμοί και γραουβάκες, μάρμαρα, κρυσταλλικοί ασβεστόλιθοι και σιπολίνες. Σχηματισμοί με μεγάλο συνήθως πάχος και υψηλή συνεκτικότητα που συνιστού το γεωλογικά υπόβαθρο. (Π) Βασικά και υπερβασικά εκρηξιγενή πετρώματα, κυρίως περιδοτίτες, σερπεντίνες και κατά θέσεις γάββροι και νορίτες.

Το υπέδαφος από άποψη σεισμικής επικινδυνότητας κατατάσσεται από την επιφάνεια του φυσικού εδάφους μέχρι το βάθος έρευνας σύμφωνα με τον Πίνακα 4 του ΕΝ 1998-1 στην κατηγορία «C» ως συνιστάμενο από αποθέσεις πολύ στιφρών συνεκτικών υλικών.

Κατηγορία Εδάφους	Περιγραφή Στρωματογραφίας	Παράμετροι			
		Vs,30(m/s)	Nspt	Cu(kPa)	
Α	Βράχος η άλλος βραχώδης σχηματισμός που περιλαμβάνει το πολύ 5μ. ασθενέστερου επιφανειακού υλικού.	>800	-	-	
В	Αποθέσεις πολύ πυκνής άμμου , χαλίκωνη πολύ σκληρής αργίλου πάχους τουλάχιστον αρκετών δεκάδων μέτρων, που χαρακτηρίζονται από βαθμιαία βελτίωση των μηχανικών ιδιοτήτων με το βάθος.	360-800	>50	>250	
С	Βαθιές αποθέσεις πυκνής ή μετρίως πυκνής άμμου χαλίκων ή σκληρής αργίλου πάχους από δεκάδες έως πολλές εκατοντάδες μέτρων.	180-360	15-50	70-250	
D	Αποθέσεις χαλαρών έως μετρίως χαλαρών μη σθνεκτικών υλικών ή κυρίως μαλακά έως μετρίως σκληρά συνεκτικά υλικά.	<180	<15	<70	
E	Εδαφική τομή που αποτελείται από ένα επιφανειακό στρώμα ιλύος με τιμές Vs κατηγορίας C ή D και πάχος που ποικίλλει μεταξύ 5 και 20m με υπόστρομα από πιο σκληρό υλικό με Vs>800 m/s.				
S1	Αποθέσεις που αποτελούνται ή που περιέχουν ένα στρόμα πάγους τουλάχιστον 10m μαλακών αργίλων/ύδω με υψηλό δείκτη πλαστικότητας(PI>40) και υψηλή περιεκτικότητα σε νερό.	<100 ενδεικτικό	-	10-20	
S2	Στρώματα ρευστοποιήσιμων εδαφών, ευαίσθητων αργίλων ή οποιαδήποτε άλλη εδαφική τομή που δεν περιλαμβάνεται στους τύπους Α-Ε ή S1.				

Πίνακας 4: Κατηγορίες εδαφών κατά τον ΕΝ 1998-1

Τέλος ο συντελεστής σεισμικής επιβάρυνσης ο οποίος είναι απαραίτητος για τον υπολογισμό της κατασκευής, δίδεται σύμφωνα με τον ΕΑΚ 2000 με τον τύπο:

$R_d(T) = \gamma 1 * A * \eta * \theta * \beta_0 / q(1)$, óπου:

γ1 : ο συντελεστής σπουδαιότητας του κτιρίου

g : μέγιστη οριζόντια σεισμική επιτάχυνση του εδάφους

η : διορθωτικός συντελεστής για ποσοστό κρίσιμης απόσβεσης $\neq 5\%$ θ : συντελεστής επιρροής της θεμελίωσης

βο : συντελεστής φασματικής ενίσχυσης

q : συντελεστής συμπεριφοράς της κατασκευής

Σύμφωνα με τα στοιχεία του έργου οι ανωτέρω συντελεστές έχουν τις εξής τιμές:

 $\gamma 1 = 1.15$ για κτίριο σπουδαιότητας Σ3, A = 0.16g, η=1 για ζ=5, θ = 0.9, βο = 2.5 και q = 3.0

Σύμφωνα με την εξίσωση 1, ισχύει:

Rd (T) = 0.138g

Σημειώνεται ότι σε περίπτωση όπου η ιδιοπερίοδος του κτιρίου δεν είναι μεταξύ των τιμών 0.1 sec και 0.4 sec η τιμή του Rd (T), μειώνεται με βάση το τροποποιημένο ελαστικό φάσμα σχεδιασμού σύμφωνα με τους τύπους 2.1.α και 2.1.γ του ΕΑΚ 2000.

Η ευστάθεια των φυσικών ή τεχνητών πρανών σε σεισμό ελέγχεται με τη θεώρηση των ακόλουθων πρόσθετων ενεργών επιταχύνσεων:

• κατά την οριζόντια διεύθυνση προκύπτει: αh=0,5*a=0,08g

• κατά την κατακόρυφη διεύθυνση προκύπτει: αν=0,25*a=0,04g
ΚΕΦΑΛΑΙΟ 3 : ΠΡΟΓΡΑΜΜΑ ΕΡΕΥΝΗΤΙΚΩΝ ΕΡΓΑΣΙΩΝ

Τα γεω-ερευνητικά προγράμματα στοχεύουν στη διερεύνηση γεωλογικών συνθηκών του χώρου όπου θα κατασκευαστεί το τεχνικό έργο πριν ξεκινήσει ο τελικός σχεδιασμός και η κατασκευή του. Οι στόχοι του προγράμματος διαφέρουν ανάλογα με το μέγεθος και τη φύση του τεχνικού έργου που μελετάται - κατασκευάζεται, αλλά συνήθως περιλαμβάνουν την καταλληλότητα της θέσης για το προτεινόμενο έργο, τις επιτόπου συνθήκες που επικρατούν και τις ιδιότητες εδάφους, τα ποικίλα προβλήματα στο έδαφος αλλά και τις αστάθειες.

Σύμφωνα με τους Χρηστάρα και Μαρίνο (2012), (παρουσιάσεις τεχνικής γεωλογίας), στόχος της συλλογής των δεδομένων για τις :

- Εδαφικές συνθήκες (σύσταση, πάχος διάφορων στρώσεων, γεωμετρία, ετερογένεια), εργαστηριακές και επιτόπου δοκιμές (δοκιμές εδαφομηχανικής),
- Βραχώδες υπόβαθρο, όπου το βάθος είναι σημαντικό για εκσκαφές και θεμελιώσεις,
- Συνθήκες βράχου-βραχόμαζας (λιθολογία, γεωμετρία, δομή, ετερογένεια, παρουσία αργιλικών, υλικών στη μάζα τους κ.α.), εργαστηριακές και επιτόπου δοκιμές (δοκιμές βραχομηχανικής).

Τα στάδια του γεω-ερευνητικού προγράμματος χωρίζονται στα παρακάτω:

<u>Αρχικό στάδιο</u>

- Εργασία γραφείου συλλογή διαθέσιμων στοιχείων
- Επιτόπου επίσκεψη και παρατήρηση
- Προκαταρκτική έκθεση και σχεδιασμός εργασιών υπαίθρου

Κύριο στάδιο

- Εργασίες υπαίθρου
- Γεωλογική χαρτογράφηση
- Γεωτρήσεις, σκάμματα παρατήρησης
- Επιτόπου δοκιμές
- Ταξινομήσεις βραχομάζας (GSI, RMR, Q)
- Μετρήσεις τεκτονικών στοιχείων Τεκτονικά Διαγράμματα (ΤΔ)
- Γεωφυσική διασκόπηση (αν προτείνετε)
- Τεχνικές τηλεπισκόπησης
- Εργαστηριακές δοκιμές
- Τελική έκθεση

Στάδιο επισκόπησης

• Γεωτεχνική παρακολούθηση κατά την κατασκευή

3.1 ΔΕΙΓΜΑΤΟΛΗΠΤΙΚΕΣ ΓΕΩΤΡΗΣΕΙΣ

Αποτελούν σημαντικό τμήμα ενός γεωερευνητικού προγράμματος και την κυριότερη μέθοδο της γεωτεχνικής διερευνήσεως του υπεδάφους.

Η έρευνα στις δειγματοληπτικές γεωτρήσεις περιλαμβάνει την εκτέλεση του απαιτούμενου κατά κύριο λόγο από το μελετητή αριθμού και βάθους περιστροφικών γεωτρήσεων πυρηνοληψίας, διατεταγμένων κατά τέτοιο τρόπο ώστε να καλύπτονται όλα τα τμήματα του έργου. Συνήθως σημαντικό ρόλο σε αυτό παίζει το είδος του έργου, η σπουδαιότητά του, η έκταση που καταλαμβάνει,οι γεωλογικές συνθήκες που επικρατούν, σε συνδυασμό με το σκοπό της διερευνήσεως καθώς όμως υπάρχουν και διάφορες προδιαγραφές ελαχίστου αριθμού και βάθους. (ΓΕΩΣΥΜΒΟΥΛΟΙ Ε.Π.Ε, 2016)

Γενικότερα οι γεωτεχνικές εργασίες σε βάθη μεγαλύτερα των 4-5 μέτρων συνήθως εκτελούνται με τη διάνοιξη δειγματοληπτικών γεωτρήσεων. Κατά τη μέθοδο αυτή δημιουργείται μία κυλινδρική οπή στο έδαφος με τη διείσδυση ενός μεταλλικού στελέχους (διατρητική στήλη) εφοδιασμένου με κοπτική κεφαλή. Η διείσδυση γίνεται είτε με κρούση ή δόνηση (κρουστικές γεωτρήσεις) είτε με συνδυασμό πίεσης και περιστροφής του στελέχους (περιστροφικές γεωτρήσεις). Η κατάπτωση των τοιχωμάτων της γεώτρησης αποφεύγεται με την τοποθέτηση σωλήνωσης (επένδυσης) που προωθείται ταυτόχρονα με την προχώρηση της διατρητικής στήλης. Με τον τρόπο αυτό η γεώτρηση μπορεί να προχωρήσει σε μεγάλα βάθη, με μόνο περιορισμό τις δυνατότητες (βάρος και ισχύ) του γεωτρύπανου και το διαθέσιμο μήκος των στελεχών και της σωλήνωσης. Το μέγιστο βάθος διάτρησης μιας γεώτρησης συχνά περιορίζεται από την αδυναμία προχώρησης της σωλήνωσης, η οποία υφίσταται την πλευρική τριβή του εδάφους σε ολόκληρη την εξωτερική της επιφάνεια. Στις περιπτώσεις αυτές, μετά τη διάτρηση μέχρι κάποιο βάθος, εισάγεται στο εσωτερικό της ήδη τοποθετημένης σωλήνωσης νέα σωλήνωση μικρότερης διαμέτρου, η οποία και προωθείται κατά την περαιτέρω διάτρηση της οπής. Η δεύτερη σωλήνωση υφίσταται πλευρικές τριβές μόνο στο τμήμα του μήκους της κάτω από τη βάση της πρώτης σωλήνωσης και συνεπώς μπορεί να προχωρήσει ευκολότερα. Το κυριότερο μειονέκτημα της μεθόδου των διαδοχικών σωληνώσεων, εκτός από το μεγάλο μήκος και την ποικιλία μεγεθών των σωληνώσεων που απαιτούνται, είναι η μείωση της διαμέτρου της γεώτρησης και συνεπώς η μείωση του μεγέθους των εδαφικών δειγμάτων, τα οποία υπόκεινται σε μεγαλύτερη διατάραξη. Η προχώρηση της γεώτρησης συνήθως γίνεται με ταυτόχρονη εισπίεση νερού διαμέσου της διατρητικής στήλης προς τη διατρητική κεφαλή, ώστε να αποφεύγεται η υπερβολική φθορά της κεφαλής λόγω υπερθέρμανσης (Καββαδάς, 2006).

Σε σχετικά μαλακούς εδαφικούς σχηματισμούς η δειγματοληψία γίνεται με εμβολοφόρους δειγματολήπτες (piston samplers) τύπου Denison ή Shelby. Οι δειγματολήπτες αυτοί αποτελούνται από ένα σωλήνα με λεπτό τοίχωμα και αιχμηρό άκρο, προωθούνται στο έδαφος κάτω από τον πυθμένα της γεώτρησης με απλή πίεση και στη συνέχεια ανακτώνται (μαζί με το εδαφικό δείγμα) με εξαγωγή της διατρητικής στήλης στην επιφάνεια του εδάφους.

Σε σκληρότερους εδαφικούς σχηματισμούς, όπου η προχώρηση του δειγματολήπτη με απλή πίεση δεν είναι δυνατή, χρησιμοποιούνται δειγματολήπτες με κοπτική κεφαλή (καροταρίες). Οι δειγματολήπτες αυτοί αποτελούται από ένα κυλινδρικό σωλήνα (ή από διπλό σωλήνα στις καροταρίες διπλού τοιχώματος), στη βάση του οποίου είναι προσαρμοσμένη η κοπτική κεφαλή (αδαμαντοφόρος ή με σκληρομέταλα). Ο δειγματολήπτης προσαρμόζεται στη βάση της διατρητικής στήλης και προωθείται στο έδαφος κάτω από τον πυθμένα της γεώτρησης με συνδυασμό πίεσης και περιστροφής. Κατά την προώθηση του δειγματολήπτη, συνήθως διακόπτεται η κυκλοφορία νερού προς την κοπτική κεφαλή, ώστε να μή διαταραχθεί το εδαφικό δείγμα (μέθοδος φραγμού).

Τέλος, στα αμμώδη εδάφη, όπου η αδιατάρακτη δειγματοληψία είναι ιδιαίτερα δυσχερής, χρησιμοποιούνται ειδικοί δειγματολήπτες, οι οποίοι χρησιμοποιούν διάφορες μεθόδους για να εμποδίσουν το δείγμα να διαφύγει κατά τη διαδικασία ανάκτησης του δειγματολήπτη.

Τα δείγματα αυτά θα πρέπει να αντιπροσωπεύουν όσο το δυνατό καλύτερα, από πλευράς σύστασης, δομής και περιεχόμενης υγρασίας, τη φυσική κατάσταση των υπεδαφικών στρωμάτων.

Η συσκευασία και φύλαξη των δειγμάτων πρέπει να γίνονται με ιδιαίτερη προσοχή. Πιο συγκεκριμένα οι εξωτερικές επιφάνειες των δειγμάτων συνεκτικού εδάφους που προορίζονται για εργαστηριακές δοκιμές, καθαρίζονται από την ελεύθερη υγρασία και καλύπτονται αεροστεγώς με διπλή πλαστική μεμβράνη. Στη συνέχεια αυτά τα εδαφικά δείγματα φυλάσσονται σε δύο πλαστικές σακούλες δεμένες η κάθε μία χωριστά, αφού προηγουμένως απομακρυνθεί ο πλεονάζων αέρας για να διατηρηθεί η φυσική υγρασία του εδάφους. Όλα τα δείγματα (συσκευασμένα και μη) φυλάσσονται σε ξύλινα κυψελωτά κιβώτια, φωτογραφίζονται και μεταφέρονται στο εργαστήριο. (ΓΕΩΣΥΜΒΟΥΛΟΙ Ε.Π.Ε 2016)

Τέλος και μετά το στάδιο της διάνοιξης των γεωτρήσεων και αν η μελέτη το απαιτεί, μπορούν να πραγματοποιηθούν δοκιμαστικές αντλήσεις και μετρήσεις πτώσης στάθμης σε γειτονικές γεωτρήσεις ως προς τη γεώτρηση που γίνοται άντληση. Πιο αναλυτικά σε ένα ομογενή και ισότροπο υδροφορέα τοποθετείται ένας πιεζομετρικός σωλήνας για την παρακολούθηση της στάθμης του υπόγειου νερού. Σε περιπτώσεις που υπάρχουν επάλληλα υδροφόρα στρώματα ενδείκνυται η τοποθέτηση πιεζομέτρων σε διάφορα βάθη για την παρακολούθηση της συμπεριφοράς του καθενός ξεχωριστά. Η διάμετρος του πιεζομετρικού σωλήνα είναι 1,5" και το βάθος τοποθέτησης ανέρχεται σε 60-70% του βάθους της σωλήνωσης. Σε κάθε περίπτωση το βάθος πρέπει να είναι κάτω και από την προβλεπόμενη πτώση στάθμης του υπόγειου νερού μετά από μακροχρόνια άντληση. Κατά κανόνα η τοποθέτηση του πιεζομετρικού σωλήνας (Βουδούρης, 2016). Αυτή η δοκιμή μπορεί να δώσει χρήσιμες πληροφορίες για την εκτίμηση της διαπερατότητας του εδάφους και την ακτίνα επιρροής των αντλήσεων, από τα οποία μπορεί να προκύψει ο αριθμός και η παροχή των αντλιών που θα απαιτηθούν σε περίπτωση αντλήσεων τόσο κατά την κατασκευή όσο και κατά τη λειτουργία του έργου (ΓΕΩΣΥΜΒΟΥΛΟΙ Ε.Π.Ε 2016).

Για τον έλεγχο της σωστής λειτουργίας του πιεζομέτρου προσδιορίζεται η αρχική στάθμη του υπόγειου νερού (Ha), προστίθεται ποσότητα νερού 1-2 L, ώστε να ανέλθει η στάθμη περίπου 0,5 m, στην συνέχια προσδιορίζεται η τελική στάθμη μετά την προσθήκη νερού (Ht) και μετράται ο χρόνος (t) που χρειάζεται το νερό να επανέλθει στην αρχική του θέση. Και τέλος υπολογίζεται ο συντελεστής λ, που ορίζεται:

 $\lambda = 2(H\alpha - H\tau) / t (H\alpha - H\tau)$, αν είναι $\lambda \ge 1,15\%$ το πιεζόμετρο θεωρείται κατάλληλο για μέτρηση.

Για την θέση της έρευνας πραγματοποιήθηκαν συνολικά τέσσερεις δειγματοληπτικές γεωτρήσεις συνολικού μήκους 60,83m (Γ1: 15,00m, Γ2: 15,70m, Γ3: 19,93m και Γ4: 10,20m). Οι γεωτρήσεις τοποθετήθηκαν σε θέσεις κατά τρόπο ώστε να καλύπτονται οι ανάγκες της έρευνας (Εικόνα 18). Στο Παράρτημα (Ι) παρουσιάζονται τα πλήρη στοιχεία των γεωτρήσεων (θέση, συντεταγμένες, βάθος). Οι εργασίες υπαίθρου εκτελέστηκαν από τις 1/9/2021 έως τις 3/9/2021, υπό τη συνεχή επιτόπου επίβλεψη του γεωλόγου κ. Π. Παπαδάκη και του τεχνικού γεωλόγου κ. Νικόλαου Χατζηγώγου. Για την εκτέλεση της γεώτρησης χρησιμοποιήθηκε περιστροφικό υδραυλικό γεωτρύπανο τύπου Boyles της εταιρίας γεωτεχνικών ερευνών "ΓΕΩΡΓΙΟΣ ΣΤΑΚΙΕΒΙΤΣ-ΕΡΕΥΝΗΤΙΚΕΣ ΓΕΩΤΡΗΣΕΙΣ. Στο Παράρτημα (ΙΙΙ)του τεύχους παρουσιάζονται φωτογραφίες που λήφθηκαν κατά τη διάρκεια εκτέλεσης των γεωτρήσεων.

Εικόνα 19: Κάτοψη του περιγράμματος του οικοπέδου και επισήμανση θέσεων των γεωτρήσεων.

Δειγματοληψία:

Κατά τη διάρκεια εκτέλεσης των γεωτρήσεων, γινόταν συνεχής δειγματοληψία που περιλάμβανε: Αντιπροσωπευτικά δείγματα με δειγματολήπτη απλού τοιχώματος (T1) διαμέτρου 127mm, χρησιμοποιώντας τη μέθοδο του φραγμού (διακοπή της παροχής νερού προς την κοπτική κεφαλή) και κοπτική κεφαλή WIDIA.

Τα δείγματα τοποθετήθηκαν σε ειδικά ξύλινα κιβώτια, που έφεραν συνοπτικά: τα στοιχεία του περιεχομένου τους, τον τίτλο του έργου, την ονομασία της γεώτρησης, το ανώτερο και κατώτερο βάθος του περιεχόμενου δείγματος και τον αύξοντα αριθμό κιβωτίου. Στην συνεχεία αποθηκεύτηκαν σε στεγασμένο μέρος. Η φωτογράφηση τους πραγματοποιήθηκε στην περιοχή του έργου και κάθε φωτογραφία αναφέρεται σε συγκεκριμένο κιβώτιο, όπου αναγράφονται ο τίτλος του έργου, ο αριθμός της γεώτρησης και το αρχικό και τελικό βάθος κάθε σειράς δειγμάτων. Κατά τη φωτογράφηση ελήφθη μέριμνα ώστε να αποφεύγονται σκιάσεις που μειώνουν την ποιότητα των φωτογραφιών των δειγμάτων. Η ποιότητα των φωτογραφιών ελέγχθηκε επιτόπου πριν τη διαλογή – αποστολή των δειγμάτων για εργαστηριακές δοκιμές. Στο Παράρτημα (ΠΙ) της παρούσης παρουσιάζονται φωτογραφίες όλων των δειγμάτων των γεωτρήσεων.

Μετά το πέρας των εργασιών υπαίθρου έγινε επιλογή αντιπροσωπευτικών δειγμάτων, τα οποία μεταφέρθηκαν εργαστήριο Εδαφομηχανικής - Βραχομηχανικής της εταιρείας ΙΟΝΙΑΝ LABS A.Ε. για την εκτέλεση των εργαστηριακών δοκιμών, που απαιτούνται για τον προσδιορισμό των φυσικών και μηχανικών χαρακτηριστικών τους.

Η παρακολούθηση της στάθμης των υπόγειων νερών της θέσης έρευνας, μετά το πέρας των γεωτρήσεων Γ1 και Γ2, στη θέση τους κατασκευάστηκε πιεζόμετρο με περιμετρικό χαλικόφιλτρο προκειμένου να είναι δυνατή η λήψη μετρήσεων της στάθμης του υπόγειου ορίζοντα. Στο άνω του πιεζόμετρου τοποθετήθηκε κεφαλή και κατασκευάστηκε προστατευτικό φρεάτιο. Επίσης κατά την εκτέλεση των γεωτρήσεων έγιναν μετρήσεις της στάθμης των νερών το πρωί, πριν από την έναρξη των εργασιών και κάθε απόγευμα, μετά τη λήξη τους.

Όλες οι μετρήσεις και η καταγραφή των υπόγειων υδάτων διενεργήθηκαν βάσει των συστάσεων των βρετανικών κανονισμών B.S. 5930.

3.2 ΕΠΙ ΤΟΠΟΥ ΔΟΚΙΜΕΣ

Ως αναφορά τις επί τόπου δοκιμές, οι κυριότεροι και συχνότεροι μέθοδοι που πραγματοποιούνται είναι η πρότυπη δοκιμή διείσδυσης (SPT), η δοκιμή διείσδυδης κώνου (CPT) και η δοκιμή πτερυγίου (FTV). Πέρα από αυτές έχουν αναπτυχθεί και διάφορες ακόμα μέθοδοι όπως: η δοκιμή πρεσσιομέτρου (PMT), το επίπεδο ντιλατόμετρο Marchetti (DLT), οι δοκιμές εισπιέσεων, τα πιεζόμετρα, τα κύτταρα πίεσης γαιών, τα κλισιόμετρα και τα καθιζησίμετρα.

Τα πλεονεκτήματα τους συγκριτικά πάντα με τις εργαστηριακές δοκιμές είναι ότι έχουν την δυνατότητα να ελέγχουν τις ιδιότητες του εδάφους όπως για παράδειγμα τη φυσική του κατάσταση χωρίς όμως να παρεμβάλλεται η δειγματοληψία και οι διάφορες διαδικασίες που μπορούν να το διαταράξουν και να μεταβάλλουν ως ένα βαθμό τη δομή του. Επίσης ένα ακόμα θετικό είναι ότι μεγάλος αριθμών αυτών των δοκιμών εκτελούνται συνεχώς με το βάθος με αποτέλεσμα την λήψη μιας συνεχούς καταγραφής των εδαφικών χαρακτηριστικών. Βασικό μειονέκτημα των επί τόπου δοκιμών η αδυναμία στην ακρίβεια των αποτελεσμάτων η οποία βασίζεται σε εμπειρικές συσχετίσεις λόγω των εντατικών καταστάσων που επιβάλλουν στο έδαφος.

Για την παρούσα έρευνα πραγματοποιήθηκαν πρότυπες δοκιμές διείσδυσης (SPT) για τον προσδιορισμό της επί τόπου συνεκτικότητας στα αργιλικά εδάφη και επί τόπου πυκνότητας στα κοκκώδη εδάφη. Η SPT είναι μία από τις πιό διαδεδομένες μεθόδους εξ΄αιτίας της πολυετούς εφαρμογής της και των ποικίλων συσχετίσεων των αποτελεσμάτων της με μηχανικές ιδιότητες του εδάφους όπως η αντοχή, η γωνία τριβής, η συμπιεστότητα, η σχετική πυκνότητα κλπ. Η δοκιμή βασίζεται στην προχώρηση του ειδικού διαιρετού δειγματολήπτη Terzaghi με πτώση συγκεκριμένου βάρους και ύψους. Κατά την δοκιμή αυτή μετράται ο αριθμός των πτώσεων Ν, που απαιτείται για την προχώρηση του δειγματολήπτη κατά 30 cm, μετά από αρχική προώθηση 15 cm, της οποίας ο αριθμός πτώσεων δεν συνυπολογίζεται. Μετά το τέλος της δοκιμής, από το εσωτερικό για την εκτίμηση της σχετικής πυκνότητας των αμμωδών εδαφών, για τα οποία η αδιατάρακτη δειγματοληψία είναι δυσχερής. Σήμερα όμως η δοκιμή SPT χρησιμοποιείται σε όλους σχεδόν τους τύπους εδαφών κυρίως για την εκτίμηση της αντοχής τους.

Συγκεκριμένα, κατά τη διάρκεια της διάτρησης, εκτελέστηκαν 30 επί τόπου δοκιμές πρότυπης διείσδυσης (Standard Penetration Tests - SPT). Η δοκιμή συνίσταται στην λήψη πυρήνα εδάφους με δειγματολήπτη με εξωτερική διάμετρο 50,8mm χρησιμοποιώντας σφύρα βάρους 65kgr και διαδρομές 760mm. Ο αριθμός των χτύπων της δοκιμής για διαδρομή διείσδυσης 30cm καταγράφεται στα μητρώα της γεώτρησης ως η τιμή Ν.

Τα αποτελέσματα των δοκιμών Πρότυπης Διείσδυσης, παρουσιάζονται σε πίνακες στο Παράρτημα Ι.

3.3 ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΔΟΚΙΜΕΣ

Μετά την λήψη των δειγμάτων εκτελούνται σε αυτά εργαστηριακές δοκιμές για τον ακριβή προσδιορισμό των φυσικών αλλά και μηχανικών χαρακτηριστικών και ιδιοτήτων του εδάφους. Πιο αναλυτικά πραγματοποιούνται δοκιμές κατάταξης όπως η κοκκομέτρηση με κόσκινα ή υγρόμετρο, ο προσδιορισμός ορίων Atterberg, ο προσδιορισμός φυσικής υγρασίας και πυκνότητας των στερεών κόκκων αλλά και του εδαφικού υλικού, ο προσδιορισμός περιεκτικότητας σε οργανικά, σε θειϊκά και σε χλωριόντα. Επίσης γίνονται δοκιμές συμπιεστότητας όπως η κυλινδρική τριαξονική δοκιμή, η απευθείας δοκιμή διάτμησης και η δοκιμή απλής διάτμησης. Και τέλος οι δοκιμές διαπερατότητας με διαπερατόμετρο σταθερού και μεταβλητού φορτίου. Οι δοκιμές κατάταξης μπορούν να πραγματοποιηθούν και σε διαταραγμένα δείγματα αντίθετα με τις υπόλοιπες που εκτελούνται μόνο σε αδιατάρακτα.

Οι εργαστηριακές δοκιμές που εκτελέσθηκαν για την συγκεκριμένη έρευνα πραγματοποιήθηκαν στα εργαστήρια της ΙΟΝΙΑΝ LABS A.Ε. κατά την περίοδο Σεπτεμβρίου έως Οκτωβρίου 2021. Τα δείγματα μεταφέρθηκαν στο εργαστήριο αμέσως μετά την ολοκλήρωση των γεωτρήσεων και η εφαρμογή του εργαστηριακού τους ελέγχου ακολουθούσε άμεσα. Παρακάτω σημειώνονται οι εργασίες οι οποίες χρειάστηκαν να γίνουν και σε επόμενο κεφάλαιο θα αναλυθούν τα αποτελέσματα τους :

- Για τον υπολογισμό της φέρουσας ικανότητας της θεμελίωσης εφαρμόστηκαν δοκιμές προσδιορισμού των αστράγγιστων παραμέτρων διατμητικής αντοχής, δηλαδή: δοκιμές μοναξονικής θλίψης και τριαξονικές δοκιμές αστράγγιστες χωρίς στερεοποίηση UU, καθώς και δοκιμές άμεσης, βραδείας, προστερεοποιημένης διάτμησης (CD) και τριαξονικές δοκιμές με μέτρηση της πίεσης πόρων (CUPP) για τον προσδιορισμό των χαρακτηριστικών αντοχής σε συνθήκες αποστράγγισης.
- Για την εκτίμηση των καθιζήσεων και της χρονικής εξέλιξής τους έγιναν δοκιμές μονοδιάστατης στερεοποίησης. Προσδιορίστηκαν οι παράμετροι στερεοποίησης: τα οιδημετρικά μέτρα Es^{oed}, οι δείκτες συμπιεστότητας cc^{oed} και οι συντελεστές στερεοποίησης, cv^{oed}.
- Για τους ελέγχους ευστάθειας των πρανών εκσκαφής εκτελέσθηκαν τόσο προστερεοποιημένες δοκιμές, άμεσης, βραδείας διάτμησης (CD) όσο και δοκιμές άμεσης, ταχείας διάτμησης με μέτρηση της πίεσης πόρων (CUPP). Οι ταχύτητες που εφαρμόστηκαν στις δοκιμές βραδείας διάτμησης ορίζονταν με βάση το χρόνο που απαιτείται ώστε να πραγματοποιείται το 50% της στερεοποίησης. Ο εργαστηριακός έλεγχος ολοκληρωνόταν με σειρά δοκιμών μοναξονικής θλίψης

Συνολικά η έρευνα περιλαμβάνει 2 δοκιμές άμεσης, βραδείας, προστερεοποιημένης διάτμησης (δοκιμές CD), 3 δοκιμές άμεσης, ταχείας, διάτμησης (δοκιμές UU), 2 τριαξονικές δοκιμές με μέτρηση της πίεσης πόρων (CUPP), 8 δοκιμές μοναξονικής θλίψης και 8 δοκιμές μονοδιάστατης στερεοποίησης. Περιλαμβάνει επίσης πλήθος δοκιμών προσδιορισμού της κοκκομετρίας του εδάφους, του φαινόμενου βάρους, της φυσικής υγρασίας, των ορίων Atterberg και βοηθητικές δοκιμές προσδιορισμού των φυσικών παραμέτρων (δείκτη πόρων, βαθμού κορεσμού).

3.4 ΤΕΧΝΙΚΕΣ ΠΡΟΔΙΑΓΡΑΦΕΣ

Για την εκτέλεση των ερευνητικών εργασιών υπαίθρου και εργαστηρίου για την γεωτεχική έρευνα και μελέτη για την δημιουργία χώρων εγκαταστάσεων κοινής ωφέλειας στην περιοχή της Παπάφη, εφαρμόστηκαν οι παρακάτω εγκεκριμένες Τεχνικές Προδιαγραφές:

- Τεχνικές Προδιαγραφές δειγματοληπτικών γεωτρήσεων ξηράς Ε101-83 (ΦΕΚ 363/24.6.83 τεύχος Β).
- Τεχνικές Προδιαγραφές επιτόπου δοκιμών εδαφομηχανικής Ε106-86 (ΦΕΚ 955/31.12.86 τεύχος Β).
- Τεχνικές Προδιαγραφές εργαστηριακών δοκιμών Εδαφομηχανικής Ε105/84 (ΦΕΚ 955/31.12.86 τεύχος Β).
- Τα προβλεπόμενα στο άρθρο ΓΤΕ.3 του Κανονισμού Προεκτιμώμενων Αμοιβών Μελετών και Υπηρεσιών, σύμφωνα με τον Ν. 3316/2005, που αναφέρεται στην παρουσίαση των αποτελεσμάτων της γεωτεχνικής διερεύνησης.
- Τις Οδηγίες Μελετών Οδικών Έργων (ΟΜΟΕ), Έκδοση 11: Γεωλογικές και Γεωτεχνικές Έρευνες και Σχέδια, Κεφάλαιο 3, Άρθρα 2,3 και 4.
- Τα προβλεπόμενα στον Κανονισμό Μελετών και Ερευνών (ΚΜΕ) του παρόντος έργου.
- BS 5930: 1999 "Κώδικας πρακτικής για έρευνες εδαφών".
- ASTM D2487 00 USC "Ενοποιημένο Σύστημα Ταξινόμησης Εδαφών".
- Υ.ΠΕ.ΧΩ.ΔΕ 6019/86 (ΦΕΚ 29Β') "Εγκριση Προδιαγραφών
 Γεωλογικών Εργασιών μέσα στα πλαίσια των Μελετών Τεχνικών Έργων".

ΚΕΦΑΛΑΙΟ 4 : ΑΞΙΟΛΟΓΗΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΕΡΓΑΣΙΩΝ

4.1 ΣΤΡΩΜΑΤΟΓΡΑΦΙΑ ΚΑΙ ΥΠΟΓΕΙΑ ΝΕΡΑ

Σύμφωνα με τα αποτελέσματα της παρούσας έρευνας, το υπέδαφος συνίσταται κυρίως από στιφρή έως πολύ στιφρή τεφροπράσινη αμμώδη άργιλο (στρώμα C1) που μεταβαίνει προς τα ΝΔ σε συνεκτική έως πυκνή αργιλώδη άμμο (στρώμα S1), με υποκείμενο στρώμα τις στιφρές έως πολύ στιφρές ερυθρές αργίλους με χάλικες (στρώμα C2), που αποτελούν το σχηματισμό του υποβάθρου της περιοχής. Η στρωματογραφία του υπεδάφους είναι κεκλιμένη. Η στάθμη του υπόγειου υδροφορέα συναντάται σε βάθος 6,3 έως 7,4m περίπου.

<u>Γεώτρηση Γ-1</u>

- Στρώμα F1: 0,0m-1,0m: Επιχώσεις από χάλικες και άμμο με στεγνό συνεκτικό καστανό αργιλώδες συνδετικό υλικό (Φυτική γη).
- Στρώμα C1: 1,0m-7,8m: Υγρή, στιφρή έως πολύ στιφρή, τεφροπράσινη αμμώδης Άργιλος, χαμηλής έως μέσης πλαστικότητας, με διάσπαρτους χάλικες σχιστολιθικής προέλευσης με κυμαινόμενο ποσοστό 0-17% (κατάταξη κατά USCS:CL).
- Στρώμα C2: 7,8m-15,0m: Ελαφρά υγρή έως υγρή καστανέρυθρη αμμώδης Άργιλος, στιφρή, χαμηλής πλαστικότητας (κατάταξη κατά USCS:CL).

Η υπόγεια στάθμη του νερού είναι σε βάθος 6,30m

Εικόνα 20: Στρωματογραφική τομή Γεώτρησης 1.

<u>Γεώτρηση Γ-2</u>

- Στρώμα F1: 0,0m-0,5m: Τεχνητές επιχώσεις οδοστρωσίας.
- Στρώμα C1: 0,5m-8,4m: Υγρή, στιφρή έως πολύ στιφρή, τεφροπράσινη αμμώδης Άργιλος, χαμηλής έως μέσης πλαστικότητας, με διάσπαρτους χάλικες σχιστολιθικής προέλευσης με κυμαινόμενο ποσοστό 0-17% (κατάταξη κατά USCS:CL).
- Στρώμα C2 : 8,4m-15,7m: Ελαφρά υγρή έως υγρή καστανέρυθρη αμμώδης Άργιλος, στιφρή, χαμηλής πλαστικότητας, με ορίζοντες αργιλοϊλυώδους άμμου και χάλικες ποσοστού έως 18%, αυξανόμενου με το βάθος (κατάταξη κατά USCS:CL).

Η υπόγεια στάθμη του νερού είναι σε βάθος 7,40m

ΣΤΡΩΜΑΤΟΓΡΑΦΙΚΗ ΤΟΜΗ ΓΕΩΤΡΗΣΗΣ												
EPFO: Γεωτεχνική μελέτη θεμελίωσης κτιρίων Κ.Ω.												
TEOTPH	HMEPOMHNIA: 2/9/2021											
OEEH:	"Σταβλο	ι Поп	όφη"	YTOMETR	D:	35,	4m					
BAGOE EQAHNQEHE: 0,0m RAXOE ERIIXQEEQN: 0,50m												
BADOT (m)	ETPOMAT	ΟΓΡΑΦΙΑ	unce	періграфн			SPT		Τ			
BROOL (III)		OAHWA		ETPOMATON			N30	-		%		
• •	1333	•		Backfill: Τεχνητές επιχώσεις	Ň	Π			ī	-		
	111	۰	1	οδοστρωσίος	Л	LI.	11		Ш			
†		۰		CL: Υγρή, στιφρή έως πολύ στιφρή, τεφροπράσινη αμμώδης Άργιλος, χαμηλής έως μέσης πλαστικότητος.					I			
+	11/2	SPT		με διάσπαρτους χάλικες σχιστολιθικής προέλευσης με	0		30	4	64			
	1///			κυμαινόμενο ποσοστό 0-17%					Ш			
†		۰								12,78		
†	1///	SPT	1		0	15	30	4	64			
55			a					1	l	17,27		
	111	SPT			ř.	ñ	11	n	ñ			
		۰								21,83		
Ť I	UD	SPT			0	5	30	4	М			
-		٠		Clay: Ελαφρά υγρή έως υγρή κοστανέρυθρη αμμώδης Άργιλος, στφρή, χομηλής πλοστικότητος, με ορίζοντες αργιλοίλιώδους άμμου κοι χάλκες ποσοστού έως 18%,		ł				16,49		
10 10		SPT	1	αυξανόμενου με το βάθος	0	15	30	45	-			
		۰	1			Ш			Λ			
t			1			Ш			/			
		•										
†		SPT	GL		0	15	30	-	60			
		•				Ш		7	Ш			
ţ		۰								15,24 16,66		
+ I		SPT			0	55	30	4	62			
1515									Ц			
		SPT								14.59		
										1.1.1.1		

<u>Γεώτρηση Γ-3</u>

- Στρώμα F1: 0,0m-0,45m: Τεχνητές επιχώσεις οδοστρωσίας
- Στρώμα S1: 0,45m-3,0m: Υγρή, στιφρή έως πυκνή, τεφροπράσινη αργιλώδης Άμμος έως αμμώδης Άργιλος, χαμηλής πλαστικότητας, με διάσπαρτους χάλικες σχιστολιθικής προέλευσης με κυμαινόμενο ποσοστό 3-22% (κατάταξη κατά USCS:SC).
- Στρώμα C2: 3,0m-19,93m: Ελαφρά υγρή έως υγρή καστανέρυθρη αμμώδης Άργιλος, στιφρή, χαμηλής πλαστικότητας, με ορίζοντες αργιλοϊλυώδους άμμου και χάλικες ποσοστού έως 18%, αυξανόμενου με το βάθος (κατάταξη κατά USCS:CL).

Εικόνα 22: Στρωματογραφική τομή Γεώτρησης 3.

<u>Γεώτρηση Γ-4</u>

- Στρώμα F1: 0,0m-1,0m: Τεχνητές επιχώσεις οδοστρωσίας
- Στρώμα S1: 1,0m-8,5m: Υγρή, στιφρή έως πυκνή, τεφροπράσινη αργιλώδης Άμμος έως αμμώδης Άργιλος, χαμηλής πλαστικότητας, με διάσπαρτους χάλικες σχιστολιθικής προέλευσης με κυμαινόμενο ποσοστό 3-22% (κατάταξη κατά USCS:SC).
- Στρώμα C2: 8,5m-10,2m: Ελαφρά υγρή έως υγρή καστανέρυθρη αμμώδης Άργιλος, στιφρή, χαμηλής πλαστικότητας, με ορίζοντες αργιλοϊλυώδους άμμου και χάλικες ποσοστού έως 18%, αυξανόμενου με το βάθος (κατάταξη κατά USCS:CL).

ΣΤΡΩΝ	ΙΟΤΑΙ	ΡΑΦ	IKH	ΤΟΜΗ ΓΕΩΤΡΗΣΗΣ						
ΕΡΓΟ: Ι ΓΕΩΤΡΗ ΘΕΣΗ: " ΒΑΘΟΣ Ι	Γεωτεχν ΣΗ: Γ- Στάβλο ΣΩΛΗΝΩ	νική μ 4 οι Παπ ΣΕΗΣ :	ιελέτ άφη" 0,0r	η θεμελίωσης κτιρίων Κ ΗΜΕΡΟΜΗΝ ΥΨΟΜΕΤΡΟ ΠΑΧΟΣ ΕΙ	.Ω NIZ C:	Α: 33, 33,	3/9 5m 2225	/2(2N:)21	,00m
ΒΑΘΟΣ (m)		ГОГРАФІА ООКІМН ГОЛНЧІА	USCS	ΠΕΡΙΓΡΑΦΗ ΣΤΡΩΜΑΤΩΝ			SPT 'N30'			m %
•_•		Ф		Backfill: Τεχνητές επιχώσεις οδοστρωσίας						
-		Φ		Clayey Sand: Υγρή, στιφρή έως πυκνή, τεφροπρόσινη αργιλώδης Αμμος έως αμμώδης Άργιλος, χαμηλής πλαστικότητας, με διάστιαρτους χάλικες σχιστολιθικής						
†		SPT		προέλευσης με κυμαινόμενο ποσοστό 3-22%	0	15	30	45	60	
-		Ф								18,14
t II		SPT			0	15	30	45	60	15,69
5—-5		Φ	sc							18,00
†		SPT			0	15	30	45	60	
-		Ф								13,51
+		SPT			0	15	30	45	60	
-		Ф	CL.	Clay: Ελαφρά υγρή έως υγρή καστανέρυθρη αμμώδης Άργιλος, στιφρή, χομηλής πλαστικότητας, με ορίζοντες αργιλοϊλυώδους άμμου και χάλικες ποσοστού έως 18%,						18,98
1010		¢		αυςανομενου με το βάθος					_	

Εικόνα 23: Στρωματογραφική τομή Γεώτρησης 4.

Με βάση τα αποτελέσματα της γεωτρητικής έρευνας σχεδιάσθηκαν και οι παρακάτω στρωματογραφικές τομές A-A', B-B' και Γ-Γ΄των οποίων η απεικόνιση στο οικοδομικό τετράγωνο του έργου φαίνονται στην Εικόνα 24.

Εικόνα 24: Απεικόνιση των γεωλογικών τομών.

Εικόνα 25: Στρωματογραφική τομή Α-Α'.

ΤΟΜΗ Β-Β Κλίμακα 1:200	1 *354	<mark>Г2</mark>	Г	3 +35.70m
+34.50m			²ΩMA S1	+35.25m +32.70m
+28.20m	ΣΤΡΩΜΑ C1 -28.07m ΣΤΑΘΜΗ ΕΚΣΚΑΦΗΣ -28.0	ΣΤΡΩΜΑ C1	.37m	
+26.70m	ПІЕZOМЕТРІКН ΣТАФИН 			
	ΣΤΡΩΜΑ C2	ΣΤΡΩΜΑ C2		
+19.50m	787 	m		
УПОМИНМА				+15.77m
F1: Υγρή σκα	ίρη καστανή αμμώδης άργιλος με χάλικος (φυτοκάλωψη) -			

 Επιγώσεις δωμόρροσης
 Υρή, στυρή έως πο
 μο διάσπαρτους χάλακες
 S1: Υγρή, στυρή έως
 κλαστικότητας, με διάσπ
 C2: Ελαφρά νγρή έως νη

Εικόνα 26: Στρωματογραφική τομή Β-Β΄.

Εικόνα 27: Στρωματογραφική τομή Γ-Γ΄.

4.2 ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΤΙΜΕΣ ΠΑΡΑΜΕΤΡΩΝ ΣΤΡΩΜΑΤΩΝ

Οι τιμές σχεδιασμού των παραμέτρων των εδαφικών στρώσεων προκύπτουν από τα αποτελέσματα των εργαστηριακών δοκιμών στα δείγματα των δειγματοληπτικών γεωτρήσεων. Πιο συγκεκριμένα, οι τιμές των διαφόρων χαρακτηριστικών κατάταξης και φυσικής κατάστασης των διαχωριζόμενων στρωμάτων, προκύπτουν γενικά ως οι μέσοι όροι των τιμών των αντίστοιχων εργαστηριακών δοκιμών. Ομοίως οι τιμές των χαρακτηριστικών αντοχής εκτιμώνται ως οι μέσοι όροι των τιμών των εργαστηριακών δοκιμών.

Στους παρακάτω πίνακες παρουσιάζονται τα αποτελέσματα των φυσικών χαρακτηριστικών (Πίνακας 5), των μηχανικών χαρακτηριστικών του υπεδάφους (Πίνακας 6) βάσει των εργαστηριακών δοκιμών, οι μηχανικές παράμετροι των επί μέρους στρωμάτων (Πίνακας 7) βάσει της τιμής N_{SPT} και συγκριτικά οι τιμές των μηχανικών παραμέτρων (αντοχή-συμπιεστότητα) των στρωμάτων, (Πίνακας 8) όπως προέκυψαν από την αξιολόγηση των αποτελεσμάτων των επί τόπου και εργαστηριακών δοκιμών.

Στρ.	Πάχος (m)	m (%)	γ (kN/m³)	γd (kN/m³)	е	S (%)	LL (%)	PI (%)	USCS
C1	8,1	17,2	20,8	17,7	0,47	96,6	37	17	CL
S1	5,75	15,7	19,7	17,0	0,53	72,4	33	14	SC
C2	>20	16,2	20,6	17,7	0,47	92,0	36	14	CL

Πίνακας 5: Εργαστηριακά αποτελέσματα φυσικών παραμέτρων επιμέρους στρωμάτων.

Στρ.	Πάχος (m)	Y (kN/m³)	c (kPa)	φ (°)	c' (kPa)	φ' (°)	Cu (kPa)	Es _{oed} (MPa)	Cc	Cv (m²/y)
C1	8,1	20,76	32	38	15,2	28,7	70,2	15,7	0,141	3,63
S1	5,75	19,72	85	36	57	22	52,0	2,2	0,19	14,87
C2	>20	20,60			56	18	49,7	5,1	0,15	8,92

Πίνακας 6: Εργαστηριακά αποτελέσματα μηχανικών παραμέτρων επιμέρους στρωμάτων.

Τα παραπάνω αποτελέσματα του πίνακα με τα εργαστηριακά αποτελέσματα μηχανικών παραμέτρων επιμέρους στρωμάτων, αξιολογούνται και ερμηνεύονται σε συνδυασμό με τα αποτελέσματα των επί τόπου δοκιμών Nspt. Με βάση τα αποτελέσματα των δοκιμών Nspt υπολογίζονται τα χαρακτηριστικά των επιμέρους στρωμάτων με τη χρήση των παρακάτω εμπειρικών σχέσεων και προκύπτει ο επόμενος πίνακας:

> Cu=0,6N t/m²(Terzaghi&Peck) φ'=0,3N+27° ή SPT (30-50)----φ=40°-45° (Peck) E_s=320(N+15) kPa (Boweles for clayey sands) E_s= (100-500)*C_u kPa (clays PI<30 or stiff)

Στρ.	Πάχος (m)	γ (kN/m³)	N _{SPT}	Фѕрт (°)	Cu _{spt} (kPa)	Es _{spt} (MPa)
C1	8,1	20,76	19	32,7	111,8	7,0-35,0
S1	5,75	19,72	29	35,7	170,7	14,1
C2	>20	20,60	45	40,5	264,9	5,0-25,0

Πίνακας 7: Μηχανικές παράμετροι επί μέρους στρωμάτων βάσει της τιμής NSPT.

Στρ.	Πάχος (m)	γ (kN/m³)	Nspt	Ф́ѕрт (°)	c' (kPa)	φ' (°)	Cu _{spt} (kPa)	Cu (kPa)	Es _{spt} (MPa)	Es (MPa)
C1	8,1	20,76	19	32,7	15,2	28,7	111,8	70,2	7,0-35,0	15,7
S1	5,75	19,72	29	35,7	57	22	170,7	52,0	14,1	2,2
C2	>20	20,60	45	40,5	56	18	264,9	49,7	5,0-25,0	5,1

Πίνακας 8: Συγκριτικά αποτελέσματα μηχανικών παραμέτρων στρωμάτων υπεδάφους από την επεξεργασία των εργαστηριακών και των επί τόπου δοκιμών.

Κάνωντας την σύγκριση των αποτελεσμάτων των μηχανικών χαρακτηριστικών, όπως προκύπτουν από τις εργαστηριακές και τις επί τόπου δοκιμές, παρατηρείται μία σημαντική διαφορά μεταξύ τους (Πίνακας 8), με τις παραμέτρους που προκύπτουν από τη δοκιμή N_{SPT} μέσω εμπειρικών σχέσεων να είναι εμφανώς υψηλότερες. Αυτό εκτιμάται πως οφείλεται στα συγκρίματα που παρατηρούνται στα στρώματα του υπεδάφους, και ιδιαίτερα στη στρώση C2, εξαιτίας των οποίων η δοκιμή N_{SPT} δίνει σε πολλές περιπτώσεις αρνήσεις και γενικότερα υψηλές τιμές, οι οποίες δεν είναι σε κάθε περίπτωση αντιπροσωπευτικές.

Για το λόγο αυτό, θεωρείται πως οι εργαστηριακές δοκιμές είναι πιο αντιπροσωπευτικές και επομένως λαμβάνονται υπόψη στο γεωτεχνικό προφίλ σχεδιασμού. Σημειώνεται πως η τιμή της αστράγγιστης αντοχής για το στρώμα S1 λαμβάνεται από τα αποτελέσματα της τιμής c της δοκιμής UU, καθώς θεωρείται πως τα αποτελέσματα των δοκιμών ανεμπόδιστης θλίψης είναι πλέον συντηρητικά για αμμώδεις σχηματισμούς.

4.3 ΓΕΩΤΕΧΝΙΚΟ ΠΡΟΦΙΛ ΣΧΕΔΙΑΣΜΟΥ

Στο παρακάτω πίνακα παρουσιάζονται τελικώς οι γεωτεχνικές παράμετροι σχεδιασμού του υπεδάφους στη θέση έρευνας. Αυτός περιλαμβάνει τις μηχανικές παραμέτρους του εδάφους όπως προκύπτουν από την κριτική θεώρηση του συνόλου των ερευνητικών αποτελεσμάτων, και αποτελεί σε συνδυασμό με τις στρωματογραφικές τομές Α-Α', Β-Β' και Γ-Γ' (Εικόνα 24, Εικόνα 25 και Εικόνα 26) το γεωτεχνικό προφίλ σχεδιασμού, στο οποίο βασίζονται οι υπολογισμοί ευστάθειας της κατασκευής (της φέρουσας ικανότητας και των καθιζήσεων της θεμελίωσης) και οι υπολογισμοί της ευστάθειας των πρανών εκσκαφής.

Στρ.	Πάχος (m)	γ (kN/m³)	c' (kPa)	φ' (°)	Cu (kPa)	Es (MPa)	Cc	Cv (m²/y)
C1	8,1	20,8	15,2	28,7	70,2	15,7	0,141	3,63
S1	5,75	19,7	57	22	52,0	2,2	0,19	14,87
C2	>20	20,6	56	18	49,7	5,1	0,15	8,92

Πίνακας 9: Γεωτεχνικές παράμετροι σχεδιασμού.

ΚΕΦΑΛΑΙΟ 5 : ΕΥΣΤΑΘΕΙΑ ΠΡΑΝΩΝ ΕΚΣΚΑΦΗΣ

Στην περιοχή έρευνας διαμορφώνονται με βάση το σχέδιο εκσκαφής δύο υπογείων τέσσερα πρανή εκσκαφής (Πίνακας 10). Παρακάτω παρουσιάζονται οι απαραίτητες αναλύσεις που πραγματοποιήθηκαν σε αυτά για την πρόβλεψη αστοχιών και ασφαλή εκσκαφή τους.

ΠΡΟΦΙΛ	ΚΛΙΣΗ	ΥΨΟΣ	ΣΧΗΜΑΤΙΣΜΟΣ		
1	110.43 μοίρες	2,06-4,65m (αναβαθμίδα)	S1,C2		
2	90 μοίρες	8,05m	C1,C2		
3	110.43 μοίρες	3,4-4,65m (αναβαθμίδα)	C1,C2		
4	90 μοίρες	4,65m	C1,S1,C2		

Πίνακας 10: Στοιχεία των πρανών εκσακφής.

5.1 ΕΙΔΟΣ ΚΑΙ ΜΕΤΡΑ ΒΕΛΤΙΩΣΗΣ ΓΕΩΤΕΧΝΙΚΩΝ ΣΥΝΘΗΚΩΝ

Με βάση τα αποτελέσματα της έρευνας και σύμφωνα με τους εδαφοτεχνικούς υπολογισμούς που ακολουθούν, το υπέδαφος φαίνεται να παρέχει πολύ ικανοποιητική φέρουσα ικανότητα και χαμηλή συμπιεστότητα. Η σύσταση του πυθμένα θεμελίωσης στην περίπτωση θεμελίωσης σε βάθος D=4,65m και D=8,05m από τον υφιστάμενο επίπεδο (+28,37), ανάλογα με τη θέση κατασκευής ενός ή δύο υπογείων αποτελείται είτε από τη στρώση S1 (πυκνή αργιλώδης άμμος), είτε από τη στρώση C1 (στιφρή αμμώδης άργιλος) με υποκείμενο το υπόβαθρο της περιοχής (στρώση "C2").

Σημειώνεται πως εντοπίσθηκε η στάθμη επικρεμάμενου υπόγειου υδροφορέα στα στρώματα S1 και C1 σε υψόμετρο +28,20m, δηλαδή 0.5m περίπου κάτω από τη στάθμη θεμελίωσης.

Με βάση τα παραπάνω και σύμφωνα με τους ελέγχους που ακολουθούν, η θεμελίωση των κατασκευών προτείνεται να υλοποιηθεί με πεδιλοδοκούς γεωμετρικών στοιχείων B'=1,50m και L'=30m. Το υπέδαφος θεμελίωσης παρέχει υψηλές τιμές φέρουσας ικανότητας εξαιτίας των υψηλών αντοχών που υπολογίστηκαν και χαμηλή συμπιεστότητα. Παρόλα αυτά, και εξαιτίας της κλίσης και διαφοράς της στρωματογραφίας, προτείνεται η κατασκευή πυκνής σχάρας πεδιλοδοκών που προσομοιάζει με κοιτόστρωση, ώστε να επιτευχθεί η απαιτούμενη δυσκαμψία της θεμελίωσης έναντι διαφορικών καθιζήσεων.

Τα θεμέλια προτείνεται να επανεπιχωθούν με κοκκώδες υλικό, επαρκώς συμπυκνωμένο περιμετρικά και με καθαρό στραγγιστικό αμμοχάλικο (εσωτερικά). Επίσης προτείνεται η κατασκευή συμπυκνωμένης στρώσης πάχους 10-15cm από αμμοχάλικο κατηγορίας A-1-α ή A-1-b κατά AASHO, ώστε να δημιουργηθεί κατάλληλο δάπεδο εργασίας, να διαμορφωθεί η επιφάνεια έδρασης των θεμελίων στο απαιτούμενο βάθος θεμελίωσης, να ομογενοποιηθούν οι συνθήκες έδρασης και να καταστεί αποτελεσματικότερη η επανασυμπύκνωση του υπεδάφους έδρασης των θεμελίων.

Η εκσκαφή της στάθμης θεμελίωσης θα διαμορφώσει κάθετα πρανή ύψους της τάξης των 4,65-8,05m περιμετρικά του οικοπέδου, γεγονός που με βάση τα αποτελέσματα των ελέγχων που ακολουθούν επιβάλλει το σχεδιασμό μέτρων αντιστήριξης τους.

5.2 ΕΠΙΤΡΕΠΟΜΕΝΗ ΤΑΣΗ ΕΝΑΝΤΙ ΘΡΑΥΣΗΣ ΕΔΑΦΟΥΣ

Η εκτίμηση της επιτρεπόμενης τάσης έναντι θραύσης του υπεδάφους γίνεται σύμφωνα με τον Ευρωκώδικα 7 και τον ΕΑΚ σε στατικές και σεισμικές συνθήκες αντίστοιχα.

Κατά τους υπολογισμούς, γίνεται η παραδοχή έδρασης των θεμελίων επί στρωματογραφίας, σύμφωνα με τα στοιχεία της τυπικής εδαφικής τομής στον Πινακα 9.

Κατά τους υπολογισμούς, θεωρήθηκε υπολογιστικό βάθος θεμελίωσης D=4,65m και D=8,05 και έγινε έλεγχος για πεδιλοδοκό με στοιχεία B'=1,50m και L'=30m. Οι υπολογισμοί έγιναν με το λογισμικό υπολογισμού φέρουσας ικανότητας και καθιζήσεων LoadCap της εταιρείας Geostru. Η αντίσταση σχεδιασμού του εδάφους (Design Resistance R_d) υπολογίστηκε με τις μεθόδους TERZAGHI και BRINCH-JANSEN και με την επιβολή μερικών συντελεστών ασφάλειας βάσει των προσεγγίσεων σχεδιασμού 1 και 2 του Ευρωκώδικα 7. Εφαρμόστηκαν οι συνδυασμοί συντελεστών ασφάλειας A1+M1+R2 (Παρ. 2.4.7.3.4.3., Design Approach 2) και A2+M2+R1 (Παρ. 2.4.7.3.4.2., Design Approach 1, Combination 2). Στις αναλύσεις χρησιμοποιήθηκαν οι μέσες τιμές διατμητικής αντοχής c',φ' που υπολογίστηκαν από το μέσο όρο των επί τόπου και εργαστηριακών δοκιμών για κάθε επί μέρους στρώμα και επιπλέον, εφαρμόσθηκε διόρθωση στην τιμή της γωνίας τριβής (arctg(0.67*tanφ')). Τα αποτελέσματα των υπολογισμών παρουσιάζονται αναλυτικά στο Παράρτημα ΙV.

Ο υπολογισμός της αντίστασης εδάφους έγινε για αστράγγιστες συνθήκες και για συνθήκες αποστράγγισης και παρουσιάζεται γραφικά στις παρακάτω εικόνες.

Για την περίπτωση θεμελίωσης σε βάθος D=4,65m με έδραση στη στρώση S1 με υποκείμενη τη στρώση C2 προκύπτουν τιμές επιτρεπόμενης τάσης της τάξης του $\sigma_{\epsilon\pi}$ =194,62 kN/m² σε αστράγγιστες συνθήκες (Εικόνα 28) και $\sigma_{\epsilon\pi}$ =608,6 kN/m² για συνθήκες αποστράγγισης.

Για την περίπτωση θεμελίωσης σε βάθος D=4,65m με έδραση στη στρώση C1 με υποκείμενη τη στρώση C2 προκύπτουν τιμές επιτρεπόμενης τάσης της τάξης του $\sigma_{\epsilon\pi}$ =243,49 kN/m² σε αστράγγιστες συνθήκες (Εικόνα 29) και $\sigma_{\epsilon\pi}$ =595,4kN/m² για συνθήκες αποστράγγισης.

Για την περίπτωση θεμελίωσης σε βάθος D=8,05m με έδραση στη στρώση C1 με υποκείμενη τη στρώση C2 προκύπτουν τιμές επιτρεπόμενης τάσης της τάξης του $\sigma_{e\pi}$ =294,0 kN/m² σε αστράγγιστες συνθήκες (Εικόνα 30) και $\sigma_{e\pi}$ =910,63 kN/m² για συνθήκες αποστράγγισης.

Η διαστασιολόγηση των θεμελίων θα πρέπει να οδηγεί σε αναπτυσσόμενες τάσεις μικρότερες των επιτρεπόμενων, έτσι όπως αυτές προκύπτουν από την αντίστοιχη ανάλυση. Στη συγκεκριμένη περίπτωση, εάν γίνει δεκτή μία μέγιστη ανεκτή ολική καθίζηση της τάξης των 5 cm, η αντίστοιχη τιμή επιτρεπόμενης τάσης ανέρχεται για πεδιλοδοκό σε σ_{επ} \approx 158 kN/m².

Εικόνα 28 : Γραφικά αποτελέσματα υπολογισμού φέρουσας ικανότητας με πεδιλοδοκό Β'=1.5m για βάθος θεμελίωσης D=4,65m επί των στρώσεων S1-C2.

Εικόνα 29 : Γραφικά αποτελέσματα υπολογισμού φέρουσας ικανότητας με πεδιλοδοκό Β'=1.5m για βάθος θεμελίωσης D=4,65m επί των στρώσεων C1-C2.

Εικόνα 30 : Γραφικά αποτελέσματα υπολογισμού φέρουσας ικανότητας με πεδιλοδοκό Β'=1.5m για βάθος θεμελίωσης D=8,05m επί των στρώσεων C1-C2.

5.3 ΕΚΤΙΜΗΣΗ ΚΑΘΙΖΗΣΕΩΝ - ΔΕΙΚΤΗ ΕΔΑΦΟΥΣ

Με βάση τα αποτελέσματα των δειγματοληπτικών γεωτρήσεων και τη γεωτεχνική τομή σχεδιασμού, ακολουθεί μία εκτίμηση των καθιζήσεων του εδάφους. Στους υπολογισμούς γίνεται θεώρηση εκσκαφής D=4,65m και D=8,05 και έγινε έλεγχος για πεδιλοδοκό με στοιχεία B'=1,50m και L'=30m και θεμελίωση επί της στρωματογραφίας του γεωτεχνικού προφίλ σχεδιασμού. Οι υπολογισμοί έγιναν με το πρόγραμμα LoadCap της εταιρείας Geostru.

Στην Εικόνα 31 παρουσιάζεται παραμετρικός υπολογισμός της καθίζησης για διάφορες τιμές φόρτισης για πεδιλοδοκό με στοιχεία B'=1,5m, L'=30,0m και D'=4,65m με έδραση στη στρώση S1 με υποκείμενη τη στρώση C2. Προκύπτει καθίζηση 0,63cm για αναπτυσσόμενες τάσεις έδρασης της τάξης των σ_{εδρ}=100 kN/m² έως 9,65cm για αναπτυσσόμενες τάσεις έδρασης της τάξης των σ_{εδρ}=220 kN/m². Εάν γίνει δεκτή μία μέγιστη ανεκτή ολική καθίζηση της τάξης των 5cm για πεδιλοδοκό, η αντίστοιχη τιμή επιτρεπόμενης τάσης ανέρχεται σε για πεδιλοδοκό σε σ_{επ}=158 kN/m².

Επίσης παρουσιάζεται παραμετρικός υπολογισμός της καθίζησης για διάφορες τιμές φόρτισης και D'=4,65m με έδραση στη στρώση C1 με υποκείμενη τη στρώση C2. Προκύπτει καθίζηση 0.15cm για αναπτυσσόμενες τάσεις έδρασης της τάξης των σ_{εδρ}=100 kN/m² έως 5,70cm για αναπτυσσόμενες τάσεις έδρασης της τάξης των σ_{εδρ}=220 kN/m². Εάν γίνει δεκτή μία μέγιστη ανεκτή ολική καθίζηση της τάξης των 5cm για πεδιλοδοκό, η αντίστοιχη τιμή επιτρεπόμενης τάσης ανέρχεται σε για πεδιλοδοκό σε σ_{επ}=205 kN/m².

Αντίστοιχα παρουσιάζεται παραμετρικός υπολογισμός της καθίζησης για διάφορες τιμές φόρτισης και D'=8,05m με έδραση στη στρώση C1 με υποκείμενη τη στρώση C2. Προκύπτει καθίζηση 0,47cm για αναπτυσσόμενες τάσεις έδρασης της τάξης των σ_{εδρ}=180 kN/m² έως 4,91cm για αναπτυσσόμενες τάσεις έδρασης της τάξης των σ_{εδρ}=300 kN/m². Εάν γίνει δεκτή μία μέγιστη ανεκτή ολική καθίζηση της τάξης των 5cm για πεδιλοδοκό, η αντίστοιχη τιμή επιτρεπόμενης τάσης ανέρχεται σε για πεδιλοδοκό σε σ_{επ}=302 kN/m².

Οι άνω υπολογιζόμενες τιμές ισχύουν για την περίπτωση ολοκλήρωσης των καθιζήσεων λόγω στερεοποίησης (συνθήκες μακροχρόνιας φόρτισης). Παρατηρείται πως εάν γίνει δεκτή μία μέγιστη ανεκτή ολική καθίζηση της τάξης των 5 cm στις πεδιλοδοκούς, η αντίστοιχη τιμή επιτρεπόμενης τάσης ανέρχεται σε σ_{επ}=158,0 kN/m².

Εικόνα 31: Παραμετρικός υπολογισμός καθιζήσεων για πεδιλοδοκό Β'=1,5m

Η τιμή του δείκτη εδάφους για ενδεχόμενη στατική επίλυση του κτηρίου με θεώρηση έδρασης επί ελαστικού εδάφους μπορεί να εκτιμηθεί με βάση τις προτεινόμενες τιμές σε διαφόρους τύπους εδαφών κατά Terzaghi. Ενδεικτικά, για την περίπτωση θεμελίωσης σε συνεκτικές αργίλους (Cu=25-50kPa) μπορούν να θεωρηθούν τιμές του δείκτη εδάφους k_0 =50-100MN/m³ για τετραγωνική ή κυκλική πλάκα εύρους B_0 =0,305. Επομένως, θεωρώντας ως αντιπροσωπευτική τιμή δείκτη εδάφους k_s =100MN/m³ για πεδιλοδοκό με πλάτος B'=1,5m βάσει του τύπου k=2/3*k_s(B₀/B), μπορούν να ληφθούν τιμές k=13,55 MN/m³. Για ανάλυση μάλιστα σε σεισμό, μπορεί να ληφθούν τιμές έως και τριπλάσιες των άνω προτεινόμενων.

Είδος Αργίλου	Cu (kPa)	Eu/Cu	Eu (MPa)	Ks (MN/m3)
Πολύ μαλακή	<12.5	400	<5	<25
Μαλακή	12.5-25	400	5-10	25-50
Συνεκτική	25-50	350	10-17.5	50-100
Στιφρή	50-100	300	17.5-30	100-165
Πολύ στιφρή	100-200	200	30-40	165-220
Σκληρή	>200	150	>35	>200

Πίνακας 11 : Προτεινόμενες τιμές του δείκτη εδάφους ks κατά Terzaghi K..

5.4 ΥΠΟΛΟΓΙΣΤΙΚΟΙ ΕΛΕΓΧΟΙ ΕΥΣΤΑΘΕΙΑΣ ΠΡΑΝΟΥΣ

Για τη διερεύνηση των μηχανισμών αστοχίας στη θέση έρευνας των τεσσάρων πρανών, καθώς και την εκτίμηση της επικινδυνότητας της υφιστάμενης κατάστασης μέσω υπολογισμού του Συντελεστή Ασφαλείας (F.S.), διενεργήθηκαν αναλύσεις ολικής ευστάθειας των πρανών εκσκαφής Οι αναλύσεις εκτελέστηκαν με το εξειδικευμένο λογισμικό ανάλυσης ευστάθειας πρανών SLIDE 2 της εταιρίας RocScience. Εκτελέσθηκαν αναλύσεις σε στατικές μόνο συνθήκες για τον έλεγχο της ευστάθειας των πρανών κατά την εκσκαφή των υπογείων. Σημαντικό ρόλο σε αυτό επαίξε η κλίση των πρανών, οι σχηματισμοί που αποτελούν το κάθε προφίλ αλλά και οι μηχανικές τους ιδιότητες. Πραγματοποιήθηκαν δηλαδή αναλύσεις ευστάθειας των υπάρχουσων εδαφικών συνθηκών, αναζητώντας τη δυσμενέστερη επιφάνεια ολίσθησης σε κάθε μία από 4 περιπτώσεις λαμβάνοντας υπόψιν όπου υπάρχουν οι στάθμες του νερού που μετρήθηκαν από τα πιεζόμετρα.

Η διεξαγωγή των αποτελεσμάτων των συντελεστών ασφαλείας έγινε με τις μεθόδους Bishop simplified και Janbu corrected. Τα κριτήρια αστοχίας (Strength Type) που χρησιμοποιήθηκαν για το κάθε προφίλ και έγιναν οι έλεγχοι δοκιμών ευστάθειας είναι το κριτήριο Mohr Coulomb και η Undrained δοκιμή. Για την πρώτη περίπτωση λήφθηκαν υπόψιν οι παράμετροι C΄και φ΄των σχηματισμών ενώ για την την αστράγγιστη δοκιμή μόνο η Cu του καθενός.

Οι δοκιμές ευστάθειας στις οποίες ο F.S. βρέθηκε μιρκότερος του ένα (<1) θεωρούνται ως πρανή με αστοχία. Η αστοχία αυτή θα χαρακτηρίζεται από ασταθείς κύκλους ολίσθησης, τόσο επιφανειακά στο φρύδι του πρανούς, όσο και βαθύτερα.

Ακόμη, πραγματοποιήθηκαν στα πρανή που εμφανίζουν αστοχία στις οποίες, γνωρίζοντας το βάθος ολίσθησης από τις μετρήσεις των κλισιομέτρων και θεωρώντας ότι ο Συντελεστής Ασφάλειας σε αυτές τις περιπτώσεις είναι αυτός για συνθήκες οριακής ισορροπίας (Σ.Α.=1), προσεγγίστηκαν οι παράμετροι αντοχής, που μπορούν να δώσουν ως αποτέλεσμα αστοχία για τη συγκεκριμένη επιφάνεια.

Όλες οι αναλύσης έγιναν ακολουθώντας τον Ελληνικό Αντισεισμικό Κανονισμό (ΦΕΚ 1154Β', 12-8-2003) και το Eurocode 7 - Design Approach 2.

Εικόνα 32: Κάτοψη των γεωτρήσεων με επισήμανση των προφίλ εκσκαφής.

Παρακάτων παρουσιάζονται με την μορφή εικόνων οι αναλύσεις του κάθε πρανούς εκσκαφής όπως αυτά προέκυψαν απο τις αναλύσεις του RocScience :

Εικόνα 33: Προφίλ 1, Undrained δοκιμή, F.S.> 1.

Εικόνα 34: Προφίλ 1, Mohr Coulomb δοκιμή, F.S.> 1.

Εικόνα 35: Προφίλ 2, Undrained δοκιμή, F.S.> 1.

Εικόνα 36: Προφίλ 2, Mohr Coulomb δοκιμή, F.S.<1.

Εικόνα 37: Προφίλ 2, Mohr Coulomb, δοκιμή με Ανάστροφη ανάλυση.

Εικόνα 38: Προφίλ 3, Undrained δοκιμή, F.S.> 1.

Εικόνα 39: Προφίλ 3, Mohr Coulomb δοκιμή, με F.S.<1.

Εικόνα 40: Προφίλ 3, Mohr Coulomb δοκιμή, με Ανάστροφη ανάλυση.

Εικόνα 41: Προφίλ 4, Undrained δοκιμή, F.S.> 1.

Εικόνα 42: Προφίλ 4, Mohr Coulomb δοκιμή, με F.S.<1.

Εικόνα 43: Προφίλ 4, Mohr Coulomb δοκιμή, με Ανάστροφη ανάλυση.

Όπως διαπιστώνεται από τις παραπάνω εικόνες των αναλύσεων όλα τα προφίλ στην αστράγγιστη δοκιμή βγάζουν θετικό συντελεστή ενώ αντίθετα στην δοκιμή Mohr Coulomb όλα φέρουν αρνητικό F.S. με εξαίρεση το προφίλ 1 (Εικόνα 30). Για τον λόγο αυτό πραγματοποιήθηκαν ανάστροφες αναλύσεις (back analysis) μόνο στα προφίλ 2, 3 και 4 (Εικόνα 33, Εικόνα 36, Εικόνα 39) για τα οποία θα γίνουν και περαιτέρω αναλύσεις και δοκιμές με πρόσθετα μέτρα αντιστήριξης ώστε ο συντελεστής ευστάθειας να αποκτήσει τις επιθυμητές τιμές.

Κάθε πράξη και αποτέλεσμα που πραγματοποιήθηκε για τις παραπάνω αναλύσεις παρουσιάζεται αναλυτικότερα στο Παράρτημα IV με ξεχωριστό report για την κάθε ανάλυση.

ΚΕΦΑΛΑΙΟ 6: ΓΕΩΤΕΧΝΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΜΕΤΡΩΝ ΑΝΤΙΣΤΗΡΙΞΗΣ ΕΚΣΚΑΦΗΣ ΤΩΝ ΠΡΑΝΩΝ - ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ

Για τη σταθεροποίηση των πρανών εκσκαφής στα προφίλ με συντελεστή ευστάθειας μικρότερο του ένα (πρανές 2, 3, 4,) προτείνεται η κατασκευή συστοιχίας μικροπασσάλων. Παρακάτω παρουσιάζονται οι αναλύσεις που έγιναν ώστε ο συντελεστής αυτός με την βοήθεια των μικροπασσάλων να πάρει τις επιτρεπτές τιμές που χρειάζεται να έχει ένα πρανές ώστε η εκσκαφή του να γίνει χωρίς πτώση των τοιχωμάτων.

6.1 ΑΠΑΙΤΗΣΕΙΣ ΣΧΕΔΙΑΣΜΟΥ ΑΝΤΙΣΤΗΡΙΞΗΣ

Ο γεωτεχνικός σχεδιασμός και η διαστασιολόγηση των μέτρων σταθεροποίησης γίνεται σύμφωνα με τον Ευρωκώδικα 7, όπου στον έλεγχο των γεωτεχνικών (GEO) οριακών καταστάσεων αστοχίας τύπου ολικής ευστάθειας γεωτεχνικών έργων χωρίς ή με δομικά στοιχεία αντιστήριξης εφαρμόζεται ο Τρόπος Ανάλυσης 3 (DA-3) για στατικές συνθήκες. Οι σταθεροποιητικές δράσεις των δομικών στοιχείων αντιστήριξης (δηλαδή δυνάμεις ή ροπές στήριξης εκ των δομικών στοιχείων αντιστήριξης (δηλαδή δυνάμεις ή ροπές στήριξης ενοικές δράσεις (favourable actions) με επιμέρους συντελεστή δράσεων γ_F = 1. Ο Τρόπος Ανάλυσης 3 (DA-3) = εφαρμόζεται σε συνδυασμό με την σχέση για τις δράσεις :

$$E_d = E(F_d, X_d) = E(\gamma_F F_k, X_k / \gamma_M)$$

και την σχέση για τις αντιστάσεις :

$$Rd=R(F_d,X_d)=R(\gamma_F F_k,X_k/\gamma_M)$$

δηλαδή με εφαρμογή της σχέσης: $Ed \leq Rd = E(\gamma_F F_k, X_k/\gamma_M) \leq R(\gamma_F F_k, X_k/\gamma_M)$

και τις εξής ομάδες επιμέρους συντελεστών δράσεων και εδαφικών παραμέτρων (γF,γM) του Παραρτήματος A του EN1997-1 :

 (A1) για δομικές δράσεις (από την ανωδομή), όπως φορτία κτιρίων και κυκλοφορίας στην επιφάνεια του εδάφους, • (A2) για δράσεις από το έδαφος (γεωτεχνικές δράσεις), περιλαμβανομένου και του βάρους του εδάφους,

(M2) για τις εδαφικές παραμέτρους.

Ο Τρόπος Ανάλυσης 3 (DA-3) αφορά μόνον στον έλεγχο τις ολικής ευστάθειας των γεωτεχνικών έργων. Ο συντελεστής προσομοιώματος εξαρτάται από τις παραδοχές των υδραυλικών συνθηκών και θα λαμβάνει τις εξής τιμές :

(1) Για συνήθεις δυσμενείς παραδοχές υδραυλικών συνθηκών : $\gamma_m = 1.1$.

Η χρήση του ανωτέρω συντελεστή προσομοίωσης γίνεται ώστε ο ισοδύναμος ενιαίος συντελεστής ασφαλείας (FS) έναντι ολικής ευστάθειας να είναι :

- $FS = \gamma_M \gamma_m = 1.25 \times 1.1 = 1.38 \gamma_{1a}$ analúseic mésw energión tásewn me críst energión tásewn me críst (c', ϕ').
- $FS = \gamma_M \gamma_m = 1.40 \text{ x } 1.1 = 1.54 \gamma_{\text{i}}$ analúseic μέσω ολικών τάσεων με χρήση της αστράγγιστης διατμητικής αντοχής (cu).
- (2) Για πολύ δυσμενείς παραδοχές υδραυλικών συνθηκών : $\gamma_m = 1$.

Στην περίπτωση αυτή, ο ισοδύναμος ενιαίος συντελεστής ασφαλείας (FS) έναντι ολικής ευστάθειας είναι :

- $FS = \gamma_M \gamma_m = 1.25 \text{ x } 1 = 1.25 \gamma_{1a}$ analúseic μέσω ενεργών τάσεων με χρήση ενεργών παραμέτρων αντοχής (c', φ').
- $FS = \gamma_M \gamma_m = 1.40 \text{ x } 1 = 1.40 \gamma_{\text{i}}$ analúseic μέσω ολικών τάσεων με χρήση της αστράγγιστης διατμητικής αντοχής.

Αντίστοιχα, η ανάλυση υπό σεισμικές δράσεις των γεωτεχνικών έργων που μελετώνται κατά τον Ευρωκώδικα ΕΝ1997-1 γίνεται σύμφωνα με τα προβλεπόμενα στον Ευρωκώδικα 8 - Μέρος 5 (ΕΝ 1998-5), του Εθνικού του Προσαρτήματος, και τις ακόλουθες παρατηρήσεις:

- (1) Οι επιμέρους συντελεστές των σεισμικών δράσεων και των αποτελεσμάτων των σεισμικών δράσεων λαμβάνονται ίσοι με τη μονάδα ($\gamma_F = \gamma_E = 1$).
- (2) Χρησιμοποιούνται μοναδιαίες τιμές των επιμέρους συντελεστών υλικού (γ_M) και αντιστάσεων (γ_R), δηλαδή: $\gamma_M = \gamma_R = 1$ με το εξής σκεπτικό:

στον Ελληνικό Αντισεισμικό Κανονισμό (ΕΑΚ-2000) απαιτείται ενιαίος συντελεστής ασφαλείας (global safety factor) τουλάχιστον ίσος με ένα (FS=1.00) κατά τον σχεδιασμό πρανών και αναχωμάτων υπό τις σεισμικές δράσεις σχεδιασμού που δίνονται.

(3) Οι συντελεστές προσομοίωσης (γm) λαμβάνονται ίσοι με την τιμή που εφαρμόζεται στις αναλύσεις υπό στατικές δράσεις. Συνεπώς, στην ανάλυση της στατικής αξονικής φέρουσας ικανότητας πασσάλων όπου επιβάλλεται συντελεστής προσομοίωσης γm=1.30, ο συντελεστής αυτός διατηρείται και στην ανάλυση της φέρουσας ικανότητας υπό σεισμικές δράσεις. Τούτο έχει ως αποτέλεσμα ο ισοδύναμος ενιαίος συντελεστής ασφαλείας πασσάλων υπό σεισμικές δράσεις να είναι ίσος με FS = γE γR γm = 1 x 1 x 1.30 = 1.30, γεγονός που συμφωνεί και με τις απαιτήσεις της Εγκυκλίου E39/1999 του ΥΠΕΧΩΔΕ (Εγκύκλιος για την αντισεισμική μελέτη γεφυρών).

(4) Εφαρμόζεται ο Τρόπος Ανάλυσης 2 (Παραλλαγή DA-2*) σε όλες τις περιπτώσεις ανάλυσης, δηλαδή ακόμη και στις αναλύσεις ολικής ευστάθειας όπου κατά την ανάλυση υπό στατικές δράσεις εφαρμόζεται ο Τρόπος Ανάλυσης 3 (DA-3). Η επιλογή αυτή γίνεται για την απλοποίηση των υπολογισμών, αφού στην ανάλυση υπό σεισμικές δράσεις οι επιμέρους συντελεστές δράσεων, αντιστάσεων και υλικών είναι μοναδιαίοι και συνεπώς ο Τρόπος Ανάλυσης 2* είναι ισοδύναμος με τον Τρόπο Ανάλυσης 3. Επιπλέον, δεν υφίσταται η δυσχέρεια εφαρμογής του Τρόπου DA-2* στις αναλύσεις ολικής ευστάθειας όπως στις αναλύσεις υπό στατικές δράσεις.

Από τα ανωτέρω προκύπτει ότι, υπό τις σεισμικές δράσεις σχεδιασμού που δίνονται στο Κεφάλαιο 2 του ΕΑΚ-2000, η ανάλυση της ολικής ευστάθειας υπό συνήθεις υδραυλικές συνθήκες όπου επιτυγχάνεται ενιαίος συντελεστής ασφαλείας FS=1.10.

Συμπερασματικά προκύπτει ότι η διαστασιολόγηση των μέτρων σταθεροποίησης πρέπει να οδηγεί σε ελάχιστη τιμή Συντελεστή Ασφάλειας **1.38** για στατικές συνθήκες ενώ υπό σεισμική φόρτιση σε ελάχιστη τιμή **1.10**.

6.2 ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ - ΜΙΚΡΟΠΑΣΣΑΛΟΙ

Για τη διαστασιολόγηση των μέτρων ολικής ευστάθειας των υπό μελέτη πρανών εκτελέσθηκαν αναλύσεις ευστάθειας με το πρόγραμμα Slide 2 της εταιρίας RocScience. Στην ανάλυση ευστάθειας εφαρμόστηκαν κατάλληλα μέτρα έτσι ώστε να επιτευχθούν οι απαιτούμενοι Συντελεστές Ασφαλείας.

Καλύτερη βοηθητική λύση για την ευστάθεια των πρανών ήταν η επιλογή τοποθέτησης μικροπασσάλων στο προφίλ της κάθε εκσκαφής. Οι μικροπάσσαλοι είναι δομικά στοιχεία που μπορούν και μεταφέρουν τα φορτία στο έδαφος, με συνέπεια να βελτιώνουν τη θεμελίωση και έχοντας ως στόχο την αύξηση της φέρουσας ικανότητας αλλα ταυτόχρονα και τη μείωση των παραμορφώσεων. Οι περιπτώσεις στις οποίες μπορούν να εφαρμοστούν είναι:

- Σε περιορισμένο χώρο ή όταν το ελεύθερο ύψος εργασίας είναι μικρό.
- Στη θεμελίωση νέων κατασκευών σε ανομοιόμορφα εδάφη ή βραχώδεις σχηματισμούς.
- Στην υποστήριξη της θεμελίωσης παλαιών κατασκευών.
- Στην κατασκευή τοίχου αντιστήριξης.
- Στη βελτίωση και ενίσχυση του εδάφους θεμελίωσης ή πρανών.
- Στην ανάληψη φορτίων σε κατασκευές υπό άνωση (uplift) κλπ.

Οι μικροπάσσαλοι έχουν ακόμη την δυνατότητα να κατασκευαστούν με αφαίρεση του εδαφικού υλικού με διάμετρο μέχρι 300 mm, με έμπηξη στο έδαφος με διάμετρο μέχρι 150 mm ή μπορεί και να υπάρξει συνδυασμός των παραπάνω. Ανάλογα τα γεωμετρικά τους στοιχεία, διακρίνονται σε ομοιόμορφης διατομής σε όλο το μήκος τους ή μεταβαλλόμενης διατομής ενώ όσον αφορά το μήκος, την κλίση, την δυσκαμψία, τη διαπλάτυνση έδρασης και την πλευρική διεύρυνση δεν υπάρχει κάποιος περιορισμός.

Εικόνα 44: Διατάξεις μικροπασσάλων.

Με βάση τις έως τώρα αναλύσεις ευστάθειας προέκυψαν ως μέτρα αντιστήριξης κατακόρυφοι μικροπάσσαλοι στοιχισμένοι ανά ένα μέτρο, απο 8 έως 15 μέτρα μήκος και μέγιστης αντοχής (Pile Shear Strength) από 11 έως 54κΝ. Παρακάτω παρουσιάζονται τα αποτελέσματα των αναλύσεων μετά την προσθήκη των πασσάλων με μορφή εικόνων καθώς και ο συγκριτικός πίνακας διαστασιολόγησης των αποτελεσμάτων για όλα τα πρανή.

Εικόνα 46: Προφίλ 2, Mohr Coulomb, F.S>1 μέ την συμμετοχή των μικροπασσάλων .

Εικόνα 47: Προφίλ 3, Mohr Coulomb, F.S>1 μέ την συμμετοχή των μικροπασσάλων.

Εικόνα 48: Προφίλ 4, Mohr Coulomb, F.S>1 μέ την συμμετοχή των μικροπασσάλων.

Οι υπολογιζόμενοι Συντελεστές Ασφαλείας για τους ελεγχόμενους συνδυασμούς φόρτισης υπολογίστηκαν με βάση τη μέθοδο Bishop και παρουσιάζονται στον ακόλουθο Πίνακα:

ΠΡΟΦΙΛ	F.S. (Strength Type) Undrained	F.S. (Strength Type) Mohr Coulomb	F.S. (Strength Type) Mohr Coulomb με Micro Piles	Pile Shear Strength (Για F.S. = 1)	Out-Of-Plane Spacing (m)
1	1,408	2,142	-	-	-
2	1,469	0,673	1,001	54 kN	1
3	2,387	0,835	1,012	11 kN	1
4	2,352	0,862	1,011	11 kN	1

Πίνακας 12: Απαιτούμενα χαρακτηριστικά εφαρμοζόμενων μέτρων αντιστήριξης.

6.3 ΠΡΟΤΑΣΗ ΑΝΤΙΣΤΗΡΙΞΗΣ

Λαμβάνοντας υπόψιν όλες τις αναλύσεις των πρανών και τις απαιτούμενες προδιαγραφές των μικροπασσάλων έτσι ώστε να υπάρξει το επιθυμητό αποτέλεσμα για την εκσκαφή των πρανών με ασφάλεια δημιουργήθηκε το παρακάτω πρότυπο μοντέλο μικροπάσσαλου. Το εν λόγω μοντέλο δημιουργήθηκε στο πρόγραμμα RSPile της Rocscience και έχει ενσωματώσει όλα τα στοιχεία των μικροπασσάλων του κάθε ενός μοντέλου για κάθε προφίλ σε ένα μόνο πάσσαλο με συγκεκριμένες προδιαγραφές με σκοπό την καλοθική χρήση αυτού στο έργο. Ο πάσσαλος αυτός έχει διάμετρο 0,25μ μέτρα (Φ250), θλιπτική αντοχή f'c 34000kPa, μήκος 15 μέτρα. Ο οπλισμός είναι αμερικανικού τύπου M5x18,9 (Μπουντρέλι) από χάλυβα κατηγορίας S235H και προβλέπεται χρήση τσιμεντενέματος ισοδύναμης αντοχής C25/30.

Εικόνα 49: Προσομοίωμα μοντέλου μικροπασσάλου για την εκσκαφή.

Όλες οι πληροφορίες για το μοντέλο αυτό δίνονται στο Παράρτημα IV σε αναλυτικό report. Παρακάτω παρουσιάζονται τα μοντέλα των τριών προφίλ που είχαν μη επιθυμητό συντελεστή ασφαλείας μετά την προσθήκη του πρότυπου πάσσαλου που προτείνεται για την κατασκευή.

Εικόνα 50: Ανάλυση ευστάθειας πρανούς 2 μετά την τοποθέτηση του πρότυπου πασσάλου.

73

Εικόνα 52: Ανάλυση ευστάθειας πρανούς 4 μετά την τοποθέτηση του πρότυπου πασσάλου.

ΚΕΦΑΛΑΙΟ 7 : ΣΥΜΠΕΡΑΣΜΑΤΑ

Αναλύοντας και μελετώντας τα έως τώρα δεδομένα-αποτελέσματα που παρουσιάστηκαν βάσει χαρτών, εργαστηριακών και επί τόπου δοκιμών, γεωτεχνικής έρευνας, συνοπτικών πινάκων, εικόνων και τομών μπορούν να διατυπωθούν τα εξής συμπεράσματα που αφορούν την έρευνα:

- Ι. Έρευνα για δημιουργία χώρου εγκαταστάσεων κοινής ωφέλειας σε Ο.Τ. στη περιοχή της Παπάφη του Δήμου Θεσσαλονίκης. Θα κατασκευασθούν εννέα κτίρια κοινής ωφελείας τα οποία θα θεμελιωθούν σε ενιαία εκσκαφή και θα περιλαμβάνουν υπόγειους χώρους δύο επιπέδων, στάθμευσης και αποθήκευσης. Η θεμελίωση θα είναι ενιαία για όλα τα κτίρια και θα περιλαμβάνει μία εκσκαφή μέχρι το απόλυτο υψόμετρο +27.26m, πέντε πλευρών και γωνιών βάσει της οποίας διαμορφώνονται αντίστοιχα πέντε τεχνητά ορύγματα ύψους από 4,90 έως 8,40m περίπου.
- II. Το υπέδαφος θεμελίωσης των κατασκευών φαίνεται να παρέχει πολύ ικανοποιητική φέρουσα ικανότητα και μέτρια συμπιεστότητα. Η σύσταση του πυθμένα στην περίπτωση θεμελίωσης των προβλεπόμενων κατασκευών σε βάθος D=4,5m-8m αποτελείται από στιφρή αμμώδη άργιλο (στρώση "C1") έως πυκνή αργιλώδη άμμο (στρώση S1) με υποκείμενη στιφρή αμμώδη άργιλο με συγκρίματα (στρώση "C2"). Οι συνθήκες αυτές είναι επαρκείς για επιφανειακή θεμελίωση.
- III. Το υπέδαφος θεμελίωσης κατατάσσεται στην κατηγορία C κατά Ευρωκώδικα EN-1998 στην κατηγορία B-Γ, σύμφωνα με την ισχύουσα τροποποίηση των διατάξεων του Ελληνικού Αντισεισμικού Κανονισμού (ΦΕΚ 1154B', 12-8-2003) με συντελεστή σεισμικής επιβάρυνσης Rd (T) = 0.138g
- IV. Εντοπίζεται επικρεμάμενος υδροφόρος ορίζοντας στα αδρομερή τμήματα των στρώσεων S1 και C1 σε υψόμετρο +28,20 (βάθος 6,0-7,5m από την επιφάνεια του εδάφους) από συνολικά τέσσερεις δειγματοληπτικές γεωτρήσεις συνολικού μήκους 60,83m (Γ1: 15,00m, Γ2: 15,70m, Γ3: 19,93m και Γ4: 10,20m) που πραγματοποιήθηκαν στην περιοχή έρευνας.
- V. Η στρωματογραφία του υπεδάφους είναι κεκλιμένη προς τα ΝΔ λόγω της βαθμιδωτής βύθισης (benched geometry) του υποβάθρου των ερυθρών αργίλων (στρώση C2) όπως παρουσιάζεται και στις τομές A-A', B-B', Γ-Γ'. Για το λόγο αυτό προτείνεται ποιοτικά η θεμελίωση με πυκνή σχάρα πεδιλοδοκών ή κοιτόστρωση, έναντι της διαφορετικότητας του υπεδάφους θεμελίωσης.
- VI. Σύγκριση των μέσων όρων των γεωτεχνικών παραμέτρων σχεδιασμού των στρώματων σε μορφή πινάκων (c', φ', Cu, Es, Cc, Cv) μετά από μελέτη και επεξεργασία των εργαστηριακών δεδομένων.

- VII.Με βάση την αρχιτεκτονική πρόταση που περιλαμβάνει την κατασκευή δύο υπογείων, και εξαιτίας της κλίσης της επιφάνειας του εδάφους, διαμορφώνονται πρανή εκσκαφής ύψους έως και 8,0m. Οι εκσκαφές αυτές θα πρέπει να διαμορφωθούν σε ασφαλείς κλίσεις οι οποίες προκύπτουν από το πρόγραμμα SLIDE 2 της Rocscience και παρουσιάζονται και αναλύονται περαιτέρω στο εν λόγω κεφάλαιο.
- VIII. Πραγματοποιήθηκαν ακόμη αναλύσεις επιτρεπόμενης τάσης έναντι θραύσης του εδάφους σύμφωνα με τον Ευρωκώδικα 7 και τον ΕΑΚ σε στατικές και σεισμικές συνθήκες αντίστοιχα, με δεκτή μία μέγιστη ανεκτή ολική καθίζηση της τάξης των 5 cm, η αντίστοιχη τιμή επιτρεπόμενης τάσης για πεδιλοδοκό ανέρχεταισε σεπ≅158 kN/m2.
- ΙΧ. Έγιναν εκτιμήσεις καθιζήσεων και δείκτη εδάφους θεωρώντας ως αντιπροσωπευτική τιμή δείκτη εδάφους k_s =100MN/m³ για πεδιλοδοκό με πλάτος B'=1,5m βάσει του τύπου k=2/3*k_s(B₀/B), μπορούν να ληφθούν τιμές k=13,55 MN/m³.
- Χ. Οι γεωτεχνικοί έλεγχοι θεμελίωσης και ευστάθειας των εκσκαφών, καθώς και η διαστασιολόγηση των απαιτούμενων μέτρων αντιστήριξης θα πρέπει να ληφθούν σοβαρά υπόψιν για επιτυχημένη εκσκαφή τον πρανών. Σε διαφορετική περίπτωση θα υπάρχουν προβλήματα αστοχιών κατά την εκσκαφή.
- XI. Διαστασιολόγηση των μέτρων σταθεροποίησης πρέπει να οδηγεί σε ελάχιστη τιμή Συντελεστή Ασφάλειας (F.S.) 1.38 για στατικές συνθήκες ενώ υπό σεισμική φόρτιση σε ελάχιστη τιμή 1.10. Σε κάθε προφίλ εκσκαφής έγιναν αναλύσεις της αρχικής ευστάθειας και αναλύσεις με back analysis, μέχρι να βρεθεί το κατάλληλο αποτέλεσμα για τον συντελεστή ασφαλείας. Όλα τα προφίλ στην αστράγγιστη δοκιμή βγάζουν θετικό συντελεστή ενώ αντίθετα στην δοκιμή Mohr Coulomb όλα φέρουν αρνητικό F.S. με εξαίρεση το προφίλ 1.
- XII. Σύμφωνα με δοκιμές που πραγματοποιήθηκαν στο πρόγραμμα RSPile της Rocscience, θετικές τιμές Συντελεστή ασφαλείας φέρουν οι κατακόρυφοι μικροπάσσσαλοι στοιχισμένοι ανά ένα μέτρο, απο 8 έως 15 μέτρα μήκος και μέγιστης αντοχής (Pile Shear Strength) από 11 έως 54κΝ.
- XIII. Τέλος δημιουργήθηκε το παρακάτω πρότυπο μοντέλο μικροπάσσαλου ως πρόταση αντιστήριξης με διάμετρο 0,25μ μέτρα (Φ250), compresive strength f'c 34000kPa, μήκος 15 μέτρα. Ο οπλισμός είναι αμερικανικού τύπου M5x18,9 (Μπουντρέλι) από χάλυβα κατηγορίας S235H και προβλέπεται χρήση τσιμεντενέματος ισοδύναμης αντοχής C25/30.

Συμπερασματικά, βασισμένος στις ανάγκες του έργου ο σωστός σχεδιασμός της γεωτεχνικής έρευνας, οδηγεί στην δημιουργία ενός ρεαλιστικού γεωτεχνικού μοντέλου, στο οποίο μπορούν να βασιστούν και να διεξαχθούν οι απαραίτητοι γεωτεχνικοί έλεγχοι και ταυτόχρονα να διαστασιολογηθούν ενδεχόμενα επιπρόσθετα μέτρα προστασίας των γενικότερων κινδύνων.

ΒΙΒΛΙΟΓΡΑΦΙΑ :

Ξενόγλωσση Βιβλιογραφία:

Anastasiadis An., Raptakis D., Pitilakis K., 2001. "Thessaloniki's Detailed Microzoning: Subsurface Structure as Basis for Site Response Analysis", Pure and Applied Geophysics, 158 2597-2633.

ANTONIADIS, P., GUNDLACH, H., IOANNIDIS, K., KOCKEL, F., MITSAKI, V., MOLLAT, H., WALTHER, H. W.: Prospektion auf Kupfer in Porphyritstöcken der östlichen Chalkidiki. BfB/IGSR unpubl. report, Hannover/Athen 1971.

ANTONIADES, P., GUNDLACH, H., IOANNIDES, K., KOCKEL, F.: Geochemische Prospektion auf Lagerstätten vom Typ porphyry copper im Raum zwischen dem Doirani-See und Strimonikon. BfB/IGSR unpubl. report, Athen/Hannover 1972.

Ambraseys N. 2009. Earthquakes in the Mediterranean and Middle East: a multidisciplinary study of seismicity up to 1900.

BSI Standards Publication ,2015. Code of practice for ground investigations.

Decoding Eurocode 7, A. Bond - A. Harris, 2008, Taylor- Francis group, London, N.-Y.

Dikau, R., 1989. The application of a digital relief model to landform analysis. Taylor and Francis, London.

Eurocode 8, prEN 1998-1 ,2003. "Design of structures for earthquake resistance, Part 1: General rules, seismic actions and rules for buildings".

Eurocode 8: prEN 1998-5, 2004. " Design of structures for earthquake resistance Part 5: Foundations, retaining structures and geotechnical aspects ".

Goldsworthy M., Jackson J., Haines J. ,2002. "The continuity of active fault systems in Greece, Geophys".

Hatzfeld D., Christodoulou A. A., Scordilis E. M., Panagiotopoulos D., Hatzidimitriou P. M., 1986. "A Microearthquake study of the Mygdonian graben (Northern Greece), Earth and Planetary Science letters", 81379-396.

Kiratzi A., Roumelioti Z., Benetatos Ch., Theodulidis N., Savvaidis A., Panou A., Tziavos I. N., Savvaidis P., Hatzigogos Th., Koutoupes S. and Karantonis G., 2004. "SEISIMPACT-THES: A SCENARIO EARTHQUAKE AFFECTING THE BUILT ENVIRONMENT OF THE PREFECTURE OF THESSALONIKI", Bulletin of the Geological Society of Greece. Kockel F., Mollat H., 1969-1970. "Geological Map of Chalkidiki Peninsula and adjacent areas", Κλίμακα 1:100.000.

MERCIER, J., 1968. étude géologique des zones internes des Hellénides en Macédoine centrale (Gréce).- Annales Géologiques des Pays Helléniques, 20: 1-792, Athens.

Mercier J. L., Carey-Gailhardis E., Mouyaris N., Simeakis K., Roundouyannis Th., Anghelidhis Ch., 1989. "Structural analysis of recent and active fault and regional state of stress in the epicentral area of the 1978 Thessaloniki earthquakes (Northern Greece), Tectonics".

Mercier J. L., Sorel D., Vergely P., Simeakis K., 1989. "Extensional tectonic regimes in the Aegean basins during the Cenozoic, Basin research".

Papazachos C., P. Soupios, A. Savaidis, Z. Roumelioti, 2000. "Identification of small-scale active faults near metropolitan areas: An example from the Asvestochori fault near Thessaloniki". XXVII General Assembly of the European Seismological Commission (ESC) 10.

Papazachos B., Papazachou C. ,2003. " The Earthquakes of Greece, Ziti, Thessaloniki".

Pavlides S.B., Kondopoulou D.P., Kilias A.A., Westphal M., 1988. "Complex rotational deformations in the Serbo-Macedonian massif (north Greece): structural and paleoagnetic evidence".

Vitti Massimo, 1990. "Το πολεοδομικό σχέδιο της Αρχαίας Θεσσαλονίκης και η εξέλιξή του", Διδ. Διατριβή, Ρώμη – Θεσσαλονίκη.

Voidomatis P.S., Pavlides S.B., Papadopoulos G.A., 1990. "Active deformation and seismic potential in the Serbomacedonian zone, northern Greece".

Tranos M. D., Mountrakis D. M., 1998. "Neotectonic joints of Northern Greece, Their significance on the understanding of the active deformation", Δελτίο ΕΓΕ, Τομ. XXXII/1, 209-219, 8ο Διεθνές Συνέδριο.

Tranos M. D., Papadimitriou E. E., Kilias A. A., 2003. "Thessaloniki-Gerakarou fault zone (TGFZ): the western extension of the 1978 Thessaloniki earthquake fault (northern Greece) and seismic hazard assessment, Journal of Structural Geology".

Ελληνική Βιβλιογραφία:

Αττικό Μετρό Α.Ε., 2006-2007. " Συμπληρωματική Γεωτεχνική Έρευνα για την κατασκευή του Μετρό Θεσσαλονίκης".

Βουδούρης Κ., 2016. "Υδρογεωλογία Περιββάλλοντος, Υπόγεια νερά και περιβάλλον"

Βουβαλίδης Κ., 2005. " Ψηφιακή χαρτογραφία και Γεωγραφικά Συστήματα Πληροφοριών (G.I.S.) Ψηφιακές Διδακτικές Σημειώσεις".

Β. Χρηστάρας, Β. Μαρίνος, ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Λέκτορας Εργαστήριο Τεχνικής Γεωλογίας και Υδρογεωλογίας.

Βώβου Θ., 2014. "Επιτελεστικότητα των μηχανών ΕΡΒ κατά τη διάνοιξη σηράγγων. Η περίπτωση του Μετρό Θεσσαλονίκης", Διπλωματική Εργασία.

Γ.Υ.Σ., 1980. Φύλλα Χαρτών, Κλίμακας 1:5.000, Πολεοδομικό Συγκρότημα Θεσσαλονίκης.

Γ.Υ.Σ., Φύλλα Χαρτών, Κλίμακας 1:50.000, Θεσσαλονίκης, Θέρμης, Επανομής, Ζαγκλιβερίου, Πολυγύρου, Βασιλικών, Κιλκίς, Λαχανάς, Κουφάλια, Σοχός, Πλατύ, Κατερίνη.

Δημητριάδης Βασίλης, 1983. "Τοπογραφία της Θεσσαλονίκης κατά την εποχή της Τουρκοκρατίας 1430- 1912", Εταιρεία Μακεδονικών Σπουδών, Θεσσαλονίκη.

Ειδική Υπηρεσία Δημόσιων Έργων (ΕΥΔΕ Θεσσαλονίκης), 2003 (α) . Ά φάση εκπόνησης μελέτης, "Διευθέτηση-Οριοθέτηση Ρεμάτων εντός των Ορίων των Δήμων Ευκαρπίας, Τριανδρίας και Πυλαίας Θεσσαλονίκης - Μελέτη Οριοθέτησης Ρέματος Δόξης", Ανάδοχος : Σύμπραξη γραφείων "Χωροτεχνικές μελέτες Εφαρμογές Τεχνικών Έργων Α.Ε.- Κακάνη Σταματία- Σιμόγλου Κίμων του Αριστοτέλη".

Ειδική Υπηρεσία Δημόσιων Έργων (ΕΥΔΕ Θεσσαλονίκης), 2003 (β). Ά φάση εκπόνησης μελέτης, "Διευθέτηση-Οριοθέτηση Ρεμάτων εντός των Ορίων των Δήμων Ευκαρπίας, Τριανδρίας και Πυλαίας Θεσσαλονίκης - Μελέτη Οριοθέτησης Ρέματος Δόξης", Ανάδοχος : Σύμπραξη γραφείων "Χωροτεχνικές μελέτες Εφαρμογές Τεχνικών Έργων Α.Ε.- Κακάνη Σταματία- Σιμόγλου Κίμων του Αριστοτέλη".

ΕΑΓΜΕ., 1978. Φύλλα Χαρτών, Κλίμακας 1:50.000, Θεσσαλονίκη, Θέρμη.

ΕΑΓΜΕ., 1998. "Τεχνικογεωλογικός χάρτης ευρύτερης περιοχής πόλης Θεσσαλονίκης", Κλίμακας 1:25.000.

ΕΥΣΤΑΘΙΑΔΟΥ Δ., 2019. "ΕΚΤΙΜΗΣΗ ΔΥΝΑΜΙΚΟΥ ΡΕΥΣΤΟΠΟΙΗΣΗΣ ΚΑΙ ΠΡΟΚΑΛΟΥΜΕΝΩΝ ΕΔΑΦΙΚΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΣΤΟ ΔΥΤΙΚΟ ΤΜΗΜΑ ΤΟΥ ΠΟΛΕΟΔΟΜΙΚΟΥ ΣΥΓΚΡΟΤΗΜΑΤΟΣ ΤΗΣ ΘΕΣΣΑΛΟΝΙΚΗΣ", ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ ΕΙΔΙΚΕΥΣΗΣ. Ζερβοπούλου Α., Παυλίδης Σ., 2005. "Μορφοτεκτονική μελέτη της ευρύτερης περιοχής Θεσσαλονίκης για την χαρτογράφηση νεοτεκτονικών ρηγμάτων", 1η Συνάντηση Επιτροπής Γεωμορφολογίας Ε.Γ.Ε., Δελτίο ΕΓΕ, Τομ. ΧΧΧΥΙΙΙ, σελ. 30-41.

Ζερβοπούλου Α., Παυλίδης Σ., 2008. "ΝΕΟΤΕΚΤΟΝΙΚΑ ΡΗΓΜΑΤΑ ΠΟΛΕΟΔΟΜΙΚΟΥ ΣΥΓΚΡΟΤΗΜΑΤΟΣ ΘΕΣΣΑΛΟΝΙΚΗΣ ", 3ο Πανελλήνιο Συνέδριο Αντισεισμικής Μηχανικής & Τεχνικής Σεισμολογίας, Άρθρο 1865.

Zerboπoύλou A., 2010. "NEOTEKTONIKA PHΓMATA THS EYPYTEPHS ΠΕΡΙΟΧΗΣ ΤΗΣ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΕ ΣΧΕΣΗ ΜΕ ΤΑ ΕΔΑΦΗ ΘΕΜΕΛΙΩΣΗΣ , ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ, Α.Π.Θ.

Ζερβοπούλου Α., 2018. ΓΕΩΛΟΓΙΚΗ ΔΟΜΗ ΚΑΙ ΡΗΓΜΑΤΑ ΤΟΥ ΠΟΛΕΟΔΟΜΙΚΟΥ ΣΥΓΚΡΟΤΗΜΑΤΟΣ ΤΗΣ ΘΕΣΣΑΛΟΝΙΚΗΣ, ΗΜΕΡΙΔΑ: "Γεωλογία - Ενεργά ρήγματα και Επιπτώσεις στα σημαντικά τεχνικά έργα της Θεσσαλονίκης", ΤΕΕ/ΤΚΜ Θεσσαλονίκη.

Λεβεντάκης Γ.-Α.Ν., 2003. "Μικροζωνική μελέτη της πόλης της Θεσσαλονίκης", Διδ. Διατρ. Α.Π.Θ.

Μ. Κ Α Β Β Α Δ Α Σ, 2006. βλ. ΣΤΟΙΧΕΙΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗΣ, Ε. Μ. ΠΟΛΥΤΕΧΝΕΙΟ.

Μουντράκης Δ., 1983. "Η γεωλογική δομή της βόρειας Πελαγονικής ζώνης και η γεωτεκτονική εξέλιξη των εσωτερικών Ελληνίδων". Προγραμματική για υφηγεσία Αριστοτελείου Πανεπιστημίου Θεσσαλονίκης, σ. 289.

Μουντράκης Δ.Μ., 1985. "Γεωλογία της Ελλάδας", University Studio Press.

Μουντράκης Δ., Συρίδης Γ., Πολυμενάκος Λ., Παυλίδης Σ., 1993. "Η νεοτεκτονική δομή του ανατολικού περιθωρίου του Βυθίσματος Αξιού - Θερμαϊκού στην περιοχή Δυτικής Χαλκιδικής (Κ. Μακεδονία)",

Bull. Geol. Soc. Greece.

Μουντράκης Δ., Κίλιας Α., Παυλίδης Σ., Κουφός Γ., Σπυρόπουλος Ν., Τρανός Μ., Παπαζάχος Κ., Ζούρος Ν., Φασουλάς Χ., 1995. "Χάρτης ενεργών ρηγμάτων του Ελληνικού χώρου, περιοχή Μακεδονίας" Κλίμακα 1:300.000, Συνοδευτικό επεξηγηματικό τεύχος, Επιστημονικός Υπεύθυνος Καθηγ. Δημ. Μουντράκης, Θεσσαλονίκη.

Μουντράκης Δ., Κίλιας Α., Παυλίδης Σ., Σωτηριάδης Λ., Ψιλοβίκος Α., Αστάρας Θ., Βαβλιάκης Ε., Κουφός Γ., Δημόπουλος Γ., Σούλιος Γ., Χρηστάρας Β., Σκορδύλης Μ., Τρανός Μ., Σπυρόπουλος Μ., Πάτρας Δ., Συρίδης Γ., Λαμπρινός Ν., Λαγγάλη Θ., 1996. "Νεοτεκτονικός Χάρτης της Ελλάδας", Κλίμακας 1:100.000, Φύλλα: Θεσσαλονίκη, Λαγκαδά. Ο.Α.Σ.Π. και επεξηγηματικά τεύχη (1997).

Μπλιώνης Γ., 1996. "Τα ρέματα της Θεσσαλονίκης", Σύνδ. Οργ. Τοπ. Αυτοδ. Μειζ. Θεσ/νίκης-Οικ. Κίν. Θεσ/νίκης.

Παπαχαρίσης Ν., 1980. "Το έδαφος της περιοχής της Θεσσαλονίκης. Συσχέτιση με τις ζημιές των τελευταίων σεισμών", Επιστ. έκδοση εργαστηρίου Εδαφομηχανικής & Θεμελιώσεων, Τεύχ. 6.

Ρόζος Δ., Χατζηνάκος Ι., Αποστολίδης Ε., 1998. "Τεχνικογεωλογικός χάρτης ευρύτερης περιοχής πόλης Θεσσαλονίκης", Κλίμακας 1:25.000. Ι.Γ.Μ.Ε.

Ρόζος Δ., Χατζηνάκος Ι., Αποστολίδης Ε., Γαριβαλδη Α. 1998. "Τεχνικογεωλογικός Χάρτης ευρύτερης περιοχής πόλης Θεσσαλονικής" του Ι.Γ.Μ.Ε., κλίμακα 1:100.000.

Σαπουντζής Η., 1969. "Πετρογραφία και γεωλογική τοποθέτισις των πράσινων γνεύσιων της Θεσσαλονίκης", Διδ. Διατρ. Α.Π.Θ.

ΣΑΡΑΝΤΟΠΟΥΛΟΥ Μ., 2017. "ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ ΕΙΔΙΚΕΥΣΗΣ, ΚΑΤΟΛΙΣΘΗΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΕ ΥΠΟΛΕΙΜΜΑΤΙΚΑ ΕΔΑΦΗ ΣΤΗΝ ΠΕΡΙΟΧΗ ΤΗΣ ΑΝΩ ΣΚΟΤΙΝΑΣ, ΠΙΕΡΙΑ"

Στεφανίδης Π., 2000. "Η αντιπλημμυρική προστασία του πολεοδομικού συγκροτήματος της Θεσσαλονίκης. Θωράκιση της Θεσσαλονίκης από Φυσικές Καταστροφές". Ημερίδα 24-2-2002.

Συρίδης Γ.Ε., 1990. "Λιθοστρωματογραφική, βιοστρωματογραφική και παλαιογεωγραφική μελέτη των Νεογενών – Τεταρτογενών ιζηματογενών σχηματισμών της χερσονήσου Χαλκιδικής", Διδ. Διατριβή, Α.Π.Θ.

ΤΕΕ Τμ. Κεντρ. Μακεδονίας, 1994. "Τα Ρέματα του πολεοδομικού συγκροτήματος της Θεσσαλονίκης", Ημερίδα 15-12-1994, ΤΕΕ.

Τρανός Μ. Δ., 1998. " Συμβολή στη μελέτη της νεοτεκτονικής παραμόρφωσης στο χώρο του Βορείου Αιγαίου και της Κεντρικής Μακεδονίας", Διδακτ. Διατρ. ΑΠΘ.

Τσότσος Σ., Ζόμπου Α., Κλημεντίδου Α., Μάνου Α., 1992. "Λευκός Πύργος: Γεωτεχνική θεώρηση & έρευνα της θεμελίωσης του μνημείου", 2ο Πανελλήνιο Συνέδριο Γεωτεχνικής Μηχανικής, Θεσσαλονίκη, Τομ. 2, ΤΕΕ.

Τσουμαλάκος Σ., 2017. "Τα Ρέματα της Θεσσαλονίκης: Χωρική και Υδραυλική Θεώρηση", Μεταπτυχιακή Διπλωματική Εργασία.

Υ.ΠΕ.ΧΩ.Δ.Ε. – Οργανισμός Θεσσαλονίκης, 2001. "Μελέτη ζώνης οικιστικού ελέγχου της εκτός ορίου οικισμών περιοχής της περιαστικής ζώνης Θεσσαλονίκης και του Πολεοδομικού Συγκροτήματος Θεσσαλονίκης".

Φουρνιάδης Ι., Οικονομίδης Δ., Αστάρας Θ., 2002. "Γεωμορφολογική και περιβαλλοντική εξέλιξη της κοιλάδας του Ανθεμούντα, με τη χρήση μεθόδων GIS και τηλεπισκόπησης". Διατριβή Ειδίκευσης, ΑΠΘ, Θεσσαλονίκη.

Προδιαγραφές εργαστηριακών και επιτόπου δοκιμών εδαφομηχανικής: E105-86, E106-86 (ΦΕΚ/ 955/B31.12.1986).

Τεχνικοί όροι εκτέλεσης εδαφοτεχνικών ερευνών»: Δ.20192/22.1.1966.

Προδιαγραφές αξιολόγησης»: ΦΕΚ 1221 Β/30.11.1998, ΔΜΕΟ/δ/0/1759/12.11.1998

Προδιαγραφές δειγματοληπτικών γεωτρήσεων ξηράς Ε101-83 (ΦΕΚ 363/24.6.83 τεύχος Β).

Προδιαγραφές εργαστηριακών δοκιμών Εδαφομηχανικής Ε105/84 (ΦΕΚ 955/31.12.86 τεύχος Β).

Τεχνικές Προδιαγραφές επιτόπου δοκιμών εδαφομηχανικής E106-86 (ΦΕΚ 955/31.12.86 τεύχος B).

Προβλεπόμενα στο άρθρο ΓΤΕ.3 του Κανονισμού Προεκτιμώμενων Αμοιβών Μελετών και

Υπηρεσιών, σύμφωνα με τον Ν. 3316/2005

Οδηγίες Μελετών Οδικών Έργων (ΟΜΟΕ), Έκδοση 11: Γεωλογικές και Γεωτεχνικές Έρευνες και

Σχέδια, Κεφάλαιο 3, Άρθρα 2,3 και 4.

Τα προβλεπόμενα στον Κανονισμό Μελετών και Ερευνών (KME)

ASTM D2487 - 00 USC "Ενοποιημένο Σύστημα Ταξινόμησης Εδαφών".

Υ.ΠΕ.ΧΩ.ΔΕ 6019/86 (ΦΕΚ 29Β') "Έγκριση Προδιαγραφών Γεωλογικών Εργασιών μέσα στα πλαίσια των Μελετών Τεχνικών Έργων".

Ιστότοποι:

https://www.geoconsult.gr/ http://enggeo-auth.weebly.com http://www.ggde.gr/dmdocuments/11-01-03-00.pdf https://elinyae.gr/sites/default/files/2019-07/1154B_03.pdf www.geo.auth.gr www.igme.grwikipedia.org

ПАРАРТНМАТА

(I)

ΣΥΓΚΕΝΤΡΩΤΙΚΟΙ ΠΙΝΑΚΕΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

Οι γεωλογικοί σχηματισμοί της Θεσσαλονίκης από την επιφάνεια προς το βάθος.

ΣΧΗΜΑΤΙΣΜΟΣ	ПЕРІГРАФН
A	Τεχνητές επιχωματώσεις
B1	Επιφανειακές παράκτιες και ποτάμιες αποθέσεις κυρίως στιφρή αμμώδους ιλυώδους αργίλου έως αργιλώδους άμμου, χαμηλής έως μέσης πλαστικότητας, πάχους 2-10m.
<i>B2</i>	Όπως B1, αλλά σε σχετικά χαλαρή κατάσταση με πάχος 3 έως 20 m.
ВЗ	Όπως Β1, αλλά με υψηλή πλαστικότητα και αντοχή, πάχους 2 έως 10 m.
C	Πολύ χαλαρή αμμώδης ιλύς έως ιλυώδεις άμμος με μεταβαλλόμενη περιεκτικότητα σε άργιλο και άμμο.
D	Αλλουβιακές αποθέσεις κυρίως αργιλικές με ενδιάμεσες στρώσεις άμμου και ιλύος, χαμηλής αντοχής και υψηλής συμπιεστότητας.
E	Πολύ στιφρή έως σκληρή άργιλος, χαμηλής έως μέσης πλαστικότητας, αμμώδης άργιλος με χαλίκια.
F	Πολύ στιφρή έως σκληρή ιλυώδης-αμμώδης έως χαλικώδης προστερεοποιημένη μαργαϊκή άργιλος υπερκείμενη του βραχώδους υποβάθρου.
G	Πρασινοσχιστόλιθοι και γνεύσιοι που αποτελούν το βραχώδες υπόβαθρο.

Ενεργά, πιθανά και μη ενεργά ρήγματα της ευρύτερης περιοχής της Θεσσαλονίκης

Ενεργά Ρήγματα	Πιθανά ενεργά ρήγματα	Μη ενεργά ρήγματα
Ανθεμούντα	Θέρμης- Αεροδρομίου	Αγ. Δημητρίου
Ρηξιγενείς ζώνες Μυγδονίας Λεκάνης	Ρήγματα Βορείου Ανθεμούντα	Πεδίου Άρεως
Ν. Απολλωνίας- Ν. Μαδύτου	Ασβεστοχωρίου	Κυβερνείου
Σοχού	Ευκαρπίας	Ν. Ελβετίας
Πυλαίας-Πανοράματος	Καλοχωρίου	Καλαμαριάς
Στρατωνίου	Γοματίου-Ιερισσού	
Κερκίνης-Πετριτσίου	Αμουλιανής	
Αγχιάλου-Ν. Μεσημβρίας		
Σερρών		
Βαλάντοβου		

Ημερομηνία	Επίκεντρο	Περιοχή	Μέγεθος (Μ)	Μέγιστη Ένταση (MM)	Επικεντρική Απόσταση από Θεσσαλονίκη	Ένταση στη Θεσσαλονίκη
597	40.9 - 24.3	Σέρρες	6.8	VII Φίλιπποι	110	VI
620	40.7 - 23.5	Θεσσαλονίκη	6.6	VII Θεσσαλονίκη	40	
667	40.7 - 23.2	Θεσσαλονίκη	6.6	VII Θεσσαλονίκη	20	
700	40.7 - 23.1	Θεσσαλονίκη	6.6	VII Θεσσαλονίκη	12	
1395	40.9 - 22.2	Έδεσσα	6.7	VII Έδεσσα	70	VII
1430 (Φεβρουάριος)	40.7 - 23.2	Θεσσαλονίκη	6.0	VII	30	VII
1677	40.5 - 23.0	Θεσσαλονίκη	6.2	VII Βασιλικά	20	VII - VIIH
1759 (Ιούνιος 22)	40.6 - 22.8	Θεσσαλονίκη	6.5	ΙΧ Θεσσαλονίκη	15	IX
1829 (Μάιος 5)	41.1 - 24.3	Δράμα	7.3	Χ Δράμα	120	V+ - VI
1902 (Ιούλιος 5)	40.8 - 23.1	Θεσσαλονίκη	6.6	ΙΧ Άσσηρος	20	VII+
1904 (Απρίλιος 4)	41.8 - 23.1	Ν. Βουλγαρία	7.3	Χ Κρέσνα	130	VI
1905 (Νοέμβριος 8)	40.3 - 24.4	Χαλκιδική	7.5	Χ Άθως	120	VI
1931 (Μάρτιος 8)	41.3 - 22.5	FYROM	6.7	Χ Βαλάντοβο	85	VI
1932 (Σεπτέμβριος 26)	40.5 - 23.9	Χαλκιδική	6.9	Χ Ιερισσός	75	VI
1978 (Ιούνιος 20)	40.7 - 23.3	Θεσσαλονίκη	6.5	VII+ Στίβος	28	VII

Σεισμοί που έπληξαν την πόλη της Θεσσαλονίκης

Κατηγορίες εδαφών κατά τον ΕΝ 1998-1

Κατηγορία Εδάφους	Περιγραφή Στρωματογραφίας	Παράμετροι				
		Vs,30(m/s)	Nspt	Cu(kPa)		
А	Βράχος η άλλος βραχώδης σχηματισμός που περιλαμβάνει το πολύ 5μ. ασθενέστερου επιφανειακού υλικού.	>800	-	-		
В	Αποθέσεις πολύ πυκνής άμμου, χαλίκωνη πολύ σκληρής αργίλου πάχους τουλάχιστον αρκετών δεκάδων μέτρων, που χαρακτηρίζονται από βαθμιαία βελτίωση των μηχανικών ιδιοτήτων με το βάθος.	360-800	>50	>250		
с	Βαθιές αποθέσεις πυκνής ή μετρίως πυκνής άμμου χαλίκων ή σκληρής αργίλου πάχους από δεκάδες έως πολλές εκατοντάδες μέτρων.	180-360	15-50	70-250		
D	Αποθέσεις χαλαρών έως μετρίως χαλαρών μη σθνεκτικών υλικών ή κυρίως μαλακά έως μετρίως σκληρά συνεκτικά υλικά.	<180	<15	<70		
E	Εδαφική τομή που αποτελείται από ένα επιφανειακό στρώμα ιλύος με τιμές Vs κατηγορίας C ή D και πάχος που ποικίλλει μεταξύ 5 και 20m με υπόστρωμα από πιο σκληρό υλικό με Vs>800 m/s.					
S1	Αποθέσεις που αποτελούνται ή που περιέχουν ένα στρώμα πάχους τουλάχιστον 10m μαλακών αργίλων/λών με υψηλό δείκτη πλαστικότητας(PI>40) και υψηλή περιεκτικότητα σε νερό.	<100 ενδεικτικό	-	10-20		
S2	Στρώματα ρευστοποιήσιμων εδαφών, ευαίσθητων αργίλων ή οποιαδήποτε άλλη εδαφική τομή που δεν περιλαμβάνεται στους τύπους Α-Ε ή S1.					

ΣΤΟΙΧΕΙΑ ΓΕΩΤΡΗΣΕΩΝ

Γεωτρήσεις	Υψόμετρο (m)	Βάθος έρευνας (m)	Στάθμη υπόγειου ορίζοντα (m)	x(m)	y(m)
Г1	34,50	15,0	6,30 (+28,20)	412385.257	4496723.989
Г2	35,40	15,70	7,40 (+28,00)	412432.915	4496685.095
Г3	35,70	19,93	-	412441.758	4496652.115
Г4	33,50	10,20	-	412379.469	4496682.317

ΣΤΟΙΧΕΙΑ ΠΙΕΖΟΜΕΤΡΩΝ

Γεώτρηση	Г-1					
Βάθος Πιεζομέτρου	15,0					
Διάτρητα Τμήματα	0,0-15,0					
Ημερομηνία ολοκλήρωσης της γεώτρησης	1/9/2021					
Ημερομηνία αδειάσματος με air-lift	-					
Στάθμη ύδατος (m)						
Με την έναρξη της γεώτρησης	6,30					
Μετά την εγκατάσταση του πιεζομέτρου	6,30					
2/9/2021	6,20					
21/10/2021	5,90					

Γεώτρηση	Г-2						
Βάθος Πιεζομέτρου	15,7						
Διάτρητα Τμήματα	0,0-15,6						
Ημερομηνία ολοκλήρωσης της γεώτρησης	2/9/2021						
Ημερομηνία αδειάσματος με air-lift	-						
Στάθμη ύδατος (m)							
Με την έναρξη της γεώτρησης	7,40						
Μετά την εγκατάσταση του πιεζομέτρου	7,40						
3/9/2021	7,40						
21/10/2021	7,30						

		Βάθος(n	n)	Δοκιμή πρότυπης διείσδυσης (SPT)				
Γεώτρηση	Από	Έως	Μέσο	0-15cm	15-30cm 	30-45cm	NSPT	
				Ktullut	KLUIIOL	RIUNU		
Г-1	2	2,45	2,23	5	8	10	18	
Г-1	4	4,45	4,23	16	8	6	14	
Г-1	6	6,45	6,23	5	8	9	17	
Г-1	8	8,45	8,23	11	16	22	38	
Г-1	10	10,45	10,23	8	18	22	40	
Г-1	12	12,14	12,07	50/14cm	-	-	>50	

ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΩΝ SPT

	I	Βάθος(m	1)	Δοκιμή πρότυπης διείσδυσης (SPT)			
Γεώτρηση	Από	Έως	Μέσο	0-15cm	15-30cm	30-45cm	Nspt
				Κτύποι	Κτύποι	Κτύποι	-
Г-2	2	2,45	2,23	6	8	11	19
Г-2	4	4,45	4,23	10	7	15	22
Г-2	6	6,45	6,23	4	7	10	17
Г-2	8	8,45	8,23	7	9	16	25
Г-2	10	10,45	10,23	16	26	34	60
Г-2	12	12,45	12,23	16	18	28	46
Г-2	14	14,45	14,23	39	14	15	29
Г-2	15,15	15,25	15,20	50/10cm	-	-	>50

Βάθος(m)			Δοκιμή πρότυπης διείσδυσης (SPT)				
Γεώτρηση	Δπό	Έως	Μέσο	0-15cm	15-30cm	30-45cm	Nent
	Allo	2005	meoo	Κτύποι	Κτύποι	Κτύποι	11251
Г-3	2	2,45	2,23	8	18	16	34
Г-3	4	4,45	4,23	5	8	12	20
Г-3	6	6,45	6,23	12	16	21	37
Г-3	8	8,45	8,23	12	15	21	36
Г-3	10	10,45	10,23	16	26	32	58
Г-3	12	12,45	12,23	16	22	30	52
Г-3	14,3	14,75	14,53	11	18	22	40
Г-3	17	17,10	17,05	50/10cm	-	-	>50
Г-3	18,55	18,83	18,69	28	50/12cm	-	>50
Г-3	19,30	19,53	19,42	28	50/8cm	-	>50

Βάθος(m)			Δοκιμή πρότυπης διείσδυσης (SPT)				
Γεώτρηση	εώτρηση Από	Έως	Μέσο	0-15cm	15-30cm	30-45cm	N _{SPT}
				Κτύποι	Κτύποι	Κτύποι	
Г-4	2	2,45	2,23	5	9	13	22
Г-4	4	4,45	4,23	9	13	21	34
Г-4	6	6,45	6,23	12	15	17	32
Г-4	8	8,45	8,23	7	9	13	22
Г-4	9,5	9,55	9,53	50/5cm	-	-	>50

Στρ.	Πάχος (m)	m (%)	Y (kN/m³)	γd (kN/m³)	е	S (%)	LL (%)	PI (%)	USCS
C1	8,1	17,2	20,8	17,7	0,47	96,6	37	17	CL
S1	5,75	15,7	19,7	17,0	0,53	72,4	33	14	SC
C2	>20	16,2	20,6	17,7	0,47	92,0	36	14	CL

Εργαστηριακά αποτελέσματα φυσικών παραμέτρων επιμέρους στρωμάτων

Εργαστηριακά αποτελέσματα μηχανικών παραμέτρων επί μέρους στρωμάτων

Στρ.	Πάχος (m)	Y (kN/m³)	c (kPa)	φ (°)	c' (kPa)	φ' (°)	Cu (kPa)	Es _{oed} (MPa)	Cc	Cv (m²/y)
C1	8,1	20,76	32	38	15,2	28,7	70,2	15,7	0,141	3,63
S1	5,75	19,72	85	36	57	22	52,0	2,2	0,19	14,87
C2	>20	20,60			56	18	49,7	5,1	0,15	8,92

Μηχανικές παράμετροι επί μέρους στρωμάτων βάσει της τιμής NSPT

Στρ.	Πάχος (m)	γ (kN/m³)	Nspt	Фѕрт (°)	Cu _{spт} (kPa)	Es _{spt} (MPa)
C1	8,1	20,76	19	32,7	111,8	7,0-35,0
S1	5,75	19,72	29	35,7	170,7	14,1
C2	>20	20,60	45	40,5	264,9	5,0-25,0

Συγκριτικά αποτελέσματα μηχανικών παραμέτρων στρωμάτων υπεδάφους από την επεξεργασία των εργαστηριακών και των επί τόπου δοκιμών

Στρ.	Πάχος (m)	γ (kN/m³)	Nspt	Ф́ѕрт (°)	c' (kPa)	φ' (°)	Cu _{spt} (kPa)	Cu (kPa)	Es _{spt} (MPa)	Es (MPa)
C1	8,1	20,76	19	32,7	15,2	28,7	111,8	70,2	7,0-35,0	15,7
S1	5,75	19,72	29	35,7	57	22	170,7	52,0	14,1	2,2
C2	>20	20,60	45	40,5	56	18	264,9	49,7	5,0-25,0	5,1

Στρ.	Πάχος (m)	γ (kN/m³)	c' (kPa)	φ' (°)	Cu (kPa)	Es (MPa)	Cc	Cv (m²/y)
C1	8,1	20,8	15,2	28,7	70,2	15,7	0,141	3,63
S1	5,75	19,7	57	22	52,0	2,2	0,19	14,87
C2	>20	20,6	56	18	49,7	5,1	0,15	8,92

Γεωτεχνικές παράμετροι σχεδιασμού

Στοιχεία των πρανών εκσκαφής

ΠΡΟΦΙΛ	ΚΛΙΣΗ	ΥΨΟΣ	ΣΧΗΜΑΤΙΣΜΟΣ	
1	110,43 μοίρες	2,06-4,65m (αναβαθμίδα)	S1,C2	
2	90 μοίρες	8,05m	C1,C2	
3	110,43 μοίρες	3,4-4,65m (αναβαθμίδα)	C1,C2	
4	90 μοίρες	4,65m	C1,S1,C2	

Απαιτούμενα χαρακτηριστικά εφαρμοζόμενων μέτρων αντιστήριξης

ΠΡΟΦΙΛ	F.S. (Strength Type) Undrained	F.S. (Strength Type) Mohr Coulomb	F.S. (Strength Type) Mohr Coulomb με Micro Piles	Pile Shear Strength (Για F.S. = 1)	Out-Of-Plane Spacing (m)
1	1,408	2,142	-	-	-
2	1,469	0,673	1,001	54 kN	1
3	2,387	0,835	1,012	11 kN	1
4	2,352	0,862	1,011	11 kN	1

Προτεινόμενες τιμές του δείκτη εδάφους ks κατά Terzaghi

Είδος Αργίλου	Cu (kPa)	Eu/Cu	Eu (MPa)	Ks (MN/m3)
Πολύ μαλακή	<12.5	400	<5	<25
Μαλακή	12.5-25	400	5-10	25-50
Συνεκτική	25-50	350	10-17.5	50-100
Στιφρή	50-100	300	17.5-30	100-165
Πολύ στιφρή	100-200	200	30-40	165-220
Σκληρή	>200	150	>35	>200

(II)

ΕΔΑΦΟΤΕΧΝΙΚΕΣ ΤΟΜΕΣ ΚΑΙ ΣΧΕΔΙΑ ΣΤΡΩΜΑΤΟΓΡΑΦΙΚΩΝ ΤΟΜΩΝ ΣΧΕΔΙΑΣΜΟΥ ΓΕΩΤΡΗΣΕΩΝ

Απεικόνιση στρωματογραφικών τομών

Στρωματογραφική τομή Γ-Γ'

(III)

ΦΩΤΟΓΡΑΦΙΚΗ ΑΠΟΤΥΠΩΣΗ ΓΕΩΤΡΗΣΕΩΝ

<u>Γεώτρηση Γ-1</u>

<u>Γεώτρηση Γ-2</u>

<u>Εκτέλεση γεώτρησης Γ-2</u>

<u>Γεώτρηση Γ-3</u>

<u>Εκτέλεση γεώτρησης Γ-3</u>

<u>Γεώτρηση Γ-4</u>

<u>Εκτέλεση γεώτρησης Γ-4</u>

ΕΝΔΕΙΚΤΙΚΑ REPORT ΑΝΑΛΥΣΕΩΝ ΚΑΙ ΔΟΚΙΜΩΝ

SLIDE - An Interactive Slope Stability Program Date Created: 18/11/2021, 12:01:35 µµ Software Version: 9.012

Table of Contents

Project Summary	3
General Settings	1
Design Standard	5
Analysis Options	5
Groundwater Analysis	7
Random Numbers	3
Surface Options)
Seismic Loading)
Materials	L
Global Minimums	2
Method: bishop simplified	2
Method: janbu corrected	2
Valid and Invalid Surfaces	3
Method: bishop simplified	3
Method: janbu corrected1	3
Error Code Descriptions1	3
Slice Data14	1
Global Minimum Query (bishop simplified) - Safety Factor: 1.46909	1
Global Minimum Query (janbu corrected) - Safety Factor: 1.671031	5
Interslice Data	5
Global Minimum Query (bishop simplified) - Safety Factor: 1.46909	5
Global Minimum Query (janbu corrected) - Safety Factor: 1.67103	7
Entity Information18	3
Water Table	3
External Boundary1	3
Material Boundary	3
Slide Analysis Information

SLIDE - An Interactive Slope Stability Program

Project Summary

Slide Modeler Version: Compute Time: Date Created: 9.012 00h:00m:01.693s 18/11/2021, 12:01:35 μμ

General Settings

Units of Measurement: Time Units: Permeability Units: Data Output: Failure Direction: Metric Units days meters/second Standard Right to Left

Design Standard

Selected Type:	Eurocode 7 - Design Approach 2
Туре	Partial Factor
Permanent Actions: Unfavourable	1.35
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1.5
Variable Actions: Favourable	0
Effective cohesion	1
Coefficient of shearing resistance	1
Undrained strength	1
Weight density	1
Shear strength (other models)	1
Earth resistance	1.1
Tensile and plate strength	1.1
Shear strength	1.1
Compressive strength	1.1
Bond strength	1.1
Seismic Coefficient	1

Analysis Options

Slices Type:	Vertical						
Analysis Methods Used							
Bishop simplified							
	Janbu corrected						
Number of slices:	50						
Tolerance:	0.005						
Maximum number of iterations:	75						
Check malpha < 0.2:	Yes						
Create Interslice boundaries at intersections with water tables and piezos:	Yes						
Initial trial value of FS:	1						
Steffensen Iteration:	Yes						

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [kN/m3]:	9.81
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [kPa]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed: Random Number Generation Method: 10116 Park and Miller v.3

Surface Options

Surface Type: Search Method: Radius Increment: Composite Surfaces: Reverse Curvature: Minimum Elevation: Minimum Depth: Minimum Area: Minimum Weight: Circular Grid Search 10 Enabled Create Tension Crack Not Defined Not Defined Not Defined Not Defined

Seismic Loading

Advanced seismic analysis:	No
Staged pseudostatic analysis:	No

Materials

C1	
Color	
Strength Type	Undrained
Unit Weight [kN/m3]	20.76
Cohesion [kPa]	70.2
Cohesion Type	Constant
Water Surface	Water Table
Hu Value	0
C2	
Color	
Strength Type	Undrained
Unit Weight [kN/m3]	20.6
Cohesion [kPa]	49.7
Cohesion Type	Constant
Water Surface	None
Ru Value	0

Global Minimums

Method: bishop simplified

FS	1.469090
Center:	15.330, 33.312
Radius:	21.738
Left Slip Surface Endpoint:	25.000, 13.842
Right Slip Surface Endpoint:	32.516, 20.000
Left Slope Intercept:	25.000 20.000
Right Slope Intercept:	32.516 20.000
Resisting Moment:	13594.4 kN-m
Driving Moment:	9253.61 kN-m
Total Slice Area:	26.7099 m2
Surface Horizontal Width:	7.51613 m
Surface Average Height:	3.55368 m

Method: janbu corrected

FS	1.671030
Center:	15.330, 33.771
Radius:	22.181
Left Slip Surface Endpoint:	25.000, 13.809
Right Slip Surface Endpoint:	32.718, 20.000
Left Slope Intercept:	25.000 20.000
Right Slope Intercept:	32.718 20.000
Resisting Horizontal Force:	510.249 kN
Driving Horizontal Force:	305.351 kN
Total Slice Area:	27.5859 m2
Surface Horizontal Width:	7.71838 m
Surface Average Height:	3.57405 m

Global Minimum Support Data

No Supports Present

Valid and Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces:	18331
Number of Invalid Surfaces:	195890
Error	Codes
Error Code -102 reported for 1 surface	
Error Code -106 reported for 5469 surfaces	
Error Code -110 reported for 54225 surfaces	
Error Code -112 reported for 10 surfaces	
Error Code -1000 reported for 136185 surfaces	

Method: janbu corrected

Number of Valid Surfaces:	4722
Number of Invalid Surfaces:	209499
Error	Codes
Error Code -102 reported for 1 surface	
Error Code -106 reported for 4860 surfaces	
Error Code -108 reported for 68 surfaces	
Error Code -110 reported for 53617 surfaces	
Error Code -111 reported for 14758 surfaces	
Error Code -112 reported for 10 surfaces	
Error Code -1000 reported for 136185 surfaces	

Error Code Descriptions

The following errors were encountered during the computation:

-102 = Two surface / slope intersections, but resulting arc is actually outside soil region.

-106 = Average slice width is less than 0.0001 * (maximum horizontal extent of soil region). This limitation is imposed to avoid numerical errors which may result from too many slices, or too small a slip region.

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number). -110 = The water table or a piezoline does not span the slip region for a given slip surface, when Water Surfaces is specified as the method of pore pressure calculation. If this error occurs, check that the water table or piezoline(s) span the appropriate soil cells.

-111 = Safety factor equation did not converge

-112 = The coefficient M-Alpha = cos(alpha)(1+tan(alpha)tan(phi)/F) < 0.2 for the final iteration of the safety factor calculation. This screens out some slip surfaces which may not be valid in the context of the analysis, in particular, deep seated slip surfaces with many high negative base angle slices in the passive zone.

-1000 = No valid slip surface is generated

Slice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.46909

Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [deg]	Base Material	Base Cohesion [kPa]	Base Friction Angle [deg]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.150323	25.783	26.634	C1	70.2	0	43.4406	63.8182	147.553	0	147.553	169.339	169.339
2	0.150323	25.4623	27.0781	C1	70.2	0	43.4406	63.8182	144.954	0	144.954	167.163	167.163
3	0.150323	25.1354	27.524	C1	70.2	0	43.4406	63.8182	142.309	0	142.309	164.946	164.946
4	0.150323	24.8022	27.9717	C1	70.2	0	43.4406	63.8182	139.616	0	139.616	162.686	162.686
5	0.150323	24.4627	28.4213	C1	70.2	0	43.4406	63.8182	136.874	0	136.874	160.384	160.384
6	0.150323	24.1167	28.8727	C1	70.2	0	43.4406	63.8182	134.084	0	134.084	158.038	158.038
7	0.150323	23.7642	29.3262	C1	70.2	0	43.4406	63.8182	131.244	0	131.244	155.648	155.648
8	0.150323	23.4051	29.7817	C1	70.2	0	43.4406	63.8182	128.353	0	128.353	153.213	153.213
9	0.150323	23.0393	30.2392	C1	70.2	0	43.4406	63.8182	125.411	0	125.411	150.734	150.734
10	0.150323	22.6667	30.6989	C1	70.2	0	43.4406	63.8182	122.416	0	122.416	148.208	148.208
11	0.150323	22.2873	31.1608	C1	70.2	0	43.4406	63.8182	119.368	0	119.368	145.636	145.636
12	0.150323	21.9008	31.625	C1	70.2	0	43.4406	63.8182	116.266	0	116.266	143.017	143.017
13	0.150323	21.5072	32.0914	C1	70.2	0	43.4406	63.8182	113.108	0	113.108	140.35	140.35
14	0.150323	21.1065	32.5603	C1	70.2	0	43.4406	63.8182	109.894	0	109.894	137.634	137.634
15	0.150323	20.6984	33.0317	C1	70.2	0	43.4406	63.8182	106.624	0	106.624	134.868	134.868
16	0.150323	20.2829	33.5055	C1	70.2	0	43.4406	63.8182	103.294	0	103.294	132.053	132.053
17	0.150323	19.8598	33.982	C1	70.2	0	43.4406	63.8182	99.9048	0	99.9048	129.186	129.186
18	0.150323	19.429	34.4612	C1	70.2	0	43.4406	63.8182	96.4547	0	96.4547	126.267	126.267
19	0.150323	18.9905	34.9431	C1	70.2	0	43.4406	63.8182	92.9428	0	92.9428	123.296	123.296
20	0.150323	18.544	35.4279	C1	70.2	0	43.4406	63.8182	89.3669	0	89.3669	120.27	120.27
21	0.150323	18.0893	35.9157	C1	70.2	0	43.4406	63.8182	85.7262	0	85.7262	117.19	117.19
22	0.150323	17.6265	36.4064	C1	70.2	0	43.4406	63.8182	82.0195	0	82.0195	114.054	114.054
23	0.150323	17.1552	36.9003	C1	70.2	0	43.4406	63.8182	78.2448	0	78.2448	110.861	110.861
24	0.150323	16.6754	37.3974	C1	70.2	0	43.4406	63.8182	74.4	0	74.4	107.61	107.61
25	0.150323	16.1868	37.8978	C1	70.2	0	43.4406	63.8182	70.4841	0	70.4841	104.299	104.299
26	0.150323	15.6894	38.4016	C1	70.2	0	43.4406	63.8182	66.4955	0	66.4955	100.928	100.928
27	0.150323	15.1828	38.909	C1	70.2	0	43.4406	63.8182	62.4317	0	62.4317	97.4951	97.4951
28	0.150323	14.6669	39.42	C1	70.2	0	43.4406	63.8182	58.2909	0	58.2909	93.9989	93.9989
29	0.150323	14.1415	39.9348	C1	70.2	0	43.4406	63.8182	54.0712	0	54.0712	90.4381	90.4381
30	0.150323	13.6065	40.4535	C1	70.2	0	43.4406	63.8182	49.7699	0	49.7699	86.8108	86.8108
31	0.150323	13.0614	40.9763	C1	70.2	0	43.4406	63.8182	45.3854	0	45.3854	83.1161	83.1161
32	0.150323	12.5062	41.5032	C1	70.2	0	43.4406	63.8182	40.9147	0	40.9147	79.352	79.352
33	0.150323	11.9406	42.0344	C1	70.2	0	43.4406	63.8182	36.3554	0	36.3554	75.5168	75.5168
34	0.150323	11.3643	42.5701	C1	70.2	0	43.4406	63.8182	31.7047	0	31.7047	71.6086	71.6086
35	0.150323	10.777	43.1105	C1	70.2	0	43.4406	63.8182	26.9596	0	26.9596	67.6255	67.6255
36	0.150323	10.1784	43.6557	C1	70.2	0	43.4406	63.8182	22.1169	0	22.1169	63.5654	63.5654
37	0.150323	9.56828	44.2058	C1	70.2	0	43.4406	63.8182	17.1735	0	17.1735	59.4263	59.4263
38	0.150323	8.94627	44.7612	C1	70.2	0	43.4406	63.8182	12.1257	0	12.1257	55.2057	55.2057
39	0.150323	8.31202	45.3219	C1	70.2	0	43.4406	63.8182	6.96973	0	6.96973	50.9013	50.9013
40	0.150323	7.66516	45.8883	C1	70.2	0	43.4406	63.8182	1.70152	0	1.70152	46.5104	46.5104
41	0.150323	7.00532	46.4605	C1	70.2	0	43.4406	63.8182	-3.68324	0	-3.68324	42.0305	42.0305
42	0.150323	6.33207	47.0388	C1	70.2	0	43.4406	63.8182	-9.18921	0	-9.18921	37.4584	37.4584
43	0.150323	5.64499	47.6234	C1	70.2	0	43.4406	63.8182	-14.8214	0	-14.8214	32.7911	32.7911
44	0.150323	4.94359	48.2146	C1	70.2	0	43.4406	63.8182	-20.5852	0	-20.5852	28.0254	28.0254
45	0.150323	4.22739	48.8127	C1	70.2	0	43.4406	63.8182	-26.4864	0	-26.4864	23.1576	23.1576
46	0.150323	3.49584	49.4181	C1	70.2	0	43.4406	63.8182	-32.5314	0	-32.5314	18.184	18.184
47	0.150323	2.74838	50.031	C1	70.2	0	43.4406	63.8182	-38.7271	0	-38.7271	13.1004	13.1004
48	0.150323	1.98439	50.6518	C1	70.2	0	43.4406	63.8182	-45.0807	0	-45.0807	7.90242	7.90242
49	0.150323	1.2032	51.281	C1	70.2	0	43.4406	63.8182	-51.6005	0	-51.6005	2.58545	2.58545
50	0.150323	0.404114	51.9189	C1	70.2	0	43.4406	63.8182	-58.2952	0	-58.2952	-2.85571	-2.85571

Global Minimum Query (janbu corrected) - Safety Factor: 1.67103

Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [deg]	Base Material	Base Cohesion [kPa]	Base Friction Angle [deg]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.154368	26.6209	26.0678	C1	70.2	0	38.1909	63.8182	151.178	0	151.178	169.861	169.861
2	0.154368	26.2909	26.5125	C1	70.2	0	38.1909	63.8182	148.621	0	148.621	167.673	167.673
3	0.154368	25.9545	26.959	C1	70.2	0	38.1909	63.8182	146.017	0	146.017	165.441	165.441
4	0.154368	25.6115	27.4073	C1	70.2	0	38.1909	63.8182	143.365	0	143.365	163.167	163.167
5	0.154368	25.2619	27.8574	C1	70.2	0	38.1909	63.8182	140.665	0	140.665	160.849	160.849
6	0.154368	24.9056	28.3093	C1	70.2	0	38.1909	63.8182	137.916	0	137.916	158.488	158.488
7	0.154368	24.5424	28.7632	C1	70.2	0	38.1909	63.8182	135.117	0	135.117	156.081	156.081
8	0.154368	24.1723	29.2191	C1	70.2	0	38.1909	63.8182	132.267	0	132.267	153.628	153.628
9	0.154368	23.7953	29.677	C1	70.2	0	38.1909	63.8182	129.366	0	129.366	151.13	151.13
10	0.154368	23.4111	30.137	C1	70.2	0	38.1909	63.8182	126.413	0	126.413	148.585	148.585
11	0.154368	23.0198	30.5992	C1	70.2	0	38.1909	63.8182	123.407	0	123.407	145.993	145.993
12	0.154368	22.6212	31.0636	C1	70.2	0	38.1909	63.8182	120.347	0	120.347	143.352	143.352
13	0.154368	22.2152	31.5302	C1	70.2	0	38.1909	63.8182	117.232	0	117.232	140.663	140.663
14	0.154368	21.8016	31.9992	C1	70.2	0	38.1909	63.8182	114.06	0	114.06	137.924	137.924
15	0.154368	21.3805	32.4707	C1	70.2	0	38.1909	63.8182	110.832	0	110.832	135.135	135.135
16	0.154368	20.9516	32.9446	C1	70.2	0	38.1909	63.8182	107.546	0	107.546	132.295	132.295
17	0.154368	20.5149	33.421	C1	70.2	0	38.1909	63.8182	104.2	0	104.2	129.402	129.402
18	0.154368	20.0701	33.9001	C1	70.2	0	38.1909	63.8182	100.794	0	100.794	126.458	126.458
19	0.154368	19.6173	34.3819	C1	70.2	0	38.1909	63.8182	97.3268	0	97.3268	123.459	123.459
20	0.154368	19.1561	34.8664	C1	70.2	0	38.1909	63.8182	93.7964	0	93.7964	120.406	120.406
21	0.154368	18.6866	35.3539	C1	70.2	0	38.1909	63.8182	90.2017	0	90.2017	117.296	117.296
22	0.154368	18.2084	35.8443	C1	70.2	0	38.1909	63.8182	86.5414	0	86.5414	114.13	114.13
23	0.154368	17.7216	36.3378	C1	70.2	0	38.1909	63.8182	82.814	0	82.814	110.907	110.907
24	0.154368	17.2258	36.8344	C1	70.2	0	38.1909	63.8182	79.018	0	79.018	107.624	107.624
25	0.154368	16.721	37.3342	C1	70.2	0	38.1909	63.8182	75.1517	0	75.1517	104.281	104.281
26	0.154368	16.207	37.8374	C1	70.2	0	38.1909	63.8182	71.2135	0	71.2135	100.877	100.877
27	0.154368	15.6835	38.3441	C1	70.2	0	38,1909	63.8182	67.2012	0	67.2012	97.4103	97.4103
28	0.154368	15.1503	38.8543	C1	70.2	0	38,1909	63.8182	63.1136	0	63.1136	93.8796	93.8796
29	0.154368	14.6074	39.3682	C1	70.2	0	38,1909	63.8182	58.9486	0	58.9486	90.2835	90.2835
30	0.154368	14.0543	39.8859	C1	70.2	0	38,1909	63.8182	54,7036	0	54,7036	86.6202	86.6202
31	0.154368	13.491	40.4076	C1	70.2	0	38,1909	63.8182	50.3769	0	50.3769	82.8886	82.8886
32	0.154368	12.9171	40.9333	C1	70.2	0	38,1909	63.8182	45.9655	0	45.9655	79.0865	79.0865
33	0.154368	12.3325	41.4633	C1	70.2	0	38.1909	63.8182	41.4678	0	41.4678	75.2127	75.2127
34	0.154368	11.7368	41.9976	C1	70.2	0	38,1909	63.8182	36.8807	0	36.8807	71.2651	71.2651
35	0.154368	11.1298	42.5365	C1	70.2	0	38,1909	63.8182	32.2017	0	32.2017	67.242	67.242
36	0.154368	10.5112	43.08	C1	70.2	0	38,1909	63.8182	27.4276	0	27.4276	63.1411	63.1411
37	0.154368	9 88059	43 6284	C1	70.2	0	38 1909	63 8182	22.5556	0	22.5556	58 9605	58 9605
38	0 1 5 4 3 6 8	9 23777	44 1819	C1	70.2	0	38 1909	63 8182	17 5821	0	17 5821	54 6977	54 6977
39	0.154368	8 58234	44 7406	C1	70.2	0	38 1909	63 8182	12.5038	0	12.5038	50 3505	50 3505
40	0.154368	7 91394	45 3048	C1	70.2	0	38 1909	63.8182	7 31681	0	7 31681	45 9162	45 9162
41	0.154368	7 23217	45 8746	C1	70.2	0	38 1909	63.8182	2 01713	0	2 01713	41 3922	41 3922
42	0.154368	6 53663	46 4503	C1	70.2	0	38 1909	63 8182	-3 39953	0	-3 39953	36 7755	36 7755
43	0.154368	5 82687	47.0322	C1	70.2	0	38 1909	63 8182	-8 93781	0	-8 93781	32.0632	32.0632
44	0.154368	5 10242	47 6205	Cl	70.2	0	38 1909	63.8182	-14 6027	0	-14 6027	27 2519	27 2519
45	0 154368	4 36279	48 2155	C1	70.2	0	38 1909	63 8182	-20 3994	0	-20 3994	22.3381	22.3381
46	0 154368	3 60745	48 8175	Cl	70.2	0	38 1909	63 8182	-26 3339	0	-26 3339	17 3182	17 3182
47	0 154368	2 83582	49 4268	C1	70.2	0	38 1909	63 8182	-32 4123	0	-32 4123	12 1881	12 1881
48	0.154368	2.03302	50.0438	Cl	70.2	0	38 1000	63 8182	-38 6/15	0	-38 6/15	6 943/1	6 94311
10	0.15/368	1 2/110	50.6689	Cl	70.2	0	38 1000	63 8182	-45 0286	0	-45 0286	1 57080	1 57080
50	0.15/369	0.416836	51 3022	Cl	70.2	0	38 1000	63 8182	-51 5822	0	-51 5822	-3 90916	-3 90916
50	0.154500	0.710050	51.5025		10.2	0	50.1909	05.0102	-51.5022	0	-51.5044	-5.70010	-5.70010

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.46909

Slice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [deg]
1	25	13.8424	0	0	0
2	25.1503	13.9178	-4.59356	0	0
3	25.3006	13.9946	-9.20342	0	0
4	25.451	14.0729	-13.8208	0	0
5	25.6013	14.1528	-18.4366	0	0
6	25.7516	14.2341	-23.0414	0	0
7	25.9019	14.317	-27.6254	0	0
8	26.0523	14.4015	-32.1785	0	0
9	26.2026	14.4875	-36.6901	0	0
10	26.3529	14.5751	-41.1494	0	0
11	26.5032	14.6644	-45.5451	0	0
12	26.6535	14.7553	-49.8653	0	0
13	26.8039	14.8478	-54.0978	0	0
14	26.9542	14.9421	-58.23	0	0
15	27.1045	15.0381	-62.2485	0	0
16	27.2548	15.1358	-66.1396	0	0
17	27.4052	15.2353	-69.8891	0	0
18	27.5555	15.3367	-73.4819	0	0
19	27.7058	15.4398	-76.9024	0	0
20	27.8561	15.5449	-80.1345	0	0
21	28.0065	15.6518	-83.1612	0	0
22	28.1568	15.7607	-85.9649	0	0
23	28.3071	15.8715	-88.5269	0	0
24	28.4574	15.9844	-90.8279	0	0
25	28.6077	16.0993	-92.8478	0	0
26	28.7581	16.2163	-94.5653	0	0
27	28.9084	16.3355	-95.9582	0	0
28	29.0587	16.4568	-97.0031	0	0
29	29.209	16.5804	-97.6757	0	0
30	29.3594	16.7062	-97.9501	0	0
31	29.5097	16.8344	-97.7993	0	0
32	29.66	16.965	-97.1949	0	0
33	29.8103	17.098	-96.1068	0	0
34	29.9606	17.2335	-94.5034	0	0
35	30.111	17.3716	-92.3512	0	0
36	30.2613	17.5123	-89.6148	0	0
37	30.4116	17.6557	-86.2569	0	0
38	30.5619	17.8019	-82.2378	0	0
39	30.7123	17.951	-77.5153	0	0
40	30.8626	18.103	-72.0447	0	0
41	31.0129	18.2581	-65.7784	0	0
42	31.1632	18.4163	-58.6657	0	0
43	31.3136	18.5777	-50.6522	0	0
44	31.4639	18.7425	-41.6802	0	0
45	31.6142	18.9107	-31.68/3	0	0
46	31.7645	19.0825	-20.6071	0	0
47	31.9148	19.258	-8.36786	0	0
48	32.0652	19.4373	5.10774	0	0
49	32.2155	19.6207	19.9031	0	0
50	32.3658	19.8082	36.1086	0	0
51	32.5161	20	0	0	0

Global Minimum Query (janbu corrected) - Safety Factor: 1.67103

S	lice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [deg]
1		25	13.809	0	0	0
2		25.1544	13.8845	-5.31401	0	0
3		25.3087	13.9615	-10.6565	0	0
4		25.4631	14.04	-16.0186	0	0
5		25.6175	14.1201	-21.3913	0	0
6		25.7718	14.2017	-26.7653	0	0
7		25.9262	14.2848	-32.1307	0	0
8		26.0806	14.3695	-37.4774	0	0
9		26.2349	14.4559	-42.7951	0	0
10		26.3893	14.5439	-48.0727	0	0
11		26.5437	14.6335	-53.2991	0	0
12		26.698	14.7248	-58.4625	0	0
13		26.8524	14.8177	-63.5507	0	0
14		27.0068	14.9125	-68.5512	0	0
15		27.1611	15.0089	-73.4506	0	0
16		27.3155	15.1071	-78.2355	0	0
17		27.4699	15.2072	-82.8914	0	0
18		27.6243	15.309	-87.4036	0	0
19		27.7786	15.4128	-91.7567	0	0
20		27.933	15.5184	-95.9346	0	0
21		28.0874	15.626	-99.9203	0	0
22		28.2417	15.7355	-103.696	0	0
23		28.3961	15.847	-107.245	0	0
24		28.5505	15.9605	-110.546	0	0
25		28.7048	16.0762	-113.58	0	0
26		28.8592	16.1939	-116.326	0	0
27		29.0136	16.3138	-118.762	0	0
28		29.1679	16.4359	-120.866	0	0
29		29.3223	16.5603	-122.612	0	0
30		29.4767	16.6869	-123.975	0	0
31		29.631	16.8159	-124.93	0	0
32		29.7854	16.9473	-125.448	0	0
33		29.9398	17.0812	-125.499	0	0
34		30.0941	17.2176	-125.053	0	0
35		30.2485	17.3566	-124.076	0	0
36		30.4029	17.4982	-122.534	0	0
37		30.5572	17.6426	-120.391	0	0
38		30.7116	17.7897	-117.608	0	0
39		30.866	17.9398	-114.143	0	0
40		31.0203	18.0927	-109.954	0	0
41		31.1747	18.2488	-104.993	0	0
42		31.3291	18.4079	-99.2113	0	0
43		31.4834	18.5703	-92.5568	0	0
44		31.6378	18.736	-84.9732	0	0
45		31.7922	18.9052	-76.4004	0	0
46		31.9465	19.0779	-66.774	0	0
47		32.1009	19.2544	-56.0252	0	0
48		32.2553	19.4347	-44.0797	0	0
49		32.4096	19.6189	-30.8574	0	0
50		32.564	19.8073	-16.2719	0	0
51		32.7184	20	0	0	0

Discharge Sections

Entity Information

Water Table

	X		Y
25.013		12.5612	
39.996		12.5612	

External Boundary

	X		Y
10		5	
40		5	
40		11.444	
40		20	
25		20	
25		11.95	
10		11.95	
10		11.444	

Material Boundary

	x	Y
10	11.44	4
40	11.44	4

SLIDE - An Interactive Slope Stability Program Date Created: 18/11/2021, 12:01:35 µµ Software Version: 9.019

Table of Contents

Project Summary
General Settings
Design Standard
Analysis Options
Groundwater Analysis
Random Numbers
Surface Options
Seismic Loading
Materials
Global Minimums
Method: bishop simplified
Method: janbu corrected
Valid and Invalid Surfaces
Method: bishop simplified
Method: janbu corrected
Error Code Descriptions
Slice Data14
Global Minimum Query (bishop simplified) - Safety Factor: 0.672511
Global Minimum Query (janbu corrected) - Safety Factor: 0.848222
Interslice Data
Global Minimum Query (bishop simplified) - Safety Factor: 0.672511
Global Minimum Query (janbu corrected) - Safety Factor: 0.848222
Entity Information18
Water Table18
External Boundary18
Material Boundary

Slide Analysis Information

SLIDE - An Interactive Slope Stability Program

Project Summary

Slide Modeler Version: Compute Time: Date Created: 9.019 00h:05m:53.123s 18/11/2021, 12:01:35 μμ

General Settings

Units of Measurement: Time Units: Permeability Units: Data Output: Failure Direction: Metric Units days meters/second Standard Right to Left

Design Standard

Selected Type:	Eurocode 7 - Design Approach 2
Туре	Partial Factor
Permanent Actions: Unfavourable	1.35
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1.5
Variable Actions: Favourable	0
Effective cohesion	1
Coefficient of shearing resistance	1
Undrained strength	1
Weight density	1
Shear strength (other models)	1
Earth resistance	1.1
Tensile and plate strength	1.1
Shear strength	1.1
Compressive strength	1.1
Bond strength	1.1
Seismic Coefficient	1

Analysis Options

Slices Type:	Vertical
Analysis M	ethods Used
	Bishop simplified
	Janbu corrected
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [kN/m3]:	9.81
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [kPa]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed: Random Number Generation Method: 10116 Park and Miller v.3

Surface Options

Surface Type: Search Method: Radius Increment: Composite Surfaces: Reverse Curvature: Minimum Elevation: Minimum Depth: Minimum Area: Minimum Weight: Circular Grid Search 10 Enabled Create Tension Crack Not Defined Not Defined Not Defined Not Defined

Seismic Loading

Advanced seismic analysis:	No
Staged pseudostatic analysis:	No

Materials

C1	
Color	
Strength Type	Mohr-Coulomb
Unit Weight [kN/m3]	20.76
Cohesion [kPa]	15.2
Friction Angle [deg]	28.7
Water Surface	Water Table
Hu Value	0
C2	
Color	
Strength Type	Mohr-Coulomb
Unit Weight [kN/m3]	20.6
Cohesion [kPa]	56
Friction Angle [deg]	18
Water Surface	None
Ru Value	0

Global Minimums

Method: bishop simplified

FS	0.672511
Center:	15.330, 23.351
Radius:	12.468
Left Slip Surface Endpoint:	25.000, 15.481
Right Slip Surface Endpoint:	27.339, 20.000
Left Slope Intercept:	25.000 20.000
Right Slope Intercept:	27.339 20.000
Resisting Moment:	1224.98 kN-m
Driving Moment:	1821.51 kN-m
Total Slice Area:	6.17836 m2
Surface Horizontal Width:	2.33949 m
Surface Average Height:	2.6409 m

Method: janbu corrected

FS	0.848222
Center:	15.330, 24.730
Radius:	13.693
Left Slip Surface Endpoint:	25.000, 15.035
Right Slip Surface Endpoint:	28.180, 20.000
Left Slope Intercept:	25.000 20.000
Right Slope Intercept:	28.180 20.000
Resisting Horizontal Force:	92.6352 kN
Driving Horizontal Force:	109.211 kN
Total Slice Area:	9.15988 m2
Surface Horizontal Width:	3.1804 m
Surface Average Height:	2.8801 m

Global Minimum Support Data

No Supports Present

Valid and Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: Number of Invalid Surfaces:	18337 195884
	Error Codes
Error Code -102 reported for 1 surface Error Code -106 reported for 5473 surfaces Error Code -110 reported for 54225 surfaces Error Code -1000 reported for 136185 surface	es

Method: janbu corrected

	Error Codes
Number of Invalid Surfaces:	195884
Number of Valid Surfaces:	18337

Error Code -102 reported for 1 surface Error Code -106 reported for 5473 surfaces Error Code -110 reported for 54225 surfaces Error Code -1000 reported for 136185 surfaces

Error Code Descriptions

The following errors were encountered during the computation:

-102 = Two surface / slope intersections, but resulting arc is actually outside soil region.

-106 = Average slice width is less than 0.0001 * (maximum horizontal extent of soil region). This limitation is imposed to avoid numerical errors which may result from too many slices, or too small a slip region.

-110 = The water table or a piezoline does not span the slip region for a given slip surface, when Water Surfaces is specified as the method of pore pressure calculation. If this error occurs, check that the water table or piezoline(s) span the appropriate soil cells.

-1000 = No valid slip surface is generated

Slice Data

Global Minimum Query (bishop simplified) - Safety Factor: 0.672511

Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [deg]	Base Material	Base Cohesion [kPa]	Base Friction Angle [deg]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.0467898	5.88859	51.0269	C1	15.2	28.7	56.6709	38.1118	48.8105	0	48.8105	118.86	118.86
2	0.0467898	5.81228	51.37	C1	15.2	28.7	55.7244	37.4753	47.5317	0	47.5317	117.262	117.262
3	0.0467898	5.73502	51.7157	C1	15.2	28.7	54.7744	36.8364	46.248	0	46.248	115.644	115.644
4	0.0467898	5.6568	52.0641	C1	15.2	28.7	53.821	36.1952	44.9597	0	44.9597	114.007	114.007
5	0.0467898	5.57758	52.4153	C1	15.2	28.7	52.8641	35.5517	43.6667	0	43.6667	112.35	112.35
6	0.0467898	5.49735	52.7692	C1	15.2	28.7	51.9035	34.9057	42.3689	0	42.3689	110.673	110.673
7	0.0467898	5.41608	53.1261	C1	15.2	28.7	50.9395	34.2574	41.0661	0	41.0661	108.976	108.976
8	0.0467898	5.33374	53.4859	C1	15.2	28.7	49.9718	33.6066	39.7586	0	39.7586	107.257	107.257
9	0.0467898	5.25031	53.8488	C1	15.2	28.7	49.0004	32.9533	38.446	0	38.446	105.516	105.516
10	0.0467898	5.16576	54.2149	C1	15.2	28.7	48.0252	32.2975	37.1285	0	37.1285	103.754	103.754
11	0.0467898	5.08005	54.5843	C1	15.2	28.7	47.0465	31.6393	35.8059	0	35.8059	101.968	101.968
12	0.0467898	4.99317	54.9571	C1	15.2	28.7	46.0638	30.9784	34.4782	0	34.4782	100.159	100.159
13	0.0467898	4.90506	55.3333	C1	15.2	28.7	45.0775	30.3151	33.1454	0	33.1454	98.3265	98.3265
14	0.0467898	4.81571	55.7132	C1	15.2	28.7	44.0872	29.6491	31.8073	0	31.8073	96.4685	96.4685
15	0.0467898	4.72506	56.0967	C1	15.2	28.7	43.093	28.9805	30.4639	0	30.4639	94.5851	94.5851
16	0.0467898	4.63309	56.4842	C1	15.2	28.7	42.0948	28.3092	29.1152	0	29.1152	92.6754	92.6754
17	0.0467898	4.53975	56.8756	C1	15.2	28.7	41.0927	27.6353	27.7612	0	27.7612	90.7387	90.7387
18	0.0467898	4.445	57.2712	C1	15.2	28.7	40.0866	26.9587	26.4018	0	26.4018	88.7741	88.7741
19	0.0467898	4.34879	57.6711	C1	15.2	28.7	39.0765	26.2794	25.0369	0	25.0369	86.7808	86.7808
20	0.0467898	4.25108	58.0754	C1	15.2	28.7	38.0623	25.5973	23.6665	0	23.6665	84.7576	84.7576
21	0.0467898	4.15181	58.4844	C1	15.2	28.7	37.0439	24.9124	22.2904	0	22.2904	82.7035	82.7035
22	0.0467898	4.05092	58.8982	C1	15.2	28.7	36.0213	24.2247	20.9087	0	20.9087	80.6175	80.6175
23	0.0467898	3.94837	59.317	C1	15.2	28.7	34.9946	23.5343	19.5215	0	19.5215	78.4989	78.4989
24	0.0467898	3.84408	59.741	C1	15.2	28.7	33.9637	22.8409	18.1284	0	18.1284	76.3459	76.3459
25	0.0467898	3.73799	60.1705	C1	15.2	28.7	32.9284	22.1447	16.7296	0	16.7296	74.1573	74.1573
26	0.0467898	3.63003	60.6057	C1	15.2	28.7	31.8889	21.4457	15.325	0	15.325	71.9318	71.9318
27	0.0467898	3.52012	61.0468	C1	15.2	28.7	30.8451	20.7437	13.9146	0	13.9146	69.6679	69.6679
28	0.0467898	3.40817	61.4941	C1	15.2	28.7	29.797	20.0388	12.4984	0	12.4984	67.3642	67.3642
29	0.0467898	3.29411	61.948	C1	15.2	28.7	28.7445	19.331	11.0762	0	11.0762	65.0186	65.0186
30	0.0467898	3.17784	62.4087	C1	15.2	28.7	27.6876	18.6202	9.64822	0	9.64822	62.6294	62.6294
31	0.0467898	3.05924	62.8767	C1	15.2	28.7	26.6264	17.9066	8.21432	0	8.21432	60.1947	60.1947
32	0.0467898	2.93822	63.3522	C1	15.2	28.7	25.5609	17.19	6.77454	0	6.77454	57.7122	57.7122
33	0.0467898	2.81464	63.8357	C1	15.2	28.7	24.491	16.4704	5.32888	0	5.32888	55.1795	55.1795
34	0.0467898	2.68837	64.3277	C1	15.2	28.7	23.4168	15.748	3.8774	0	3.8774	52.594	52.594
35	0.0467898	2.55926	64.8286	C1	15.2	28.7	22.3383	15.0227	2.42015	0	2.42015	49.953	49.953
36	0.0467898	2.42716	65.339	C1	15.2	28.7	21.2556	14.2946	0.957205	0	0.957205	47.2532	47.2532
37	0.0467898	2.29189	65.8595	C1	15.2	28.7	20.1687	13.5637	-0.511331	0	-0.511331	44.4912	44.4912
38	0.0467898	2.15325	66.3909	C1	15.2	28.7	19.0779	12.8301	-1.98531	0	-1.98531	41.6632	41.6632
39	0.0467898	2.01102	66.9337	C1	15.2	28.7	17.9831	12.0938	-3.46456	0	-3.46456	38.765	38.765
40	0.0467898	1.86495	67.4889	C1	15.2	28.7	16.8846	11.3551	-4.94884	0	-4.94884	35.7919	35.7919
41	0.0467898	1.71478	68.0574	C1	15.2	28.7	15.7826	10.614	-6.43786	0	-6.43786	32.7385	32.7385
42	0.0467898	1.56018	68.6403	C1	15.2	28.7	14.6774	9.87073	-7.93127	0	-7.93127	29.5987	29.5987
43	0.0467898	1.40081	69.2387	C1	15.2	28.7	13.5693	9.12552	-9.42851	0	-9.42851	26.3659	26.3659
44	0.0467898	1.23626	69.8542	C1	15.2	28.7	12.4588	8.37868	-10.929	0	-10.929	23.032	23.032
45	0.0467898	1.06606	70.4882	C1	15.2	28.7	11.3464	7.63057	-12.4321	0	-12.4321	19.5882	19.5882
46	0.0467898	0.889656	71.1427	C1	15.2	28.7	10.2328	6.88168	-13,9368	0	-13,9368	16.0237	16.0237
47	0.0467898	0.706414	71.8199	C1	15.2	28.7	9.11897	6.13261	-15,4418	0	-15.4418	12.3262	12.3262
48	0.0467898	0.515563	72.5225	C1	15.2	28.7	8.00604	5.38415	-16.9456	0	-16.9456	8.48102	8,48102
49	0.0467898	0.316174	73.2535	C1	15.2	28.7	6.8955	4.6373	-18,4462	0	-18.4462	4.4702	4.4702
50	0.0467898	0.107109	74.0171	C1	15.2	28.7	5.78936	3.89341	-19.9408	0	-19.9408	0.271875	0.271875

Global Minimum Query (janbu corrected) - Safety Factor: 0.848222

Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [deg]	Base Material	Base Cohesion [kPa]	Base Friction Angle [deg]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.0636081	8.79392	45.113	C1	15.2	28.7	58.5327	49.6487	71.9903	0	71.9903	130.754	130.754
2	0.0636081	8.67932	45.4914	C1	15.2	28.7	57.5918	48.8506	70.3869	0	70.3869	128.975	128.975
3	0.0636081	8.56319	45.8724	C1	15.2	28.7	56.6464	48.0487	68.7756	0	68.7756	127.174	127.174
4	0.0636081	8.4455	46.256	C1	15.2	28.7	55.6963	47.2428	67.1565	0	67.1565	125.35	125.35
5	0.0636081	8.32622	46.6423	C1	15.2	28.7	54.7416	46.433	65.5294	0	65.5294	123.503	123.503
6	0.0636081	8.20531	47.0314	C1	15.2	28.7	53.7821	45.6192	63.8942	0	63.8942	121.632	121.632
7	0.0636081	8.08274	47.4233	C1	15.2	28.7	52.8179	44.8013	62.251	0	62.251	119.737	119.737
8	0.0636081	7.95847	47.8182	C1	15.2	28.7	51.8489	43.9794	60.5995	0	60.5995	117.817	117.817
9	0.0636081	7.83245	48.216	C1	15.2	28.7	50.875	43.1533	58.9399	0	58.9399	115.873	115.873
10	0.0636081	7.70466	48.6171	C1	15.2	28.7	49.8963	42.3231	57.2719	0	57.2719	113.902	113.902
11	0.0636081	7.57504	49.0213	C1	15.2	28.7	48.9127	41.4888	55.5955	0	55.5955	111.905	111.905
12	0.0636081	7.44355	49.4288	C1	15.2	28.7	47.9239	40.6501	53.9105	0	53.9105	109.881	109.881
13	0.0636081	7.31015	49.8398	C1	15.2	28.7	46.9303	39.8073	52.217	0	52.217	107.83	107.83
14	0.0636081	7.17478	50.2542	C1	15.2	28.7	45.9315	38.9601	50.5148	0	50.5148	105.75	105.75
15	0.0636081	7.0374	50.6724	C1	15.2	28.7	44.9276	38.1086	48.8039	0	48.8039	103.641	103.641
16	0.0636081	6.89795	51.0942	C1	15.2	28.7	43.9186	37.2527	47.0843	0	47.0843	101.502	101.502
17	0.0636081	6.75637	51.52	C1	15.2	28.7	42.9042	36.3923	45.3558	0	45.3558	99.3324	99.3324
18	0.0636081	6.61261	51.9498	C1	15.2	28.7	41.8847	35.5275	43.6182	0	43.6182	97.1313	97.1313
19	0.0636081	6.46659	52.3837	C1	15.2	28.7	40.8598	34.6582	41.8716	0	41.8716	94.8979	94.8979
20	0.0636081	6.31826	52.8219	C1	15.2	28.7	39.8297	33.7844	40.1158	0	40.1158	92.6311	92.6311
21	0.0636081	6.16754	53.2646	C1	15.2	28.7	38.794	32.9059	38.3509	0	38.3509	90.33	90.33
22	0.0636081	6.01435	53.712	C1	15.2	28.7	37.753	32.0229	36.5767	0	36.5767	87.9936	87.9936
23	0.0636081	5.85863	54.1641	C1	15.2	28.7	36.7063	31.1351	34.793	0	34.793	85.6205	85.6205
24	0.0636081	5.70028	54.6213	C1	15.2	28.7	35.6542	30.2427	33	0	33	83.2098	83.2098
25	0.0636081	5.53922	55.0836	C1	15.2	28.7	34.5966	29.3456	31.1974	0	31.1974	80.7603	80.7603
26	0.0636081	5.37534	55.5513	C1	15.2	28.7	33.5333	28.4437	29.3854	0	29.3854	78.2704	78.2704
27	0.0636081	5.20855	56.0247	C1	15.2	28.7	32.4644	27.537	27.5637	0	27.5637	75.7389	75.7389
28	0.0636081	5.03875	56.504	C1	15.2	28.7	31.3898	26.6255	25.7323	0	25.7323	73.1642	73.1642
29	0.0636081	4.86581	56.9894	C1	15.2	28.7	30.3094	25.7091	23.8911	0	23.8911	70.5446	70.5446
30	0.0636081	4.68961	57.4812	C1	15.2	28.7	29.2234	24.7879	22.0402	0	22.0402	67.8785	67.8785
31	0.0636081	4.51001	57.9797	C1	15.2	28.7	28.1316	23.8618	20.1795	0	20.1795	65.164	65.164
32	0.0636081	4.32688	58.4853	C1	15.2	28.7	27.034	22.9308	18.309	0	18.309	62.3991	62.3991
33	0.0636081	4.14006	58.9983	C1	15.2	28.7	25.9307	21.995	16.4287	0	16.4287	59.5816	59.5816
34	0.0636081	3.94939	59.519	C1	15.2	28.7	24.8216	21.0542	14.5386	0	14.5386	56.7093	56.7093
35	0.0636081	3.75467	60.0479	C1	15.2	28.7	23.7068	20.1087	12.6387	0	12.6387	53.7795	53.7795
36	0.0636081	3.55572	60.5853	C1	15.2	28.7	22.5864	19.1582	10.7292	0	10.7292	50.7896	50.7896
37	0.0636081	3.35232	61.1319	C1	15.2	28.7	21.4603	18.2031	8.81003	0	8.81003	47.7365	47.7365
38	0.0636081	3.14424	61.6882	C1	15.2	28.7	20.3286	17.2432	6.88142	0	6.88142	44.6171	44.6171
39	0.0636081	2.93121	62.2546	C1	15.2	28.7	19.1915	16.2786	4.94352	0	4.94352	41.4277	41.4277
40	0.0636081	2.71296	62.8319	C1	15.2	28.7	18.0491	15.3096	2.99654	0	2.99654	38.1644	38.1644
41	0.0636081	2.48916	63.4208	C1	15.2	28.7	16.9015	14.3362	1.04079	0	1.04079	34.8229	34.8229
42	0.0636081	2.25948	64.022	C1	15.2	28.7	15.749	13.3586	-0.923367	0	-0.923367	31.3983	31.3983
43	0.0636081	2.02352	64.6365	Cl	15.2	28.7	14.5918	12.3771	-2.89547	0	-2.89547	27.8854	27.8854
44	0.0636081	1.78086	65.2652	Cl	15.2	28.7	13.4303	11.3919	-4.87492	0	-4.87492	24.278	24.278
45	0.0636081	1.53098	65.9092	C1	15.2	28.7	12.2649	10.4034	-6.86103	0	-6.86103	20.5694	20.5694
46	0.0636081	1.27335	66.5699	Cl	15.2	28.7	11.0962	9.41203	-8.85282	0	-8.85282	16.7521	16.7521
47	0.0636081	1.00733	67.2487	Cl	15.2	28.7	9.92476	8.4184	-10.8492	0	-10.8492	12.8171	12.8171
48	0.0636081	0.732173	67.9473	Cl	15.2	28.7	8.75147	7.42319	-12.8488	0	-12.8488	8.75459	8.75459
49	0.0636081	0.44704	68.6675	C1	15.2	28.7	7.57738	6.4273	-14.8498	0	-14.8498	4.5527	4.5527
50	0.0636081	0.150932	69.4118	C1	15.2	28.7	6.40382	5.43186	-16.8498	0	-16.8498	0.197921	0.197921

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 0.672511

	Slice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [deg]
1		25	15.4805	0	0	0
2		25.0468	15.5384	-0.171852	0	0
3		25.0936	15.5969	-0.347936	0	0
4		25.1404	15.6562	-0.527065	0	0
5		25.1872	15.7162	-0.708012	0	0
6		25.2339	15.777	-0.889502	0	0
7		25.2807	15.8386	-1.07022	0	0
8		25.3275	15.901	-1.24878	0	0
9		25.3743	15.9642	-1.42378	0	0
10		25.4211	16.0282	-1.59373	0	0
11		25.4679	16.0931	-1.75709	0	0
12		25.5147	16.1589	-1.91227	0	0
13		25.5615	16.2256	-2.05758	0	0
14		25.6083	16.2933	-2.19131	0	0
15		25.6551	16.3619	-2.31162	0	0
16		25.7018	16.4316	-2.41663	0	0
17		25.7486	16.5022	-2.50434	0	0
18		25.7954	16.5739	-2.57268	0	0
19		25.8422	16.6467	-2.61946	0	0
20		25.889	16.7206	-2.64242	0	0
21		25 9358	16 7957	-2 63913	0	0
22		25 9826	16 8721	-2 60708	0	0
23		26.0294	16 9496	-2 5436	0	0
23		26.0224	17 0285	-2.54589	0	0
25		26.0702	17 1087	-2.31096	0	0
26		26.125	17 1903	-2.13569	0	0
20		26.165	17 2733	-1 91674	0	0
28		26.2105	17 3579	-1 65056	0	0
20		26.2055	17.4441	1 233/1	0	0
29		26.3560	17.5210	0.061265	0	0
21		26.3309	17.5519	0.520836	0	0
22		26.4057	17.0214	-0.329830	0	0
32 22		20.4303	17.206	-0.0545540	0	0
24		20.4973	17.0012	0.329308	0	0
34 25		26.5441	17.9012	1.10//8	0	0
26		20.3909	12,0021	2 6 8 0 8 8	0	0
27		20.0370	18.0981	2.00900	0	0
3/ 20		20.0844	18.2	5.3807	0	0
38		20.7312	18.3044	4.58301	0	0
39		20.778	18.4115	5.08805	0	0
40		26.8248	18.5214	6.91058	0	0
41		26.8716	18.6343	8.25919	0	0
42		26.9184	18./504	9.74524	0	0
43		20.9652	18.8/01	11.3808	0	0
44		27.012	18.9935	13.1793	0	0
45		27.0588	19.121	15.1561	0	0
46		27.1055	19.2531	17.3284	0	0
47		27.1523	19.3901	19.7164	0	0
48		27.1991	19.5325	22.3431	0	0
49		27.2459	19.6811	25.2358	0	0
50		27.2927	19.8366	28.4268	0	0
51		27.3395	20	0	0	0

Global Minimum Query (janbu corrected) - Safety Factor: 0.848222

	Slice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [deg]
1		25	15.0351	0	0	0
2		25.0636	15.099	-0.780764	0	0
3		25.1272	15.1637	-1.58025	0	0
4		25.1908	15.2292	-2.39671	0	0
5		25.2544	15.2957	-3.22835	0	0
6		25.318	15.3631	-4.0733	0	0
7		25.3816	15.4313	-4.92963	0	0
8		25.4453	15.5006	-5.79537	0	0
9		25.5089	15.5708	-6.66842	0	0
10		25 5725	15 642	-7 54667	0	0
11		25.6361	15.7141	-8.42788	0	0
12		25 6997	15 7874	-9 30976	0	0
13		25 7633	15 8617	-10 1899	0	0
14		25.8269	15 937	-11.0658	0	0
15		25 8905	16 0135	-11 9349	0	0
16		25.9503	16 0912	-12 7945	0	0
17		26.0177	16.17	-13 6418	0	0
18		26.0813	16.25	14 4739	0	0
10		26.0815	16 3313	15 2876	0	0
20		26.1449	16 4138	16 0708	0	0
20		26.2080	16 4077	-10.0798	0	0
21		26.2722	16.49//	-10.84/2	0	0
22		26.3338	16.3829	-17.3803	0	0
23		26.3994	16.0095	-18.2933	0	0
24		26.463	16./5/6	-18.9644	0	0
25		26.5266	16.84/2	-19.5957	0	0
26		26.5902	16.9383	-20.1827	0	0
27		26.6538	17.031	-20.7211	0	0
28		26.7174	17.1254	-21.2061	0	0
29		26.781	17.2216	-21.6327	0	0
30		26.8446	17.3195	-21.9955	0	0
31		26.9082	17.4192	-22.2891	0	0
32		26.9718	17.521	-22.5074	0	0
33		27.0355	17.6247	-22.644	0	0
34		27.0991	17.7305	-22.6923	0	0
35		27.1627	17.8386	-22.645	0	0
36		27.2263	17.949	-22.4944	0	0
37		27.2899	18.0618	-22.2322	0	0
38		27.3535	18.1772	-21.8494	0	0
39		27.4171	18.2953	-21.3364	0	0
40		27.4807	18.4162	-20.6828	0	0
41		27.5443	18.5401	-19.8774	0	0
42		27.6079	18.6673	-18.9077	0	0
43		27.6715	18.7978	-17.7603	0	0
44		27.7351	18.932	-16.4203	0	0
45		27.7988	19.0701	-14.8715	0	0
46		27.8624	19.2123	-13.0958	0	0
47		27.926	19.3591	-11.0729	0	0
48		27.9896	19.5108	-8.78015	0	0
49		28.0532	19.6678	-6.19202	0	0
50		28.1168	19.8307	-3.27932	0	0
51		28.1804	20	0	0	0

Discharge Sections

Entity Information

Water Table

	X		Y
25.013		12.5612	
39.996		12.5612	

External Boundary

	X		Y
10		5	
40		5	
40		11.444	
40		20	
25		20	
25		11.95	
10		11.95	
10		11.444	

Material Boundary

	x	Y
10	11.4	14
40	11.4	14

SLIDE - An Interactive Slope Stability Program Date Created: 18/11/2021, 12:01:35 µµ Software Version: 9.019

Table of Contents

Project Summary	3
General Settings	4
Design Standard	5
Analysis Options	6
Groundwater Analysis	7
Random Numbers	8
Surface Options	9
Seismic Loading	
Materials	11
Support	12
Global Minimums	13
Method: bishop simplified	13
Method: janbu corrected	13
Global Minimum Support Data	
Method: bishop simplified	14
Method: janbu corrected	14
Valid and Invalid Surfaces	15
Method: bishop simplified	15
Method: janbu corrected	15
Error Code Descriptions	15
Slice Data	16
Global Minimum Query (bishop simplified) - Safety Factor: 1.00107	16
Global Minimum Query (janbu corrected) - Safety Factor: 1.09894	
Interslice Data	
Global Minimum Query (bishop simplified) - Safety Factor: 1.00107	
Global Minimum Query (janbu corrected) - Safety Factor: 1.09894	
Entity Information	20
Water Table	
External Boundary	20
Material Boundary	20
Slide Analysis Information

Project Summary

Slide Modeler Version: Compute Time: Date Created: 9.019 00h:06m:20.972s 18/11/2021, 12:01:35 μμ

General Settings

Units of Measurement: Time Units: Permeability Units: Data Output: Failure Direction: Metric Units days meters/second Standard Right to Left

Design Standard

Selected Type:	Eurocode 7 - Design Approach 2
Туре	Partial Factor
Permanent Actions: Unfavourable	1.35
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1.5
Variable Actions: Favourable	0
Effective cohesion	1
Coefficient of shearing resistance	1
Undrained strength	1
Weight density	1
Shear strength (other models)	1
Earth resistance	1.1
Tensile and plate strength	1.1
Shear strength	1.1
Compressive strength	1.1
Bond strength	1.1
Seismic Coefficient	1

Analysis Options

Slices Type:	Vertical
Analysis M	ethods Used
	Bishop simplified
	Janbu corrected
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [kN/m3]:	9.81
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [kPa]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed: Random Number Generation Method: 10116 Park and Miller v.3

Surface Options

Surface Type: Search Method: Radius Increment: Composite Surfaces: Reverse Curvature: Minimum Elevation: Minimum Depth: Minimum Area: Minimum Weight: Circular Grid Search 10 Enabled Create Tension Crack Not Defined Not Defined Not Defined Not Defined

Seismic Loading

Advanced seismic analysis:	No
Staged pseudostatic analysis:	No

Materials

C1	
Color	
Strength Type	Mohr-Coulomb
Unit Weight [kN/m3]	20.76
Cohesion [kPa]	15.2
Friction Angle [deg]	28.7
Water Surface	Water Table
Hu Value	0
C2	
Color	
Strength Type	Mohr-Coulomb
Unit Weight [kN/m3]	20.6
Cohesion [kPa]	56
Friction Angle [deg]	18
Water Surface	None
Ru Value	0

Support

Support 1	
Color	
Туре	Pile/Micro Pile
Force Application	Active (Method A)
Force Orientation	Parallel to surface
Out-Of-Plane Spacing	1 m
Failure Mode	Shear
Pile Shear Strength	54 kN

Global Minimums

Method: bishop simplified

Center:	15.330, 27.335
Dadiua	16.075
Raulus:	10.075
Left Slip Surface Endpoint:	25.000, 14.494
Right Slip Surface Endpoint:	29.634, 20.000
Left Slope Intercept:	25.000 20.000
Right Slope Intercept:	29.634 20.000
Resisting Moment:	3890.99 kN-m
Driving Moment:	3886.82 kN-m
Active Support Moment:	-789.147 kN-m
Maximum Single Support Force:	49.0909 kN
Total Support Force:	49.0909 kN
Total Slice Area:	14.7201 m2
Surface Horizontal Width:	4.63425 m
Surface Average Height:	3.17638 m

Method: janbu corrected

Center: 15.330, 27.795 Radius: 16.503 .eft Slip Surface Endpoint: 25.000, 14.422 Right Slip Surface Endpoint: 29.876, 20.000 .eft Slope Intercept: 25.000 20.000 Right Slope Intercept: 29.876 20.000 Right Slope Intercept: 29.876 20.000 Right Slope Intercept: 29.876 20.000
Radius: 16.503 .eft Slip Surface Endpoint: 25.000, 14.422 Right Slip Surface Endpoint: 29.876, 20.000 .eft Slope Intercept: 25.000 20.000 Right Slope Intercept: 29.876 20.000 Right Slope Intercept: 29.876 20.000 Right Slope Intercept: 29.876 20.000
Left Slip Surface Endpoint:25.000, 14.422Light Slip Surface Endpoint:29.876, 20.000Left Slope Intercept:25.000 20.000Light Slope Intercept:29.876 20.000Light Slope Intercept:29.876 20.000Light Slope Intercept:187.24 kN
Right Slip Surface Endpoint:29.876, 20.000.eft Slope Intercept:25.000 20.000Right Slope Intercept:29.876 20.000Right Slope Intercept:187.24 kN
Left Slope Intercept:25.000 20.000Right Slope Intercept:29.876 20.000Period Participation Force:187.24 kN
Right Slope Intercept: 29.876 20.000
Vesisting Horizontal Force: 187.24 kN
Driving Horizontal Force: 170.383 kN
Active Horizontal Support Force: -39.6752 kN
1aximum Single Support Force: 49.0909 kN
Total Support Force:49.0909 kN
Total Slice Area:15.6826 m2
Surface Horizontal Width: 4.87585 m
Surface Average Height: 3.21637 m

Global Minimum Support Data

Method: bishop simplified

Number of Su	pports: 1					
			Support 1			
Support Type:	Pile/Micro Pile					
Start (x, y)	Length (m)	L Inside SS (m)	L Outside SS (m)	Li (m)	Lo (m)	Force (kN)
25, 20	12.106	5.50628	6.59972	5.50628	6.59972	49.0909

Method: janbu corrected

Number of Su	oports: 1					
			Support 1			
Support Type:	Pile/Micro Pile					
Start (x, y)	Length (m)	L Inside SS (m)	L Outside SS (m)	Li (m)	Lo (m)	Force (kN)
25, 20	12.106	5.5778	6.5282	5.5778	6.5282	49.0909

Valid and Invalid Surfaces

Error Code -110 reported for 54225 surfaces Error Code -1000 reported for 136185 surfaces

Method: bishop simplified

Number of Valid Surfaces:	12417	
Number of Invalid Surfaces:	201804	
	Error Codes	
Error Code -102 reported for 1 surface		
Error Code -106 reported for 5291 surfaces		
Error Code -107 reported for 6076 surfaces		
Error Code -108 reported for 26 surfaces		

Method: janbu corrected

Number of Valid Surfaces:	9101	
Number of Invalid Surfaces:	205120	
	Error Codes	
Error Code -102 reported for 1 surface		

Error Code -102 reported for 1 surface Error Code -106 reported for 4965 surfaces Error Code -107 reported for 6076 surfaces Error Code -108 reported for 84 surfaces Error Code -110 reported for 54225 surfaces Error Code -111 reported for 3584 surfaces Error Code -1000 reported for 136185 surfaces

Error Code Descriptions

The following errors were encountered during the computation:

-102 = Two surface / slope intersections, but resulting arc is actually outside soil region.

-106 = Average slice width is less than 0.0001 * (maximum horizontal extent of soil region). This limitation is imposed to avoid numerical errors which may result from too many slices, or too small a slip region.

-107 = Total driving moment or total driving force is negative. This will occur if the wrong failure direction is specified, or if high external or anchor loads are applied against the failure direction. -108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number). -110 = The water table or a piezoline does not span the slip region for a given slip surface, when Water Surfaces is specified as the method of pore pressure calculation. If this error occurs, check that the water table or piezoline(s) span the appropriate soil cells.

-111 = Safety factor equation did not converge

-1000 = No valid slip surface is generated

Slice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.00107

Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [deg]	Base Material	Base Cohesion [kPa]	Base Friction Angle [deg]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.092685	14.2117	37.1872	C1	15.2	28.7	0	0	-166.8	0	-166.8	-166.8	-166.8
2	0.092685	14.0277	37.603	C1	15.2	28.7	62.6384	62.7054	98.2234	0	98.2234	146.467	146.467
3	0.092685	13.8409	38.0211	C1	15.2	28.7	61.6557	61.7217	96.2476	0	96.2476	144.455	144.455
4	0.092685	13.6512	38.4417	C1	15.2	28.7	60.6666	60.7315	94.2577	0	94.2577	142.413	142.413
5	0.092685	13.4586	38.8647	C1	15.2	28.7	59.6709	59.7347	92.2553	0	92.2553	140.343	140.343
6	0.092685	13.2631	39.2903	C1	15.2	28.7	58.6685	58.7313	90.2393	0	90.2393	138.242	138.242
7	0.092685	13.0646	39.7184	C1	15.2	28.7	57.6595	57.7212	88.2094	0	88.2094	136.111	136.111
8	0.092685	12.8631	40.1492	C1	15.2	28.7	56.6437	56.7043	86.1665	0	86.1665	133.948	133.948
9	0.092685	12.6584	40.5828	C1	15.2	28.7	55.6212	55.6807	84.1096	0	84.1096	131.754	131.754
10	0.092685	12.4506	41.0192	C1	15.2	28.7	54.5918	54.6502	82.0394	0	82.0394	129.527	129.527
11	0.092685	12.2395	41.4586	C1	15.2	28.7	53.5555	53.6128	79.955	0	79.955	127.268	127.268
12	0.092685	12.0251	41.9009	C1	15.2	28.7	52.5123	52.5685	77.8568	0	77.8568	124.975	124.975
13	0.092685	11.8074	42.3463	C1	15.2	28.7	51.4621	51.5172	75.7445	0	75.7445	122.647	122.647
14	0.092685	11.5863	42.7949	C1	15.2	28.7	50.405	50.4589	73.6181	0	73.6181	120.285	120.285
15	0.092685	11.3616	43.2467	C1	15.2	28.7	49.3406	49.3934	71.4774	0	71.4774	117.887	117.887
16	0.092685	11.1333	43.702	C1	15.2	28.7	48.2692	48.3208	69.3223	0	69.3223	115.452	115.452
17	0.092685	10.9014	44.1607	C1	15.2	28.7	47.1905	47.241	67.1528	0	67.1528	112.981	112.981
18	0.092685	10.6656	44.623	C1	15.2	28.7	46.1046	46.1539	64.9686	0	64.9686	110.47	110.47
19	0.092685	10.4261	45.089	C1	15.2	28.7	45.0113	45.0595	62.7698	0	62.7698	107.921	107.921
20	0.092685	10.1826	45.5589	C1	15.2	28.7	43.9108	43.9578	60.5562	0	60.5562	105.332	105.332
21	0.092685	9.93503	46.0327	C1	15.2	28.7	42.8028	42.8486	58.3275	0	58.3275	102.702	102.702
22	0.092685	9.68334	46.5106	C1	15.2	28.7	41.6873	41.7319	56.084	0	56.084	100.03	100.03
23	0.092685	9.42738	46.9928	C1	15.2	28.7	40.5643	40.6077	53.8252	0	53.8252	97.3141	97.3141
24	0.092685	9.16704	47.4793	C1	15.2	28.7	39.4337	39.4759	51.5512	0	51.5512	94.5544	94.5544
25	0.092685	8.90221	47.9704	C1	15.2	28.7	38.2955	38.3365	49.262	0	49.262	91.7493	91.7493
26	0.092685	8.63276	48.4663	C1	15.2	28.7	37.1496	37.1894	46.9572	0	46.9572	88.8974	88.8974
27	0.092685	8.35854	48.967	C1	15.2	28.7	35.9961	36.0346	44.6369	0	44.6369	85.9975	85.9975
28	0.092685	8.07941	49.4728	C1	15.2	28.7	34.8347	34.872	42.301	0	42.301	83.048	83.048
29	0.092685	7.79522	49.9838	C1	15.2	28.7	33.6655	33.7015	39.9494	0	39.9494	80.0474	80.0474
30	0.092685	7.5058	50.5004	C1	15.2	28.7	32.4885	32.5233	37.582	0	37.582	76.9943	76.9943
31	0.092685	7.211	51.0227	C1	15.2	28.7	31.3036	31.3371	35.1988	0	35.1988	73.8868	73.8868
32	0.092685	6.91061	51.5509	C1	15.2	28.7	30.1108	30.143	32.7997	0	32.7997	70.7232	70.7232
33	0.092685	6.60444	52.0853	C1	15.2	28.7	28.9101	28.941	30.3845	0	30.3845	67.5015	67.5015
34	0.092685	6.29229	52.6262	C1	15.2	28.7	27.7014	27.731	27.9535	0	27.9535	64.2197	64.2197
35	0.092685	5.97393	53.1739	C1	15.2	28.7	26.4847	26.513	25.5064	0	25.5064	60.8756	60.8756
36	0.092685	5.64912	53.7287	C1	15.2	28.7	25.2601	25.2871	23.0433	0	23.0433	57.4669	57.4669
37	0.092685	5.31761	54.2909	C1	15.2	28.7	24.0276	24.0533	20.5643	0	20.5643	53.991	53.991
38	0.092685	4.97911	54.8608	C1	15.2	28.7	22.7871	22.8115	18.0693	0	18.0693	50.4451	50.4451
39	0.092685	4.63332	55.439	C1	15.2	28.7	21.5389	21.5619	15.5586	0	15.5586	46.8264	46.8264
40	0.092685	4.27993	56.0257	C1	15.2	28.7	20.2828	20.3045	13.0322	0	13.0322	43.1318	43.1318
41	0.092685	3.91857	56.6215	C1	15.2	28.7	19.019	19.0393	10.4902	0	10.4902	39.3577	39.3577
42	0.092685	3.54887	57.2269	C1	15.2	28.7	17.7476	17.7666	7.93313	0	7.93313	35.5005	35.5005
43	0.092685	3.17042	57.8424	C1	15.2	28.7	16.4688	16.4865	5.36104	0	5.36104	31.5561	31.5561
44	0.092685	2.78275	58.4686	C1	15.2	28.7	15.1828	15.1991	2.77442	0	2.77442	27.52	27.52
45	0.092685	2.38536	59.1061	C1	15.2	28.7	13.8898	13.9047	0.173749	0	0.173749	23.3875	23.3875
46	0.092685	1.97771	59.7557	C1	15.2	28.7	12.5901	12.6036	-2.44037	0	-2.44037	19.1532	19.1532
47	0.092685	1.55918	60.4182	C1	15.2	28.7	11.2841	11.2962	-5.06719	0	-5.06719	14.8112	14.8112
48	0.092685	1.1291	61.0946	C1	15.2	28.7	9.97226	9.98293	-7.70579	0	-7.70579	10.3549	10.3549
49	0.092685	0.686717	61.7857	C1	15.2	28.7	8.65511	8.66437	-10.355	0	-10.355	5.77699	5.77699
50	0.092685	0.231173	62.4927	C1	15.2	28.7	7.33336	7.34121	-13.0135	0	-13.0135	1.06933	1.06933

Global Minimum Query (janbu corrected) - Safety Factor: 1.09894

Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [deg]	Base Material	Base Cohesion [kPa]	Base Friction Angle [deg]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.0975171	15.1471	36.0798	C1	15.2	28.7	0	0	-141.135	0	-141.135	-141.135	-141.135
2	0.0975171	14.9514	36.4998	C1	15.2	28.7	59.5253	65.4147	103.667	0	103.667	147.713	147.713
3	0.0975171	14.7527	36.9222	C1	15.2	28.7	58.6063	64.4048	101.638	0	101.638	145.676	145.676
4	0.0975171	14.5508	37.3469	C1	15.2	28.7	57.6807	63.3876	99.5945	0	99.5945	143.61	143.61
5	0.0975171	14.3459	37.774	C1	15.2	28.7	56.7483	62.363	97.5354	0	97.5354	141.513	141.513
6	0.0975171	14.1377	38.2036	C1	15.2	28.7	55.8092	61.331	95.4622	0	95.4622	139.385	139.385
7	0.0975171	13.9264	38.6357	C1	15.2	28.7	54.8633	60.2915	93.3741	0	93.3741	137.227	137.227
8	0.0975171	13.7117	39.0705	C1	15.2	28.7	53.9106	59.2445	91.2702	0	91.2702	135.036	135.036
9	0.0975171	13.4936	39.5079	C1	15.2	28.7	52.951	58.19	89.1511	0	89.1511	132.813	132.813
10	0.0975171	13.2721	39.9482	C1	15.2	28.7	51.9845	57.1278	87.0176	0	87.0176	130.558	130.558
11	0.0975171	13.0471	40.3912	C1	15.2	28.7	51.0109	56.0579	84.8675	0	84.8675	128.268	128.268
12	0.0975171	12.8186	40.8372	C1	15.2	28.7	50.0303	54.9803	82.7023	0	82.7023	125.944	125.944
13	0.0975171	12.5864	41.2863	C1	15.2	28.7	49.0426	53.8949	80.5222	0	80.5222	123.586	123.586
14	0.0975171	12.3505	41.7384	C1	15.2	28.7	48.0478	52.8016	78.3249	0	78.3249	121.192	121.192
15	0.0975171	12.1108	42.1938	C1	15.2	28.7	47.0457	51.7004	76.1124	0	76.1124	118.762	118.762
16	0.0975171	11.8672	42.6525	C1	15.2	28.7	46.0364	50.5912	73.884	0	73.884	116.294	116.294
17	0.0975171	11.6197	43.1145	C1	15.2	28.7	45.0197	49.474	71.6393	0	71.6393	113.789	113.789
18	0.0975171	11.3681	43.5801	C1	15.2	28.7	43.9957	48.3486	69.3782	0	69.3782	111.246	111.246
19	0.0975171	11.1124	44.0493	C1	15.2	28.7	42.9641	47.215	67.1006	0	67.1006	108.662	108.662
20	0.0975171	10.8524	44.5223	C1	15.2	28.7	41.9251	46.0732	64.8065	0	64.8065	106.038	106.038
21	0.0975171	10.5881	44.9991	C1	15.2	28.7	40.8786	44.9231	62.4958	0	62.4958	103.373	103.373
22	0.0975171	10.3194	45.48	C1	15.2	28.7	39.8245	43.7647	60.1681	0	60.1681	100.665	100.665
23	0.0975171	10.046	45.9649	C1	15.2	28.7	38.7625	42.5977	57.8236	0	57.8236	97.9142	97.9142
24	0.0975171	9.768	46.4542	C1	15.2	28.7	37.693	41.4223	55.4619	0	55.4619	95.1185	95.1185
25	0.0975171	9.48516	46.9479	C1	15.2	28.7	36.6156	40.2383	53.0831	0	53.0831	92.277	92.277
26	0.0975171	9.19737	47.4462	C1	15.2	28.7	35.5303	39.0457	50.6869	0	50.6869	89.3884	89.3884
27	0.0975171	8.90449	47.9492	C1	15.2	28.7	34.4372	37.8444	48.2733	0	48.2733	86.4516	86.4516
28	0.0975171	8.60636	48.4573	C1	15.2	28.7	33.3361	36.6344	45.8421	0	45.8421	83.4651	83.4651
29	0.0975171	8.30283	48.9704	C1	15.2	28.7	32.2271	35.4156	43.3932	0	43.3932	80.4276	80.4276
30	0.0975171	7.99373	49.4889	C1	15.2	28.7	31.1099	34.1879	40.9266	0	40.9266	77.3372	77.3372
31	0.0975171	7.67888	50.0129	C1	15.2	28.7	29.9846	32.9513	38.442	0	38.442	74.1926	74.1926
32	0.0975171	7.3581	50.5427	C1	15.2	28.7	28.8512	31.7057	35.9395	0	35.9395	70.992	70.992
33	0.0975171	7.03118	51.0785	C1	15.2	28.7	27.7096	30.4512	33.4189	0	33.4189	67.7335	67.7335
34	0.0975171	6.6979	51.6207	C1	15.2	28.7	26.5598	29.1876	30.8801	0	30.8801	64.415	64.415
35	0.0975171	6.35804	52.1693	C1	15.2	28.7	25.4018	27.915	28.3232	0	28.3232	61.0348	61.0348
36	0.0975171	6.01135	52.7249	C1	15.2	28.7	24.2354	26.6333	25.7481	0	25.7481	57.5903	57.5903
37	0.0975171	5.65757	53.2875	C1	15.2	28.7	23.0609	25.3426	23.1547	0	23.1547	54.0793	54.0793
38	0.0975171	5.29641	53.8577	C1	15.2	28.7	21.8782	24.0428	20.5431	0	20.5431	50.4991	50.4991
39	0.0975171	4.92758	54.4358	C1	15.2	28.7	20.6871	22.7339	17.9133	0	17.9133	46.8469	46.8469
40	0.0975171	4.55073	55.0222	C1	15.2	28.7	19.4879	21.416	15.2654	0	15.2654	43.1199	43.1199
41	0.0975171	4.16552	55.6173	C1	15.2	28.7	18.2805	20.0891	12.5995	0	12.5995	39.3147	39.3147
42	0.0975171	3.77155	56.2215	C1	15.2	28.7	17.065	18.7534	9.91581	0	9.91581	35.4279	35.4279
43	0.0975171	3.36842	56.8354	C1	15.2	28.7	15.8416	17.409	7.21452	0	7.21452	31.4557	31.4557
44	0.0975171	2.95566	57.4596	C1	15.2	28.7	14.6104	16.0559	4.49599	0	4.49599	27.394	27.394
45	0.0975171	2.53277	58.0946	C1	15.2	28.7	13.3715	14.6945	1.76057	0	1.76057	23.2383	23.2383
46	0.0975171	2.0992	58.7412	C1	15.2	28.7	12.1252	13.3249	-0.991222	0	-0.991222	18.9835	18.9835
47	0.0975171	1.65435	59.4	C1	15.2	28.7	10.8718	11.9474	-3.75875	0	-3.75875	14.6244	14.6244
48	0.0975171	1.19754	60.0718	C1	15.2	28.7	9.61157	10.5625	-6.54123	0	-6.54123	10.1548	10.1548
49	0.0975171	0.728038	60.7577	C1	15.2	28.7	8.34505	9.17071	-9.33772	0	-9.33772	5.56813	5.56813
50	0.0975171	0.245007	61.4585	C1	15.2	28.7	7.07274	7.77252	-12.1469	0	-12.1469	0.856964	0.856964

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.00107

	Slice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [deg]
1		25	14.4937	0	0	0
2		25.0927	14.564	50.8382	0	0
3		25.1854	14.6354	49.6384	0	0
4		25.2781	14.7079	48.3842	0	0
5		25.3707	14.7815	47.0784	0	0
6		25.4634	14.8562	45.7241	0	0
7		25.5561	14.932	44.3243	0	0
8		25.6488	15.009	42.8821	0	0
9		25.7415	15.0872	41.4009	0	0
10		25.8342	15.1666	39.884	0	0
11		25.9268	15.2472	38.3349	0	0
12		26.0195	15.3291	36.7572	0	0
13		26.1122	15.4122	35.1546	0	0
14		26.2049	15.4967	33.531	0	0
15		26.2976	15.5825	31.8905	0	0
16		26.3903	15.6697	30.2372	0	0
17		26.483	15.7583	28.5754	0	0
18		26.5756	15.8483	26.9096	0	0
19		26.6683	15.9398	25.2445	0	0
20		26.761	16.0327	23.5849	0	0
21		26.8537	16.1272	21.9359	0	0
22		26.9464	16.2233	20.3028	0	0
23		27.0391	16.321	18.6909	0	0
24		27.1318	16.4204	17.1062	0	0
25		27.2244	16.5215	15.5545	0	0
26		27.3171	16.6243	14.0421	0	0
27		27.4098	16.7289	12.5755	0	0
28		27.5025	16.8354	11.1616	0	0
29		27.5952	16.9439	9.80764	0	0
30		27.6879	17.0543	8.52107	0	0
31		27.7805	17.1667	7.30986	0	0
32		27.8732	17.2812	6.18235	0	0
33		27.9659	17.398	5.14733	0	0
34		28.0586	17.517	4.21407	0	0
35		28.1513	17.6383	3.39239	0	0
36		28.244	17.7621	2.69264	0	0
37		28.3367	17.8884	2.12583	0	0
38		28.4293	18.0173	1.70363	0	0
39		28.522	18.149	1.43843	0	0
40		28.6147	18.2836	1.34348	0	0
41		28.7074	18.4211	1.4329	0	0
42		28.8001	18.5618	1.7218	0	0
43		28.8928	18.7058	2.22639	0	0
44		28.9855	18.8532	2.96409	0	0
45		29.0781	19.0043	5.9537	0	0
46		29.1708	19.1592	5.21554	0	0
4/		29.2635	19.3181	0.//104	0	0
48		29.3562	19.4814	8.64598	0	0
49		29.4489	19.0493	10.864/	0	0
50		29.5416	19.822	13.4567	0	0
51		29.6342	20	0	U	U

Global Minimum Query (janbu corrected) - Safety Factor: 1.09894

	Slice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [deg]
1		25	14.4222	0	0	0
2		25.0975	14.4933	49.7039	0	0
3		25.195	14.5654	48.1723	0	0
4		25.2926	14.6387	46.5816	0	0
5		25.3901	14.7131	44.9348	0	0
6		25.4876	14.7887	43.2353	0	0
7		25.5851	14.8654	41.4862	0	0
8		25.6826	14.9434	39.6909	0	0
9		25.7801	15.0225	37.8531	0	0
10		25.8777	15.1029	35.9763	0	0
11		25.9752	15.1846	34.0643	0	0
12		26.0727	15.2676	32.1209	0	0
13		26.1702	15.3519	30.1503	0	0
14		26.2677	15.4375	28.1564	0	0
15		26.3652	15.5245	26.1438	0	0
16		26.4628	15.6129	24.1168	0	0
17		26.5603	15.7027	22.0801	0	0
18		26.6578	15.794	20.0385	0	0
19		26.7553	15.8868	17.9971	0	0
20		26.8528	15.9812	15.961	0	0
21		26.9503	16.0771	13.9357	0	0
22		27.0479	16,1746	11.9268	0	0
23		27 1454	16 2738	9 94021	0	0
24		27 2429	16 3746	7 98207	0	0
25		27 3404	16 4772	6.05879	0	0
26		27 4379	16 5816	4 17706	0	0
27		27 5354	16 6878	2 34389	0	0
28		27.633	16 7959	0.5666	0	0
29		27 7305	16 906	-1 14712	0	0
30		27 828	17 0181	-2 78922	0	0
31		27.9255	17 1322	-4 35124	0	0
32		28.023	17 2485	-5 82427	0	0
33		28.1205	17 3669	-7 19896	0	0
34		28 2181	17.3009	-8.46544	0	0
35		28.3156	17.4077	-9.61329	0	0
36		28.4131	17 7364	-10.6315	0	0
37		28 5106	17 8645	-11 5084	0	0
38		28.6081	17 9953	-12 2317	0	0
30		28.7056	18 1288	-12.2317	0	0
40		28.7030	18 2652	-13 164	0	0
41		28.8052	18 4046	12 3442	0	0
41		28.9007	18 5471	13 3128	0	0
42		20.9982	18,6020	12 052	0	0
43		29.0937	18.0929	-13.033	0	0
44		29.1932	10.0421	-12.3404	0	0
43		29.2900	10.775	10 7128	0	0
40		27.3003	19.1310	-10./120	0	0
4/		27.4030	19.3122	7 62555	0	0
40		29.3033	17.4//1	-1.03333	0	0
49 50		27.0000	19.0403	-3.30094	0	0
50		29.1103	19.6207	-3.10048	0	0
31		27.8/39	20	U	U	U

Discharge Sections

Entity Information

Water Table

	X		Y
25.013	12	2.5612	
39.996	12	2.5612	

External Boundary

X	Y
10	5
40	5
40	11.444
40	20
25	20
25	11.95
10	11.95
10	11.444

Material Boundary

	X	Y	
10		11.444	
40		11.444	

Project 1.rspile2 Report Created Date: 2021/12/07, 16:24:39 Software Version: 3.007

Table of Contents

Project Summary	3
Soil Layers	4
Soil Properties	5
Soil Property 1	5
Soil Property 2	5
Soil Property 3	5
Pile Section Properties	6
Pile Section 1	6
Pile Types	7
Pile Type 1	7
Pile Settings	8
- Pile 3	8

RSPile Analysis Information

Project 1.rspile2

Project Summary

Document Name Date Created Last saved with RSPile version Project 1.rspile2 05/12/2021, 16:51:05 3.007

Soil Layers

Layer Name	Color	Layer Type	Thickness [m]	Top Elevation [m]
Soil Property 1		Lateral: Soft Clay Soil, Axial: API Sand	5	0
Soil Property 2		Lateral: Soft Clay Soil, Axial: API Sand	10	-5
Soil Property 3		Lateral: Soft Clay Soil, Axial: API Sand	5	-15

Soil Properties

Soil Property 1

Property	Value
Name	Soil Property 1
Color	
Soil Type	Lateral: Soft Clay Soil, Axial: API Sand
Unit Weight (kN/m3)	20

Soil Property 2

Property	Value
Name	Soil Property 2
Color	
Soil Type	Lateral: Soft Clay Soil, Axial: API Sand
Unit Weight (kN/m3)	20

Soil Property 3

Property	Value
Name	Soil Property 3
Color	
Soil Type	Lateral: Soft Clay Soil, Axial: API Sand
Unit Weight (kN/m3)	20

Pile Section Properties

Pile Section 1

Prope	erty		Value
Name	P	ile Section 1	
Color			
Pile Type	R	einforced Concrete	
Pile Cross Section	С	ircular	
Diameter (m)	0	.25	
		M5x18.9	
I-Be	am		
Name	M	15x18.9	
Steel Type	А	merican	
Depth (mm)	5		
Width (mm)	5		

Pile Types

Pile Type 1

Property			Value
Name		Pile Type 1	
Color			
Pile Head Elevation (m)		0.000000	
Cross Section Type		Uniform	
Ground Slope Angle (°)		0.000000	
Rotation Angle (°)		0.000000	
Alpha Angle (°)		0.000000	
Beta Angle (°)		90.00000	
Total Length		15	
Section Property	Colour	Length	Top Elevation
Pile Section 1		15.000000	0.000000

Pile Settings

Pile 3

General	
Туре	Pile Type 1
Location	0, 0
Elevation (m)	0
Length (m)	15
Orientation	
Ground Slope Angle (°)	0
Alpha Angle (°)	0
Beta Angle (°)	90
Rotation Angle (°)	0

For gravel or gravelly sandy deposits, the corrected value is:

Nc = 1.25 Nspt For correction factors f_S , f_H ed f_t the expressions are:

$$f_{S} = \left(\frac{1.25 \cdot L/B}{L/B + 0.25}\right)^{2}$$
$$f_{H} = \frac{H}{z_{i}} \left(2 - \frac{H}{z_{i}}\right)$$
$$f_{t} = \left(1 + R_{3} + R \cdot \log \frac{t}{3}\right)$$

Where

t time in years > 3

R3 a constant of value 0.3 for static loads and 0.7 for dynamic loads

R a constant of value 0.2 for static loads and 0.8 for dynamic loads

MAIN PARAMETERS

Seismic action	EC7/8	
Zone	Greece	
Lat./ Long. [WGS84]	401512,5/241450,06	
Foundation width	1,5 m	
Foundation length	30,0 m	
Depth of bearing surface	8,05 m	
Embedded height	1,0 m	
GWT depth	8,55	
Correction parameters Terzaghi		

EARTHQUAKE

Maximum acceleration (ag/g) Seismic effect according to Horizontal seismic coefficient	0,16 EC7/8 0,08	
		_

SOIL STRATIGRAPHY

Layer thickne ss [m]	Unit weight [kN/ m ³]	Saturat ed unit weight [kN/ m ³]	Angle of friction [°]	Cohesi on [kN/ m ²]	Undrai ned cohesio n [kN/ m ²]	Elastic modulu s [kN/ m ²]	Oedom etric modulu s [kN/ m ²]	Poisson	Index of primary consoli dation [cmq/s]	Index of second ary compre ssion	Descrip tion
8,1	20,8	20,8	28,7	15,2	70,2	0,0	7000,0	0,25	0,0	0,0	silty clay
10,0	20,6	20,6	18,0	56,0	49,7	0,0	5100,0	0,25	0,0	0,0	slightly sandy clay

Design loads acting on foundation

Nr.	Combinati on name	Design normal stress [kN/m²]	N [kN]	Mx [kN∙m]	My [kN∙m]	Hx [kN]	Hy [kN]	Туре
1	A1+M1+R 1	0,00	0,00	0,00	0,00	0,00	0,00	Design

2	A2+M2+R 2	0,00	0,00	0,00	0,00	0,00	0,00	Design
3	Earthquak e	0,00	0,00	0,00	0,00	0,00	0,00	Design
4	S.L.E.	0,00	0,00	0,00	0,00	0,00	0,00	Design
5	S.L.D.	0,00	0,00	0,00	0,00	0,00	0,00	Design

Earthquake + Partial coef. soil geotechnical parameters + Resistances

Nr	Seismic correction	Tangent to angle of shearing resistance angle	Effective cohesion	Undrained cohesion	Unit weight in foundation	Overburde n unit weight	Red. Coef. Vertical bearing capacity	Red. Coef. Horizontal bearing capacity
1	No	1	1	1	1	1	1	1
2	No	1,25	1,25	1,4	1,3	1	1	1,1
3	Yes	1,25	1,25	1,4	1,3	1	1	1,1
4	No	1	1	1	1,35	1	1,4	1,1
5	Yes	1	1	1	1,35	1	1,4	1,1

FOUNDATION BEARING CAPACITY COMBINATION...A2+M2+R2 Author: Brinch - Hansen 1970

Bearing capacity [Qult]	341,85 kN/m ²
Design resistance[Rd]	341,85 kN/m ²
Safety factor [Fs=Qult/Ed]	

BOWLE'S SUBGRADE COEFFICIENT (1982) Costante di Winkler 13673,95 kN/m³

A1+M1+R1

Author: TERZAGHI (1955) (Undrained conditions)

Factor [Nq]	1,0	
Factor [Nc]	5,7	
Factor [Ng]	0,0	
Form factor [Sc]	1,0	
Form factor [Sg]	1,0	
Inertial factor of seismic correction [zq]	1,0	
Inertial factor of seismic correction [zg]	1,0	
Inertial factor of seismic correction [zc]	1,0	
Bearing capacity	435,53 kN/m ²	==
Design resistance	435,53 kN/m ²	

Author: Brinch - Hansen 1970 (Undrained conditions)

1,0	
5,14	
0,0	
1,01	
1,0	
1,0	
1,0	
1,0	
1,0	
	$\begin{array}{c} 1,0\\ 5,14\\ 0,0\\ 1,01\\ 1,0\\ 1,0\\ 1,0\\ 1,0\\ 1,0\\ 1,$

Inertial factor of seismic correction [zg]	1,0		
Inertial factor of seismic correction [zc]	1,0		
Bearing capacity	411,61 kN/m²		
Design resistance	411,61 kN/m²		

A2+M2+R2

Author: TERZAGHI (1955) (Undrained conditions)

Factor [Nq]	1,0	
Factor [Nc]	5,7	
Factor [Ng]	0,0	
Form factor [Sc]	1,0	
Form factor [Sg]	1,0	
Inertial factor of seismic correction [zq]	1,0	
Inertial factor of seismic correction [zg]	1,0	
Inertial factor of seismic correction [zc]	1,0	
Bearing capacity	358,94 kN/m ²	
Design resistance	358,94 kN/m ²	

Author: Brinch - Hansen 1970 (Undrained conditions)

Factor [Nq]	1,0
Factor [Nc]	5,14
Factor [Ng]	0,0
Form factor [Sc]	1,01
Depth factor [Dc]	1,0
Load inclination factor [Ic]	1,0
Slope inclination factor [Gc]	1,0
Base inclination factor [Bc]	1,0
Inertial factor of seismic correction [zq]	1,0
Inertial factor of seismic correction [zg]	1,0
Inertial factor of seismic correction [zc]	1,0
Bearing capacity	341,85 kN/m ²
Design resistance	341,85 kN/m ²

Earthquake

Author: TERZAGHI (1955) (Undrained conditions)				
Factor [Nq]	1,0			
Factor [Nc]	5,7			
Factor [Ng]	0,0			
Form factor [Sc]	1,0			
Form factor [Sg]	1,0			
Inertial factor of seismic correction [zq]	1,0			
Inertial factor of seismic correction [zg]	1,0			
Inertial factor of seismic correction [zc]	1,0			
Bearing capacity	358,94 kN/m ²			
Design resistance	358,94 kN/m ²			

Author: Brinch - Hansen 1970 (Undrained conditions)

Factor [Nq]	1,0
Factor [Nc]	5,14
Factor [Ng]	0,0

Form factor [Sc]	1.01
Depth factor [Dc]	1,0
Load inclination factor [Ic]	1,0
Slope inclination factor [Gc]	1,0
Base inclination factor [Bc]	1,0
Inertial factor of seismic correction [zq]	1,0
Inertial factor of seismic correction [zg]	1,0
Inertial factor of seismic correction [zc]	1,0
Bearing capacity	341,85 kN/m ²
Design resistance	341,85 kN/m ²

S.L.E.

Author: TERZAGHI (1955) (Undrained conditions)

Factor [Nq]	1,0
Factor [Nc]	5,7
Factor [Ng]	0,0
Form factor [Sc]	1,0
Form factor [Sg]	1,0
Inertial factor of seismic correction [zq]	1,0
Inertial factor of seismic correction [zg]	1,0
Inertial factor of seismic correction [zc]	1,0
Bearing capacity	435,53 kN/m ²
Design resistance	311,1 kN/m ²

Author: Brinch - Hansen 1970 (Undrained conditions)

Factor [Nq]	1,0
Factor [Nc]	5,14
Factor [Ng]	0,0
Form factor [Sc]	1,01
Depth factor [Dc]	1,0
Load inclination factor [Ic]	1,0
Slope inclination factor [Gc]	1,0
Base inclination factor [Bc]	1,0
Inertial factor of seismic correction [zq]	1,0
Inertial factor of seismic correction [zg]	1,0
Inertial factor of seismic correction [zc]	1,0
Bearing capacity	411,61 kN/m ²
Design resistance	294,01 kN/m ²
Bearing capacity Design resistance	411,61 KN/m ² 294,01 kN/m ²

S.L.D.

Author: TERZAGHI (1955) (Undrained conditions)				
Factor [Nq]	1,0			
Factor [Nc]	5,7			
Factor [Ng]	0,0			
Form factor [Sc]	1,0			
Form factor [Sg]	1,0			
Inertial factor of seismic correction [zq]	1,0			
Inertial factor of seismic correction [zg]	1,0			
Inertial factor of seismic correction [zc]	1,0			
Bearing capacity	435,53 kN/m ²			
Design resistance	311,1 kN/m ²			

Author: Brinch - Hansen 1970 (Undrained conditions)

1,0
5,14
0,0
1,01
1,0
1,0
1,0
1,0
1,0
1,0
1,0
411,61 kN/m ²
294,01 kN/m ²

SETTLEMENTS FOR EVERY LAYER * Oedometric settlement calculated with: Terzaghi's monodimensional consolidation method

Design normal stress	303,0 kN/m ²		
Settlement after T years	15,0		
Total settlement	5,03	cm	

Z: Average layer depth; Dp: Pressure increment; Wc: Consolidation settlement; Ws:Secondary settlement; Wt: Total settlement.

Layer	Z (m)	Pressure (kN/m ²)	Dp (kN/m²)	Method	Wc (cm)	Ws (cm)	Wt (cm)
1	8,075	167,96	135,558	Oedometric	0,1		0,1
2	13,1	226,858	25,161	Oedometric	4,93		4,93

ELASTIC SETTLEMENT

Design normal stress	300,0 kN/m ²
Layer thickness	20,0 m
Rock substrate depth	20,0 m
Elastic modulus	0,0 kN/m ²
Poisson's ratio	0,25
Influence coefficient I1	0,16
Influence coefficient I2	0,09
Influence coefficient Is	0,23
Settlement at foundation centre	2,95 mm
Influence coefficient I1	0,05
Influence coefficient I2	0,08
Influence coefficient Is	0,12
Settlement at edge	0,77 mm

SETTLEMENTS BURLAND BURBIDGE

Design normal stress	205,0 kN/m ²	
Time	15,0	
Significant depth Zi (m)	1	
Average Nspt values within Zi	30	

Form factor fs	1,524	
Compressible layer factor fh	1	
Time factor ft	1,44	
Compressibility index	0,015	
Settlement	3,97 mm	

LIQUEFACTION VERIFICATION - Method C.N.R. - GNDT from Seed and Idriss

Svo: Total confined stress; S'vo: Effective confined stress; T: Cyclic tangential stress; R: Soil resistance to liquefaction; Fs: Safety coefficient

1	8,10	19,00	13,358	168,477	168,477	0,091	0,310	3,39	Non liquefiabl e level
2	18,10	45,00	21,467	374,474	280,819	0,101	2,285	22,62	Non liquefiabl e level

1.MAIN PARAMETERS	13
2.SOIL STRATIGRAPHY	13
3. Design loads acting on foundation	13
4. Earthquake + Partial coef, soil geotechnical parameters + Resistances	14
5. Vertical bearing capacity	14
6. Vertical bearing capacity A1+M1+R1	14
6.1.TERZAGHI (1955) (A1+M1+R1)	14
6.2.Brinch - Hansen 1970 (A1+M1+R1)	14
7. Vertical bearing capacity A2+M2+R2	15
7.1.TERZAGHI (1955) (A2+M2+R2)	15
7.2.Brinch - Hansen 1970 (A2+M2+R2)	15
8. Vertical bearing capacity Earthquake	15
8.1.TERZAGHI (1955) (Earthquake)	15
8.2.Brinch - Hansen 1970 (Earthquake)	15
9. Vertical bearing capacityS.L.E.	16
9.1.TERZAGHI (1955) (S.L.E.)	16
9.2.Brinch - Hansen 1970 (S.L.E.)	16
10. Vertical bearing capacityS.L.D.	16
10.1.TERZAGHI (1955) (S.L.D.)	16
10.2.Brinch - Hansen 1970 (S.L.D.)	17
11.SETTLEMENTS FOR EVERY LAYER	17
12.ELASTIC SETTLEMENT	17
Index	19

For gravel or gravelly sandy deposits, the corrected value is:

Nc = 1.25 Nspt For correction factors f_S , f_H ed f_t the expressions are:

$$f_{S} = \left(\frac{1.25 \cdot L/B}{L/B + 0.25}\right)^{2}$$
$$f_{H} = \frac{H}{z_{i}} \left(2 - \frac{H}{z_{i}}\right)$$
$$f_{t} = \left(1 + R_{3} + R \cdot \log \frac{t}{3}\right)$$

Where

t time in years > 3

R3 a constant of value 0.3 for static loads and 0.7 for dynamic loads

R a constant of value 0.2 for static loads and 0.8 for dynamic loads

MAIN PARAMETERS

Seismic action	EC7/8	
Zone	Greece	
Lat./ Long. [WGS84]	401512,5/241450,06	
Foundation width	1,5 m	
Foundation length	30,0 m	
Depth of bearing surface	4,65 m	
Embedded height	1,0 m	
GWT depth	8,55	
Correction parameters Terzaghi		

EARTHQUAKE

Maximum acceleration (ag/g) Seismic effect according to Horizontal seismic coefficient	0,16 EC7/8 0,08	
		_

SOIL STRATIGRAPHY

Layer thickne ss [m]	Unit weight [kN/ m ³]	Saturat ed unit weight [kN/ m ³]	Angle of friction [°]	Cohesi on [kN/ m ²]	Undrai ned cohesio n [kN/ m ²]	Elastic modulu s [kN/ m ²]	Oedom etric modulu s [kN/ m ²]	Poisson	Index of primary consoli dation [cmq/s]	Index of second ary compre ssion	Descrip tion
7,8	20,8	20,8	28,7	15,2	70,2	0,0	7000,0	0,25	0,0	0,0	silty clay
10,0	20,6	20,6	18,0	56,0	49,7	0,0	5100,0	0,25	0,0	0,0	slightly sandy clay

Design loads acting on foundation

Nr.	Combinati on name	Design normal stress [kN/m²]	N [kN]	Mx [kN∙m]	My [kN∙m]	Hx [kN]	Hy [kN]	Туре
1	A1+M1+R 1	0,00	0,00	0,00	0,00	0,00	0,00	Design

2	A2+M2+R 2	0,00	0,00	0,00	0,00	0,00	0,00	Design
3	Earthquak e	0,00	0,00	0,00	0,00	0,00	0,00	Design
4	S.L.E.	0,00	0,00	0,00	0,00	0,00	0,00	Design
5	S.L.D.	0,00	0,00	0,00	0,00	0,00	0,00	Design

Earthquake + Partial coef. soil geotechnical parameters + Resistances

Nr	Seismic correction	Tangent to angle of shearing resistance angle	Effective cohesion	Undrained cohesion	Unit weight in foundation	Overburde n unit weight	Red. Coef. Vertical bearing capacity	Red. Coef. Horizontal bearing capacity
1	No	1	1	1	1	1	1	1
2	No	1,25	1,25	1,4	1,3	1	1	1,1
3	Yes	1,25	1,25	1,4	1,3	1	1	1,1
4	No	1	1	1	1,35	1	1,4	1,1
5	Yes	1	1	1	1,35	1	1,4	1,1

FOUNDATION BEARING CAPACITY COMBINATION...Earthquake Author: TERZAGHI (1955)

Bearing capacity [Qult]	595,4 kN/m ²
Design resistance[Rd]	595,4 kN/m ²
Safety factor [Fs=Qult/Ed]	

BOWLE'S SUBGRADE COEFFICIENT (1982) Costante di Winkler 23816,17 kN/m³

A1+M1+R1

Author: TERZAGHI (1955) (Drained conditions)

Factor [Nq]	7,55
Factor [Nc]	17,86
Factor [Ng]	5,08
Form factor [Sc]	1,0
Form factor [Sg]	1,0
Inertial factor of seismic correction [zq]	1,0
Inertial factor of seismic correction [zg]	1,0
Inertial factor of seismic correction [zc]	1,0
Bearing capacity	991,15 kN/m ²
Design resistance	991,15 kN/m ²

Author: Brinch - Hansen 1970 (Drained conditions)

·		
Factor [Nq]	6,49	
Factor [Nc]	14,97	
Factor [Ng]	4,03	
Form factor [Sc]	1,02	
Depth factor [Dc]	1,47	
Load inclination factor [Ic]	1,0	
Slope inclination factor [Gc]	1,0	
Base inclination factor [Bc]	1,0	
Form factor [Sq]	1,02	

Depth factor [Dq] Load inclination factor [Iq] Slope inclination factor [Gq] Base inclination factor [Bq] Form factor [Sg] Depth factor [Dg]	1,41,01,01,00,991,0
Load inclination factor [Ig] Slope inclination factor [Gg] Base inclination factor [Bg] Inertial factor of seismic correction [zq] Inertial factor of seismic correction [zg] Inertial factor of seismic correction [zc]	$1,0 \\ 1,0 $
Bearing capacity Design resistance	1182,2 kN/m ² 1182,2 kN/m ²

A2+M2+R2

Author: TERZAGHI (1955) (Drained conditions)

Factor [Nq]	5,1	
Factor [Nc]	13,98	
Factor [Ng]	3,09	
Form factor [Sc]	1,0	
Form factor [Sg]	1,0	
Inertial factor of seismic correction [zq]	1,0	
Inertial factor of seismic correction [zg]	1,0	
Inertial factor of seismic correction [zc]	1,0	
Bearing capacity	655,43 kN/m²	
Design resistance	655,43 kN/m ²	

Author: Brinch - Hansen 1970 (Drained conditions)

`		
Factor [Nq]	4,48	
Factor [Nc]	11,87	
Factor [Ng]	2,04	
Form factor [Sc]	1,02	
Depth factor [Dc]	1,49	
Load inclination factor [Ic]	1,0	
Slope inclination factor [Gc]	1,0	
Base inclination factor [Bc]	1,0	
Form factor [Sq]	1,01	
Depth factor [Dq]	1,38	
Load inclination factor [Iq]	1,0	
Slope inclination factor [Gq]	1,0	
Base inclination factor [Bq]	1,0	
Form factor [Sg]	0,99	
Depth factor [Dg]	1,0	
Load inclination factor [Ig]	1,0	
Slope inclination factor [Gg]	1,0	
Base inclination factor [Bg]	1,0	
Inertial factor of seismic correction [zq]	1,0	
Inertial factor of seismic correction [zg]	1,0	
Inertial factor of seismic correction [zc]	1,0	
Bearing capacity	785,54 kN/m²	
Design resistance	785,54 kN/m ²	

Earthquake
Author: TERZAGHI (1955) (Drained conditions)

======================================	5.1
Factor [Nc]	13,98
Factor [Ng]	3,09
Form factor [Sc]	1,0
Form factor [Sg]	1,0
Inertial factor of seismic correction [zq]	0,89
Inertial factor of seismic correction [zg]	0,89
Inertial factor of seismic correction [zc]	0,97
Bearing capacity	595,4 kN/m ²
Design resistance	595,4 kN/m ²

Author: Brinch - Hansen 1970 (Drained conditions)

Factor [Nq]	4,48
Factor [Nc]	11,87
Factor [Ng]	2,04
Form factor [Sc]	1,02
Depth factor [Dc]	1,49
Load inclination factor [Ic]	1,0
Slope inclination factor [Gc]	1,0
Base inclination factor [Bc]	1,0
Form factor [Sq]	1,01
Depth factor [Dq]	1,38
Load inclination factor [Iq]	1,0
Slope inclination factor [Gq]	1,0
Base inclination factor [Bq]	1,0
Form factor [Sg]	0,99
Depth factor [Dg]	1,0
Load inclination factor [Ig]	1,0
Slope inclination factor [Gg]	1,0
Base inclination factor [Bg]	1,0
Inertial factor of seismic correction [zq]	0,89
Inertial factor of seismic correction [zg]	0,89
Inertial factor of seismic correction [zc]	0,97
Bearing capacity	714,42 kN/m ²
Design resistance	714,42 kN/m ²

S.L.E.

Author: TERZAGHI (1955) (Drained cond	itions)	
Factor [Nq]	7,55	
Factor	17,86	
Factor [Ng]	5,08	
Form factor [Sc]	1,0	
Form factor [Sg]	1,0	
Inertial factor of seismic correction [zq]	1,0	
Inertial factor of seismic correction [zg]	1,0	
Inertial factor of seismic correction [zc]	1,0	
Bearing capacity	991,15 kN/m ²	
Design resistance	707,96 kN/m ²	

Author: Brinch - Hansen 1970 (Drained conditions)

Factor [Nq]	6,49
Factor [Nc]	14,97

Factor [Ng]	4,03
Form factor [Sc]	1,02
Depth factor [Dc]	1,47
Load inclination factor [Ic]	1,0
Slope inclination factor [Gc]	1,0
Base inclination factor [Bc]	1,0
Form factor [Sq]	1,02
Depth factor [Dq]	1,4
Load inclination factor [Iq]	1,0
Slope inclination factor [Gq]	1,0
Base inclination factor [Bq]	1,0
Form factor [Sg]	0,99
Depth factor [Dg]	1,0
Load inclination factor [Ig]	1,0
Slope inclination factor [Gg]	1,0
Base inclination factor [Bg]	1,0
Inertial factor of seismic correction [zq]	1,0
Inertial factor of seismic correction [zg]	1,0
Inertial factor of seismic correction [zc]	1,0
Bearing capacity	1182,2 kN/m ²
Design resistance	844,43 kN/m ²

S.L.D.

==

_

Author: TERZAGHI (1955) (Drained conditions)

7,55
17,86
5,08
1,0
1,0
0,92
0,92
0,97
919,71 kN/m ²
656,94 kN/m ²

Author: Brinch - Hansen 1970 (Drained conditions)

6,49	
14,97	
4,03	
1,02	
1,47	
1,0	
1,0	
1,0	
1,02	
1,4	
1,0	
1,0	
1,0	
0,99	
1,0	
1,0	
1,0	
1,0	
0,92	
0,92	
0,97	
	$\begin{array}{c} 6,49\\ 14,97\\ 4,03\\ 1,02\\ 1,47\\ 1,0\\ 1,0\\ 1,0\\ 1,0\\ 1,0\\ 1,0\\ 1,0\\ 1,0$

Bearing capacity	1097,65 kN/m ²
Design resistance	784,04 kN/m ²

SETTLEMENTS FOR EVERY LAYER * Oedometric settlement calculated with: Terzaghi's monodimensional consolidation method

Design normal stress	205,0 kN/m ²		
Settlement after T years	15,0		
Total settlement	5	cm	

Z: Average layer depth; Dp: Pressure increment; Wc: Consolidation settlement; Ws:Secondary settlement; Wt: Total settlement.

Layer	Z (m)	Pressure (kN/m ²)	Dp (kN/m²)	Method	Wc (cm)	Ws (cm)	Wt (cm)
1	6,225	129,48	57,39	Oedometric	2,58		2,58
2	12,8	223,56	12,348	Oedometric	2,42		2,42

ELASTIC SETTLEMENT

Design normal stress	205,0 kN/m ²
Layer thickness	20,0 m
Rock substrate depth	20,0 m
Elastic modulus	0,0 kN/m ²
Poisson's ratio	0,25
Influence coefficient I1	0,16
Influence coefficient I2	0,09
Influence coefficient Is	0,23
Settlement at foundation centre	2,95 mm
Influence coefficient I1	0,05
Influence coefficient I2	0,08
Influence coefficient Is	0,12
Settlement at edge	0,77 mm

SETTLEMENTS BURLAND BURBIDGE

Design normal stress	205,0 kN/m ²	
Time	15,0	
Significant depth Zi (m)	1	
Average Nspt values within Zi	30	
Form factor fs	1,524	
Compressible layer factor fh	1	
Time factor ft	1,44	
Compressibility index	0,015	
Settlement	5,975 mm	

LIQUEFACTION VERIFICATION - Method C.N.R. - GNDT from Seed and Idriss

Svo: Total confined stress; S'vo: Effective confined stress; T: Cyclic tangential stress; R: Soil resistance to liquefaction; Fs: Safety coefficient

1	7,80	19,00	13,719	162,237	162,237	0,092	0,328	3,57	Non liquefiabl e level
2	17,80	45,00	21,672	368,234	277,521	0,101	2,384	23,57	Non liquefiabl e level

1.MAIN PARAMETERS	13
2.SOIL STRATIGRAPHY	13
3. Design loads acting on foundation	13
4. Earthquake + Partial coef, soil geotechnical parameters + Resistances	14
5. Vertical bearing capacity	14
6. Vertical bearing capacity A1+M1+R1	14
6.1.TERZAGHI (1955) (A1+M1+R1)	14
6.2.Brinch - Hansen 1970 (A1+M1+R1)	14
7. Vertical bearing capacity A2+M2+R2	15
7.1.TERZAGHI (1955) (A2+M2+R2)	15
7.2.Brinch - Hansen 1970 (A2+M2+R2)	15
8. Vertical bearing capacity Earthquake	16
8.1.TERZAGHI (1955) (Earthquake)	16
8.2.Brinch - Hansen 1970 (Earthquake)	16
9. Vertical bearing capacityS.L.E.	16
9.1.TERZAGHI (1955) (S.L.E.)	16
9.2.Brinch - Hansen 1970 (S.L.E.)	17
10. Vertical bearing capacityS.L.D.	17
10.1.TERZAGHI (1955) (S.L.D.)	17
10.2.Brinch - Hansen 1970 (S.L.D.)	17
11.SETTLEMENTS FOR EVERY LAYER	18
12.ELASTIC SETTLEMENT	18
Index	20

For gravel or gravelly sandy deposits, the corrected value is:

Nc = 1.25 Nspt For correction factors f_S , f_H ed f_t the expressions are:

$$f_{S} = \left(\frac{1.25 \cdot L/B}{L/B + 0.25}\right)^{2}$$
$$f_{H} = \frac{H}{z_{i}} \left(2 - \frac{H}{z_{i}}\right)$$
$$f_{t} = \left(1 + R_{3} + R \cdot \log \frac{t}{3}\right)$$

Where

t time in years > 3

R3 a constant of value 0.3 for static loads and 0.7 for dynamic loads

R a constant of value 0.2 for static loads and 0.8 for dynamic loads

MAIN PARAMETERS

EC7/8	
Greece	
401512,5/241450,06	
1,5 m	
30,0 m	
4,65 m	
1,0 m	
8,55	
	EC7/8 Greece 401512,5/241450,06 1,5 m 30,0 m 4,65 m 1,0 m 8,55

EARTHQUAKE

Maximum acceleration (ag/g) Seismic effect according to Horizontal seismic coefficient	0,16 EC7/8 0,08	
		_

SOIL STRATIGRAPHY

Layer thickne ss [m]	Unit weight [kN/ m ³]	Saturat ed unit weight [kN/ m ³]	Angle of friction [°]	Cohesi on [kN/ m ²]	Undrai ned cohesio n [kN/ m ²]	Elastic modulu s [kN/ m ²]	Oedom etric modulu s [kN/ m ²]	Poisson	Index of primary consoli dation [cmq/s]	Index of second ary compre ssion	Descrip tion
5,75	19,7	19,7	22,0	57,0	52,0	0,0	2200,0	0,25	0,0	0,0	clayey sand
10,0	20,6	20,6	18,0	56,0	49,7	0,0	5100,0	0,25	0,0	0,0	slightly sandy clay

Design loads acting on foundation

Nr.	Combinati on name	Design normal stress [kN/m²]	N [kN]	Mx [kN∙m]	My [kN∙m]	Hx [kN]	Hy [kN]	Туре
1	A1+M1+R 1	0,00	0,00	0,00	0,00	0,00	0,00	Design

2	A2+M2+R 2	0,00	0,00	0,00	0,00	0,00	0,00	Design
3	Earthquak e	0,00	0,00	0,00	0,00	0,00	0,00	Design
4	S.L.E.	0,00	0,00	0,00	0,00	0,00	0,00	Design
5	S.L.D.	0,00	0,00	0,00	0,00	0,00	0,00	Design

Earthquake + Partial coef. soil geotechnical parameters + Resistances

Nr	Seismic correction	Tangent to angle of shearing resistance angle	Effective cohesion	Undrained cohesion	Unit weight in foundation	Overburde n unit weight	Red. Coef. Vertical bearing capacity	Red. Coef. Horizontal bearing capacity
1	No	1	1	1	1	1	1	1
2	No	1,25	1,25	1,4	1,3	1	1	1,1
3	Yes	1,25	1,25	1,4	1,3	1	1	1,1
4	No	1	1	1	1,35	1	1,4	1,1
5	Yes	1	1	1	1,35	1	1,4	1,1

FOUNDATION BEARING CAPACITY COMBINATION...A2+M2+R2 Author: Brinch - Hansen 1970

Bearing capacity [Qult]	220,8 kN/m ²
Design resistance[Rd]	220,8 kN/m ²
Safety factor [Fs=Qult/Ed]	

BOWLE'S SUBGRADE COEFFICIENT (1982) Costante di Winkler 8831,87 kN/m³

A1+M1+R1

Author: TERZAGHI (1955) (Undrained conditions)

Factor [Nq]	1,0
Factor [Nc]	5,7
Factor [Ng]	0,0
Form factor [Sc]	1,0
Form factor [Sg]	1,0
Inertial factor of seismic correction [zq]	1,0
Inertial factor of seismic correction [zg]	1,0
Inertial factor of seismic correction [zc]	1,0
Bearing capacity	290,19 kN/m ²
Design resistance	290,19 kN/m ²

Author: Brinch - Hansen 1970 (Undrained conditions)

1,0	
5,14	
0,0	
1,01	
1,0	
1,0	
1,0	
1,0	
1,0	
	$\begin{array}{c} 1,0\\ 5,14\\ 0,0\\ 1,01\\ 1,0\\ 1,0\\ 1,0\\ 1,0\\ 1,0\\ 1,$

Inertial factor of seismic correction [zg]	1,0
Inertial factor of seismic correction [zc]	1,0
Bearing capacity	272,47 kN/m ²
Design resistance	272,47 kN/m ²

A2+M2+R2

Author: TERZAGHI (1955) (Undrained conditions)

		_
Factor [Nq]	1,0	
Factor [Nc]	5,7	
Factor [Ng]	0,0	
Form factor [Sc]	1,0	
Form factor [Sg]	1,0	
Inertial factor of seismic correction [zq]	1,0	
Inertial factor of seismic correction [zg]	1,0	
Inertial factor of seismic correction [zc]	1,0	
Bearing capacity	233,45 kN/m ²	_
Design resistance	233,45 kN/m ²	

Author: Brinch - Hansen 1970 (Undrained conditions)

Factor [Nq]	1,0
Factor [Nc]	5,14
Factor [Ng]	0,0
Form factor [Sc]	1,01
Depth factor [Dc]	1,0
Load inclination factor [Ic]	1,0
Slope inclination factor [Gc]	1,0
Base inclination factor [Bc]	1,0
Inertial factor of seismic correction [zq]	1,0
Inertial factor of seismic correction [zg]	1,0
Inertial factor of seismic correction [zc]	1,0
Bearing capacity	220,8 kN/m ²
Design resistance	220,8 kN/m ²

Earthquake

Author: TERZAGHI (1955) (Undrained conditions)				
Factor [Nq]	1,0			
Factor [Nc]	5,7			
Factor [Ng]	0,0			
Form factor [Sc]	1,0			
Form factor [Sg]	1,0			
Inertial factor of seismic correction [zq]	1,0			
Inertial factor of seismic correction [zg]	1,0			
Inertial factor of seismic correction [zc]	1,0			
Bearing capacity	233,45 kN/m ²			
Design resistance	233,45 kN/m ²			

Author: Brinch - Hansen 1970 (Undrained conditions)

Factor [Nq]	1,0
Factor [Nc]	5,14
Factor [Ng]	0,0

Depth factor [Dc]1,0Load inclination factor [Ic]1,0Slope inclination factor [Gc]1,0Base inclination factor [Bc]1,0Inertial factor of seismic correction [zq]1,0Inertial factor of seismic correction [zq]1,0	Form factor [Sc]	1.01
Load inclination factor [Ic]1,0Slope inclination factor [Gc]1,0Base inclination factor [Bc]1,0Inertial factor of seismic correction [zq]1,0Inertial factor of seismic correction [zq]1,0	Depth factor [Dc]	1,0
Slope inclination factor [Gc]1,0Base inclination factor [Bc]1,0Inertial factor of seismic correction [zq]1,0Inertial factor of seismic correction [zq]1,0	Load inclination factor [Ic]	1,0
Base inclination factor [Bc]1,0Inertial factor of seismic correction [zq]1,0In articl factor of seismic correction [zq]1,0	Slope inclination factor [Gc]	1,0
Inertial factor of seismic correction [zq] 1,0	Base inclination factor [Bc]	1,0
In antial factor of aciencia composition [-a] 10	Inertial factor of seismic correction [zq]	1,0
inertial factor of seismic correction [2g] 1,0	Inertial factor of seismic correction [zg]	1,0
Inertial factor of seismic correction [zc] 1,0	Inertial factor of seismic correction [zc]	1,0
Bearing capacity 220,8 kN/m ²	Bearing capacity	220,8 kN/m ²
Design resistance 220,8 kN/m ²	Design resistance	220,8 kN/m ²

S.L.E.

Author: TERZAGHI (1955) (Undrained conditions)

1,0
5,7
0,0
1,0
1,0
1,0
1,0
1,0
290,19 kN/m ²
207,28 kN/m ²

Author: Brinch - Hansen 1970 (Undrained conditions)

	=
1,0	
5,14	
0,0	
1,01	
1,0	
1,0	
1,0	
1,0	
1,0	
1,0	
1,0	
272,47 kN/m ²	_
194,62 kN/m ²	_
	1,0 5,14 0,0 1,01 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,

S.L.D.

Author: TERZAGHI (1955) (Undrained conditions)				
Factor [Nq]	1,0			
Factor [Nc]	5,7			
Factor [Ng]	0,0			
Form factor [Sc]	1,0			
Form factor [Sg]	1,0			
Inertial factor of seismic correction [zq]	1,0			
Inertial factor of seismic correction [zg]	1,0			
Inertial factor of seismic correction [zc]	1,0			
Bearing capacity	290,19 kN/m ²			
Design resistance	207,28 kN/m ²			

Author: Brinch - Hansen 1970 (Undrained conditions)

1,0
5,14
0,0
1,01
1,0
1,0
1,0
1,0
1,0
1,0
1,0
272,47 kN/m ²
194,62 kN/m ²

SETTLEMENTS FOR EVERY LAYER * Oedometric settlement calculated with: Terzaghi's monodimensional consolidation method

Design normal stress	158,0 kN/m ²	
Settlement after T years	15,0	
Total settlement	4,99	cm

Z: Average layer depth; Dp: Pressure increment; Wc: Consolidation settlement; Ws:Secondary settlement; Wt: Total settlement.

Layer	Z (m)	Pressure (kN/m ²)	Dp (kN/m²)	Method	Wc (cm)	Ws (cm)	Wt (cm)
1	5,2	102,44	59,807	Oedometric	2,99		2,99
2	10,75	194,7	10,208	Oedometric	2		2

ELASTIC SETTLEMENT

Design normal stress	160,0 kN/m ²		
Layer thickness	20,0 m		
Rock substrate depth	20,0 m		
Elastic modulus	0,0 kN/m ²		
Poisson's ratio	0,25		
Influence coefficient I1	0,16		
Influence coefficient I2	0,09		
Influence coefficient Is	0,23		
Settlement at foundation centre	2,95 mm		
Influence coefficient I1	0,05		
Influence coefficient I2	0,08		
Influence coefficient Is	0,12		
Settlement at edge	0,77 mm		

SETTLEMENTS BURLAND BURBIDGE

Design normal stress	160,0 kN/m ²	
Significant depth Zi (m)	13,0	
Average Nspt values within Zi	30	

LoadCap

Form factor fs Compressible layer factor fh	1,524
Time factor ft	1,44
Compressibility index	0,015
Settlement	4,207 mm

LIQUEFACTION VERIFICATION - Method C.N.R. - GNDT from Seed and Idriss

Svo: Total confined stress; S'vo: Effective confined stress; T: Cyclic tangential stress; R: Soil resistance to liquefaction; Fs: Safety coefficient

1	5,75	29,00	26,576	113,273	113,273	0,095	3,118	32,81	Non liquefiabl e level
2	15,75	45,00	23,643	319,270	248,661	0,102	3,569	34,99	Non liquefiabl e level

1.MAIN PARAMETERS	13
2.SOIL STRATIGRAPHY	13
3. Design loads acting on foundation	13
4. Earthquake + Partial coef, soil geotechnical parameters + Resistances	14
5. Vertical bearing capacity	14
6. Vertical bearing capacityA1+M1+R1	14
6.1.TERZAGHI (1955) (A1+M1+R1)	14
6.2.Brinch - Hansen 1970 (A1+M1+R1)	14
7. Vertical bearing capacity A2+M2+R2	15
7.1.TERZAGHI (1955) (A2+M2+R2)	15
7.2.Brinch - Hansen 1970 (A2+M2+R2)	15
8. Vertical bearing capacity Earthquake	15
8.1.TERZAGHI (1955) (Earthquake)	15
8.2.Brinch - Hansen 1970 (Earthquake)	15
9. Vertical bearing capacityS.L.E.	16
9.1.TERZAGHI (1955) (S.L.E.)	16
9.2.Brinch - Hansen 1970 (S.L.E.)	16
10. Vertical bearing capacityS.L.D.	16
10.1.TERZAGHI (1955) (S.L.D.)	16
10.2.Brinch - Hansen 1970 (S.L.D.)	17
11.SETTLEMENTS FOR EVERY LAYER	17
12.ELASTIC SETTLEMENT	17
Index	19