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Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

©Polyzois P. Bountzis, 2022

All rights reserved.

Modeling of earthquake occurrence times through Markov Processes: A con-

tribution to seismic hazard assessment in Greece – Ph.D. Thesis

©Πολυζώης Π. Μπουντζής, 2022

Με επιφύλαξη παντός δικαιώματος.

Μοντελοποίηση των χρόνων γένεσης σεισμών με χρήση Μαρκοβιανών διαδικασι-

ών: Συμβολή στην εκτίμηση της σεισμικής επικινδυνότητας στον ελληνικό χώρο

Διδακτορική Διατριβή

Citation:

Bountzis, P., 2022. – Modeling of earthquake occurrence times through Markov

Processes: A contribution to seismic hazard assessment in Greece. Ph.D. Thesis,

School of Geology, Aristotle University of Thessaloniki, Annex Number of Scientific

Annals of the School of Geology No 230, 236 pp.

Μπουντζής, Π. 2022. – Μοντελοποίηση των χρόνων γένεσης σεισμών με χρήση Μαρ-

κοβιανών διαδικασιών: Συμβολή στην εκτίμηση της σεισμικής επικινδυνότητας στον

ελληνικό χώρο. Διδακτορική Διατριβή, Τμήμα Γεωλογίας Α.Π.Θ., Αριθμός Παραρ-

τήματος Επιστημονικής Επετηρίδας Τμ. Γεωλογίας Νο 230, 236 σελ.

It is prohibited to copy, store and distribute this work, in whole or in part,

for commercial purposes. Reprinting, storing and distributing for non-profit,

educational or research purposes is permitted, provided the source is acknowl-

edged and the present message retained. Questions regarding the use of the

work for profit should be addressed to the author.

The approval of this Ph.D. Thesis by the school of Geology of the Aristotle

University of Thessaloniki does not imply acceptance of the opinions of the

author (L. 5343/1932, Article 202, par. 2)



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

This research is co-financed by Greece and the European Union (European

Social Fund - ESF) through the Operational Programme ≪Human Resources

Development, Education and Lifelong Learning≫ in the context of the project

“Strengthening Human Resources Research Potential via Doctorate Research”

(MIS-5000432), implemented by the State Scholarships Foundation (IKY)



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Preface

The aim of this doctoral dissertation is to study the short and long-term

properties of the temporal distribution of seismicity through the use of stochas-

tic modeling. The dissertation is structured in four chapters.

In Chapter 1, we provide a short introduction that includes the motivation

to the considered problem and our scientific goals. We present a description

of the current state of related work in the literature concerning the Hidden

Markov Models and the clustering algorithms that are applied in earthquake

catalogs, and we give the theoretical background of studies related to the ex-

istence of non-stationarity for the occurrence of large earthquakes. There is

also an introduction to the selected study areas which satisfy the requirements

for each application. We give a description about the seismotectonic proper-

ties of the areas, as well as the seismic activity with emphasis on the strong

earthquakes.

In Chapter 2, we provide the necessary mathematical background and we

describe in detail the Markovian Arrival Process (MAP) model along with its

analytical properties. We present a brief overview on the available estimation

methods and focus on the Expectation-Maximization algorithm, which we use

in the thesis. We introduce a grid-based method for the determination of the

initial parameter set that we implement in a parallel-framework for reducing

the required computational time. Next, we deploy the procedure for simulating

data sets with the MAP model and we give the estimators of the hidden state

probabilities of the model with the use of the forward-backward equations. We

provide a series of simulations to validate their stability. Finally, we present

the tools for model selection and for the evaluation of the process.

In Chapter 3, we introduce the idea of MAP to be used as a change point

tool for seismicity rates and we investigate its efficiency on earthquake catalogs.

Then, we establish a two-step clustering algorithm that combines the MAP

model with a Density-Based Clustering Algorithm (DBSCAN). We believe that

i
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incorporating a model with multiple embedded occurrence rates, the MAP,

we can separate potential seismic clusters from background seismicity. We

evaluate its performance on a simulated earthquake catalog where the structure

of the clusters is known a-priori. Finally, we apply the method to three major

seismic zones of Greece and investigate their clustering properties.

In Chapter 4, we introduce a two-step modeling procedure based on the

extreme values of the observations to reveal the long-term properties of large

earthquakes temporal distribution. The aim of this approach is to assess if the

MAP model with non-stationary characteristics contributes to the forecasting

of the large earthquakes number. We implement pseudo-prospective experi-

ments based on simulations of the earthquake temporal distribution for the

comparison of the proposed model against the Poisson, non-Poisson renewal

models and the temporal Epidemic Type Aftershock Sequence (ETAS) model.

Finally, Chapter 5 concludes the thesis presenting and summarizing the

research results.

ii
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Abstract

Strong earthquakes exhibit the largest fatality among natural hazards, pos-

ing a unique threat to the society, and causing serious damage and loss of life.

In recent years an increased emphasis is given on the development of stochas-

tic models for earthquake forecasting and the quantification of their predictive

skills, which provide information that help to reveal aspects of seismogenesis

and contribute to the seismic hazard assessment. This is a part of the sta-

tistical seismology research field that is focused on the statistical modeling of

earthquake occurrences for the better understanding of their distribution in

time, space and magnitude. The main goal of this dissertation is to propose

new stochastic models and advanced statistics for the study of the short and

long-term properties of seismicity in time.

Towards this direction, we introduce the use of the Markovian Arrival Pro-

cess for modeling the temporal distribution of seismicity, which can be seen

as a stochastic point process with intensity rate driven by a hidden Markov

model. It shows large flexibility that has been emerged to be useful for cap-

turing a large variety of behaviors and under appropriate parameterization

can approximate a wide class of counting processes like the Poisson process,

renewal models and more bursty ones. However, the increased flexibility of the

model is linked to the large parameter set necessary for the approximation of

the observed behavior sufficiently close. For the fitting of the parameters we

use the Expectation-Maximization algorithm which is an appropriate approach

in problems with unobserved data. We introduce a grid-based method for the

choice of the initial parameter set which we implement in a parallel-framework

for reducing the required computational time. One basic issue when a hidden

process is applied, is to estimate the most probable sequence of latent states.

For this problem, we propose the use of a local decoding algorithm that con-

siders the forward-backward equations, and we verify its stability on simulated

catalogs.

1
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The evaluated transitions among the hidden states of the MAP model in-

dicate changes in seismicity rate, therefore, we propose the use of the model as

an off-line tool for change point detection. The identification of seismicity rate

changes is important as they can be associated with seismic clusters triggered

either from stress changes or fluid intrusion. We establish a two-step clustering

procedure that comprises the MAP model, for an initial separation of the back-

ground seismicity from potential seismic excitations, using the revealed changes

in the seismicity rate, and a density-based clustering algorithm, DBSCAN, for

the detection of elevated density areas in space. We evaluate its performance

on a simulated earthquake catalog where the structure of the clusters is known

a-priori. Earthquake clustering is an essential aspect of short-term seismicity

that can provide crucial information for the determination of faulting geom-

etry as well as to extract useful information on the aftershock productivity

of the study area and the behavior of the foreshock activity, whereas back-

ground seismicity is also essential to probabilistic seismic hazard analysis for

the production of hazard maps. We detect the seismic clusters of three major

seismic zones in Greece and provide their clustering properties with the use

of the Epidemic Type Aftershock Sequence model, that incorporates the well

established Utsu productivity law and Omori-Utsu law, respectively.

Concerning the long-term properties of seismicity, we assume that large

earthquakes temporal distribution is characterized by non-stationarity, be-

tween extended periods of seismic quiescence with long inter-event times that

characterize the tail of their distribution and periods of moderate seismic ac-

tivity. The short-term concentration of seismicity often obscures long-term

features that may characterize the earthquakes temporal distribution, there-

fore we consider the long inter-event times as extreme events due to their rarity

and propose a two-step estimation procedure of the model, where the extreme

events are estimated separately from the short-time values. Statistical analysis

and forecasting in problems that incorporate extreme events is known to be

highly complex as the short times do not conform well with the rare large val-

2
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ues, and the extremes are estimated separately ignoring the potential effects

of the short-time data. We provide pseudo-prospective experiments based on

simulations of the earthquake temporal distribution to demonstrate the con-

tribution of the MAP model to the forecasting of large earthquakes number

and for the comparison against the Poisson, non-Poisson renewal models and

the temporal ETAS model.

Keywords: Statistical Seismology, Stochastic Modeling, Marko-

vian Arrival Process, DBSCAN, Seismic Clustering, Non-stationarity,

Change Point Detection, Large Earthquakes, Greece, Earthquake

Forecasting
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Περίληψη

Οι ισχυροί σεισμοί προκαλούν τη μεγαλύτερη θνησιμότητα μεταξύ των φυσι-

κών καταστροφών, αποτελώντας σημαντική απειλή για την κοινωνία και προκα-

λώντας σοβαρές ζημιές και απώλειες ζωών. Τα τελευταία χρόνια παρατηρείται

έντονο επιστημονικό ενδιαφέρον για την ανάπτυξη στοχαστικών μοντέλων με

σκοπό την πρόγνωση σεισμών και την ποσοτικοποίηση των προγνωστικών τους

ικανοτήτων, παρέχοντας πληροφορίες που βοηθούν στην αποκάλυψη πτυχών της

σεισμογένεσης και συμβάλλουν στην εκτίμηση της σεισμικής επικινδυνότητας. Η

στατιστική σεισμολογία αποτελεί ένα επιστημονικό πεδίο που επικεντρώνεται στη

στατιστική μοντελοποίηση της σεισμικότητας με σκοπό την καλύτερη κατανόηση

της κατανομής των σεισμών στο χρόνο και χώρο. Προς αυτή την κατεύθυνση

είναι προσανατολισμένη η παρούσα διατριβή, με κύριο στόχο να προτείνει νέα

στοχαστικά μοντέλα και προηγμένα στατιστικά εργαλεία για τη μελέτη των βρα-

χυπρόθεσμων και μακροπρόθεσμων ιδιοτήτων της σεισμικότητας στο χρόνο.

Προτείνουμε τη χρήση του μοντέλου Μαρκοβιανών Διαδικασιών Αφίξεων

(ΜΔΑ) για τη μοντελοποίηση της χρονικής κατανομής της σεισμικότητας. Το

μοντέλο θεωρείται μια στοχαστική σημειακή διαδικασία με ρυθμό γένεσης που

καθοδηγείται από ένα κρυφό Μαρκοβιανό μοντέλο. Παρουσιάζει μεγάλη ευελιξία

καθώς υπό την κατάλληλη παραμετροποίηση μπορεί να προσεγγίσει μια ευρεία

κατηγορία στοχαστικών διαδικασιών, όπως η διαδικασία Poisson, μοντέλα ανα-

νέωσης και πιο εκρηκτικές διαδικασίες. Ωστόσο, το τίμημα για την αυξημένη

ευελιξία του μοντέλου συνδέεται με το μεγάλο πλήθος παραμέτρων που χρει-

άζεται να εκτιμηθούν. Για την προσαρμογή των παραμέτρων χρησιμοποιήθηκε

ο αλγόριθμο Expectation-Maximization που θεωρείται κατάλληλη προσέγγιση

σε προβλήματα με μη παρατηρήσημα δεδομένα. Για την επιλογή των αρχικών

παραμέτρων του αλγορίθμου εισάγαμε μία μέθοδο που βασίζεται στην κατασκευή

πλέγματος, την οποία υλοποιήσαμε με παράλληλο προγραμματισμό για τη μείωση

του απαιτούμενου υπολογιστικού χρόνου. ΄Ενα βασικό πρόβλημα σε διαδικασίες

με κρυφές καταστάσεις είναι η εκτίμηση της πιο πιθανής ακολουθίας των κρυφών
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καταστάσεων. Προτείναμε έναν αλγόριθμο αποκωδικοποίησης με τη χρήση των

εμπρός-πίσω εξισώσεων, και επαληθεύσαμε τη σταθερότητά του σε προσομοιω-

μένους καταλόγους.

Οι εκτιμώμενες μεταβάσεις μεταξύ των κρυφών καταστάσεων του μοντέλου

ΜΔΑ υποδεικνύουν αλλαγές στο ρυθμό σεισμικότητας, επομένως, προτείνουμε

τη χρήση του μοντέλου ως εργαλείο για την ανίχνευση σημείων αλλαγής στη

σεισμικότητα. Ο προσδιορισμός των αλλαγών του ρυθμού σεισμικότητας είναι

σημαντικός, καθώς μπορεί να συσχετισθεί με σεισμικές συστάδες που προκαλο-

ύνται είτε από μεταβολές στο πεδίο των τάσεων είτε από τη διάχυση ρευστών.

Αναπτύσσουμε μία διαδικασία συσταδοποίησης δύο βημάτων που περιλαμβάνει το

μοντέλο ΜΔΑ, για τον αρχικό διαχωρισμό της σεισμικότητας υποβάθρου από πι-

θανές σεισμικές διεγέρσεις, χρησιμοποιώντας τις εκτιμώμενες αλλαγές στον ρυθ-

μό σεισμικότητας και έναν αλγόριθμο συσταδοποίησης με κριτήριο την πυκνότητα

των δεδομένων στο χώρο, DBSCAN, για την ανίχνευση περιοχών με αυξημένη

συγκέντρωση σεισμών. Αξιολογούμε την απόδοσή του σε έναν προσομοιωμένο

κατάλογο σεισμών όπου η δομή των συστάδων είναι γνωστή εκ των προτέρων. Η

ομαδοποίηση σεισμών αποτελεί κομμάτι της βραχυπρόθεσμης σεισμικότητας και

παρέχει κρίσιμες πληροφορίες για τον προσδιορισμό της γεωμετρίας ρηγμάτων κα-

θώς και για την παραγωγικότητα των μετασεισμικών ακολουθιών μίας περιοχής

μελέτης όπως επίσης για την ύπαρξη προσεισμικής δραστηριότητας. Παράλλη-

λα, η σεισμικότητα υποβάθρου είναι απαραίτητη για την πιθανολογική ανάλυση

του σεισμικού κινδύνου. Εφαρμόζουμε τον αλγόριθμο συσταδοποίησης σε τρεις

κύριες σεισμικές ζώνες του ελληνικού χώρου και υπολογίζουμε τις ιδιότητες των

ανιχνευμένων συστάδων με τη χρήση του μοντέλου ETAS, το οποίο ενσωμα-

τώνει εμπειρικούς νόμους όπως τον νόμος παραγωγικότητας του Utsu και τον

νόμο Omori-Utsu.

Σχετικά με τις μακροπρόθεσμες ιδιότητες της σεισμικότητας, υποθέτουμε ότι

η χρονική κατανομή των ισχυρών σεισμών χαρακτηρίζεται από μη στασιμότητα,

συγκεκριμένα εκτεταμένοι περιόδοι σεισμικής ηρεμίας εναλλάσσονται με περι-

όδους μέτριας σεισμικής δραστηριότητας. Δείχνουμε ότι η χρονική συμπεριφορά
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τους δεν μπορεί να προσεγγισθεί ικανοποιητικά από το μοντέλο ΜΔΑ λόγω της

παρουσίας βραχυπρόθεσμης σεισμικότητας. Η βραχυπρόθεσμη συγκέντρωση της

σεισμικότητας συχνά εμποδίζει τη μελέτη μακροπρόθεσμων ιδιοτήτων που μπορεί

να χαρακτηρίζουν τη χρονική κατανομή των σεισμών, επομένως θεωρούμε τους

μεγάλους χρόνους μεταξύ συμβάντων ως ακραία γεγονότα λόγω της σπανιότη-

τάς τους και προτείνουμε μια διαδικασία εκτίμησης δύο βημάτων για το μοντέλο,

όπου τα ακραία φαινόμενα εκτιμώνται χωριστά από τα υπόλοιπα δεδομένα. Η

στατιστική ανάλυση και πρόβλεψη σε προβλήματα που ενσωματώνουν ακραία

φαινόμενα είναι γνωστό ότι είναι πολύ περίπλοκη, καθώς οι σύντομοι χρόνοι δεν

συμμορφώνονται καλά με τις σπάνιες μεγάλες τιμές, και σε πολλές περιπτώσεις

λαμβάνονται υπόψιν χωριστά ώστε να αποφύγουμε τις πιθανές επιπτώσεις των

βραχυχρόνιων δεδομένων. Παρέχουμε προγνωστικά πειράματα βασισμένα σε προ-

σομοιώσεις της χρονικής κατανομής των σεισμικών συμβάντων για να δείξουμε

τη συμβολή του μοντέλου ΜΔΑ στην πρόβλεψη του πλήθους ισχυρών σεισμών

και για τη σύγκριση με τα μοντέλα Poisson, μη Poisson μοντέλα ανανέωσης και

το χρονικό μοντέλο ETAS.
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Chapter 1

Introduction

1.1 Context

The need for a resilient society motivates the scientific community to intensify

its efforts for reliable earthquake forecasts and advanced ground-motion mod-

els, two key ingredients for seismic hazard assessment. The development of

modern methods, which will be based on established or new models, as well as

new tools for the evaluation of their effectiveness and the quantification of their

uncertainties, could provide a higher level of preparedness for the upcoming

destructive earthquakes (Jordan et al., 2011).

Towards this direction we need to fully understand the mechanisms that

generate earthquakes, a process called seismogenesis. We know that an earth-

quake occurs when the accumulated stress on a fault exceeds its strength, so

a physics-based model that incorporates this information could predict future

large earthquakes. However, the fault geometry is complex, as they form pop-

ulations and secondary structures within a region which could be linked with

each other (Ben-Zion and Sammis, 2003). Additionally, the physical processes

responsible for the generation of large earthquakes are not directly observable

and require near-fault seismic and geodetic dense sensor networks in conjunc-

tion with improved analysis techniques that can resolve multi scale processes
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(Kato and Ben-Zion, 2021).

The field of statistical seismology endeavors to fill in the gap between

physics-based models without statistics, and statistical modeling. The use

of stochastic modeling is based on the fact that some features of the earth-

quake generation process remain unknown, and they are replaced within the

model by a random component. It includes the quantification of the earth-

quakes distribution in time, space and magnitude along with their correspond-

ing uncertainties. This information helps to reveal aspects of seismogenesis

and provides probability estimates for the genesis of strong earthquakes that

could contribute to the seismic hazard assessment. In a sense, stochastic mod-

eling can be considered physical in terms of its aim to describe the physical

process of earthquakes generation (Vere-Jones, 2010).

Earthquake clustering is one of the main aspects of seismicity, and is ex-

pressed by the concentration of earthquakes in time and space. Earthquakes

generation is neither characterized by periodicity nor is it random over time,

but exhibits strong short-term clustering and weak long-term variations (Ka-

gan and Jackson, 1991). The first is expressed in the form of either triggered

aftershocks after the occurrence of large events or earthquake swarms, whereas

the latter is associated with the temporal distribution of main shocks. Clus-

tering algorithms provide significant information on the identification of active

faulting structures and the well-revealed spatiotemporal clustering of seismicity

can be embedded in stochastic models to construct time-dependent earthquake

forecasts (Field et al., 2017). The Collaboratory for the Study of Earthquake

Predictability (CSEP) highlighted the significant probability gain of clustering

models, such as the Reasenberg–Jones model (Reasenberg and Jones, 1994),

the Short-Term Earthquake Probability model (Gerstenberger et al., 2005),

and the Epidemic-Type Aftershock Sequence model (Ogata, 1998), during af-

tershock sequences over time-independent models (Schorlemmer et al., 2018).

The knowledge on the spatiotemporal aftershock patterns is important because

large aftershocks can pose their own hazard and can be used for operational
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aftershock forecasting. Clustering algorithms can also be implemented to pro-

duce ”declustered” earthquake catalogs, i.e., to remove all triggered events,

which are subsequently given as input for long-term probabilistic seismic haz-

ard analysis (Gerstenberger et al., 2020).

The worldwide expansion of the seismic networks along with the constant

development of methods for earthquake monitoring increased the earthquake

detectability and larger data sets which include smaller earthquakes, e.g. mag-

nitude completeness mc ≈ 0.3 (Ross et al., 2019) with 1.8 million events for

Southern California earthquake catalog during 2008-2017, are now available.

This avalanche of data can provide us with additional information regarding

the clustering features of a region (foreshock activity, aftershock duration and

productivity, existence of swarms) which can be used for constructing more ac-

curate forecasts and reveal secondary faulting structures. However, it requires

the development of refined and robust statistical tools for the identification of

the short-term seismic clusters.

A second type of clustering concerns the long-term variations of seismicity

attributed to large main shocks. Combining the intense space-time concentra-

tion of events and the short duration of the available instrumental earthquake

catalogs, this type of clustering is often indistinct. The effectiveness of statis-

tical methods for the evaluation of the large earthquakes long-term behavior

might be limited in regional fault systems, and CSEP suggests to explore new

forecasting models in a global scale (Schorlemmer et al., 2018). The recent

surge of great earthquakes in circum-Pacific belt (Beroza, 2012; Lay, 2015),

with the 2004 M9.0 Sumatra, the 2010 M8.8 Maule, Chile, and the 2011 M9.1

Tohoku, Japan earthquakes that constitute the half of the six largest earth-

quakes on record, implies the need to investigate extensively whether or not

non-stationarity in large earthquakes exist.

The aim of the present PhD thesis is to study the short and long-term prop-

erties of the temporal distribution of seismicity with stochastic modeling. This

thesis addresses the following research topics and proposes novel algorithms,
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leveraging advanced statistics and stochastic modeling theory, that can be

applied within the scope of seismicity clustering and earthquake forecasting:

• The development of a change point procedure for detecting seismicity

rate changes through stochastic modeling.

• The establishment of a two-step procedure for the identification of earth-

quake clusters.

• The development of a two-step modeling procedure for the large earth-

quakes temporal distribution that incorporates non-stationary character-

istics.

• The contribution of the procedure to the earthquakes number forecasting.

1.2 Background and Related Work

1.2.1 Markov models with hidden states

The Hidden Markov models (HMMs), constitute a general category of time-

dependent stochastic processes with non-observed states in the data (Baum

and Petrie, 1966). In many cases, the underlying earthquake mechanisms are

not evaluated with an adequate accuracy, which leads to lack of knowledge

regarding the causal relationship with the observed seismicity. The hidden

factor embedded in a process can serve as an appropriate tool for modeling

the process of seismogenesis.

New techniques and analytical tools have been developed by Votsi et al.

(2013), who identified the unobserved stress level controlling the strong earth-

quakes occurrence with magnitudes M ≥ 6.5, in Greece and its surrounding

areas, since 1845. A discrete time Hidden semi-Markov model (HSMM) was

applied for the first time by the same authors Votsi et al. (2014) , by providing a

statistical estimator of the intensity function, further extended by Pertsinidou
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et al. (2017) who assumed different emission and jump times of the HSMM.

The seismicity rates in the area of Ionian Sea, Greece, for the period 1900-

2006 were estimated through a Poisson HMM (PHMM) by Orfanogiannaki

et al. (2010). The model revealed changes of seismicity and recognized earth-

quake clusters with the aim to estimate future seismicity rates. Migration

of seismic activity to adjacent areas within North Aegean Sea is revealed by

a multivariate PHMM, which was developed by Orfanogiannaki and Karlis

(2018). Wu (2010) proposed a simple HMM for earthquake declustering and

compared it with the ETAS model using data from central and western Japan

and developed another class of models, called quasi-HMMs, to estimate the

location of the next aftershock (Wu, 2011). The HMMs have been also used

for the short-term forecasting of M ≥ 4.0 earthquakes in Southern California

region under the RELM experiment (Ebel et al., 2007) and for main shock

seismic activity in southern California and western Nevada (Chambers et al.,

2012). Yip et al. (2018) developed a version of a HMM where forecasts of the

occurrence times and magnitudes of earthquakes are generated simultaneously.

The HMMs have also been used for the modeling of volcanic eruptions.

Bebbington (2007) found that during a period of 406 years (1600-2006) the

volcano of Mount Etna is characterized by long Poisson periods alternating

frequently with periods of triggered eruptions. Tremor (non-volcanic) activity

is another type of data that has been investigated with the use of HMMs.

Wang et al. (2017) developed a type of hidden Markov models, where each state

represents a distinct segment of tremor sources and revealed the existence of

migration patterns of tremors within the Tokai region. They further proceeded

to their classification based on the observed occurrence patterns: episodic,

weak concentration, and background (Wang et al., 2018).

However, for the application of the HMMs a fixed-length time interval

needs to be chosen, which can lead to missing information due to the overdis-

persion of earthquake occurrences. The dynamics of the generation process

are often characterized by episodic trends and heterogeneity, which makes ex-
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tremely demanding the correct choice for the length of the time step. Figure

1.1a illustrates an example of a data set that is characterized by fluctuations

in the seismicity rate. The peaks (vertical black arrows) in the distribution

of the inter-event times (Figure 1.1b), show small values with high frequency

compared to their neighbors and provide visual proof on the existence of dis-

tinct periods of relatively high seismic activity. The framework of a hidden

Markov process in the continuous domain where each state can be associated

to each of those peaks through a distinct seismicity rate, is expected to enable

the modeling of changes in the earthquake dynamics without considering a

fixed-length time-step.

Figure 1.1: Earthquakes with M ≥ 3.5 that occurred in the area of Greece
from January 2015 to June 2015. (a) Magnitude distribution as a function of
time; (b) distribution of the inter-event times during this period. Black arrows
indicate inter-event times with high frequency compared to the neighboring
bins. Their values are relatively small, 0.05 and 1.25 days, respectively, so
they can correspond to different periods of relatively high seismic activity.

Wang et al. (2012) proposed a Markov-modulated Hawkes process with

step-wise intensity function at arrival instants for the modelling of the varia-

tions in the seismicity rate. This is a class of a self-exciting stochastic point

process whose intensity function is driven by a Markov process, where hid-

den states correspond to distinct background and decay rates. They inves-

tigated the temporal patterns of Landers-Hector Mine series of earthquakes,

where they captured the evolution of main shocks, their aftershocks duration

and periods of seismic quiescence. More recently, Wang et al. (2020) pro-
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posed a marked point process with varying intensity function to model the

non-stationary features of the volcanic eruptions caused by missing data. A

Poisson process seems insufficient for forecasting eruptions, so point processes

incorporating multiple change points might be more appropriate.

The Markov Modulated Poisson Process (MMPP) Fischer and Meier-Hellstern

(1993) is another class of time-varying intensity rate process, where each hid-

den state is associated with a homogeneous Poisson occurrence rate. Temporal

variabilities of deep earthquake occurrences in New Zealand are investigated

through MMPP Lu and Vere-Jones (2011) revealing the existence of active and

quiescence seismicity periods. The extension of the process by adding state-

dependent marks enabled the association of the occurrence times and magni-

tudes of New Zealand deep earthquakes with two levels of seismicity Lu (2012).

The model has been also used to detect changes in the magnitude–frequency

distribution for both deep (Lu, 2017a) and shallow (Lu, 2017b) earthquakes

in New Zealand. In both cases, the variability of the b-value is found into two

alternate episodes, one of relatively low and one of high b-value. In addition,

the b-value is decreasing before the occurrence of large earthquakes (M ≥ 6)

and periods of low b-values are mainly associated with both shallow and deep

major events. Recently, the concept of a switched Poisson process for modeling

the temporal features of the background seismicity in Northeastern Italy has

been used by Benali et al. (2020), suggesting the existence of heterogeneity

in the occurrence patterns. However, on a MMPP the rate of the intensity

function is varying inside an arrival epoch, so that after a (k − 1)-th earth-

quake occurrence the latent process can move several times to different hidden

states, following the k-th event with a transition to the same state. From a

seismological point of view, this means that seismicity rate can only change

between the occurrence of the last event and the following one, without any

apparent causal relationship.

Bountzis et al. (2019) proposed another special case of a counting process

whose occurrence rate changes step-wise at arrival instants based on a latent
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Markov process with unobserved states, called Markovian Arrival Process. Un-

der this MAP formulation the time between (k−1)-th and k-th events depends

on the state of Markov process at the (k − 1)-th arrival, namely, changes of

the seismicity rate in MAP can only be triggered by a previous event. The

inter-event times follow a hyper-exponential distribution, which is a mixture

of n exponential distributions for some n. It has very tractable properties for

both analytical and simulation purposes (Feldmann and Whitt, 1998) and it

can capture the variability in the arrival rate, such as the one that exists in

the earthquake occurrences. A mixture of exponential distributions has been

adopted by Mendoza-Rosas et al. (2009) in order to provide an assessment of

the volcanic hazard between explosive eruptions of the Colima and Popocate-

petl volcanoes, in Mexico. Each component corresponds to a different eruption

rate, characterizing in this way efficiently successive regimes of non-stationary

processes and long-tail distributions. The first definition of the MAP model

was given by Neuts (1979), which is considered a seminal work that extended

the Markov models beyond the Exponential distribution and the Poisson pro-

cess. Lucantoni et al. (1990) simplified the notation of the MAP model and

Lucantoni (1991) established a general version of the current model, the Batch

Markovian Arrival Process, where groups of events are allowed to occur at the

same time. The MAP is a non-renewal process which due to its versatility

includes as special cases the MMPP, PH-renewal process and the Poisson pro-

cess among others. Cordeiro and Kharoufeh (2011) presented a wide range of

MAP applications from queuing systems and inventory control theory up to

telecommunications networks where the MAP models approximate the bursty

behavior of the data traffic.

1.2.2 Clustering algorithms

Seismicity clustering incorporates many different forms of triggering mecha-

nisms such as static and dynamic stress changes, fluid migration and aseismic
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slip. The detected clustered seismicity can provide information on many differ-

ent aspects of the earthquake dynamics, such as in Lippiello et al. (2012) who

extracted the foreshocks and aftershocks of the Southern California earthquake

catalog based on space-time windows and used their spatio-temporal organi-

zation to improve the forecasting of future earthquakes through a modified

ETAS model. Dascher-Cousineau et al. (2020) related variations of the af-

tershock productivity to potential physical factors such as earthquake depth,

lithosphere age and plate boundary type and Shebalin et al. (2020) showed

that the productivity distribution in ∆M , is independent of the magnitude

of triggering events and decreases with depth. The Bath’s law properties are

extended in space, time and focal mechanisms by Tahir et al. (2012) who ob-

served variations on the size and distance of the largest aftershock from the

main shock with faulting type. In addition to the necessity of cluster iden-

tification, robust algorithms for earthquake declustering, i.e., the separation

of the background seismicity from clustered events, contribute to the develop-

ment of long-term seismic hazard maps (Mizrahi et al., 2021; Petersen et al.,

2018; Taroni and Akinci, 2021) or the regional optimization of background

rates (Llenos and Michael, 2020). Finally, some studies use seismicity clus-

tering techniques for the reconstruction of the faulting network (Grund et al.,

2016; Kamer et al., 2020; Petersen et al., 2021).

Seismicity clustering is quantified through the dependencies of earthquake

occurrences in time, space and magnitude and is based on the existence of

physical interactions such as stress changes induced by previous events (Stein,

1999) or fluid diffusion over a region (Hainzl, 2004). In the first case, it is

translated into main shock–aftershock sequences, whereas in the latter case it

is translated into earthquake swarms, i.e. events close in time and space with-

out a distinct main shock. The first study of the clustering properties in time,

namely, an increase of seismicity rate in a certain area, was provided by Omori

in 1894 (Ōmori, 1894), who proposed a power-law distribution for the deter-

mination of the aftershocks number after a main shock. One century later,
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Utsu et al. (1995) modified the functional form leading to the Omori–Utsu

law. The empirical law has been incorporated into point process models, the

most known one being the ETAS model (Ogata, 1988, 1998). According to the

Collaboratory for the Study of Earthquake Predictability Schorlemmer et al.

(2018) clustering models demonstrate reliable forecasts of future earthquakes,

such as the ETAS model Lombardi and Marzocchi (2010), which in many cases

perform much better than long-term smoothed seismicity models mainly dur-

ing the aftershock sequences Omi et al. (2015); Page et al. (2016); Rhoades

et al. (2018). However, swarms are not driven by the same physical mech-

anisms, which makes it difficult to extract reliable forecasting results when

swarm activity is dominant in a region.

Traditional approaches for clustering detection or declustering include window-

based methods where space-time windows around main shocks are defined and

events within them are extracted (Felzer and Brodsky, 2006; Gardner and

Knopoff, 1974; Gentili and Bressan, 2008). Peresan and Gentili (2020) studied

the efficiency of the Gardner-Knopoff (GK) algorithm to separate clustered

from background seismicity on earthquake catalogs from north-eastern Italy

and showed that for moderate and small main shocks where aftershock ac-

tivity might be low the GK method can lead to overestimated results. Teng

and Baker (2019) showed that the method also provides dubious results on

induced seismicity, in particular, it removed 80% of earthquakes in the Okla-

homa–Kansas region and failed to approximate the observed changes in back-

ground rates.

Another approach to identify clusters of events is by creating links among

earthquakes based on spatial and temporal zones (Frohlich and Davis, 1990;

Reasenberg, 1985). The Reasenberg (RB) linked-based model (Reasenberg,

1985), which is one of the most commonly used approaches especially for seis-

mic hazard studies, assumes a spatial zone based on stress redistribution near

the main shock and a temporal zone based on the Omori law. The cluster is de-

fined by the linked events, where the largest earthquake is considered the main
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shock and the others are divided into foreshocks and aftershocks. Probabilistic

seismic hazard analyses are based on the RB approach for the declustering of

earthquake catalogs in New Zealand (Stirling et al., 2002) and Italy (Taroni

and Akinci, 2021) among others and Schorlemmer and Gerstenberger (2007)

provided a range of parameter values for the RB model, that should be used

for long-term forecasting models in the RELM testing center.

The Nearest-Neighbor (NN) is an approach for clustering detection which

has been initially proposed by Baiesi and Paczuski (2004). They developed

a space-time-magnitude metric based on empirical laws for earthquake trig-

gering. The metric is a decreasing function of the time and space proximity

among two earthquakes, i.e., the metric value for events close in time and space

is smaller than the value for two events that are in long distance. The method-

ology has been further explored by Zaliapin et al. (2008), who introduced a

rescaled distance, R, and time, T , formula among events and observed that

the seismicity is divided into a clustered and a background component when

(R, T ) is plotted. The first component corresponds to the clustered seismicity

with short inter-event values in time and space and the second component

comprises the background seismicity. The key factor in their approach is the

threshold value η0, according to which the two components are divided. A

robust analysis of the method is made to the 1981–2011 relocated seismicity

catalog of southern California by Zaliapin and Ben-Zion (2013a), who demon-

strated the efficiency of the algorithm. They further classified the detected

clusters into burst-like and swarm-like sequences and showed the existence of

correlation among the spatial variability of the clusters and the heat flow of

the corresponding areas (Zaliapin and Ben-Zion, 2013b). The same authors

(Zaliapin and Ben-Zion, 2016) associated the triggering mechanisms of clus-

tering on a global scale mainly with the heat flow level, whereas the tectonic

regime seems to have an indiscernible contribution (Stallone and Marzocchi,

2019). The method has been used to investigate the clustering properties of

seismicity in the Sea of Marmara region, NW Turkey (Mart́ınez-Garzón et al.,
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2019), where regions related to repeaters are identified and to Northeastern

Italy (Peresan and Gentili, 2018) where two areas with distinct cluster charac-

teristics are revealed. In particular, swarm-like sequences are associated to the

north-western part and burst-like sequences with the south-eastern part of the

study area. The method is also applied to swarm-type clusters by Zhang and

Shearer (2016), who managed to recognize and associate swarms to fluid and

heat flow as well as aseismic slip. However, uncertainties on the choice of the

binary threshold led to the incorporation of a probabilistic frame by Bayliss

et al. (2019), specifically the Markov Chain Monte Carlo mixture modeling,

for the classification of the nearest neighbor events. Recently, Aden-Antoniów

et al. (2022) suggested the use of machine learning techniques for the choice

of the threshold value and the parameter tuning of the algorithm. Except

of cluster detection the NN algorithm can be used for the construction of a

declustering catalog (two closely related problems). Zaliapin and Ben-Zion

(2020) introduced a modified version of the NN algorithm that includes the

stochastic thinning for separating background and clustered events, according

to a threshold value which is determined by randomized-reshuffled catalogs.

A stochastic approach for the discrimination of clustered seismicity from the

background one was first implemented by Zhuang et al. (2002). The method is

based on the assumption that seismicity is well described by the ETAS model

and the probability for every event being a triggered or a background one is

estimated through an iterative method according to the intensity function of

the model. According to these probabilities, the clusters are separated from

the background events and significant features of the triggered earthquakes

are analyzed and revealed in various regions (Zhuang et al., 2005, 2019, 2004).

Important information can be extracted also from the declustered catalog,

for mapping the background seismicity or the moment rate in a seismic area

like in Console et al. (2010) for the Southern California and Davoudi et al.

(2018) for Iran earthquake catalogs, respectively. However, Hainzl et al. (2013)

demonstrated that the a-parameter of the stationary ETAS model, which de-
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termines the number of aftershocks in relation to the main shock magnitude,

is underestimated in catalogs with swarm activity, while the estimation of the

background seismicity component, µ, is influenced by the existence of slow

slip events (Kumazawa and Ogata, 2014). Hence, the fitting of the ETAS

parameters can be biased due to transient aseismic forces and can lead to

dubious cluster detection in regions that include seismic swarms. A compari-

son among the stochastic and the nearest-neighbor method from Varini et al.

(2020) showed that they produce similar partitions of the Northeastern Italy

and Western Slovenia earthquake catalogs, but they differ in the internal con-

nections among the grouped events. The clusters derived from the stochastic

method exhibit more complicated structures than the ones from the nearest-

neighbor method. Another probabilistic method for separating main shocks

from aftershocks is proposed by Marsan and Lengline (2008). Their proce-

dure does not require the adoption of any particular intensity function and

is non-parametric. The main assumption concerns the linearity of earthquake

triggering and enables the discrimination between directly and indirectly trig-

gered aftershocks.

There are also clustering methods that are based on the assumption of a

common physical trigger during the sequence, expressed by fluctuations in the

occurrence rate, such as the CURATE algorithm (Jacobs et al., 2013). The

method is based principally on the comparison among the observed cumulative

rate and the average one, and subsequently on the implementation of a distance

and day rule without any physical constraint. The method is useful for the

detection of swarm-type clustering (Mesimeri et al., 2019), where the seismic

activity cannot be explicitly explained by earthquake interactions, and for

identifying temporal variations of tremor activity (Peng et al., 2019). However,

the choice of the free parameters should be based on the tectonic characteristics

and the earthquake epicentral catalog accuracy of the region rather than being

defined blindly, since it lacks a rigorous optimization procedure. Bottiglieri

et al. (2009) proposes the use of the coefficient variation among inter-event
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times as a tool to determine the starting and ending point of a sequence. Other

statistical methods for the detection of changes in the seismicity rate concern

the application of Change point Analysis (CptA). Pievatolo and Rotondi (2008)

applied a CptA on an earthquake catalog with independent inter-event times

through a Bayesian approach, whereas Gupta and Baker (2017) and Fiedler

et al. (2018) developed a methodology on the spatiotemporal domain for the

detection of rate changes, which they tested in induced seismicity. Recently,

Lykou et al. (2020) applied a CptA based on non-parametric tests in the Gulf

of Corinth area (Greece), with remarkably well online performance.

Finally, some studies implement two-stage clustering approaches, where

they categorize separately the seismicity in terms of their temporal and spa-

tial proximity. Georgoulas et al. (2013) developed a hybrid method that in-

corporates a density-based clustering algorithm, the DBSCAN (Ester et al.,

1996), for the grouping of events concentrated in time and an agglomerative

hierarchical procedure for separating the events also in space. The DBSCAN

algorithm is a versatile tool for grouping events as the number and the form

of the clusters is not determined a-priori. Additionally, earthquakes can be

grouped according to different attributes based on the definition of the dis-

tance metric. For instance, it has been used for classifying focal mechanisms

using the Kagan angle (Cesca et al., 2014; Kostoglou et al., 2020), and earth-

quake repeaters using the waveform similarity as distance metric (Kostoglou

et al., 2021; Petersen et al., 2021), respectively. Another two-step clustering

procedure has been proposed recently by Vijay and Nanda (2021). In the first

step a Gaussian kernel-based temporal density estimation is used for grouping

the events in time and in the second step events are also separated in space

based on a decision graph of the events spatial density. For a more compre-

hensive review and technical details on clustering algorithms in seismology we

refer to Molchan and Dmitrieva (1992) and van Stiphout et al. (2012).
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1.2.3 Non-stationarity of large earthquakes

Kagan and Jackson (1991) in their milestone work concluded that earthquake

clustering is characterized by (1) a short-term, strong clustering related to

foreshock-main shock-aftershock sequences, and (2) a long-term, weak cluster-

ing of main shocks. However they noted that ”investigating long-term prop-

erties of seismicity is much more difficult than similar studies of short- and

intermediate-term variations of earthquake occurrence rates. One of the rea-

sons is obvious: we lack well documented, uniform long duration catalogues of

earthquakes.”

Nevertheless, during the last 15 years the interest on the assumption of

non-stationarity for the occurrence of large earthquakes has raised due to the

noticeable increase of the great earthquakes (M ≥ 8.0) since 2004 (Beroza,

2012; Lay, 2015). Relative results indicate the existence of temporal clus-

tering, time-dependency of great earthquakes or even the non-stationarity of

the stochastic process that describes the procedure of seismogenesis, which

could contribute to the improvement of these earthquakes forecasting. Bufe

and Perkins (2005) displayed the existence of temporal clustering in a global

scale during 1950-1965 for earthquakes with M ≥ 8.6, followed by a long last-

ing relative seismic quiescence until 2001. They found statistically significant

deviations from a stationary Poisson process through Monte Carlo simula-

tions. The non-stationarity of earthquakes with M ≥ 7.0 during 1900-1990

was investigated by Lombardi and Marzocchi (2007), who found both short-

term triggering activity and long-term fluctuations of the earthquake rate in

decades or longer, based on the application of an ETAS model. However,

the non-stationary ETAS model does not detect the times of the long–term

seismicity rate changes which should be defined before. Similar results are de-

rived by Faenza et al. (2003, 2008) who evidenced temporal clustering of large

earthquakes with M ≥ 7.0 during 1900-2004 in a worldwide scale and with

M ≥ 5.5 since 1600 in a regional scale (Italy), respectively. They suggest that
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the physical processes that generate aftershocks and large earthquakes might

be different (Faenza et al., 2004). More recently, Luginbuhl et al. (2018) con-

cluded that global seismicity with earthquakes of M ≥ 7.0 from 2004 to 2016

is not random in time, after comparison of synthetic random catalogs with

the observational one, through the concept of natural time, whereas Rogerson

(2018) provided statistical evidence for large (M ≥ 7.0) earthquakes inter-

actions within months between the triple junction of the Nazca, Cocos and

Pacific plates. Evidence for long-range correlations among strong earthquakes

(M ≥ 6.5) during 1845-2017 has also been found in the Greek region by Il-

iopoulos et al. (2020). They suggest the existence of interactions between

strong earthquakes in intermediate time scales and in long spatial ranges.

The physical mechanisms behind the large earthquakes temporal behav-

ior, namely, the long–term non-stationarity of the seismicity remain vague,

although there has been increasing evidence for the existence of remotely

triggered small earthquakes from the passage of seismic waves after a large

earthquake occurrence (Hill and Prejean, 2007). Gomberg and Sherrod (2014)

showed that all examined earthquakes with M ≥ 8.6 in subduction zones since

1960 triggered M > 5.5 crustal earthquakes within days and distances up

to a few multiples of the dimensions of the triggering events in accordance

with Parsons and Velasco (2011). However, Pollitz et al. (2012) evidenced dy-

namic triggering even in far field distances. Sammis and Smith (2013) suggest

that these remote events usually small in magnitude could advance or delay a

seismic cycle producing temporal clusters of events or in other words synchro-

nization and Scholz (2010) observed the phase locking of nearby faults which

he called fuzzy synchronization.

Bendick and Bilham (2017) statistically quantified the worldwide synchro-

nization of earthquakes with M ≥ 7.0 since 1900 through topological networks

and time series analyses and more recently, Bendick and Mencin (2020) re-

vealed the existence of temporal earthquake clustering based on the renewal

interval alignment by testing whether events with similar renewal intervals
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tend to occur closer in time than it would be expected for independent events.

Nevertheless, the Topological Data Analysis cannot be used for forecasting the

productivity of large earthquakes. Chen et al. (2020) tried to explain the ob-

served burstiness (clusters separated by long irregular periods of quiescence)

of worldwide events with M ≥ 6.0 during 1904-2016 through the Devil’s Stair-

case. It is a fractal property of non-linear complex systems where one rupture

could affect the behavior in the whole area.

Many statistical studies in global earthquake catalogs reach to contradic-

tory conclusions, i.e., earthquakes originate from a stationary Poisson pro-

cess, implying that they occur randomly in time with a stable seismicity

rate. Michael (2011) performed statistical tests to investigate whether a null

hypothesis for the occurrence of random events with a constant rate along

with localized aftershock sequences can be rejected for the inter-event times

of M ≥ 7.0, 7.5 and 8.5 earthquakes since 1900. The identified temporal

clustering was attributed to the aftershock activity. Similarly, Shearer and

Stark (2012) concluded that events originate from a Poisson process, however,

they focused on the existence of correlated events in global distances neglect-

ing potential regional-scale clustering. Daub et al. (2012), Parsons and Geist

(2012) and Ben-Naim et al. (2013) compared the occurrence frequencies of large

(7.0 ≤ M ≤ 8.3) global events since 1900 with numerical simulations drawn

from Poisson processes without finding any significant departure from the sta-

tionary Poisson process. Touati et al. (2016) applied a change point analysis

for the detection of changes in the global rate of events with M ≥ 7.0, 7.5, 8.0

and 8.5 since 1918, concluding that there is not any strong evidence that global

earthquakes are correlated in time.

The brevity of the seismological record (duration of instrumental earth-

quake catalogs is very short), along with the limited number of global great

earthquakes reduce the robustness of the statistical tests to identify non ran-

domness (Dimer de Oliveira, 2012). Therefore, the seismic activity might not

be representative of the potential long-term variations. Daub et al. (2015)
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produced magnitude and time-dependent simulated catalogs and concluded

that the ability of the statistical tests to distinguish random fluctuations in

time from temporal clustering, depends on the type of cluster and the amount

of data. Since the detection of non-stationarity in the seismicity rate might

not be always possible, Zaliapin and Kreemer (2017) proposed the investiga-

tion of significant seismic moment temporal variations. They concluded that

time-dependent parameters of the tapered Pareto distribution are in favor over

time-independent models for events with M ≥ 7.0 during 1918-2014 and sug-

gested that the increased global rate after December 2004 is a statistically

significant feature. However, even though they robustly verified the existence

of sub-intervals in time with different parameters, the duration and the number

of the time-windows are rather subjectively chosen. One extra difficulty when

investigating the temporal distribution of earthquakes is the co-existence of two

time-scales. The short-term clustering which is expressed through foreshocks

and aftershocks and the long-term variations in the seismicity rate. The strong

space-time concentration in short-times might obscure the long-term features

of earthquakes (Zaliapin and Ben-Zion, 2022).

1.3 Study areas

Greece is characterized by a complex seismotectonic environment that is dom-

inated by the intense crustal deformation due to the subduction of the eastern

Mediterranean oceanic lithosphere beneath the overriding Aegean plate (Fig-

ure 1.2), forming the Greek subduction zone and the back arc area (McKenzie,

1972; Papazachos and Comninakis, 1971). The Aegean microplate accommo-

dates a southwestward movement relative to the stable Eurasia imposing a

widespread extension in the interior of the plate. A characteristic case of

extension is the Corinth Gulf area (purple box in Figure 1.2).

The second major seismotectonic structure in Greek area is associated with

the lateral extrusion of the Anatolian microplate as a result of its collision
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Figure 1.2: Seismotectonic properties of the Aegean Sea and the surrounding
areas including the dominant structures (thick black lines), such as the Hel-
lenic Arc (thick black line with triangles), the North Aegean Trough, which
accommodates the westward prolongation of NAF into the Aegean, the Kefalo-
nia dextral Transform Fault Zone and the Rhoades sinistral Transform Fault
Zone. Red arrows represent the kinematics along major fault zones as well as
the main deformational pattern in the Aegean, characterized by compression
along the Hellenic Arc and extension in the back-arc area. Corinth Gulf area
is confined by the purple box, the Central Ionian Islands area by the yellow
box and the North Aegean Sea area by the blue box, respectively.

against the Arabian plate and the westward prolongation of the North Anato-

lia Fault (NAF) into the Aegean Sea (Jackson and McKenzie, 1988; Taymaz

et al., 1991). The NAF is propagating to the west reaching the Aegean Sea

and forming the Northern Aegean Trough (NAT) (McKenzie, 1972) (blue box
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in Figure 1.2). As the right-lateral slip on the North Anatolian Fault enters

the Aegean region, it distributes on several parallel faults. Dextral strike slip

faulting prevails along the North Aegean Sea and its boundaries, the Kefalo-

nia Transform Fault (KTFZ) with a dextral strike slip motion (Scordilis et al.,

1985) to the west and the Rhoades Transform Fault (RTF) with a sinistral

strike slip motion to the east (Papazachos and Papazachou, 2003). The two

transform fault zones delimit the Hellenic Arc at its northwestern and south-

eastern ends, respectively. The KTFZ which can be distinguished in its two

branches Kefalonia and Lefkada (Louvari et al., 1999), connects the subduc-

tion to the south and the continental collision on the west coast of Greece in

the north and Albania (yellow box in Figure 1.2).

All the earthquake data sets that are used in the thesis are from the re-

gional catalog of the Geophysics Department of the Aristotle University of

Thessaloniki (Aristotle University of Thessaloniki, 1981), compiled with the

recordings of the Hellenic Unified Seismological Network (HUSN) (University

of Athens, 2008).

1.3.1 Corinth Gulf area

The Corinth Gulf (CG), constitutes one of the fastest extending continental

regions in the world. The width of the gulf is not constant, but increases from

west to east. Based on geodetic measurements, the rate of expansion between

the western and eastern parts of the Corinth Gulf are different (Briole et al.,

2000; Chousianitis et al., 2015). In particular, its western part expands with

a rate of 13–14 mm/yr, whereas the eastern part exhibits a slower extension

rate of 10–12 mm/yr.

Several destructive earthquakes (M ≥ 6.0) both in historical and instru-

mental era are observed, which verify the intense crustal deformation of the re-

gion (Ambraseys and Jackson, 1997; Papazachos and Papazachou, 2003). The

seismicity is mainly associated with eight major faults that bound the rift to the
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south and dip to the north (Hatzfeld et al., 2000). The Offshore Akrata, Xy-

lokastro, Offshore Perachora, Skinos and Alepochori fault segments attribute

to the eastern subarea, whereas the western one includes the Psathopyrgos,

Aigion and Eliki fault segments (Figure 1.3). In addition to Corinth gulf the

study area encompasses secondary structures such as Trichonis Lake, Achaias

and Kapareli faults. The seismicity in Lake Trichonis graben is studied due

to its proximity to the Corinth Gulf and the recent seismicity which consists

of sparse activity interrupted by the occurrence of several strong earthquakes,

like the 2007 earthquake swarm with Mw = 5.2 (Kiratzi et al., 2008). The last

strong earthquake in the study area took place in the northwestern Pelopon-

nese on June 8, 2008 with Mw = 6.4 (Ganas et al., 2009; Karakostas et al.,

2017).

Figure 1.3: Study area with the eight major faults bounding the southern
coastline. In addition, the Trichonida, Kapareli and Achaia faults edging the
Corinth Gulf are given, which are associated with the 1975, Mw = 6.0, 1981,
Mw = 6.3 and 2008, Mw = 6.4 events, respectively, and the Nafpaktos and
Eratini faults. Epicentral distribution of earthquakes with 2.5 ≤ M < 4.5 that
occurred in the study area during 2012 − 2019 are shown with white circles,
with 4.5 ≤ M < 6.0 during 1964 − 2019 with pink circles and with M ≥ 6.0
during 1964 − 2019 with yellow stars. Vertical line divides the area into the
western and eastern subareas.
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The sequence of the three destructive earthquakes (M ≥ 6.3) in less than

10 days in 1981 which are associated with adjacent and antithetic faults in the

eastern part of the Corinth Gulf, in Alkyonides Bay, has aroused interest and

is well studied (Hatzfeld et al., 2000; Jackson et al., 1982). The western part

has also been hit by destructive earthquakes such as the one near Galaxidi in

1992 (Hatzfeld et al., 1996) and in Aigio in 1995 (Bernard et al., 1997). Two

moderate earthquakes with Mw = 5.4 and Mw = 5.4 took place near Efpalio

in January 2010. They occurred within four days and at a distance of about

5km. They correspond to two adjacent faults, which probably ruptured at the

same period (Ganas et al., 2013; Karakostas et al., 2012; Sokos et al., 2012).

Until the end of 2019 two earthquakes with M ≥ 5.0 have occurred in the

study area, one in November 2014 with Mw = 5.0 (Kaviris et al., 2018) and

one in March 2019 with M5.1.

The Corinth Gulf area is also characterized by seismic activity triggered

by fluid diffusion (Bourouis and Cornet, 2009; Mesimeri et al., 2019). One

of the major sequences is the 2013 Aigion swarm which initiated on 21 May

2013 with a bulk of small events and several bursts associated to earthquakes

with magnitudes ranging between 3.3-3.7 (Kapetanidis et al., 2015; Mesimeri

et al., 2016). Two seismic excitations followed, the first one associated to the

M = 3.7 event on 15 July, 2013 (Michas et al., 2021). The second half of 2014

is also a well-studied period with intense seismic activity such as the M4.6

event on 21 September 2014, associated with the earthquake swarm located

between Nafpaktos and Psathopyrgos (Kapetanidis, 2017).

In general, the Corinth Gulf, especially the western part, is characterized

by strongly clustered seismicity that triggered the interest of many indepen-

dent studies that investigated the properties of the microseismicity in the area

(Duverger et al., 2018; Kapetanidis et al., 2021; Mesimeri et al., 2018a; Michas

et al., 2021; Rigo et al., 1996). Finally, there is evidence for the existence of

aseismic slip expressed through multiple repeating events (De Barros et al.,

2020; Mesimeri and Karakostas, 2018).
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1.3.2 Central Ionian Islands area

The central Ionian Islands (CII) constitute the most seismically active area

of the Mediterranean region. Historical information and instrumental record-

ings evidence intense seismic activity (Papazachos and Papazachou, 2003) with

strong earthquakes (M ≥ 6.0) occurring frequently, in many cases clustered

in time possibly due to stress transfer and triggering of adjacent, optimally

oriented fault segments (Papadimitriou, 2002). The dominant seismotectonic

characteristic is the Kefalonia Transform Fault Zone extending more than 100

km along the western coastlines of Lefkada and Kefalonia Islands and com-

prising two distinct main branches, the Lefkada and Kefalonia fault segments.

It manifests right lateral strike slip motion with a minor thrust component

(Kiratzi and Langston, 1991; Scordilis et al., 1985) with NNE-SSW strike for

the Lefkada and NE-SW for the Kefalonia segment (Louvari et al., 1999) (Fig-

ure 1.4). The KTFZ designates the transition between the termination of the

Hellenic subduction zone to the south and the continental collision between

the Adriatic and Aegean microplates to the north, causing a compressional

tectonic regime with the maximum stress component at a NE-SW direction,

as confirmed by both seismological (Papadimitriou, 1993) and geodetic data

(Kahle et al., 1995). Microseismicity is mainly concentrated along the KTFZ

and manifests both swarm-type and main shock-aftershock sequences. The

investigation of the clustering features is crucial to shed light on the secondary

structures and the complex geodynamics of the area. It may constitute as

well a tool for exploring the evolution of the seismic sequences in the region

and the preparatory phase of main shocks, contributing to the seismic hazard

assessment.

The area of the central Ionian Islands offers a unique opportunity to study

the clustering properties of seismicity, since the recent strong (M ≥ 6.0) earth-

quakes have motivated the installation of a constant monitoring of the region

with a dense seismological network. The 2003, Mw = 6.2, Lefkada main shock
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Figure 1.4: Map of the central Ionian Islands area showing the main seismo-
tectonic characteristics. The thick yellow line illustrates the fault trace of the
KTFZ and red arrows describe the right lateral motion in the zone. Epicentral
distribution of earthquakes with 2.5 ≤ M < 4.5 that occurred in the study
area during 2012 − 2019 are shown with white circles, with 4.5 ≤ M < 6.0
during 1964 − 2019 with pink circles and with M ≥ 6.0 during 1964 − 2019
with yellow stars.

and its aftershock sequence stimulated a detailed investigation of the acti-

vated fault network by an adequately accurate earthquake catalog based on

the recordings of a dense portable digital network (Karakostas and Papadim-
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itriou, 2010).

Among the major seismic sequences is the 2014 Kefalonia doublet with

the first main shock occurring on 26 January with M = 6.1, and aftershock

activity extending over 35 km, including the second main shock with M =

6.0 that occurred on 3 February along with its own aftershocks. Earthquake

relocation allowed for a thorough investigation of the aftershock distribution

based on focal distribution and offered additional insight in the details of the

rupture kinematics of the transform fault zone (Karakostas et al., 2015; Sokos

et al., 2015). Another major event is the 2015 Mw = 6.5 Lefkada earthquake

(Papadimitriou et al., 2017) 12 years after the 2003 Mw = 6.2 main shock that

struck the northwestern part of Lefkada Island (Papadopoulos et al., 2003).

The main shock ruptured a segment of the KTFZ which is adjacent to that

of the 2003. The area between Lefkada and Kefalonia, extended to about 15

km, is considered as a transition zone with E–W-oriented, parallel step-over

faults (Karakostas et al., 2015) that were activated in the three ruptures and

are also related with smaller clusters of microseismicity (Bountzis et al., 2021).

Finally, some seismic swarm activity is observed in the northernmost terminus

of the KTFZ, offshore Lefkada island (Kostoglou et al., 2020).

1.3.3 North Aegean Sea area

The third area is located in the North Aegean Sea (NAS) (Figure 1.5) and is

dominated by dextral strike-slip faulting, along the North Aegean Trough and

its parallel branches (Papazachos et al., 1998), as a consequence of the west-

ward propagation of the North Anatolian Fault into the Aegean (McKenzie,

1972). The driving mechanism of the active deformation in the Aegean region

is the subduction of the oceanic lithosphere of the Eastern Mediterranean un-

der the continental Aegean microplate, forming the Hellenic Subduction Zone.

The almost NS-oriented backward extension of the Aegean, due to the roll-

back of the submerged lithospheric plate, is the driving force for the high rate
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of expansion of the backward area in the Aegean (Le Pichon and Angelier,

1979). The combination of the NS expansion with the westward movement of

the Anatolian plate results in rapid deformation in the wider Aegean region

with NE-SW direction. The area is characterized by the frequent generation

of strong earthquakes (M ≥ 6.0).

Figure 1.5: Map of the North Aegean Sea area showing the main seismotectonic
characteristics. The thick yellow line illustrates the fault trace of the North
Aegean Trough, which accommodates the westward prolongation of NAF into
the Aegean. Epicentral distribution of earthquakes with 2.5 ≤ M < 4.5 that
occurred in the study area during 2012 − 2019 are shown with white circles,
with 4.5 ≤ M < 6.0 during 1964 − 2019 with pink circles and with M ≥ 6.0
during 1964− 2019 with yellow stars.

One of the two major earthquakes in the last decade is the Mw = 6.9

earthquake of May 24, 2014 that is located approximately 20 km southeast
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of Samothraki island in the NAT. Its aftershock sequence is lacking of strong

aftershocks with M > 5.0, as well as aftershocks very close to the main shock

(Evangelidis, 2015; Kiratzi et al., 2016). However, the entire North Aegean

Trench was activated in the west from Mount Athos to the western end of

the Gulf of Saros in the east. The length of the slip zone has been estimated

to be approximately 95 km longer than that predicted by empirical relation-

ships, of the order of 50-70 km (Wells and Coppersmith, 1994). The second

major earthquake occurred on June 12, 2017 with Mw = 6.4 and is located

approximately 15 km south of the SE coast of the Lesvos island. It was a

destructive earthquake that caused one death, 15 injuries and serious damage

on the island. The main shock was followed by intense aftershock activity with

the strongest earthquake (Mw = 5.3) on June 17 and its subsequent triggered

seismic activity being concentrated in the eastern part of the ruptured area

(Papadimitriou et al., 2018).

Another moderate event during the last decade is the 2013 January 8

Mw = 5.8 North Aegean earthquake sequence that took place on one of the

ENE–WSW trending parallel dextral strike slip fault branches in the area, in

the continuation of 1968 large (M = 7.5) rupture (Karakostas et al., 2014).

Finally, an earthquake swarm took place near the Aegean coast of NW Turkey

during January–March 2017, probably related to the existence of the Tuzla

geothermal field (Mesimeri et al., 2018b).
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Chapter 2

Markovian Arrival Process

modeling

2.1 Introduction

The MAPs are very flexible models that can approximate, given the appro-

priate parameterization, any complex behavior. They are extremely useful for

the stochastic modelling of correlated and bursty inter-event times, as they

provide a generalization of the Poisson process, PH distribution and MMPP.

The development of new computational efficient methods for the estimation

of the parameters led to a wider use in applied fields, especially in reliability

(Montoro-Cazorla et al., 2009), queuing systems (Lucantoni et al., 1990) and

internet traffic flows (Kang et al., 2002). A comprehensive review on MAPs

and its applications, along with some important special cases are given in

Artalejo et al. (2010).

First, we give the necessary mathematical background for the introduction

of the MAP model along with its properties. The optimal fitting of the pa-

rameters is an open problem in the context of MAPs, so we will give a brief

overview on the available methods and discuss our approach which is based

on the maximization of the likelihood function through the EM (Expectation-
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Maximization) algorithm (Dempster et al., 1977). A common difficulty in the

implementation of the EM algorithm is the selection of its input values. We

introduce a grid-based method for the choice of the initial parameter set which

we implement in a parallel-framework for reducing the required computational

time. Next, we deploy the procedure for simulating data sets with the MAP

model. One basic issue when a hidden process is applied, is to estimate the

most probable sequence of latent states. For this problem, we propose a local

decoding algorithm with the use of the forward-backward equations (Rabiner,

1989), and we verify its stability on simulated catalogs where the state of

the process at each time t is known. Finally, we present the tools for model

selection and for the evaluation of the process.

2.2 Mathematical preliminaries

2.2.1 Markov Processes

The first term that we need to define is the stochastic process, i.e., a collection

of random variables, {Xt}, with index t ∈ R+ in continuous time. Throughout

the thesis we will study processes with discrete state space, S = {1, . . . , n}.

Now, we can give the definition of a stochastic process with the Markov prop-

erty.

Definition 2.2.1 A stochastic process {Xt : t ≥ 0} with state space S has the

Markov property when P (Xt+s = j | Xs = i,Xu, 0 ≤ u < s) = P (Xt+s = j |

Xs = i) holds, for each i, j ∈ S and t, s > 0 and is called Markov process.

Essentially, the distribution of the random variable Xt+s is independent of the

past, Xu, 0 ≤ u < s and depends only on the present, Xs. The Markov process

is further called homogeneous if its conditional distribution depends only on

the elapsed time, t, since the current time, s,

pij(t) = P (Xt+s = i | Xs = j) = P (Xt = i | X0 = j).
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From now one, we will consider only the homogeneous case. These quantities

are called transition probabilities and denote the probability the process to be

in state i at time t when it starts from state j at time 0. For each time t a

transition probability matrix, P (t) = {pij(t)}i,j∈S, is defined, whose elements

are the transition probabilities among the states of the process.

The amount of time the Markov process spends in state i before moving to

another state j is a random variable denoted by T that follows an Exponential

distribution with parameter λi. It has therefore, the memoryless property.

Next, we introduce the transition rates of a Markov process.

Lemma 2.2.1 For every Markov process with transition probability matrix

P (t) and state space S the following two limits exist.

1. limh→0+
1−pii(h)

h
= λi,

2. limh→0+
pij(h)

h
= qij when i ̸= j.

The transition rates give the infinitesimal probabilities to move among the

states of the Markov process and they are represented by the matrix Q =

{qij}i,j∈S which is called the infinitesimal generator of the Markov process.

So, the previous limits can be now written with matrix representation in the

following form

Q = lim
h→0+

P (h)− I

h
,

where I is the identity matrix. The generator of a Markov process has two

main properties that are given next.

Proposition 2.2.1 If Q is the generator of a Markov process Xt then

1.
∑

j∈S qij = 0 for each i ∈ S,

2. the non-negative values of the diagonal elements of the generator matrix,

−qii = λi, are the exponential parameters of the sojourn time distribution

at each state i.
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For each Markov process we can define a Markov Chain, Yk = XTk
, k ∈ N ,

which is a stochastic process with the Markov property defined in discrete

time. It is called embedded Markov Chain and gives at each step k the state

of the Markov process at the end of the sojourn time, Tk, in the previous one.

It is specified by a transition probability matrix, P = {pij}i,j∈S, and an initial

probability vector, a, after each transition. The elements of the matrix P can

be easily derived by the transition rates of the generator matrix Q

pij =
qij∑
j ̸=i qij

=
qij
λi

.

Finally, we will give the stationary probabilities of a Markov process, Xt.

These are probabilities after a long time t to be at a state j that converge to

a value independently from the initial state of the process.

Definition 2.2.2 In a Markov process Xt with state space S = {1, . . . , n} we

say

1. state j is reachable from state i, if P (Xt = j | X0 = i) > 0 for some

t > 0,

2. states i, j are communicating, if i is reachable from j and vice versa,

3. we call the process irreducible if all states communicate,

4. state i is called positive recurrent if the expected amount of time to return

to state i given that the process started in state i is finite.

When these conditions hold, then the stationary probabilities, πj = limt→∞ pij(t),

exist and are derived through the linear system

π ·Q = 0,
∑
j∈S

πj = 1.
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2.2.2 Phase-Type distributions

For the definition of this wide class of probability distributions we will follow

the notation of Neuts (1978) who was the one that introduced them.

A Markov process has an absorbing state when there exists a state i that

it moves to with probability equal to 1 and stays there for infinite time.

Definition 2.2.3 Let, Xt a Markov process with a generator matrix Q. If for

a state i ∈ S, qii = 0, then state i is called an absorbing state.

The transition probabilities from an absorbing state i to another state j are

zero (pij = 0).

Definition 2.2.4 A state i ∈ S of a Markov process Xt is called transient if

the return time probability is less than one.

Definition 2.2.5 A Markov process Xt with state space S is called an absorb-

ing Markov process if all the states are transient or absorbing.

Let us now have an absorbing Markov process, Xt, with a finite space of

transient states, E = {1, . . . , n}, and an absorbing state, EA = {n+ 1}.

Definition 2.2.6 A Phase-Type distribution is defined as the time X that an

absorbing Markov process Xt needs to move from the transient space to the

absorbed one, n+ 1.

The generator matrix of the Markov process Xt has the following form

Q =

D0 d1

0 0

 ,

where D0 = {qij}i,j∈E is a non-singular (n×n) transition rate matrix between

the transient states and d1 the (n × 1) vector of transition rates from the

transient states to the absorbing state of the process. The transient states

of the Markov process Xt are called phases and their number corresponds to
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the order of the Phase-Type distribution. Finally, we need to define the initial

probability vector, a = {a1, . . . , an}, which gives the probability to start from a

transient state i = 1, . . . . , n. The probability to start from the absorbing state

is neglected. So, it can be easily seen that the parameter set (a,D0) specifies

a Phase-Type distribution. The vector d1 can be easily derived through

D0 · 1+ d1 = 0,

as a consequence of the definition of a generator matrix, where 1 stands for

the unit column vector.

Next, we give a brief description of a PH distribution with three states and

the following matrix representation

Q =


−1 0.5 0.5

3 −4 1

0 0 0

 , a = [0.6, 0.4].

The sojourn time at states one and two follows an Exponential distribution

with parameters, −q11 = 1 and −q22 = 4, respectively. At the end of the

sojourn time at each phase a transition will occur either to a transient state

1, 2 with probability, pij = qij/− qii, with i = 1, 2 or to the absorbing state 3

with probability, di1/− qii, where di1 the i-th element of vector d1. Figure 2.1

shows the flow diagram among the phases of the Markov process.

The distribution function of a PH distributed random variable with repre-

sentation (a,D0) is given by

F (x) = 1− aeD0x1, x ≥ 0,

and its density distribution is given by

f(x) = aeD0xd1, x ≥ 0,
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Figure 2.1: A state transition diagram of an absorbing Markov process with 2
transient and 1 absorbing state, respectively.

respectively. One of the main properties of PH distributions that makes them

versatile and wide applicable in stochastic modeling is that they are dense in

the class of real positive valued distributions. That is, any distribution with a

strictly positive density in (0,∞) can be approximated arbitrarily close by a

PH distribution (O’cinneide, 1999).

Finally, we give some examples of special cases that can be formulated

as PH distribution. The simplest one is the Exponential distribution, with a

single phase and cumulative distribution function

F (x) = 1− e−λx, x ≥ 0.

In this case, the generator matrix has the following form

Q =

−λ λ

0 0

 .

Another widely used special case of PH distributions is the Erlang distri-

bution which is the sum of Exponential ones with the same parameter λ. Let

us have n random variables Xi ∼ Exp(λ), i = 1, . . . , n. Then, the random
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variable Y =
∑n

i=1 Xi follows an Erlang distribution, E(n, λ), with generator

matrix

Q =



−λ λ 0 . . . 0 0

0 −λ λ . . . 0 0
...

. . . −λ . . . 0 0

0 0 0
. . . −λ λ

0 0 0
. . . 0 0


and cumulative function

F (x) = 1−
n−1∑
i=1

(λx)i

i!
e−λx, x ≥ 0,

Finally, the Hyper-Exponential distribution is another widely used class of

distributions that can be represented as a PH one which we will adopt in the

sequel. A Hyper-Exponential (HE) distribution is a mixture of k exponentials

for some k with corresponding cumulative function

F (x) = 1− aeD0x1k = 1−
k∑

i=1

aie
−λix, x ≥ 0.

where D0 = diag(−λ1, . . . ,−λk) is a diagonal matrix. The generator matrix

of the PH distribution has the following form

Q =



−λ1 0 . . . 0 λ1

0 −λ2 0 . . . λ2

...
. . . . . . 0

...

0 0
. . . −λk λk

0 0
. . . 0 0


.

This class of distributions has been proven efficient in approximating long-

tail probability distributions such as the Pareto and Weibull (Feldmann and

Whitt, 1998) and has been widely applied in communication and network

theory (Orlik and Rappaport, 1998).
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2.3 Markovian Arrival Process

2.3.1 General case

Let us now consider a phenomenon where events occur at time instants, ti,

and their inter-event times, τi = ti− ti−1, are correlated. Lets denote as Nt the

counting process that represents the number of events up until time t. In PH

distributions the absorption state can be considered as an arrival, however, the

inter-event times (time until absorption X) are independent since after each

arrival the initial state is determined by the probability vector a.

To overcome this issue, Neuts (1979) introduced a Markov process with

two different levels of transitions. The first one concerns transitions among

K states which are given by the transition rate matrix, D0. The second one,

concerns transitions among the K states of the Markov process along with

an arrival, which we denote qij(1) and are given through the rate matrix D1.

Essentially, there are two processes running simultaneously. A counting one,

{Nt}t≥0, that determines the number of arrivals up to time t and a Markov

process, Jt, with state space E = {1, ..., K}, K ∈ N+ that modulates the

intensity of the counting process according to its state at time t. The states of

Jt are unobserved and it is called the underlying process of the MAP model.

Henceforth, arrivals are translated into earthquake occurrences.

A sample path with two hidden states, initial probability vector a =

[0.8 0.2] at time 0 and corresponding rate matrices D0 =

−20 0

0 −1

 and

D1 =

 17 3

0.25 0.75

 is presented in Figure 2.2 in order to illustrate the behav-

ior of the model. When the underlying process, Jt, is in state 1 at time t = 0

(blue line in Figure 2.2) the sojourn time of the process follows an exponential

distribution with parameter λ1 = −q11(0) = 20 and as a consequence, events

occur according to a Poisson process with occurrence rate 20 (orange line in

Figure 2.2). After each arrival the MAP may switch to state 2, with probabil-
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ity q12(1)/(−q11(0)) = 0.15, or stay in the same state, state 1, with probability

0.85. These are the transition probabilities of the embedded Markov Chain.

Similarly, when the process is in state 2 earthquakes are generated following

a Poisson process with occurrence rate λ2 = −q22(0) = 1, and thus the time

until the next arrival follows an exponential distribution with parameter value

equal to 1. Examples with different structures of the rate matrices are given

by He (2010).

Figure 2.2: An illustration of a MAP with two states for a period (0,8.2).

Another way to visualize the two different types of transitions is through a

flow diagram, given in Figure 2.3, for initial probability vector a = [0.8 0.2] and

corresponding rate matrices D0 =

−4 1

0.1 −0.5

 and D1 =

 2 1

0.15 0.25

.

The transitions among the same states are not allowed in Markov processes,

however, introducing the second rate matrix, D1, this can be achieved along

with an occurrence of an event. The transitions among the states without an
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arrival, governed by rate matrix D0 are shown with the thick black arrows,

whereas transitions along with an arrival, governed by rate matrix, D1, are

shown with the dashed arrows. It can be clearly seen the dependence of the

next inter-event time to the last visited state of the underlying Markov process,

Jt.

Figure 2.3: A state transition diagram of a MAP process with two states.

Hence, given the parameters (a,D0,D1) the MAP can be defined in the

following way.

Definition 2.3.1 A Markovian Arrival Process is a two-dimensional Markov

process, (Nt, Jt)t≥0 with state space E = {1, . . . , K} and infinitesimal generator

matrix of the underlying Markov process D0+D1, of order K. All the elements

of the two matrices are non-negative except the diagonal elements of D0, which

are negative.

The generator matrix of the MAP process is an infinite block matrix with the

following form

Q =


D0 D1

D0 D1

. . . . . .

 .

Every latent state of the Markov process, Jt, is linked to an occurrence rate,

λi = 1T
i D11K =

K∑
j=1

qij(1), (2.1)
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which is the total arrival rate during the sojourn of the process at state i and

is a superposition of K Poisson processes with qij(1) occurrence rates, respec-

tively. In the sequel, we consider the stationary version of the MAP which is

composed solely by parameters (D0,D1). The initial probability vector is now

denoted by π and is the stationary distribution of the so called underlying or

latent process, Jt. It is given through the solution of the linear system πQ = 0

and π1K = 1. The stationary probability vector after arrival instants, denoted

as πarr, is given by

πarr =
−πD0

πD11K

,

which is the solution of the linear system πarrP = πarr and πarr1K = 1, with

P = (−D0)
−1D1, (2.2)

the transition probability matrix of the embedded Markov Chain of the un-

derlying process, Jt.

One of the most important theoretical properties of the MAP models that

demonstrate their generality and versatility is due to Asmussen and Koole

(1993), who showed that any stationary point process can be approximated

arbitrarily close by a MAP model. We can see that through the parameteriza-

tion of the rate matrices, D0, D1, that can produce different types of arrival

process.

One such example is the PH-renewal process (Neuts, 1978), which is a

renewal process with independent inter-event times having a common PH-

distribution (πarr,D0) after each arrival. A MAP representation is with

D1 = d1πarr. The transitions associated with D0 have no arrivals, whereas

transitions associated with d1πarr concern arrivals.
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2.3.2 Special case

In our case, we focus on a MAP with a diagonal matrix,D0 = diag(λ1, . . . , λK),

as the example presented in Figure 2.2. The arrival rate is modulated step-wise

only at the occurrence times, which is more compatible with the assumption

that earthquakes are triggered by previous ones. We denote λ1, . . . , λK , the

non-negative diagonal elements of D0, which correspond to distinct Poisson

rates and are equal to the total occurrence rate at each hidden state (Equation

2.1).

The variability of the seismicity rate in earthquake catalogs, triggered by

various effects, can be captured through the transitions among different in-

tensity rates of the counting process Nt. For instance, we know that the

aftershock decay of earthquakes is following the Omori law (Ōmori, 1894),

whereas earthquake swarms which are sequences driven by other underlying

triggering mechanisms are evolving based on different temporal distributions.

With MAP modeling, we can approximate both behaviors by considering two

different groups of states, each one indicating a mixture of Exponential dis-

tributions for the inter-event times or equivalently a switch between Poisson

rates. The transitions among states are determined through matrix D1 and

specify whether we are in the class that describes aftershock sequences or in the

one for earthquake swarms. Generalising, the concept of embedding multiple

arrival rates into the model enables the modeling of all the different temporal

behaviors of earthquakes. However, it is evident that the number of states

needed to approximate the temporal evolution of an earthquake catalog can

be very large.

In addition, Bountzis et al. (2019) showed that the tractability of the MAP

due to the analytical forms of the generating functions and moments of the

inter-event and arrival distributions enable to infer details on the evolution

of the seismicity rate in time as well as the expected frequency of events at

different time periods. Let the trace Tr = {τ1, . . . , τN} be a sequence of inter-
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event times with τi = ti+1 − ti and N + 1 occurrences. The joint density

function of a MAP generating N+1 consecutive events with inter-event times,

τi, is given by

f(τ1, . . . , τN) = πT
arre

D0τ1D1 . . . e
D0τND11K . (2.3)

We consider the stationary version of the MAP and as initial time, t = 0, the

occurrence of the first event.

The inter-event times are distributed according to a special case of the PH

distribution, the Hyper-Exponential distribution, with density function

f(τ) = πarre
D0τD11K =

K∑
i=1

πie
−λiτλi. (2.4)

Considering a diagonal matrix for D0 we derive much simpler functional forms

and avoid matrix exponential computations. The embedded transition proba-

bility matrix given in Equation 2.2 can be easily derived by

pij =
qij(1)

λi

, ∀i, j ∈ E. (2.5)

More analytical measures that capture potential correlations among the events

such as the joint moments of k consecutive events and the auto-correlation

function between the first and k-th event are given in Buchholz et al. (2014).

2.3.3 Markov Modulated Poisson Process

A widely used special case of MAPs is the Markov Modulated Poisson Process

(Fischer and Meier-Hellstern, 1993). The transition rate matrices take the

following form D0 = Q − Λ, D1 = Λ, where Λ is a diagonal matrix with

positive elements. In this MAP formulation, changes in the occurrence rate can

be made only between arrivals and new occurrences are generated only during

the sojourn of the process in the same state. Namely, on MMPP the rate of the
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counting process varies between the occurrence of two events according to the

underlying Markov process, Jt, but transitions are not allowed at an occurrence

instant, contrary to our case, where changes in the occurrence rate are allowed

only when an earthquake occurs. Thus, the time between the (k−1)-th and k-

th events depends on the state of Jt at the (k−1)-th occurrence, whereas on a

MMPP, the underlying process, Jt, can move several times to different hidden

states, following the k-th arrival with a transition to the same state. From a

seismological point of view, we assume that changes in the seismicity rate can

be triggered by a previous earthquake, while under the MMPP formulation

seismicity rate can change multiple times before the earthquake occurrence.

We believe that these conditions have an impact on the adaptability of the

model to the data, as the structure of the infinitesimal generator changes.

2.4 Parameter estimation

Fitting of MAPs is the most challenging part for real data applications mainly

due to the large number of free parameters and the lack of canonical represen-

tations. The former increases the complexity since we need large data sets to

capture the correlations among the events. In addition, the parameters of the

model are not uniquely determined, meaning that the same likelihood function

can be derived by at least two different parameter sets, known as identifiabil-

ity problem. This explains the multimodality of the likelihood function which

consists one of the most significant problems for the selection of the param-

eters. However, recent efforts have successfully found unique representations

for different classes of MAP models (Bodrog et al., 2008; Telek and Horváth,

2007).

In general, there are two main approaches for the estimation of the MAPs

parameters. Moment matching methods, where the theoretical moments should

be equal to the observed ones and likelihood-based methods where the param-

eter set corresponds to the maximum value of the likelihood function. In the
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first case, analytical closed forms exist for the two-state MAP with hyper-

exponential inter-event times distribution (Heindl, 2004). However, the spec-

trum of states that the method can be applied is limited. As their number

increases the higher order or joint moment equations become non-linear and

optimization methods do not work. There are although some compositional

efforts that combine the fitting capability of lower order MAPs with the flex-

ibility of ones with more states. One such effort is by Casale et al. (2010)

who proposed the Kronecker Product Composition method, where MAPs are

constructed by processes of a smaller number of states through Kronecker

products. Another popular framework consists of a two-phase fitting proce-

dure. At the first step, a PH distribution with parameters (π,D0) is fitted by

any available method to the data and at the second phase the elements of the

transition matrixD1 are estimated by various methods, such as first (Buchholz

and Kriege, 2009) and higher lag joint moments (Bause and Horváth, 2010) or

matching the lag-k auto-correlation function (Horváth et al., 2005).

There are several Maximum Likelihood Estimation (MLE) fitting methods

that are adopted for the MAP transition rates. The general form of the likeli-

hood function is given through Equation (2.3),

L(θ|Tr) = πT
arre

D0τ1D1 . . . e
D0τND11K , (2.6)

with parameter set θ = {qij(0), qij(1)}, trace Tr, N + 1 events and K latent

states. It considers the whole trace in order to capture the correlations among

the events. The optimization of the function, θ̂ = argmaxθ L(θ|Tr), is based

on the implementation of an iterative algorithm, the EM algorithm (Demp-

ster et al., 1977), which is an appropriate technique especially in problems

with unobserved data and it consists of the E-step (Expectation) and M-step

(Maximization).

If θ0 is a given initial parameter set, then in the E-step random variables

are created related to the unobserved data T
′
and an expected log-likelihood
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function (LL), E[logL(θ | Tr, T ′
) | Tr;θ0], is computed conditional on the

complete data vector (Tr, T
′
). In our case, the variables are related to the

transitions among the latent states of the process, Jt. In the M-step, the new

parameter set θ1 is estimated through maximizing the expected LL function,

θ1 = argmaxθ E[logL(θ | Tr, T ′
) | Tr;θ0]. At each iteration of the algorithm

the likelihood function is expressed through the forward and backward vectors.

The i-th element of the forward row vector f [k] = {fi(k), i = 1, . . . , K} denotes

the likelihood to be in state i conditional on the history of the process up to

the occurrence time tk+1 and can be obtained recursively by f [0] = π,f [k] =

f [k − 1]eD0τkD1. Similarly, we can define the backward vectors b[N + 1] =

1K , b[k] = eD0τkD1b[k + 1], with k = 1, . . . , N . The algorithm ends when a

convergence criterion is satisfied or a certain number of iterations is applied.

Asmussen et al. (1996) and Rydén (1996) incorporated the algorithm into

the framework of PH distributions and MMPPs, respectively. Their innova-

tive work was followed by Buchholz (2003) who enhanced the computational

speed for general MAPs through the uniformization method for the matrix-

exponential computations, whereas Okamura and Dohi (2009) and Breuer and

Kume (2010) worked on applying EM algorithm on grouped data of disjoint

intervals, since many times real data is provided in groups, especially on net-

work traffic data. A comprehensive survey on the most recent state-of-art

results on MAP fitting methods can be found in Buchholz et al. (2014) and

Okamura and Dohi (2016). However, the implementation of the EM algorithm

demands a large number of iterations, each one with high computational effort

due to the evaluation of matrix-exponentials for the likelihood function. Oka-

mura and Dohi (2009) suggested that the fitting with a sub-class of MAPs will

reduce the computational effort. They proposed a structure with components

following PH and as a special case Erlang distribution. They found that the

time until convergence is being reduced significantly while the likelihood val-

ues remained high, whereas Horváth and Okamura (2013) have extended the

method to multiclass MAPs, keeping the same special structure.
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In our study, we need to fit the parameters of a simpler MAP structure de-

scribed in 2.3.2. We assume that the marginal distribution of the inter-event

times is given by a mixture of exponential ones, namely a Hyper-Exponential

distribution. Given that the MAP is in state i just after an earthquake oc-

currence, the density function of the inter-event times distribution is given

by

fi(τ) = λie
−λiτ ,

following Equation (2.4). Due to the special structure of the matrix, D0, the

forward and backward vectors and as a sequence the likelihood function can

be expressed in a simpler way

f [k]j =
K∑
i=1

f [k − 1]ie
−λiτkqij(1), b[k]j =

K∑
i=1

e−λjτkqji(1)b[k + 1]i, (2.7)

and

L(θ | Tr) = f [k]b[k + 1], k = 0, . . . , N,

respectively, with parameter set θ = {λi, qij(1)}. In this way, we avoid the

computation of matrix-exponentials (see Equation (2.6)) reducing the compu-

tational cost for the evaluation of the likelihood function.

Considering the unobserved data, T
′
= {s1, . . . , sN}, to be known, i.e., the

hidden states at each occurrence time, we can easily obtain the maximum likeli-

hood estimates of the parameter set θ. The inter-event times are conditionally

independent, therefore,

logL(λ1, . . . , λK |Tr, T
′
) =

N∑
k=1

log(fsk(τk)),

and considering its derivative for each λi we can obtain its maximum value

λ̂i =

∑N
k=1 I(sk=i)∑N

k=1 τkI(sk=i)

, (2.8)
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which is the number of intervals that the process is in state i divided by

the total sojourn time in state i. The maximum likelihood estimates of the

transition probabilities, pij, of the MAP’s embedded Markov Chain at arrival

instants, are obtained by Anderson and Goodman (1957) and are given by

p̂ij =

∑N−1
k=1 I(sk=i,sk+1=j)∑N−1

k=1 I(sk=i)

. (2.9)

Then, the elements of the transition rate matrix, D1 = {qij(1)}i,j∈E, are easily

obtained from Equation (2.5).

In the E-step of the EM algorithm the expected values of the unobserved

variables that correspond to the latent states that generate the N + 1 earth-

quake occurrences, are derived and are expressed through the forward and

backward vectors. In particular,

qij[k] = P (sk = i, sk+1 = j|θ, T r) = P (sk = i, sk+1 = j, T r|θ)
P (Tr|θ)

=
f [k]i · fi(τk) · pij · b[k + 1]j

P (Tr|θ)
,

and

qi[k] =
P (sk = i, T r|θ)

P (Tr|θ)
=

f [k − 1]i · b[k]i
P (Tr|θ)

.

Then, in the M-step the expected values are maximized (Equations (2.8)

and (2.9)) and give the estimated parameters of set θ,

λ̂i =

∑N
k=1 qi[k]∑N

k=1 τkqi[k]
=

∑N
k=1 f [k − 1]ib[k]i∑N

k=1 τkf [k − 1]ib[k]i
, (2.10)

and

p̂ij =

∑N−1
k=1 qij[k]∑N−1
k=1 qi[k]

=

∑N
k=1 f [k − 1]ie

−λiτkqij(1)b[k + 1]j∑N
k=1 f [k − 1]ib[k]i

. (2.11)

Finally, the transition rates, qij(1), are easily obtained by, qij(1) = λ̂i · p̂ij.
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2.4.1 Determination of the initial values

For the implementation of the EM algorithm, BuTools program package (Bo-

drog et al., 2014) is used in the MATLAB environment. The algorithm requires

as input the trace and an initial choice for the parameter vector. However, as

the number of parameters is increasing, the LL shows more local peaks, mak-

ing it more difficult to converge to the global maximum. The dependency on

the choice of the initial parameter values is also increasing as the length of the

sample is decreasing.

Therefore, we implemented a grid-based procedure for the initial choice

that it consists of the following steps:

• Construct grid for the occurrence rates, λi, i = 1, . . . , K, ranging from

N obs
max to N obs

min with a constant step, s, leading to Nst =
Nobs

max−Nobs
min

s
val-

ues. The first is the maximum observed number of events in the time

unit and the second the minimum one, respectively. Divide it into K in-

tervals equal to the number of hidden states and consider all the possible

combinations. This equals to Nall = (Nst/K)K sets of values.

• Generate the transition probabilities, pij, uniformly under ergodicity con-

ditions. For each set {λj
1, . . . , λ

j
K}, with j = 1, . . . , Nall, correspond N

random transition probability matrices, P .

• The total LL computations for the choice of the initial vector: N ×Nall.

The choice of N is independent of the occurrence rates grid length. There-

fore, we can reduce the computation time by implementing a parallel proce-

dure. Let M be the number of parallel workers. Then, we can divide the initial

grid into M groups leading to Nall/M of {λ1, . . . , λK} sets in each one. The

rest of the procedure is the same, leading to N × (Nall/M) final computations.

Finally, Nbest memory storage is needed for the best parameter sets in terms of

their log-likelihood values which are given then as input to the EM algorithm.
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Concerning the complexity of the EM algorithm, essentially we need to

compute and store the forward and backward vector, f [k] and b[k], respec-

tively, for k = 1, . . . , N . This requires 2N vector-matrix multiplications of

size K, which is the number of latent states, and a 2N memory storage, re-

spectively. Recently, 3 refined algorithms for the parallel implementation of

the EM algorithm have been developed by Bražėnas et al. (2018), that showed

very good performance on numerical experiments.

2.5 Simulation procedure

We want to create a simulated sequence of events that is generated by the

counting process, Nt, based on the rate matrices, D0 = −diag(λ1, . . . , λK),

D1 = {qij(1)}i,j∈E and the stationary probability vectors πarr and π depend-

ing on whether an arrival occurred at the initial point t0 = 0 or not.

To simulate a MAP, first we need to determine the hidden state of the

process at time t0 = 0. Select an initial probability vector, in our case, a

stationary vector and generate the initial state J(t0) with the use of a multi-

nomial trial from the discrete probability distribution πarr or π. Then, the

sojourn of the process at each state and the type of arrival need to be deter-

mined. In our case, we have only a single type of arrival since D0 is a diagonal

matrix, namely, transitions among the hidden states occur only along with an

earthquake occurrence. So, sojourn times, τ , are generated from Exponential

distributions with parameters {−D0}ii = λi under the relationship

τ = − lnU

λi

, (2.12)

that is derived by a typical thinning procedure. At the end of the sojourn

time at each state we need to determine the next hidden state of the process,

Jt. This is resolved by the conditional probabilities of the MAP, P (J(T0 +

τ)/J(T0)) = {pij}i,j∈E where P is the embedded transition probability matrix
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of the process, Jt, and its elements are given by Equation (2.5). In particular,

the next state j is generated by a multinomial trial from the discrete probability

distribution

{qi1(1)
λi

, . . . ,
qiK(1)

λi

},

under the condition that the previous state is i. The procedure is repeated

until a certain number of events is derived or a time tend is exceeded.

2.6 Inference of the latent states

One of the three basic issues related to the HMMs and as a consequence to

the MAPs is the decoding problem. In other words, to find the optimal path

of latent states that have generated the sequence of observations, t1, . . . , tN+1,

given the parameter set, θ = {λi, qij}. From a set of probabilities we choose

the one with the maximum value, i.e.,

Jtk = argmax
1≤i≤K

P (Jtk = i | Tr,θ), (2.13)

which is known as local decoding problem. To solve this kind of problem we

need to follow the corresponding formulation for the HMMs from MacDonald

and Zucchini (1997). In particular, the probabilities given in Equation (2.13),

which we will call state probabilities, can be written

P (Jtk = i | Tr,θ) = pi(tk) =
P (τ1, . . . , τN , Jtk = i)

P (τ1, . . . , τN)
,

through a simple implementation of Bayes theorem. Then, we use the forward

and backward vectors defined by Equation (2.7) to evaluate these probabil-

ities. Both of them are crucial as the first, f [k]i, gives the probability the

state at time tk to be i and k earthquakes to have occurred with inter-event

times, τ1, . . . , τk. Conversely, the backward vector, b[k]i, is the probability of

observing N + 1− k earthquakes with inter-event times, τk+1, . . . , τN , and the
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latent state, i, at time tk. The state probabilities therefore, take the following

form

pi(tk) =
f [k − 1]i · b[k]i

L(θ | Tr)
=

f [k − 1]i · b[k]i∑K
j f [k]j · b[k + 1]j

. (2.14)

Due to the large number of matrix multiplications for the computation of the

forward and backward vectors it is quite often to have overflow and underflow

problems, so the vectors f [k] and b[k] are scaled accordingly (Bražėnas et al.,

2018).

Finally, since the MAP model can be defined as a stochastic point process

we can also evaluate the intensity function, λ(t), of the counting process, Nt,

expressed by

λ(t) = lim
dt→0

Pdt(t/Ht)

dt
.

Its estimator, can be easily derived through the forward and backward vectors

as follows

λ̂(t) =
K∑
i=1

λ̂i ·p̂i(tk) =
K∑
i=1

∑N
k=1 f [k − 1]ib[k]i∑N

k=1 τkf [k − 1]ib[k]i
· f [k − 1]i · b[k]i∑K

j f [k]j · b[k + 1]j
, (2.15)

for tk ≤ t < tk+1.

2.6.1 Stability of the local decoding algorithm

The stability of the state probability estimates given in Equation 2.14 is tested

on simulated data sets from a MAP model with four states where the hidden

path is known a-priori. In more detail, four samples with Nk = 50, 100, 200

and 300 events are simulated from a MAP with four states along with the path

of the hidden states (thick grey line in Figure 2.4). Then, a new MAP is fitted

based on the trace, the inter-event times, of each sample for 100 times, and

the sequence of the latent states that have generated the events is re-evaluated

for each fitted MAP though Equations 2.13 and 2.14. The average estimated

state at each occurrence time is computed and in Figure 2.4 the simulated

hidden path is shown with the grey color and the average estimated hidden
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path over the 100 estimated hidden sequences with the dash-dotted black line.

We note, that the average value does not have a physical meaning, since the

states are integer values, however, it can be seen as an index of how close to the

simulated path our estimation is after 100 implementations. We can see that

the average values approach the true sequence with high accuracy especially

as the number of events increases.

Figure 2.4: The MAP is fitted to simulated samples of a four-state MAP with
Nk = 50, 100, 200 and 300 events for 100 times. The line in gray color
corresponds to the hidden path of each simulated sample. Next, the sequence
of the underlying states that have generated the events is evaluated (100 times)
and the average estimated state for each occurrence time is computed (dash-
dotted black line).
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2.7 Model selection

When we want to approximate empirical data, in our case earthquake data sets,

with the use of the MAP model, first we need to select the appropriate number

of states, K, of the Markov process, Jt. Due to its property, that can approx-

imate any stationary stochastic point process (Asmussen and Koole, 1993),

increasing its state space the model’s theoretical moments are converging to

the empirical ones. However, this can lead to overfitted models with large

estimated variances exhibiting poor forecasting results. Conversely, choosing

few states might lead to underfitted models that miss important features of

the data.

This means that the selection of the appropriate number of states is crucial

for a robust stochastic modeling and for the statistical inference of the empirical

data. Here, for the selection of the optimal model we will use two criteria that

are based on information theory with desirable statistical properties (Burnham

and Anderson, 2002). The first one is the Akaike Information Criterion (AIC)

(Akaike, 1974) which is based on the maximum value of the log-likelihood

function and has the following form

AIC = −2 · LL+ 2 ·K, (2.16)

where LL is the maximum log-likelihood value and K the number of the

model’s free parameters. Essentially, we achieve a balance between errors

due to underfitting and overfitting. The penalized criterion is computed for

all the fitted models and the one with the lowest value is preferred as the best

fit to the data without, however, quantifying the level of the fitting.

The second criterion that we will use throughout the study is the Bayes

Information Criterion (BIC) (Schwarz, 1978) which additionally considers the

length of the sample. Its form is

BIC = −2 · LL+K · lnN, (2.17)
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where N is the length of the sample. Again, the model with the minimum value

among the candidates is selected as optimal. The difference of the two criteria

lies on the coefficient multiplying the number of parameters, in other words,

on the penalized effect. Vrieze (2012) showed that the BIC is consistent in

selecting the true model when this model is considered as a candidate (among

other assumptions), however, he concludes that even if the true model is under

consideration, the BIC is not a clear choice. An extended review concerning

selection criteria related to maximum likelihood models is given in Kadane and

Lazar (2004).

2.8 Evaluation

Information criteria are useful when we want to perform a comparison among

competing models. However, they do not tell us how well the fitted models

approximate the target data set. A useful technique for evaluating the point

process goodness-of-fit is the residual analysis (Ogata, 1988), which is a time

transformation test.

Let {t1, . . . , tN} be a set of occurrence times generated by a stochastic point

process N ∗ with intensity function λ(t). Let also consider the integral of the

intensity function

τ ∗ = Λ(t) =

∫ t

0

λ(t)dt, (2.18)

where Λ(t) is a monotonic increasing function of t. Papangelou (1972) showed

that with probability 1, the sequence of transformed times, τ ∗i = Λ(ti), i =

1, . . . , N , is a realization of a Poisson process with a unit rate. Hence, if

the fitted point model approximates well the empirical data, we expect the

transformed times, τ ∗i , derived by the estimated intensity function, λ̂(t), will

follow a Poisson distribution with arrival rate equal to one.

An advantage of the test is that it can be visualized. In particular, we can

compute the cumulative number of the transformed times, τ ∗i , and see whether
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they depart from the bisector, y = x, which is the typical behaviour of events

randomly distributed in time with rate equal to one. Daley and Vere-Jones

(2003) proposed an algorithm for testing the goodness-of-fit of a point process

based on the residual analysis that consists of the following 4 steps.

• Compute the sequence of transformed times, τ ∗i , through Equation (2.18).

• Plot the cumulative step-function through the pairs (xi, yi) = (τ ∗i /T, i/N)

with i = 1, . . . , N, and T the total duration.

• Plot the confidence bounds yint = x± za/2√
T
, where z is distributed accord-

ing to the standard normal distribution, N(0, 1).

• Observe whether the transformed data lies within the 100(1− a)% con-

fidence interval drawn in the previous step.

There are also a number of hypothesis tests that can be implemented to

test whether the transformed times follow a Poisson distribution with known

parameter, λpois = 1. Considering the inter-event transformed times, Ei =

τ ∗i −τ ∗i−1, i = 1, . . . , N , we can apply two types of test to verify the assumption

of a stationary Poisson process.

The first one concerns the assumption of independence among the events.

The Runs test (Bradley, 1968) is used to answer to the question on whether a

sample data is generated from a random process or not. We put the values on

a line and mark the ones above the median as positive whereas the ones below

as negative. A run is defined as a series of consecutive positive (or negative)

values and the two alternatives are defined as:

H0: the sequence of events is distributed randomly

H1: the sequence of events is not distributed randomly.

The test statistic is

Z =
R− R̄

sR
,

where R is the observed number of runs, R̄, is the expected number of runs,

and sR is the standard deviation of the number of runs. The values of R̄ and
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sR are computed through the following formulas

R̄ =
2n1n2

n1 + n2

+ 1, sR =
2n1n2(2n1n2 − n1 − n2)

(n1 + n2)2(n1 + n2 − 1)
,

where n1 and n2 the number of positive and negative values in the sample,

respectively. An alternative technique for investigating possible correlations

among the events is through the auto-correlation function (Box et al., 2015),

which is defined as

ρk =

∑N−k
i=1 (Ei − Ē)(Ei+k − Ē)∑N

i=1(Ei − Ē)2
,

for lag k. If its values lies within the 95% confidence bounds there is no

evidence that the inter-event times, Ei, are not independent.

The next type of test is the Kolmogorov–Smirnov (KS) test (Chakravarti

et al., 1967) which is applied on the sample Ei to verify that it follows an

Exponential distribution, Exp(λ = 1). It computes the differences between

the empirical and exponential cumulative distribution over all the sample and

the test statistic is defined as the maximum distance among the two curves.

An important limitation of the test is the requirement the parameters of the

distribution to be fully specified instead of being estimated from the data.

When the parameters of the null distribution are not known and need to

be estimated from the sample, the Lilliefors goodness of fit test (Lilliefors,

1969) is the appropriate one to use. It is similar to the KS test, however,

the parameters of the null hypothesis distribution, F0, are estimated from the

sample and the p values are computed through Monte Carlo simulations since

the distribution of the test-statistic is not fully defined.
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Chapter 3

Markovian Arrival Process for

earthquake clustering

3.1 Introduction

Earthquake clustering is an essential feature of seismicity that provides crucial

information on the earthquake dynamics, expressed as the concentration of

earthquakes in space and time. There are various forms of triggering mech-

anisms responsible for the different types of clusters including static and dy-

namic stress changes induced from previous events (main shock-aftershocks)

(Felzer and Brodsky, 2006; Stein, 1999), fluid migration and aseismic slip

(earthquake swarms) (Yamashita, 1999).

The improvement of seismic monitoring worldwide and the development

of new powerful algorithms for earthquake detectability (Ross et al., 2019)

increased the amount of seismic data that is available for data processing,

motivating the development of more refined clustering algorithms. Earthquake

clusters can be used for the determination of faulting geometry (Kamer et al.,

2020; Petersen et al., 2021) as well as to extract useful information on the

aftershock productivity of the study area and the behavior of the foreshock

activity (Lippiello et al., 2012; Shebalin et al., 2020). However, many studies
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focus on the data after the removal of clustered events, known as background

seismicity and the procedure as declustering. Background seismicity is used

to Probabilistic Seismic Hazard Analysis (PSHA) for the production of hazard

maps (Gerstenberger et al., 2020; Petersen et al., 2018) and can be also used to

infer physical properties of main shocks such as the localization of seismicity

before large earthquakes by Ben-Zion and Zaliapin (2020).

In the first part of this chapter, we establish a two-step clustering procedure

that comprises a temporal stochastic point process, the Markovian Arrival Pro-

cess, for an initial separation of the background seismicity from potential seis-

mic excitations, using the changes in the seismicity rate, and the density-based

clustering algorithm, DBSCAN, for the detection of elevated density areas in

space. We assume that the physical mechanisms governing the earthquake clus-

tering are unknown and the prevailing parameter to separate the background

seismicity from seismic excitations are the temporal variations of the seismicity

rate. For this reason, the MAP, (Nt, Jt)t∈R+ is used, whose intensity function,

λ(t), is modulated by the latent Markov process, Jt. The earthquakes temporal

distribution is essentially approximated by a non-homogeneous Poisson process

with a piece-wise constant intensity rate determined by the underlying Markov

process, Jt. The sequence of hidden states is evaluated through a local decod-

ing algorithm, and the level of the occurrence rate at each time t is revealed. In

this way, the MAP can be used as a tool for change point detection, namely to

detect changes in the seismicity rate. We show here that the model is suitable

for capturing prevailing patterns of the seismicity dynamics, by corresponding

the estimated rates to known foreshock-main shock-aftershock sequences and

swarms, as well as to periods of relative seismic quiescence. Recent works by

Lu (2019) and Benali et al. (2020) are based on non-stationary Poisson models

whose rate is modulated by a hidden Markov process to determine a set of

change-points for seismicity rate. Subsequently, the DBSCAN (Ester et al.,

1996) mentioned before is used for grouping the events into spatiotemporal

clusters.
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In the second part of this chapter we present a comprehensive analysis of

the clustering properties in three major seismic zones of Greece. Several studies

suggest that the clustering properties of seismicity (spatiotemporal distribu-

tion, productivity rates) might be controlled by the tectonic regime. Llenos

and Michael (2017) showed that the adoption of region-specific aftershock pa-

rameters can improve forecast estimates, as the information from the tectonic

region is particularly useful, and suggest the determination of clustering fea-

tures in smaller regions where high-quality earthquake data are available. The

global analysis of earthquake clusters from Zaliapin and Ben-Zion (2016) sug-

gests that seismicity clusters in a region strongly depend on the heat flow

and believe that considering region specific deviation can improve local seis-

mic hazard assessment. More recently, Hardebeck et al. (2019) updated the

generic parameters of sequences in California incorporating the regionalization

of the former work for their determination. In this way, there was an improve-

ment of the aftershock forecasts accuracy. The temporal ETAS model assumes

that background events occur according to a stationary Poisson process with

rate, µ, which can trigger other earthquakes and in turn can trigger more

earthquakes and so on. In our study, we utilize the estimated parameters of

the ETAS model to investigate regional variabilities in the productivity of the

seismic sequences and gain insights into the involved triggering mechanisms

(Crespo Mart́ın and Mart́ın-González, 2021; Hainzl and Ogata, 2005; Marsan

et al., 2013).

We will thoroughly discuss the features of multiple embedded occurrence

rates that can separate potential seismic clusters from background seismic-

ity, generalized into the idea of MAP to be used as a change point tool for

seismicity rates. Then, we establish a two-step clustering algorithm that com-

bines the MAP model with a density based clustering algorithm, DBSCAN,

and we evaluate its performance on a simulated earthquake catalog where the

structure of the clusters is known a-priori. Finally, we apply the method to the

three major seismic zones of Greece as already mentioned and investigate their
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clustering properties. In particular, we focus on the statistical analysis of the

detected clusters based on the ETAS model producing generic and sequence

specific parameters for each area.

3.2 MAP-DBSCAN method

3.2.1 MAP as a tool for change point detection

The temporal distribution of seismicity can be approximated by a stochastic

point model, the Markovian Arrival Process. Following the notation given in

Section 2.3, the MAP is a two-dimensional Markov process (Nt, Jt)t∈R+ , where

Nt counts the number of earthquakes that occur up to time t with a rate λJt ,

which is associated with the hidden states i = 1, . . . , K, of the Markov process,

Jt. For the representation of the MAP model, we need the K×K rate matrices

D0 and D1, where D0 is a diagonal matrix whose non-negative elements we

denote as, λ1, . . . , λK , and correspond to K Poisson rates, each one assigned to

a hidden state of process Jt, and D1 consists of the transition rates among the

states along with the occurrence of an earthquake, which we denote as qij(1).

A brief description of the process is given next. When the Markov process

Jt is in state i, earthquakes occur according to a Poisson process with seismic-

ity rate λi and, therefore, the sojourn time in this state follows an Exponential

distribution with expected value 1/λi. When an earthquake occurs, the MAP

can move with transition rate qij(1) = pijλi to another state j, so now, earth-

quakes occur according to a Poisson process with rate λj, or remain in the

current state i with transition rate qii(1) = piiλi.

Firstly, we need to find the number and the corresponding values of the

seismicity rates that are sufficient for the description of the temporal evolution

of seismicity. Hence, we fit MAPs from 2 to K states through the EM algo-

rithm to the corresponding trace (inter-event times of the data set). For the

determination of the initial values that are given as input to the algorithm, a
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grid-based procedure is established implemented in a parallel framework to re-

duce the computational cost that is increased exponentially with the number of

hidden states. All the details on the estimation procedure are given in Section

2.4. Then, the Bayesian or Akaike Information Criterion is used (Equations

2.17 and 2.16, respectively) as a metric for finding the most preferable model,

which is the one with the lowest value.

Next, the most probable sequence of transitions for the underlying process,

Jt, is evaluated through the state probabilities, pi(t) = p(Jt = i) (Equation

2.14) for i = 1, ..., K, whose estimator is a function of the forward and back-

ward equations given in Section 2.6 and its stability is proven on simulated data

sets where the true sequence of the hidden states is known (Section 2.6.1). The

state of the hidden process at each time t is defined as the one with the highest

probability, i.e., argmax0≤i≤K pi(t), with pi(t) = pi(tk) for tk ≤ t < tk+1. Each

state i corresponds to an occurrence rate, λi (Equation (2.1)), therefore, by

evaluating the transitions among the states of the model, we can detect change

points in the seismicity rate and the duration of each seismicity level through

the sojourn time at each hidden state.

Our main assumption is that due to the multiple embedded occurrence rates

of the model each state corresponds to a distinct evolution phase of a seismic

sequence, independently of its underlying mechanism. In Section 3.3.1, we

evaluate the performance of the model to approximate the temporal evolution

of earthquake catalogs that incorporate both main shock-aftershock sequences

and earthquake swarms and investigate whether the detected seismicity rate

changes are associated with either the occurrence of main shocks and their

aftershock sequences or the burst of earthquake swarms.

Concerning the clustering procedure, we are mostly interested in separating

periods that are characterized by background and triggered seismicity that is

associated with seismic sequences. In particular, we introduce a rate thresh-

old, λthr, according to which a potential sequence starts when the rate of the

counting process, Nt, achieves λJt > λthr and ends as soon as the process Jt
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moves for the first time to a state with a Poisson rate below that threshold.

3.2.2 Temporal Constraints

The earthquakes that occurred in periods with estimated occurrence rate above

the defined rate threshold, λthr, comprised in the potential clusters. However,

results on methods that are solely based on changes in the seismicity rate can

sometimes be misleading and additional temporal constraints should be consid-

ered. One such case concerns the determination of the aftershock sequences du-

ration. When the rate at the tail of aftershock sequences has reached the level

of the background seismicity, it becomes difficult to discriminate these events

from background ones, especially for small main shock magnitudes (Felzer and

Brodsky, 2006; Godano and Tramelli, 2016). One similar case is related to the

sparse foreshock activity, which as it is shown in Lippiello et al. (2019), ex-

hibits significantly smaller frequency than the aftershock activity. Therefore,

a day rule, dt, is assigned in the sense that events in ±dt from the poten-

tial cluster are included within. Another case is related to the existence of

fluctuations during a seismic excitation, when the seismic activity that is trig-

gered by the same underlying mechanism is divided into smaller clusters. A

large aftershock sequence can be divided into distinct clusters due to cascade

triggering, i.e., main shocks trigger aftershocks which in turn cause their own

aftershock sequences (Marsan and Lengline, 2008). For this reason, we assign

a time window, T , so that clusters in temporal distance smaller than or equal

to T are merged into one.

We should note that the choice of the parameters is depending on the goals

of each cluster analysis. In a sequence specific study, where the aim is to

use the detected clusters for the identification of even the smallest ruptured

patches, we would focus on a thinner separation of triggered seismicity (small

merging factor, T ). For studies in large data sets when we intend to investigate

the generic clustering properties of seismic sequences, such as the productivity
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and temporal decay of aftershocks, the temporal constraints should be looser

(larger values for dt and T ).

3.2.3 DBSCAN algorithm

The grouped events can be spatially sparse and are falsely assigned into the

same cluster. To overcome this ambiguity, the DBSCAN is applied to sepa-

rate events in space based on a distance metric. Depending on the adopted

distance metric, the algorithm can be used for grouping events with waveform

similarities (Petersen et al., 2021) as well as earthquakes with related types of

faulting (focal mechanism similarity) (Cesca, 2020).

Density-based algorithms search for areas where the density level exceeds a

threshold. When the spatial density falls bellow a certain threshold the bound-

aries are defined and the clusters are formed. The main idea for the DBSCAN

algorithm is that for each element of a group of events, the neighborhood of a

given radius, ϵ, has to include a minimum number of events, Npts, namely the

density has to exceed a threshold value. The geometry of the neighborhood

is determined by the adopted distance metric. Hence, the algorithm requires

as input the distance threshold, ϵ, and the minimum number of neighboring

events, Npts (density level).

The clustering model defines two kinds of events, core points, i.e., events

inside the cluster with at least Npts neighbors within the area including them-

selves and border points, i.e., events on the border of the cluster. Four main

terms are needed to define a cluster:

• Events up to a distance ϵ from a core point i (∥Nϵ(i)∥ ≥ Npts where

Nϵ(i) = {j : d(i, j) ≤ ϵ}) are considered part of the cluster (directly

density reachable).

• If a neighbor event j is also a core point then its neighbors are also

part of the cluster - the transitive property holds (density reachable). In
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general, for any two events, i1 and in, a sequence of directly reachable

events, i1, . . . , in, exists.

• Non-core events are considered border points and they are all density

reachable through a common point (density connected).

• Events that are not density reachable from a core point are considered

noise and do not belong to any cluster.

Figure 3.1 shows an example of the DBSCAN method with Npts = 3 and

radius ϵ. The blue circles correspond to the core points and the arrows indicate

the directly density reachable property. Events with yellow color correspond to

border points and are density connected since they are both density reachable

from any blue event. Finally, the grey event is not density reachable from any

other event and is characterised as noise.

Figure 3.1: An example of the DBSCAN method. Minimum number of neigh-
bors is Npts = 3 and distance threshold equals to ϵ.
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The algorithm starts with a random event, i, and forms a cluster if at

least Npts events are within distance d ≤ ϵ, including itself. Earthquake i is

then considered a core point of the cluster and the algorithm moves to the

investigation of the other events. If Npts neighbors are identified in the next

step, they are also considered core events; otherwise, they are the boundary

points of the cluster and the algorithm moves to the next unassigned event of

the data set.

In our case, events that have not been assigned to any cluster at the end of

the procedure compose the background seismicity and are merged with events

that occurred during periods with estimated rate under the rate threshold,

λthr. In this way, the algorithm can remove events that are spatially sparse.

It has been efficiently applied for detecting similarities among earthquake lo-

cations, origin times and focal mechanisms (Bountzis et al., 2021; Cesca et al.,

2016). An advantage of the algorithm is that it does not require as input a pre-

defined number of earthquake clusters, such as the k-means algorithm, where

further optimization techniques for the determination of the clusters number

are necessary (Sheikhhosseini et al., 2021).

3.2.4 Evaluation of the MAP-DBSCAN method

The efficiency of the MAP-DBSCAN procedure to correctly identify spatio-

temporal correlated seismicity will be evaluated on a simulated ETAS catalog,

where the number of clusters and the links among the events are known a

priori. The ETAS model is developed by Ogata (1988, 1998) and belongs to

a wide class of branching processes where the expected rate of earthquakes,

known as intensity function, depends on the history of all previous seismicity.

In Appendix A we present an extensional review of the ETAS framework for

those not familiar with the model, a thorough description of its parameters

and of the simulation procedure. Its intensity function consists of two parts

75



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

CHAPTER 3. MARKOVIAN ARRIVAL PROCESS FOR EARTHQUAKE
CLUSTERING

given by

λ(t,x = (x, y)/Ht) = µ(x) +K
∑

j:tj<t,xj∈Σ0

ea(mj−mc)g(t)f(x), (3.1)

where Ht = {(ti,xi,mi) : ti < t} the subset of all past earthquakes with

magnitude larger than or equal to mc that occurred inside the region Σ0.

The background component (mother events), µ(x), is stationary in time but

heterogeneous in space due to the fault network geometry. For the second term

of the right-hand side of Equation 3.1, the modified Omori law (Equation A.3)

is considered for the temporal component, the productivity law (Equation A.2)

and an isotropic spatial kernel (Equation A.5).

We chose the ETAS model because it captures the main properties of the

spatio-temporal evolution of seismicity and it is considered “a de facto standard

model, or null hypotheses, for other models and ideas to be compared to”

(Huang et al., 2016). It has already been used as a reference model for both

forecasting experiments (Nandan et al., 2019) and for evaluating clustering

methods such as the Nearest-Neighbor algorithm in Zaliapin and Ben-Zion

(2013a).

For the evaluation of the MAP-DBSCAN method we additionally demon-

strate its performance against widely used clustering algorithms. In particular,

our approach is compared with the Nearest-Neighbor, Gardner and Knopoff

window-based and Reasenberg link-based algorithms. A detailed review on

each one of them is given in Appendix B.

The simulated ETAS catalog consists of clusters that are defined either as

single events, i.e., mother events without any subsequent triggered earthquake

or as a sequence of events with a common mother event (first event in the

cluster). For the validation of the similarity between the initial structure of

the clusters and the one after the implementation of the clustering algorithm,

we should first define the true partition of the catalog, X = {Xk}k=1,...,Nc ,

where Nc corresponds to the number of clusters and each subset Xk includes
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all the events of cluster k. The partition after the implementation of the

MAP-DBSCAN and the other K − 1 methods, including different tuning of

the algorithm’s parameters, is defined as Yi = {Yn}n=1,...,Nyi
, i = 1, . . . , K,

where Nyi is the number of clusters after the implementation of method i.

Next, we will use the Jaccard index, which is a measure to quantify the

overlap between two partitions, in our case, the true one of the ETAS cata-

log, X, and the one of the i − th implemented algorithm, Yi. According to

Fortunato and Hric (2016) the Jaccard index belongs to the class of similarity

measures that are based on pair counting, i.e., counting the number of events

assigned to the same (different) cluster. It is expressed by

J1(X,Y) = |X ∩Y|/|X ∪Y| = a11/(a11 + a10 + a01), (3.2)

where a11 indicates the number of pairs of elements which are correctly assigned

into the same cluster (true links), a01 the number of pairs of elements which

are in the same cluster in the simulated ETAS catalog and in different clusters

in the estimated one (missed links) and a10 the number of pairs of elements

which are wrongly identified as clustered events (false links). If all the initial

clusters are correctly identified by the testing method, then a10 = 0 = a01 and

J1(X,Y) = 1. Conversely, if all pairs are wrongly identified as clustered or

independent, then a11 = 0 and, as a consequence, J1(X,Y) = 0.

In addition, we introduce a generalization of the Jaccard index,

J2(X,Y) = b11/(b11 + b10 + b01), (3.3)

to identify the partition Y with the best discrimination between the back-

ground seismicity and clustered elements, following the definition in Lippiello

and Bountzis (2021). We consider as background seismicity single events and

the mother events of each cluster, i.e., the ones that initiate a cascade of events.

b11 represents the number of common background events in the two partitions,
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b10 is the number of elements wrongly identified as mother events in the parti-

tion Y, whereas b01 corresponds to the number of true mother events identified

as clustered elements in the partition Y.

3.2.5 Generic ETAS parameters

We will adopt the temporal ETAS model for the investigation of the prop-

erties of the detected clusters. It incorporates into its functional form two

empirical relationships that characterize the temporal and size distribution of

earthquakes, the normalized Omori–Utsu law, g(t), given by Equation A.3,

and the productivity law, N = k(Mi) (Equation A.2), where N is the number

of events triggered by an earthquake of magnitude, Mi.

The constant factorK in the productivity law is an index of proportionality,

which expresses the expected number of triggered events per main shock above

the magnitude cutoff, whereas parameter a describes the impact of magnitude

on the number of triggered events. Increasing parameter a indicates the in-

crease of the proportion of triggered events from large earthquakes compared to

small ones typical for main shock-aftershock sequences. Small a values suggest

that the overall productivity is separated into bursts of smaller earthquakes

usually the case for earthquake swarms.

To infer the clustering properties of a region we will compute the “generic”

ETAS parameters by jointly inverting the ETAS parameter set θ = (p, c, a,K, µ)

from the identified clusters. We use the maximum likelihood procedure, which

is the most common method for the estimation of the ETAS parameters. In

particular, neglecting the spatial component in Equation A.6, the log-likelihood

function takes the following form

LLi =

ni∑
j=1

log λ(tj)−
∫ tf

t0

, λ(t)dt (3.4)

which corresponds to the log-likelihood of the i-th sequence, namely, the log-
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arithmic probability of observing ni events with occurrence times tj, j =

1, ..., ni, during the period of the sequence (t0, tf ). The intensity function,

λ(t), of the model is given by Equation (A.1) and takes the following form

when we embed the two empirical laws in the triggering function

λ(t) = µ+ (p− 1)c(p−1)
∑
j:tj<t

Kea(Mj−mc) · (t− tj + c)−p. (3.5)

Then, we stack all the detected sequences of the study area, compute their

corresponding logarithmic probabilities, LLi, and define as the common log-

likelihood

LL =
N∗∑
i=1

LLi, (3.6)

where N∗ is the number of sequences. The optimal inverted parameters are

the ones that maximize Equation (3.6). For the maximization of the common

log-likelihood, LL, we implement the numerical procedure in A.2. However,

in this case at each iteration step, (r), we compute N∗ log-likelihood values,

LL
(r)
i , i = 1, ..., N∗, and store the new parameters under the condition LL(r) >

LL(r−1) where LL is the common log-likelihood given by Equation (3.6).

For the comparison of the aftershock productivity among areas with dif-

ferent completeness magnitudes, we adopt a common magnitude cutoff (the

maximum) and use the following relation,

N = k(Mi)P (M ≥ m∗
c) = Kea(Mi−mc)e−β(m∗

c−mc), (3.7)

which yields the number of earthquakes above magnitude m∗
c , generated by

a main shock of magnitude Mi. The exponent of the exponential magnitude

distribution is expressed by β and is defined as β =
∑N∗

i=1 βi/N
∗, where N∗ is

the number of clusters for each study area and βi their corresponding exponent

values.
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3.3 Applications

We firstly apply the MAP model to the Corinth Gulf area and evaluate its

efficiency to separate potential seismic sequences from background seismicity in

an earthquake catalog. In the second part, we will apply the two-step clustering

procedure, MAP-DBSCAN, first on a synthetic earthquake catalog where the

structure of the clusters is known a-priori and subsequently to three major

seismic zones of Greece with different seismotectonic properties. The selected

areas are the Corinth Gulf, the Central Ionian Islands and the North Aegean

Sea, all characterized by intense seismic activity and therefore a large amount

of data is available. We will investigate their regional clustering properties

based on the ETAS model and will produce generic and sequence specific

parameters for each study area.

3.3.1 Seismicity rate changes through MAP in Corinth

Gulf, Greece

In this section we will test the efficiency of the MAP model to detect seismicity

rate changes in Corinth Gulf area. The MAP is a temporal model that does

not take into account spatial correlations, so a sufficiently small region for

its application is assumed for any given earthquake to may interact with all

following events, regardless of their spatial locations, as suggested by Zhuang

et al. (2012). The Corinth Gulf area is divided into its eastern and western

parts, based on seismotectonic criteria, like fault segmentation, slip rates and

variations in seismicity rates (Bountzis et al., 2019; Console et al., 2013). We

note, that a number of strong (M ≥ 6.0) events outside the study area could

have a triggering effect, which could further improve the fitting of the model,

however, due to lack of a spatial component we are extremely reluctant into

extending the area.
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3.3.1.1 Data

The 1964-2017 earthquake catalog was used and is considered complete for

earthquakes with M ≥ 4.5 (Console et al., 2015) including 274 events within

an area bounded between 21.3o − 23.2o and 37.9−38.6o . The high magnitude

cutoff enables the use of a long period earthquake catalog that includes well

studied swarm type sequences as well as an adequate number of strong main

shocks. This will allow us to evaluate the ability of the model on capturing

changes in the seismicity rate related to both main shock-aftershock sequences

and earthquake swarms. In Table 3.1 details on the sub-catalogs of the eastern

and western subareas are given and Figure 3.2 shows with yellow stars the

epicenters of the 274 events with M ≥ 4.5 during 1964-2017.

Figure 3.2: Epicentral distribution of earthquakes with M ≥ 4.5 that occurred
in the area of Corinth Gulf during 1964-2017 are shown with yellow stars.
Vertical line divides the area into the western and eastern subareas.

Among the seismic excitations with special interest in the eastern subarea

is the sequence of three strong earthquakes (M ≥ 6.3) that occurred during

nine (9) days in February-March 1981, associated with adjacent and antithetic

fault segments in eastern Corinth Gulf (Papazachos et al., 1984). In the west-

ern subarea, recent strong earthquakes include the 1993 Patras, Mw = 5.6

(Karakostas et al., 1994), 1995 Aigion, Mw = 6.4 (Bernard et al., 1997), 2008
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Achaia, Mw = 6.4 (Ganas et al., 2009; Karakostas et al., 2017), and the 2010

Efpalio doublet, with Mw = 5.5 and Mw = 5.4 (Karakostas et al., 2012). Table

3.1 provides information on these strong earthquakes.

Table 3.1: Strong earthquakes (M ≥ 5.5) in Corinth Gulf area during 1964-
2017. T and N denote the study period and the number of events comprised
in each data set, respectively.

Date Time Lat. Lon. Mw Mthr T N
1965, Jul 6 03:18:42 38.270 22.300 6.3 Corinth

Gulf
4.5 1964-2017 274

1975, Jun 30 13:26:55 38.466 21.641 5.6
1975, Dec 31 09:45:45 38.486 21.661 6.0 Western

subarea
4.5 1964-2017 139

1981, Feb 24 20:53:37 38.153 22.961 6.7
1981, Feb 25 02:35:51 38.083 23.139 6.4 Eastern

subarea
4.5 1964-2017 135

1981, Mar 4 21:58:05 38.204 23.236 6.3
1993, Jul 14 12:31:49 38.170 21.770 5.6
1995, Jun 15 00:15:50 38.362 22.200 6.4
2008, Jun 8 12:25:28 37.952 21.537 6.4
2010, Jan 18 15:56:9 38.404 21.961 5.5

3.3.1.2 Model evaluation and comparison with MMPP

Firstly, we need to determine the optimal number of states for the MAP model.

Thus, MAPs with two to four states are fitted to the events with M ≥ 4.5 that

occurred during 1964-2017 in both subareas. We believe that a MAP with four

states is sufficient as an upper limit of state space for the description of the

earthquakes temporal distribution (Bountzis et al., 2019). The AIC and BIC

values of the fitted models as well as the corresponding log-likelihood values

are given in Table 3.2. Both criteria are in favor of the four-states model for

the eastern subarea (lowest values with AIC=916 and BIC=974), however, in

the western subarea AIC and BIC suggest the four and three-states model

(AIC=1395 and BIC=1443), respectively.
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Table 3.2: The log-likelihood and AIC and BIC values of the fitted MAP
models to the events with M ≥ 4.5 that occurred in the eastern and western
subarea of Corinth Gulf during 1964-2017.

Western subarea Eastern subarea
# of S LL AIC BIC LL AIC BIC

2 -708 1429 1447 -496 1005 1023
3 -692 1408 1443 -461 946 981
4 -677 1395 1453 -438 916 974

For each MAP, the transformed times are calculated with the relation (2.18)

and the cumulative number of the residuals versus the transformed times are

plotted in Figure 3.3 along with the Kolmogorov-Smirnov (KS) confidence

bounds. A good approximation of the true process is achieved when the resid-

uals follow a stationary Poisson process with unit rate (solid line). For the

three-states MAP in the western subarea (Figure 3.3a) the 95% confidence

bounds are almost exceeded in three cases, whereas for the four-states MAP

the residual process is well approximated (Figure 3.3b). Similar performance

with the latter shows the four-states MAP of the eastern subarea (Figure 3.3c).

Concerning the inter-event times, Ei = τi+1 − τi, i = 1, . . . , n − 1, with

n being the number of events, two types of tests need to be implemented for

the assumption of a stationary Poisson process to hold. Firstly, the Runs test

and the auto-correlation function are computed in order to seek for possible

correlations and next Kolmogorov-Smirnov test is applied to verify that the

Ei follow an Exponential distribution. Figure 3.4 shows the auto-correlation

of Ei and Table 3.3 gives the p-values of the Runs and KS tests for each of

the three fitted MAP models. According to the p-values of the Runs test,

we cannot reject the null hypothesis of uncorrelated events (p > 0.05), which

is also verified from the auto-correlation plot (all values within the confidence

bounds). Concerning the KS goodness-of-fit test, besides the three-states MAP

of the western subarea of Corinth Gulf where p = 0.009, there is no evidence

for a significant departure from the stationary Poisson process hypothesis.

Therefore, we choose the four-states MAP as the optimal model that captures
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Figure 3.3: The residual process for the western subarea with the a) three-
states MAP and b) four-states MAP and for the eastern subarea with the c)
four-states MAP. The solid straight line corresponds to the stationary Poisson
process with unit rate and the dashed lines to the 95% Kolmogorov-Smirnov
confidence bounds.

the main temporal features of seismicity with M ≥ 4.5 in both subareas.

Table 3.4 presents the estimated parameters of the rate matrices, D0 and

D1 for the four-states MAPs of the western and eastern subarea of Corinth

Gulf, respectively. We should note that a MAP model with an extra hidden

state (corresponds to occurrence rate, λ4
west = 182.8261) is found compared
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Table 3.3: P-values of the Runs and Kolmogorov-Smirnov tests implemented
to the inter-event times of the residuals, Ei, for the three-states and four-states
MAP of the western subarea of Corinth Gulf and for the four-states MAP of
the eastern subarea of Corinth Gulf.

Statistical tests Western subarea Eastern subarea

MAP(3) MAP(4) MAP(4)
Runs test 0.775 0.536 0.247

Kolmogorov-Smirnov test 0.009 0.199 0.999

Figure 3.4: The auto-correlation of the inter-event times, Ei, for the western
subarea of Corinth Gulf with the a) three-states MAP and b) four-states MAP
and c) for the eastern subarea of Corinth Gulf with the four-states MAP. Solid
blue lines indicate the 95% confidence bounds.

to Bountzis et al. (2019) where the same MAP model is applied to the west-

ern subarea for earthquakes with M ≥ 4.5 during 1964-2016. The use of the

grid-based procedure for the choice of the initial input values of the EM algo-
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rithm, led to a higher peak of the log-likelihood for the four-states MAP, large

enough to be in favor over the three-states model. The investigation of the log-

likelihood landscape profile shows an increased number of peaks as the number

of states is getting higher, which makes the choice of the initial parameter set

really crucial. Therefore, the condition under which the EM algorithm was

implemented in the previous work, when initial parameter set was chosen to

match the first moment of the trace, seems very sensitive when small data sets

are combined with large parameter sets, which is the case here. Nevertheless,

characteristics concerning the dynamics of the two subareas do not differ sig-

nificantly, as the episodic seismicity behavior of the eastern subarea compared

to the western one still remains. According to the estimated transition rates

given in Table 3.4 the probability to move from the state with the highest

seismicity rate (state 4, λwest
4 = 182.82, λeast

4 = 41.72 events/day), to the

one with the lowest occurrence rate (state 1, λwest
1 = 0.0022, λeast

4 = 0.0029

events/day), is higher in the eastern (peast41 = q41(1)/q44(0) = 0.1054) than in

the western subarea (pwest
41 = 4.0516e − 34) and vice versa (peast14 = 0.0716,

pwest
14 = 2.2459e − 07). This is an indicator of a more bursty behavior for the

eastern subarea, i.e., faster transitions from periods with high productivity to

periods of relative seismic quiescence.

Table 3.4: Parameter estimates of the D0 and D1 matrices corresponding to
the four-states MAPs for the events with M ≥ 4.5 that occurred in western
and eastern subarea of Corinth Gulf during 1964-2017. Time unit is in days.

Subarea
Estimated Parameters

(0,1) (0,2) (0,3) (0,4) (1,1) (1,2) (1,3) (1,4)

Western

(0,1) -0.0022 0 0 0 2.9021e-07 0.0017 0.0004 4.8447e-10
(0,2) 0 -0.0113 0 0 0.0036 0.0065 0.0003 0.0007
(0,3) 0 0 -2.6586 0 1.6734e-10 1.3771 1.1527 0.1287
(0,4) 0 0 0 -182.8261 7.4073e-32 44.1805 68.9208 69.7246

Eastern

(0,1) -0.0029 0 0 0 0.0026 6.4091e-05 8.8485e-11 0.0002
(0,2) 0 -0.0859 0 0 0.0058 0.0656 0.0082 0.0061
(0,3) 0 0 -2.6525 0 0.0844 0.2644 2.1382 0.1653
(0,4) 0 0 0 -41.7287 4.4002 3.4708e-08 6.3211 31.0073

We also moved to the fitting of a MMPP on the sub-catalogs of the western

and eastern subareas in order to compare it with the corresponding fitted MAP

models. First, N = 1E6 initial values are randomly chosen and the parameter
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set corresponding to the maximum log-likelihood is selected as input value to

the EM algorithm. The Hidden Markov package developed by Harte (2017) is

used and the convergent log-likelihood values for the eastern (LL = −456) and

western (LL = −690) subareas are given in Table 3.5, respectively. In addition,

the AIC and BIC differences between the two models (∆AIC = AICMMPP −

AICMAP , ∆BIC = BICMMPP − BICMAP ) are computed for both subareas.

Positive values indicate that the MAP model is preferred compared to the

MMPP and vice versa. In both data sets the differences (Table 3.5) are positive

which means that with the MAP model we achieve a better fitting.

Table 3.5: The Akaike’s and Bayes Information Criteria differences among the
Markov Modulated Poisson Process and the Markovian Arrival Process for
the western and eastern subareas with M ≥ 4.5 during 1964-2017 and the
corresponding log-likelihodd values for the MMPP.

Area LLMMPP (4) LLMAP (4) ∆AIC ∆BIC

Eastern subarea -456 -438 28.2531 16.6618
Western subarea -690 -677 18.4433 6.7343

3.3.1.3 Identified seismic sequences

Figure 3.5a visualizes the transitions among the states of the four-states MAP

for the data set of the western subarea of Corinth Gulf with the use of colored

boxes. The color at each temporal interval tk ≤ t < tk+1 indicates the state

with the maximum probability at the certain time, derived with Equation 2.14,

and the legend contains its corresponding occurrence rate, given by Equation

2.1. Red color indicates the sojourn of the process in state one (λ1 = 0.002),

yellow to state two (λ2 = 0.01), orange to state three (λ3 = 2.66) and cyan

to state four (λ4 = 182.83). The intensity function of the MAP model is

also evaluated by Equation 2.15 and expresses the expected occurrence rate,

λ(t) = λ(tk), tk ≤ t < tk+1 at each time t. This is an alternative way to

illustrate the fluctuations in the seismicity rate during the study period.

We observe more frequent fluctuations of the intensity function (Figure
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Figure 3.5: a) The most probable sequence of hidden states along with the
magnitude distribution as a function of time (grey vertical lines) for the events
with M ≥ 4.5 of the western subarea of Corinth Gulf during 1964-2017. Each
color is assigned to a different state i with seismicity rate λi. Red color corre-
sponds to λ1 = 0.002, yellow color to λ2 = 0.01, orange color to λ3 = 2.66 and
cyan color to λ4 = 182.83. (b) The expected seismicity rate is denoted by the
blue color and the cumulative number of the events with the maroon.

3.5b) until 1995, where the majority of strong earthquakes with M ≥ 5.5

occurred. This can also been seen in Figure 3.5a from the more frequent visits

of the model to states 3 and 4, which are associated with the highest seismicity

rates (λ3 = 2.66, λ4 = 182.83). After 1995 we see that state 1 with the

lowest occurrence rate (λ1 = 0.002) is dominant compared with the previous

period where the sojourn time of the model to state 2 (λ2 = 0.01) is longer.

States 1 and 2 can be associated to periods of relative seismic quiescence with

λ1 = 0.002 and λ2 = 0.01, respectively, and separate the data from periods

of high (states three and four) seismic activity that might be related with a
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seismic excitation. For this reason, we focused on the events that occurred

during the sojourn of the process in states 3 and 4. We observe that strong

earthquakes (M ≥ 5.5) with special interest mentioned in Table 3.1 and their

associated events are related to these states.

Table 3.6: Information on the earthquakes that occurred during the sojourn
of the process in states three and four in the western subarea of the Corinth
Gulf during 1964-2017. # denotes the potential cluster index, second column
corresponds to the time interval, ”No” denotes the number of events occurred
during the sojourn of the process in states three and four, in the fourth column
the main shocks are presented and in the last column some details are given.

# Time interval No Main shocks Details
1 6/07/1965 2 M = 6.3 (state 3) The main shock and its aftershock just 3 hours later occurred

in state 3 (Figure 3.6a) .
2 4/01/1967 2 M = 5.5 (state 3) The main shock and an aftershock is observed after one hour

in state 3 (Figure 3.6b).
3 29-30/06/1975 3 M = 5.7 (state 3) A foreshock one day before the 30 Jun 1975 main shock with

M = 5.7 is observed, and one aftershock in 5 hours. All events
occurred in state 3 (Figure 3.6c).

4 31/12/1975-3/01/1976 7 M = 6.0 (state 3) The 31 December 1975 main shock of M = 6.0 occurred, and
an aftershock sequence followed with 6 events in four days
(Figure 3.6d).

5 11/12/1984 3 M = 5.6 (state 4) The model captures the main shock-aftershock sequence (Fig-
ure 3.6e). However, the two events that occurred close in
space during the last month before the main shock, and the
secondary aftershock sequence of two more events during the
next 17 days occurred in state 2, probably associated with
the relative increase and decrease in the seismicity before and
after the main shock, respectively.

6 14/07/1993 2 M = 5.6 (state 4) The July 14, 1993 (M = 5.6) Patras earthquake (Karakostas
et al., 1994) and the immediate aftershock with M = 4.6
(eight minutes later) (Figure 3.6e).

7 15/6/1995 3 M = 6.5 (state 4) The 1995 Aigion sequence (Bernard et al., 1997) is revealed.
The M = 6.5, June 15, 1995 Aigion earthquake together with
two immediate aftershocks (in almost 4 hours after the main
shock) occurred in state 3, whereas two foreshocks and two
more aftershocks (state 2) occurred one month before and
after the main shock, respectively. (Figure 3.6g).

8 9-10/04/2007 6 M = 5.3 (state 3) The April 2007 earthquake swarm occurred near the Lake
Trichonis (Kiratzi et al., 2008). An intense seismic sequence
is observed where three strong earthquakes, all of magnitude
M = 5.3, along with three events of magnitude 4.5 ≤ M ≤ 4.9
that occurred in less than 24 hours, all in states 3 and 4.
(Figure 3.6h).

9 4/02/2008 2 M = 5.5 (state 3) A main shock with M = 5.5 and its immediate aftershock
with M = 5.2 (in less than two hours) occurred in state 3
(Figure 3.6i).

10 8-9/06/2008 8 M = 6.4 (state 4) The 2008 Achaia sequence (Ganas et al., 2009; Karakostas
et al., 2017) is revealed. The M = 6.4 June 12, 2008 main
shock together with four immediate aftershocks (within an
hour after the main shock) occurred in state 4 moving after-
wards to state 3 where three aftershocks occurred until next
day. (Figure 3.6j).

Table 3.6 details the events that occurred during the periods of high seis-

micity rate according to the model (λ3 = 2.66, λ4 = 182.83) and Figure 3.6
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shows their epicentral distribution. State 3 and 4 correspond in most cases to

main shocks and their immediate aftershocks. For instance, the intense after-

shock sequence of December 1975 (cluster 4 in Table 3.6, Figure 3.6d) close to

Lake Trichonis (Kiratzi et al., 2008) was recorded during the sojourn of the

model in state 3. In 31 December 1975 a main shock of M = 6.0 occurred,

that was followed by an aftershock sequence of 6 events in four days. In cluster

7 (Table 3.6), the main shock (M = 6.5) is associated to state four, which is

followed by an aftershock 15 minutes later moving to state three (Figure 3.6g).

The April 2007 earthquake swarm that occurred near the Lake Trichonis (Ki-

ratzi et al., 2008) is also associated with the sojourn of the process in states 3

and 4. An intense seismic sequence is observed with three strong earthquakes,

all of magnitudeM = 5.3, along with three events of magnitude 4.5 ≤ M ≤ 4.9

all within 24 hours. The epicenters of the swarm are in close proximity to the

epicenters of the June 1975 (cluster 3 in Table 3.6) and December 1975 (cluster

4 in Table 3.6) sequences, both unveiled by the underlying process (Figures

3.6c,d,h).

In general, we conclude that transitions to or from states 3 and 4 indicate

the initiation or the end of a seismic sequence with M ≥ 4.5, respectively.

There are only two groups of events that lack spatial proximity and occurred

in states 3 and 4, which cannot be associated to a known seismic sequence. A

sojourn period in state 2 without a transition to states with higher seismicity

rates (states 3 and 4), might be related to an earthquake swarm or a main

shock sequence where the maximum magnitude is close to the completeness

threshold, Mc = 4.5. In this case, events with M < 4.5 that can be part of

the sequence, are not included in the data set and therefore they were not

considered when we estimated the occurrence rates. This is the case of the

two moderate events (M = 5.5, M = 5.4) that occurred in January 2010

during the sojourn of the process in state 2, where the main seismic activity

consists of events with M < 4.5 (Karakostas et al., 2012). Finally, all eight

(8) events of the data set with M ≥ 5.6 occurred in state 3 or 4, and since
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Figure 3.6: Epicentral distribution of the earthquakes that occurred during
the sojourn of the process in states 3 and 4 in the western subarea during
1964-2017. Stars (blue) represent main shocks and circles correspond to earth-
quakes that occurred before (cyan) and after (red) the main shock, respectively.
Earthquakes associated with the (a) 6 July 1965, (b) 4 January 1967, (c) 30
June 1975, (d) 31 December 1975 (e) 11 February 1984 main shocks. (f) The
main shock of the 14 July 1993. (g) The Aigion sequence on June 1995. (h)
The April 2007 earthquake swarm near Lake Trichonis. (i) Earthquakes asso-
ciated with the 4 February 2008 and (j) 8 June 2008 main shocks.

the mean sojourn time until the next earthquake occurrence is 1/λ3 = 9 hours

and 1/λ4 = 8 minutes, respectively, we may conclude that an event with
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magnitude M ≥ 4.5 is expected in the next few hours after states 3 or 4 are

reached, namely after the occurrence of an event with M ≥ 5.6.

Figure 3.7: a) The most probable sequence of hidden states along with the
magnitude distribution as a function of time (grey vertical lines) for the events
with M ≥ 4.5 of the eastern subarea of Corinth Gulf during 1964-2017. Each
color is assigned to a different state i with seismicity rate λi. Red color corre-
sponds to λ1 = 0.002, yellow color to λ2 = 0.01, orange color to λ3 = 2.66 and
cyan color to λ4 = 182.83. (b) The expected seismicity rate is denoted by the
blue color and the cumulative number of the events with the maroon. Magni-
fied in the inset is the evolution of the Alkyonides seismic sequence according
to the hidden path of the model.

Figure 3.7 presents the most probable path of the hidden states along with

the intensity function for the four-states MAP of the eastern subarea of Corinth

Gulf, for earthquakes with M ≥ 4.5 during 1964-2017. As before, red colored

boxes represent the sojourn of the underlying process to state one (λ1 = 0.003),

yellow boxes to state two (λ2 = 0.086), orange boxes to state three (λ3 = 2.652)

and cyan boxes to state four (λ4 = 41.729). In western subarea 13 events with

M ≥ 5.5 occurred, whereas in the eastern subarea these are only 6 events
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with M ≥ 5.5. Consequently, according to the hidden path longer quiescent

periods are observed (state 1 with λ1 = 0.003, red color in Figure 3.7a), which

are interrupted by intense seismic periods, i.e., transitions to states with higher

seismicity rates (states 2, 3 and 4 with λ2 = 0.086, λ3 = 2.652 and λ4 = 41.729,

respectively, in Figure 3.7a). Large variations of the seismicity rate are also

observed from the model’s intensity function in Figure 3.7b. Compared with

the corresponding plot for the western subarea (Figure 3.5b), the expected

occurrence rate is more stable, especially since 1982. The productivity is very

low with state 1 (λ1 = 0.003) being dominant during the whole study period.

State 1 is associated to periods of relative seismic quiescence, and we can say

that it represents the background rate for the data set. States 2, 3 and 4 are

related to bursts of activity, so we focus on events that occurred during the

sojourn of the model in these states.

Table 3.7: Information on the earthquakes that occurred during the sojourn of
the process in states 2, 3 and 4 in the eastern subarea of Corinth Gulf during
1964-2017. # denotes the potential cluster index, second column corresponds
to the time interval, ”No” denotes the number of events occurred during the
sojourn of the process in these states, in the fourth column the main shocks
are presented and in the last column some details are given.

# Time interval No Main shocks Details
1 8/6/1967-12/6/1967 5 M = 5.2 (state 2) The 8 Jun 1967 main shock (M = 5.2) occurred in

state 2 and four aftershocks followed in the next 4
days (Figure 3.8a).

2 14/11/1974-4/12/1974 6 M = 5.2 (state 4) A foreshock and two aftershocks occurred in less
than a day after the main shock (M = 5.2). Then
the model moved to state 2 (q2 = 0.0859) until the
beginning of the seismic activity in the adjacent
area (Figure 3.8b).

3 1/1/1975-8/1/1975 4 M = 5.5 (state 4) Two events before the main shock (M = 5.5) oc-
curred and one aftershock within one hour (Figure
3.8c).

4 24/02/1981-27/08/1981 64 M = 6.6, 6.4, 6.3 (state 4) The February-March, 1981 seismic sequence is re-
markably well revealed through the path of the
hidden states (Figure 3.7). The major part of the
February 24th main shock aftershock sequence oc-
curred during the sojourn time in state 4 (14 events
in approximately 10 hours). In the sequel, another
transition to state 3 occurred not long before the
occurrence time of the third destructive event on
March 4, in the northeastern part of the gulf. In 8
Mar the model moved to state 2 up until 27 Aug
(Figure 3.8d).

The five groups of events (consecutive events in states 2, 3 and 4) corre-
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spond to potential clusters (concentrated in space and time) and four of them

are detailed in Table 3.7. Their epicentral distribution is shown in Figure 3.8.

We should mention, however, that clusters 2 and 3 were recognized as one

group, probably due to their temporal proximity. The underlying process with

the four hidden states succeeded to reveal the three moderate main shocks

along with their aftershocks, the June 1967 (Figure 3.8a), the November 1974

(Figure 3.8b) and the January 1975 (Figure 3.8c) sequences as well as the com-

plicated temporal structure of the February-March, 1981 Alkyonides seismic

sequence (Figure 3.8d), validating previous observations.

To sum up, the multiple embedded occurrence rates of the underlying

Markov process Jt capture the seismicity temporal evolution of earthquakes

with M ≥ 4.5 in Corinth Gulf during 1964-2017, and reveal the seismicity rate

changes associated in many cases with the occurrence of main shocks and their

aftershock sequences or earthquake swarms.

3.3.2 Application of MAP-DBSCAN

In this section, we firstly test the ability of the two-step clustering procedure

to detect spatiotemporal clusters on an simulated ETAS earthquake catalog

where the number of clusters and the links among the events are known a

priori.

Subsequently, we apply the procedure to earthquake data sets and study the

properties of the detected clusters. For the application of the MAP-DBSCAN

procedure, we firstly need to define the earthquake catalog, specifically, the

spatial boundaries, the time window and the completeness magnitude. The

former is crucial since the structure of the clusters is related to the seismotec-

tonic properties of a region. Seismic sequences can extend outside the bound-

aries if they are chosen arbitrarily, which produces misleading results (Wang

et al., 2010). Hence, it is important to define the boundaries of the study area,

taking into account the tectonic setting and the seismic activity. The time win-
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Figure 3.8: Epicentral distribution of the earthquakes that occurred during the
sojourn of the process in states 3 and 4 in the eastern subarea during 1964-2017.
Stars (blue) represent main shocks and circles correspond to earthquakes that
occurred before (cyan) and after (red) the main shock, respectively. Earth-
quakes associated with the (a) June 1967 seismic sequence, (b) 14 November
1974, (c) 8 January 1975 events and (d) February-March, 1981 seismic se-
quence.

dow is one more parameter that should be defined with caution. For a robust

evaluation of the clustering method, we need a sufficiently long time interval to

include a significant number of seismic sequences. The third parameter is the

completeness magnitude, which is defined as the magnitude threshold above

which we do not miss any earthquake mainly due to deficiencies of the seismic

network. It is related to the choice of the time window in the sense that we

look for determining a starting date of our catalog when the seismic network
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is sufficiently developed to achieve a low magnitude of completeness including

in this way seismic excitations of a lower scale.

Three major seismic zones in the region of Greece (Figure 3.10), which con-

stitute distinctive seismotectonic units, are chosen to investigate the clustering

properties of seismicity with the use of the proposed MAP-DBSCAN method

in Section 3.3.2.3 . The selection of the three study areas is based on criteria

related to the homogeneity of the type of faulting, the comparatively intense

continuous seismicity and the existence of seismic excitations during the study

period.

3.3.2.1 Data

Simulated ETAS catalog

For the generation of the simulated ETAS catalog firstly we define the broader

spatial and temporal area to avoid the boundary issue, i.e., triggering effect

of events outside the target region and from an earlier period, and then the

target area Σ × [tin, tf ] with Σ ⊆ Σ0 and tin > t0 which will be the data set

for our study. The broader region is confined by the Greek territory (Figure

1.2) with duration 20 years [t0, tf ] = [0, 20] and the target region will be the

Corinth Gulf area (Figure 1.3), lasting 18 years [tin, tf ] = [2, 20].

We generate the mother events of the catalog using the coordinates from

the background seismicity of the Greek earthquake catalog. In this way, they

will be distributed in space according to the faulting geometry of the area. We

consider earthquakes with mc = 2.5 during the time period 2011-2019 and im-

plement the Nearest-Neighbor declustering algorithm to separate the clustered

from the background events. Then, we produce Nmain mother events according

to a Poisson distribution with mean value equal to the number of the identi-

fied background events. Their coordinates are sampled with replacement from

the declustered catalog and a small random factor is added. The occurrence

times of the mother events are simulated from a uniform distribution U(t0, tf ),
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where t0 = 0 and tf = 20 years and the magnitudes are generated accord-

ing to the Gutenberg-Richter law (Equation A.7) truncated from the left at

the completeness magnitude, mc = 2.5, and from the right at the maximum

observed magnitude of the instrumental earthquake records in Greece plus a

small factor, such that mmax = 7.8. We set the b-value of the GR law equal to

one, b = 1.0, where β = b · log(10).

After the generation of the background events, we simulate their aftershock

number, their occurrence times and the locations according to the productivity

law (Equation A.2), the Omori law (A.3) and a spatial power law (Equation

A.4), respectively, using a typical thinning method. We stop when no more

events are triggered inside the target region. In Table 3.8, we give the param-

eter set that produced the ETAS catalog.

Table 3.8: Parameters used for the generation of the simulated ETAS earth-
quake catalog with mc = 2.5. The target area is Σ × [tin, tf ] = [21.3◦E −
23.2◦E] × [37.9◦N − 38.6◦N ] × [2, 20]. The number of clustered events is
N = 4253 and the number of mother events is Nbg = 1595.

Parameter Parameter

K 0.1 d 2.41×10−5

a 2.19 q 1.805
p 1.13 γ 0.59
c 0.024 (days) µ(events/day) 4.50

Earthquake catalogs

The earthquake catalogs of CG, CII and NAS, which we denote henceforth

as D1, D2 and D3, include 25, 595, 24, 085 and 21, 139 events, respectively,

occurring between 2012 and 2019 (Table 3.9). An upgrade on the magnitude

determination software of the Greek seismic network happened in early 2011,

that led to the significant decrease of the completeness magnitude (Mignan

and Chouliaras, 2014). So, we chose 2012 as starting year to avoid significant

temporal fluctuations in the magnitude cutoff and include as many earthquakes

as possible in our study.
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Table 3.9: The completeness magnitude, Mc, for the datasets of the three areas
CG, CII and NAS, along with the productivity, a, and the b-value of the GR
law. N and Nc denote the initial number of events and the ones with M ≥ Mc,
respectively.

Region Notation N Mc Nc a b

CG D1 25,595 1.5 13,043 5.57 0.97
CII D2 24,085 2.2 6981 5.80 0.88
NAS D3 21,139 2.1 8328 5.79 0.89

Figure 3.9: (a-c) Residuals (purple triangles) as a function of minimum cutoff
magnitude, Mc, for the D1, D2 and D3 data sets, respectively. Blue and cyan
dotted horizontal lines indicate the 10% and 5% residual thresholds, respec-
tively. Mc (red triangle) is found as the first magnitude cutoff at which the
confidence 95% is reached. (d-f) incremental (red triangles) and cumulative
frequency (blue triangles) as a function of magnitude. The dashed black line
is the GR law fit according to the GFT method with Mc = 1.5, 2.2, 2.1 for
data sets D1, D2 and D3, respectively.

For the determination of the completeness magnitude, we applied the Goodness-

of-Fit (GFT) method (Wiemer and Wyss, 2000). It is based on the assump-

tion that a power law, known as Gutenberg-Richter (GR) law (Gutenberg and

Richter, 1944), logN = a − b ·M , where N the cumulative number of events

with magnitude larger than or equal to M , can approximate the frequency
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Figure 3.10: Maps of the study areas depicting seismicity along with major
faults (yellow lines). (a) The area of Greece with the main structures (thick
black lines), such as the Hellenic Arc (thick black line with triangles), the
North Aegean Trough, and the Kefalonia dextral Transform Fault Zone. Red
arrows represent the kinematics along major fault zones as well as the main
deformational pattern in the Corinth Gulf, characterized by extension. (b) The
area of Corinth Gulf where the major faults are shown (yellow lines) along with
seismicity during 2012–2019. (c) The area of Central Ionian Islands where the
Kefalonia Transform Fault Zone and the collision front are shown (yellow lines)
along with seismicity during 2012–2019. (d) The area of North Aegean Sea
where the NAT is traced (yellow line) along with seismicity during 2012–2019.
The legend is common for the three study areas.

magnitude distribution of earthquakes. In particular, the differences, which are

called residuals, between the observed and the synthetic frequency-magnitude
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distribution are computed for increasing magnitude bins as threshold values.

The completeness magnitude corresponds to the first magnitude bin at which

the difference falls under a predefined error threshold, usually 5%. The pa-

rameters of the synthetic distribution, a and b, are calculated by means of the

maximum likelihood method (Aki, 1965) and the residuals, Ri, for each mag-

nitude bin, Mi, between the observed and synthetic distributions are given by

Ri = 100−(
∑Mmax

Mi
|Bi−Si|∑

i Bi
·100), where Bi and Si are the observed and expected

cumulative number of events with M ≥ Mi, respectively. Figures 3.9a–c show

the residuals for the three data sets and Figures 3.9d–f present the cumula-

tive and noncumulative frequency and the fitted GR law for the corresponding

complete data sets. The magnitude thresholds and the corresponding esti-

mated b-values for the three data sets are equal to Mc = 1.5, 2.2, 2.1, and

b = 0.97, 0.88, 0.89 with 13, 043, 6981, 8328 events (Table 3.9), respectively.

The epicenters are shown in the map of each study area, for Corinth Gulf in

Figure 3.10b, for Central Ionian Islands in Figure 3.10c and for North Aegean

Sea in Figure 3.10d.

3.3.2.2 Evaluation on synthetic catalog

We implemented the GK, RB, NN and MAP-DBSCAN clustering algorithms

to the simulated ETAS catalog that lasts 18 years and is located within the

Corinth Gulf area. For the window-based method we used three different

temporal and spatial intervals, given by Equations (B.1) (GK1), (B.2) (GK2)

and (B.3) (GK3), respectively. They resulted to 341, 223, 319 earthquake

clusters and 596, 152, 1821 single events, respectively.

For the Reasenberg algorithm, we used the ZMAP tool (Wiemer, 2001)

where we provided as input the simulated ETAS catalog and we adopted 3 dif-

ferent sets of parameters, notated as RB1, RB2 and RB3, respectively, which

are given in Table 3.10. RB1 (Table 3.10) corresponds to the original param-

eters proposed in Reasenberg (1985). In the second set, RB2, we extend the

spatial zone by increasing the factor rfact from 10 to 20 km, whereas, in the
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third set, RB3, we also extend the temporal window modifying the parameters

τmin and τmax (Table 3.10). As a result we have 189, 188, 139 earthquake

clusters and 2437, 2324, 2428 single events, respectively.

Table 3.10: Input parameters for the Reasenberg clustering algorithm. The
first row corresponds to the standard parameter set (Reasenberg, 1985).

PS τmin τmax p1 xk xmeff rfact

RB1 1 10 0.95 0.5 2.5 10
RB2 1 10 0.95 0.5 2.5 20
RB3 0.5 20 0.95 0.5 2.5 20

The Nearest-Neighbor algorithm requires as input only two free parame-

ters, the spatial fractal dimension, df , and the b value (Equation B.4), which

are considered equal to df = 1.51 and b = 1.0, respectively. The logarithm of

the separation distance is equal to log η0 = −5.04, based on the intersection

of the two modes in the 1D density distribution of the logarithmic spatiotem-

poral distances, ηij, computed through Equation B.5 (Figure 3.11). The NN

algorithm detected 311 earthquake clusters and 1648 single events.

Figure 3.11: Distribution of the NN distances among all pairs of earthquakes
of the ETAS synthetic catalog. (a) 1D density distribution of log η, with
estimated Gaussian densities for clustered (yellow) and background (orange)
components. (b) 2D joint distribution of rescaled space and time distances.

Next, we implemented the MAP-DBSCAN procedure. In the first step we

need to choose the optimal number of occurrence rates for the MAP model.
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Figure 3.12: Most probable path of the hidden states of the model along with
the magnitude of events as a function of time (grey vertical lines). Each color
is assigned to a different state i with seismicity rate λi. The rate threshold,
λthr, is set equal to λ1 = 0.37.

We fitted MAP models up to 7 states and the BIC criterion (Equation 2.17)

suggested a MAP with 6 states. The most probable sequence of the hidden

states of the MAP model is computed through the state probabilities given in

Equation 2.14 and is shown in Figure 3.12. From Figure 3.12 is evident that

state 1 with λ1 = 0.37 corresponds to the background rate of the data set, so

it was set as the rate threshold λthr = λ1 for the initial separation of seismicity

into potential clusters.

Next, different temporal windows, (T, dt), are tested for merging the po-

tential clusters. The most rigorous selection is with T = 0 and dt = 0 and

the most loose one is with T = 14 days (potential clusters within 14 days are

merged into one) and dt = 7 (events ±7 days from the potential cluster are

included), respectively. Finally, the DBSCAN algorithm is implemented for

5 different distance thresholds (ϵ = {2.5, 7.5, 10, 12.5} km). The minimum

number of events is set to Npts = 2 for a better comparison with the other

methods where clusters with at least 2 events can be defined. In Table 3.11

we present details on the parameter tuning.
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Table 3.11: The 30 different parameter sets used for the clusters detection of
the simulated ETAS catalog.

ϵ Npts PS T dt PS T dt

[2.5 5 7.5 10 12.5] 2

1-5 0 0 16-20 0 7

6–10 7 0 21–25 7 7

11–15 14 0 26–30 14 7

The method seems rather insensitive to the parameter selection. In par-

ticular, Figure 3.13 presents the Jaccard index values given by Equations 3.2

and 3.3, that describe the efficiency of the method to correctly reconstruct the

initial clusters (J1) as well as to identify the single events (J2), respectively.

We observe that the Jaccard index values are quite stable with small fluctua-

tions, apart from the smallest upper-distance cutoff, ϵ = 2.5 km, which seems

inadequate to capture the spatial correlations among the events. Furthermore,

the contribution of the temporal constraints to the clustering procedure seems

negligible, with the exception of the two peaks for PS12 and PS27. This is

an indicator that the MAP model has already achieved a sufficient separation

between background and triggered seismicity with the six embedded rates,

λi, i = 1, . . . , 6, of the model.

In Table 3.12, we show the Jaccard index values (Ji, i = 1, 2) (Equations

3.2, 3.3) for all the clustering algorithms. In particular, for the MAP-DBSCAN

algorithm we show the one with the best results in terms of the Jaccard index

(MAP-DBSCAN27).

Table 3.12: The Ji, i = 1, 2, values for 3 parameter sets (PS) of the Reasenberg
and Garden-Knopoff algorithms, respectively, and for the corresponding MAP-
DBSCAN and Nearest-Neighbor methods.

PS RB1 RB2 RB3 GK1 GK2 GK3
MAP-DBSCAN

(PS27)
NN

J1 0.530 0.593 0.648 0.382 0.397 0.585 0.627 0.756
J2 0.612 0.630 0.617 0.418 0.192 0.676 0.647 0.727
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Figure 3.13: The Jaccard index values, J1 with blue and J2 with orange color,
respectively, for all the input parameters of the MAP-DBSCAN method.

The Nearest-Neighbor method shows the best performance among the test-

ing algorithms in the reconstruction of the clusters (J1 = 0.756) and in the de-

tection of the mother events (J2 = 0.727). This is also evident by its cumulative

number of background seismicity (purple line in Figure 3.14a), which is the

closest one to the initial catalog (dotted black line). The temporal evolution of

background seismicity is shown in Figures 3.14b–f across the longitude for ease

of reading as west–east normal faults dominate the Corinth Gulf area. For the

NN method the space-time evolution of the declustered seismicity is smooth

without large gaps, although there is a significant concentration of events be-

tween the 7th and 8th year of the catalog, which is also persistent in both RB2

and GK3 methods (orange ellipses in Figures 3.14d–f) and less apparent on

MAP-DBSCAN method (orange ellipse in Figure 3.14c). The high efficiency of

the NN method is probably related to the metric it uses, which is similar to the

ETAS one with λj(ti, xi) = (ti−tj)
−1r

−df
ij 10bmj and c = 0, p = 1, d = 0, q = df

and a = b. The windowing technique seems to overestimate the temporal and
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spatial windows, since it removes large amounts of seismicity (blue ellipse in

Figure 3.14f), in accordance with previous results (Peresan and Gentili, 2020).

The same gap between the 14th and 15th year of the catalog is also evident

in the background seismicity from the MAP-DBSCAN method, however, it is

smaller and some sparse seismicity is left (blue ellipse in Figure 3.14c). On the

other hand, Reasenberg’s declustered catalog has more events than any other

method (pink, magenta and green line, Figure 3.14a) and significant concen-

trations of events are visible in the space-time evolution of the background

seismicity (orange and purple ellipses in Figure 3.14e).

Figure 3.14: (a) Cumulative number of background events for each algorithm,
the initial ETAS catalog with black color and the mother events of the ETAS
synthetic catalog with the black dotted line. The space-time evolution (b) of
the initial ETAS catalog and of the background seismicity for the four best
algorithms, (c) MAP-DBSCAN27 (J2 = 0.647), (d) NN(J2 = 0.727), (e) RB2
(J2 = 0.630), (f) GK3 (J2 = 0.676). Colored ellipses stand for large gaps and
significant concentration of events.

Best overlapping among the true, X, and the estimated partition, Y, does

not mean necessarily the best detection for the declustered seismicity. For
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instance, the GK3 partition is characterized by a lower index, J1 = 0.585,

than the MAP-DBSCAN27 partition, J1 = 0.627, however, its declustering

catalog is more accurate (GK3-J2 = 0.676 > J2 = 0.647-MAP-DBSCAN27).

Nevertheless, both indexes combined (J1 + J2), the MAP-DBSCAN partition

shows a higher efficiency from the rest of the algorithms, except from NN.

3.3.2.3 Potential clusters identification in three seismic zones of

Greece

We applied the MAP-DBSCAN procedure to the data sets of the three major

seismic zones, Corinth Gulf, Central Ionian Islands and North Aegean Sea

for earthquakes with M ≥ 1.5, M ≥ 2.2 and M ≥ 2.1, respectively, that

occurred during 2012-2019. We fit MAP models from two up to seven states

for each earthquake sub-catalog, computationally a very demanding process as

the number of states increases, especially for large data sets such as D3 with

13043 events. The BIC is used as a metric to determine the optimal number

of hidden states for each model as it tends to the ”true” model for large data

sets (Burnham and Anderson, 2002). The lowest BIC values correspond to

six, seven and again six states of the MAP model for the D1, D2 and D3 data

sets, respectively.

Next, we evaluate the most probable path of the hidden states of the models

though the state probabilities pi(t) = p(Jt = i) for i = 1, ..., K, given in

Equation 2.14. Figures 3.15a–c illustrate the transitions among the states for

the data sets D1, D2 and D3, respectively. The colored box at each temporal

interval tk ≤ t < tk+1 indicates the state with the maximum probability at the

certain time and the legend contains its corresponding occurrence rate.

The temporal patterns of dataset D1 indicate the dominance of state 2 (yel-

low color, Figure 3.15a) with occurrence rate λ2 = 3.01 events/day for almost

the entire period. Nevertheless, there is a slight decrease in the occurrence of

earthquakes (λ1 = 1.23 events/day) in the second part of the catalog, starting

from 02/2016 with transitions to state 1 (red color, Figure 3.15a) until almost
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Figure 3.15: Most probable path of the hidden states of the model along with
the daily frequency of events (gray vertical bars) with (a) M ≥ 1.5 for D1,
(b) M ≥ 2.2 for D2 and (c) M ≥ 2.1 for D3 datasets, respectively. Each color
is assigned to a different state i with seismicity rate λi. Inset magnifies the
transitions among the states, which are otherwise difficult to visualize due to
the short sojourn times compared to the study period. The rate threshold,
λthr, is set equal to λ2 = 3.01, λ1 = 0.58, λ1 = 1.53 for the D1, D2 and D3
datasets, respectively.

the end of the catalog in 12/2019. This is probably related to the lack of

seismic sequences during the last part of the study period compared to the

previous intense seismic activity especially during the period 2013–2014 in the

western subarea of the CG (Kapetanidis et al., 2021). The rate threshold is

set equal to λthr = λ2, which we consider as the background rate during the

study period.
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The seismicity of the CII area is dominated by the two major sequences

during the study period, the 2014 Kefalonia doublet (Mw6.1 and Mw6.0)

(Karakostas et al., 2015) and the Mw6.5 2015 Lefkada earthquake sequence

(Papadimitriou et al., 2017). States 7 (brown), 6 (dark cyan), 4 (dark blue), 3

(orange) and 2 (yellow) in Figure 3.15b are clearly associated with the after-

shock evolution of the two sequences, essentially, they approximate the Omori

temporal distribution. Background seismicity is described by state 1 (red)

with occurrence rate λ1 = 0.58 events/day, which we set as rate threshold for

the primary classification of seismicity into potential clusters.

Finally, dataset D3 also contains some major sequences, the 2013 Mw5.8

North Aegean (Karakostas et al., 2014), the 2014 Mw6.9 Samothraki (Salto-

gianni et al., 2015) and the 2017 Mw6.4 Lesvos earthquake sequences (Pa-

padimitriou et al., 2018), whose aftershock temporal distribution is approxi-

mated by states 6 (dark cyan), 4 (dark blue), 3 (orange) and 2 (yellow) of the

model (Figure 3.15c). The rate threshold value is set equal to λthr = λ1.

In general, we observe significant variations in the temporal evolution of

the seismic excitations between the CG and the CII and NAS areas. Figure

3.15 illustrates that the daily frequency of events (grey vertical bars) during

seismic sequences in CII and NAS is decreasing in time, typical of main shock–

aftershock sequences, whereas in CG we observe large fluctuations in the daily

frequency, common for earthquake swarms, as in 2014 when multiple seismic

excitations occurred in the western subarea of CG.

Consecutive events above the rate threshold, λthr, are classified into groups

which are called potential clusters. The three data sets, D1, D2 and D3 consist

of 314, 49 and 281 potential clusters, respectively.

3.3.2.4 Sensitivity analysis

We now provide more details on the choice of the parameters and how they

affect the spatiotemporal evolution of background seismicity. We implemented

the clustering procedure, MAP-DBSCAN, for 16 different combinations of pa-
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rameters which are shown in Table 3.13. In particular, we tested four different

sets of temporal constraints, (T, dt), for the merging of the potential clusters

of the three data sets and then we applied the DBSCAN algorithm to the

merged clusters in order to separate them based on their spatial density. The

minimum number of neighbors for the determination of a cluster is set equal to

4 (Npts = 4) for avoiding cases with few events. This is an appropriate choice

for two-dimensional data according to Ester et al. (1996).

Table 3.13: The 16 tested parameter of MAP-DBSCAN method for the three
datasets D1, D2 and D3.

ϵ Npts PS T dt PS T dt

[2.5 5 7.5 10] 4
1 0 0 3 0 5
2 5 0 4 5 5

For the determination of the distance threshold ϵ, we computed the k-

distances between events assigned to the same potential cluster, since the DB-

SCAN algorithm is implemented in events that have been already grouped into

clusters based on their temporal proximity. This is a procedure proposed by

Ester et al. (1996), which is commonly used to constrain the distance threshold

(Petersen et al., 2021). In particular, for each event included in the potential

cluster, its k-nearest neighbor is computed and plotted in ascending order. If

we choose an arbitrary event, i, set the distance threshold ϵ to k-dist(i) and

the parameter Npts to k, all events with an equal or smaller k-dist value will

become core points, in other words, they will be assigned into a cluster. Ester

et al. (1996) proposed as best ϵ value the one that corresponds to a change

in the slope of the curve, as corner points indicate a change in the degree

of correlation among events. For k = 4, which corresponds to the minimum

number of neighbors (Npts), gradient changes in the slope range between 2.5

and 10 km in the data sets of both CG (Figure 3.16a) and NAS (Figure 3.16c)

areas, whereas for the CII area (Figure 3.16b), changes in the slope of the

curves initiate slightly sooner (below 2.5). The minimum one is chosen as
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equal to ϵ = 2.5 in order to also ensure that the location errors of the catalog

are considerably lower.

Figure 3.16: The k-nearest neighbor plot of the potential clusters withN ≥ 100
events in (a) CG (b) CII and (c) NAS. Black horizontal dashed lines indicate
the range of ϵ values given as input to the DBSCAN algorithm and each color
corresponds to a potential cluster.

For the 16 different realizations of the clustering algorithm, MAP-DBSCAN,

we investigated the spatiotemporal properties of the background seismicity,

i.e., events that have not been assigned to a cluster. Figure 3.17 presents

the cumulative number of the declustered seismicity for each set of parame-

ters along with the initial data sets. Peaks and pronounced concavities in the

cumulative curves are indicators of triggered seismicity wrongly assigned as

background and vice versa. In data sets D1 and D2 we observe such concaves

for thresholds ϵ ≥ 5 km and a rather stable curve for ϵ = 2.5 km (Figure

3.17a–h), suggesting that events are correctly separated as background and

triggered ones. Therefore, the distance threshold is set to ϵ = 2.5 km, for both

data sets. In data set D3, Figure 3.17i–l show that the curves with ϵ ≥ 7.5

km exhibit large concaves, indicating that background seismicity is incorrectly

assigned to clusters. For the smallest threshold ϵ = 2.5 km, some small peaks

appear and thus the ϵ = 5 km as the optimal value was selected. Data set D3

contains offshore seismicity in the NAS area, with probably higher location
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Figure 3.17: Cumulative number of the initial data sets (red line) and cumu-
lative number of background seismicity for each parameter set (PS1-PS4) and
for four different distance thresholds (ϵ = 2.5, 5, 7.5, 10 km). (a–d) Data set
D1, (e–h) dataset D2 and (i–l) dataset D3.

errors. This supports our choice for a larger distance threshold.

To further explore the differences between the spatiotemporal evolution

of the declustered catalogs, the space-time pattern of the background events

is examined, comparing the full and the declustered catalogs. In data set

D1, a persistent gap of seismicity appears during the second half of 2014,

independently of the chosen temporal constraints, associated with the two large

earthquake swarms in that period (Duverger et al., 2018). Due to the intense

seismic activity during 2013–2014 in the western Corinth Gulf (Kapetanidis

et al., 2021; Michas et al., 2021), the classification of seismicity into clusters

becomes more complicated, so we have chosen a rather conservative parameter

set, PS3, with T = 0. In this way, we avoid merging distinct clusters that

are spatio-temporally close to each other. Figure 3.18a shows the space-time

evolution of the declustered catalog that corresponds to the final parameter
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Figure 3.18: Space-time evolution of the background and initial seismicity for
data set (a,b) D1, (c,d) D2 and (e,f) D3. Purple lines denote the cumulative
number of events.

set. The main seismic excitations present in Figure 3.18b are detected, while

preserving the patterns of the background seismicity. In dataset D2, the results

are quite similar for all the tested temporal constraints, and for this reason, we

adopted parameter set PS4 with T = 5 days, which is a more loose constrain.

It is more likely for seismic excitations close in time to be part of the same main

shock–aftershock sequence, due to the two major sequences that dominate in

the study period. In the initial dataset (Figure 3.18c), the two major sequences

are visible, whereas they are removed after the implementation of the clustering

algorithm, while preserving the main patterns of background seismicity (Figure

3.18d). Finally, for the NAS area, the differences over the temporal constraints

seem negligible, therefore, we chose parameter set PS4. Figure 3.18e illustrates

a standard scattering of the background seismicity in space without gaps and

high-density areas, whereas the main seismic sequences visible in Figure 3.18f
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have been identified.

3.3.2.5 Cluster analysis in the three seismic zones

Table 3.14 gives the final parameter set of the clustering procedure for each

data set based on the analysis in Section 3.3.2.4 and a summary on the statistics

of the detected clusters. In the CG area, we identified the largest number of

seismic clusters (255) due to the increased detectability of micro-seismicity

(low completeness magnitude threshold), however, they are short in size (n̄ =

18.28) and duration (τ̄ = 12.50). Conversely, the CII area is characterized

by a small number of seismic clusters (45) but with large mean size (n̄ =

118.43) and duration (τ̄ = 54.60). The clustered seismicity is prevalent (75%),

whereas in CG and NAS, the background component is more dominant than

clustered seismicity with 64% and 56%, respectively (Table 3.14). In CG, this

is explained by the lack of large main shocks during the study period and the

occurrence of few moderate events, the largest number with M = 5.2.

Table 3.14: Cluster statistics and the parameter set of the clustering algorithm
for the three data sets. Nclust corresponds to the number of clustered events
andNbg to the background seismicity frequency. τ̄ and n̄ are the mean duration
in days and size of the clusters, respectively.

Dataset (T, dt, ϵ, Npts) Nclust Nbg # clusters τ̄ n̄

D1 (0, 5, 2.5, 4) 4662 (36%) 8381 (64%) 255 12.50 18.28
D2 (5, 5, 2.5, 4) 5221 (75%) 1770 (25%) 45 54.60 118.43
D3 (5, 5, 5, 4) 3688 (44%) 4640 (56%) 187 15.08 19.72

Corinth Gulf Area

The majority of the clusters are located on the western subarea where 22 out

of 27 clusters with N ≥ 30 occurred. The main activity is located offshore

Aigion and also offshore Psathopyrgos fault (Figure 3.19a). The activity of

the eastern subarea consists of smaller clusters that are mainly concentrated

offshore Xylokastro and Perachora faults, as well as near Itea Gulf (Figure

3.20a).

113



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

CHAPTER 3. MARKOVIAN ARRIVAL PROCESS FOR EARTHQUAKE
CLUSTERING

Figure 3.19: (a) Spatial distribution of the centroids of the identified clusters
for the western subarea of Corinth Gulf along with major faults (yellow lines).
The size of the circles is proportional to the earthquake number in each cluster,
whereas the duration is represented by the color scale. (b) Spatial distribution
of the clusters with N ≥ 30 events. The index of each cluster is provided in
the inset box.
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The western subarea of the Corinth Gulf is characterized by rich seismic

activity, especially in 2013–2014, when 13 out of the 22 clusters with N ≥ 30

occurred. One of the major detected sequences is the 2013 Aigion swarm (C6

in Figure 3.19b) which initiated on 21 May 2013 with a plethora of small events

(M ≥ 1.5) and several bursts associated with earthquakes of magnitudes rang-

ing between 3.3–3.7 (Figure C.2) (Kapetanidis et al., 2015; Mesimeri et al.,

2016). Two distinct excitations followed (C8 and C10 in Figure 3.19b) in

accordance with the ones observed by Michas et al. (2021). The first clus-

ter began on 7 July with some activity prior to the M = 3.7 event on 15

July, 2013, and lasted until 27 August, 2013 (Figure C.2). The second half of

2014 is also a well-studied period with intense seismic activity. Five clusters

with N ≥ 30 are detected (C15, C16, C18, C19 and C20) in the western

subarea, including the offshore Aigion M4.8 earthquake on 7 November 2014,

associated with C19 (Figure 3.19b), and the M4.6 event on 21 September

2014, associated with the earthquake swarm located between Nafpaktos and

Psathopyrgos (Kapetanidis, 2017) (C15 in Figure 3.19b). Persistent activity

since 22 July 2014 is also observed offshore Aigion (C16), close to the earth-

quake swarm, C15, which began on 7 November 2014 (Figure C.4). In 2012,

fewer clusters are observed, mostly during the first semester, with three clus-

ters comprising N ≥ 30 events, C1, C2 and C3, and a plethora of smaller ones

(Figures 3.19b and C.1). Between November 2013 and July 2014, the activity

is sparse with three relatively large clusters, C11, C12 and C14 (Figures 3.19b

and C.3). Six more clusters with N ≥ 30 are observed until the end of 2017

(C21, C22, C23, C24, C25, C27, Figure 3.19b).

The eastern subarea is characterized by more sparse activity. A major seis-

mic sequence, Offshore Perachora (C4 in Figure 3.20b), is detected, including

two sub-sequences, the first initiated on 22 September and the second on 30

September 2012 (Figure C.5). Two relatively large clusters, C13 and C17,

are observed near Itea Gulf; the former lasted almost two weeks at the end

of March, 2014, and the latter—almost three months between August and
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October 2014 (Figures 3.20 and C.6).

Figure 3.20: (a) Spatial distribution of the centroids of the identified clusters
for the eastern subarea of the Corinth Gulf along with the major faults (yellow
lines). The size of the circles is proportional to the earthquake number in
each cluster whereas the duration is represented by the color scale. (b) Spatial
distribution of the clusters with N ≥ 30 events. The index of each cluster is
provided in the inset box.

Central Ionian Islands area

The seismicity of CII is dominated by the 2014, Kefalonia and 2015, Lefkada

major main shock–aftershock sequences, each one comprising 2829 and 1396

events, respectively. Essentially, 4225 out of the 5221 clustered events belong

to these sequences (Table 3.14). Furthermore, 45 clusters are detected in total

with the main activity concentrated along the KTFZ (Figure 3.21a).

The two main shocks of sequence I1 (Figure 3.21b) with M = 6.1 and

M = 6.0 occupy the southern and the central part of the onshore area of

Kefalonia Island. The 2014 Kefalonia earthquake sequence (I1 Figure 3.21)

started on 19 January with the first main shock occurring on 26 January

(M = 6.1), and aftershock activity extending over 35 km (Karakostas et al.,

2015), part of which hosted the second main shock (M = 6.0) that occurred

on 3 February and the compound aftershock activity. A sub-cluster is also de-
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Figure 3.21: (a) Spatial distribution of the centroids of the identified clusters
for the area of Central Ionian Islands along with the trace of the Kefalonia
Transform Fault Zone (yellow lines). The size of the circles is proportional to
the earthquake number in each cluster, whereas the duration is represented by
the color scale. (b) Spatial distribution of the clusters with N ≥ 30 events.
The index of each cluster is given in the inset box.

tected offshore to the southwest of Kefalonia Island (I2 in Figure 3.21b) that

is deployed concurrently with the main sequence (Figure C.7). In addition,

two distinct clusters, I3 and I4 (Figure 3.21b), are revealed, which occurred

between November and December 2014 (Figure C.8), across the edges of the

double rupture. They might be triggered by the stress transfer of the main

ruptures, indicating activation of adjacent fault segments. The seismic activity

of cluster I5 (Figure 3.21b) comprises 164 earthquakes that occurred within

100 days (Figure C.8). It retains the most interest because it is essentially two

seismic excitations evolving at the same time. The first initiated in the Myrtos

Gulf and the second offshore the south part of Kefalonia Island. The activity
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of the I7 cluster (Figures 3.21b and C.9) spreads along the western coastline

of Lefkada and Kefalonia Islands, far beyond both sides of the 2015 Lefkada

main rupture. To the south the aftershock activity is sparse, probably due

to the large amount of stress released in the main rupture, revealing that the

main slip is associated with a fault of about 17 km in length (Papadimitriou

et al., 2017). In addition to cluster I4, two clusters (I6 and I9 in Figure C.8

and Figure C.10, respectively) are detected in the area between Lefkada and

Kefalonia, extending to about 15 km, which is considered as a transition zone

encompassing step-over structures (Karakostas et al., 2015). All of them relate

to the E–W-oriented, parallel step-over faults, similar to the ones detected in

the microseismicity cluster analysis between September 2016 and December

2019 in the study area (Bountzis et al., 2021).

North Aegean Sea area

The NAS area consists of 187 clusters, including both main shock–aftershock

sequences and earthquake swarms (Table 3.14). Figure 3.22a shows that the

main clustered activity is concentrated along the NAT and the sub-parallel

branches, as well as in the southeastern subarea.

The first seismic excitation with N ≥ 30 events (N1 in Figure 3.22b) is

a sequence of interest since two moderate events (M = 5.2 and M = 5.3)

occurred in 3 weeks, both producing their own aftershocks (Figure C.11). The

2013, January 8 M = 5.8 North Aegean earthquake (Karakostas et al., 2014)

along with its aftershock activity (cluster N3 in Figure 3.22b) is also detected.

The aftershock activity is temporally divided into two clusters (Figure C.12).

The 24 May 2014 M = 6.9 Samothraki main shock was followed by after-

shock activity confined to three major clusters (N4, N5, N6 in Figure 3.22b)

and some secondary clusters with N ≥ 10 events (Figure C.13), which are

in accordance with the ones observed by Saltogianni et al. (2015). The seis-

mic activity that took place near the Aegean coast of NW Turkey during
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Figure 3.22: (a) Spatial distribution of the centroids of the identified clusters
for the area of North Aegean Sea along with the trace of North Aegean Trough
(yellow lines). The size of the circles is proportional to the earthquake number
in each cluster, whereas the duration is represented by the color scale. (b)
Spatial distribution of the clusters with N ≥ 30 events. The index of each
cluster is given in the inset box.

January–October 2017 (Mesimeri et al., 2018b) is divided into three clusters

with N ≥ 30 (N10, N11 and N14 in Figure 3.22b) and two minor clusters

with 22 and 23 events, respectively (Figure C.14). The strong main shock

(M = 6.4) that occurred on the 12th of June 2017 offshore, south of the SE

coast of Lesvos Island, along with its intense aftershock activity, is identi-

fied and illustrated in Figure 3.22b (N12). Two major (N ≥ 30) secondary

outbursts of clustered activity occurred concurrently on the west (N17) and

east (N16) side of the sequence (Figure C.15). A thorough analysis revealing

multiple spatial clusters of the sequences is conducted by Papadimitriou et al.

(2018).

3.3.2.6 Regional variability of clustering properties

In this section, we investigate regional variations in the clustering behavior

of the detected seismic sequences, in particular, on their productivity rates
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and on their temporal evolution that can differ among areas with distinct

seismotectonic characteristics.

The inverted generic ETAS parameters for the three areas are given in

Table 3.15. There are 27 sequences in CG (Figures 3.19 and 3.20), 9 in CII

(Figure 3.21) and 17 in NAS (Figure 3.22) from 2012 until 2019 with N ≥ 30

events, however, we removed cluster C26 from the computations, since it is

located at the boundaries of the study area (Figure 3.20) with part of the

aftershock data being omitted.

Table 3.15: Generic ETAS parameter values for the three study areas and the
β value of the GR law. N∗ denotes the number of sequences with N ≥ 30.

Area p c a K µ β N∗

CG 1.23 0.0171 0.82 0.74 0.43 2.13 26
CII 1.31 0.11 1.29 0.44 0.15 2.21 9
NAS 1.26 0.0324 1.04 0.51 0.28 2.03 17

The parameter a for CG (a = 0.82) is the lowest among the three areas,

indicating the dominance of swarm activity presumably due to fluid flow in

accordance with many relevant studies (Mesimeri et al., 2019; Michas et al.,

2021). Low a values characterize areas with high fluid flow (Hainzl and Ogata,

2005), even though the estimated value can be underestimated due to mag-

nitude incompleteness after the occurrence of the main shock or due to the

existence of time-dependent background seismicity (Hainzl et al., 2013). Con-

versely, in CII, the estimated value (a = 1.29) is relatively larger compared

to the former region (a = 0.82), indicating the dominance of typical main

shock–aftershock sequences. In the NAS area, a moderate value is acquired

(a = 1.04), probably due to the co-existence of swarm activity and aftershock

sequences. Another indicator for the existence of swarm activity in CG is the

large value of the background seismicity (µ = 0.43) compared to NAS and CII.

High values of the background rate can indicate the existence of aseismic load-

ing transients (Marsan et al., 2013). Llenos et al. (2009) observed increased

values of the background component of the fitted ETAS model when it was
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applied to pre-swarm and swarm activity, respectively.

Figure 3.23: (a) The number of events triggered by an earthquake of magni-
tude Mi at CG (blue), NAS (orange) and CII (yellow), respectively. (b) The
temporal distribution of triggered aftershocks.

Figure 3.23a shows the number of direct triggered events, K(Mi), from an

earthquake of magnitude Mi for the three areas. We used Equation 3.7 for the

computations and considered m∗
c = 2.2, which is the maximum completeness

magnitude among the three data sets. The exponent β is the mean value over

all detected clusters of each area and its value is given in Table 3.15. In CII, the

seismic sequences seem to be more productive, as shown in Figure 3.23a, with

NAS and CG to exhibit smaller values. Combined with the higher background

rate for the area of CG (µ = 0.43), we could say that a significant part of

Corinth Gulf’s sequences cannot be attributed to the triggering effect of main

shocks but different underlying mechanisms seem to play an important role.

Conversely, in CII area, main shock–aftershock sequences seem to dominate,

generating a rich number of aftershocks (very low background rate, µ = 0.15,

and high productivity of mother events). Concerning the distribution of af-

tershocks in time, the normalized Omori law distribution is used, given by

Equation A.3 (Figure 3.23b).
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3.3.2.7 Sequence-specific clustering properties

Next, we estimate the a-values for the individual sequences of each area by

maximizing LL as a function of a, K and the background rate µ, while keep-

ing the rest of the parameters fixed for clusters with N < 80. In this way, we

increase the robustness of the inversion procedure since there are sequences

with few events. A similar procedure was followed by Page et al. (2016) and

Llenos and Michael (2017) who demonstrated that fitting multiple parameters

for a single sequence can be unstable and Hardebeck et al. (2019) who im-

plemented this method for the estimation of California aftershock parameters.

We intend to investigate potential differences in the productivity (a, K) and

the background rate, µ, among sequences of each area and their relation to

different underlying triggering mechanisms. Productivity parameters a and K

are correlated, so we enabled both to run during the iterative procedure. We

also examine the value of the background rate among sequences since it can

be also an indicator of aseismic transients in a region. Both parameters, a and

K, are not influenced by µ, as we verified it by implementing the inversion

procedure, also keeping parameters a and K fixed.

Application to Corinth Gulf

In Table 3.16, the inverted parameters for the 26 clusters of dataset D1 with

N ≥ 30 are given. We adopt the generic values of Omori law (p and c in Table

3.15) for clusters with N < 80 to increase the stability of the inverted param-

eters. We observe relatively high background rates for most of the sequences

and low a values, in particular, a < 1 for 10 out of the 26 clusters.

Concerning the 2013 Aigion earthquake swarm and its subsequent bursts

of activity (clusters C6, C8 and C10), we observe relatively low productivity

values of the ETAS model (a = 0.20, 0.34, 0.10, Table 3.16) in accordance

with studies suggesting pore-fluid pressure as the main triggering mechanism
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Table 3.16: Details on the 26 clusters with N ≥ 30 events in CG area and the
inverted ETAS parameters. The generic values of the Omori law, p and c, are
adopted for clusters with N < 80.

ID Tin Tend N p c b a K µ Mmax

C1 12/1/12 23/1/12 33 1.23 0.017 1.20 0.49 0.79 1.03 3.1
C2 13/1/12 27/1/12 33 1.23 0.017 0.83 1.69 0.23 1.25 3.1
C3 4/3/12 6/4/12 65 1.23 0.017 1.03 1.53 0.26 1.05 3.0
C4 22/9/12 3/10/12 69 1.23 0.017 0.99 0.36 0.94 1.44 5.0
C5 27/12/12 1/1/13 34 1.23 0.017 0.82 1.84 0.21 1.32 3.8
C6 22/5/13 28/6/13 310 1.45 0.012 0.96 0.20 0.90 0.47 3.7
C7 8/6/13 28/6/13 144 1.11 0.007 1.22 0.60 1.30 1.00 3.0
C8 7/7/13 27/7/13 128 1.04 0.001 0.77 0.34 2.48 0.59 3.7
C9 8/9/13 13/9/13 65 1.23 0.017 1.19 1.28 0.79 2.74 2.8
C10 29/10/13 6/11/13 68 1.23 0.017 1.27 0.10 0.91 2.87 3.1
C11 19/1/14 16/1/14 33 1.23 0.017 0.92 1.26 0.50 1.37 3.8
C12 29/1/14 10/2/14 70 1.23 0.017 0.81 1.39 0.29 1.92 3.9
C13 21/3/14 1/4/14 52 1.23 0.017 0.83 2.97 0.009 3.41 4.0
C14 8/6/14 11/6/14 74 1.23 0.017 0.81 0.92 0.64 4.86 4.3
C15 21/7/14 31/10/14 506 1.37 0.051 1.04 1.38 0.34 1.32 4.6
C16 22/7/14 1/11/14 95 1.26 0.014 1.15 0.72 0.45 0.44 2.8
C17 24/7/14 26/10/14 61 1.23 0.017 0.94 1.72 0.16 0.35 3.4
C18 23/7/14 31/10/14 121 1.25 0.131 0.95 1.77 0.24 0.05 4.7
C19 7/11/14 18/12/14 228 1.07 0.071 0.92 1.80 0.55 0.76 4.8
C20 7/11/14 14/12/14 36 1.23 0.017 1.05 1.27 0.41 0.42 3.1
C21 1/10/15 6/10/15 44 1.23 0.017 1.16 1.97 0.49 1.61 2.8
C22 27/7/16 5/8/16 32 1.23 0.017 0.75 3.50 0.09 0.45 2.7
C23 1/8/16 8/8/16 147 2.79 0.160 0.98 0.10 0.85 2.98 3.4
C24 9/1/17 23/1/17 104 2.79 0.702 0.82 1.70 0.15 1.05 4.5
C25 14/7/17 17/7/17 39 1.23 0.017 0.43 0.73 0.40 5.95 4.2
C27 30/10/17 2/11/17 31 1.23 0.017 0.50 1.68 0.10 6.19 3.5

during the excitation (Kapetanidis et al., 2015). Clusters C11 and C12 are

part of the same swarm (Figure C.3) that occurred offshore Psathopyrgos fault.

Their relatively high background rates (µ = 1.34, 1.92) show that a significant

part of the clustered seismicity cannot be explained by the empirical laws of

the triggering part of the ETAS model. Cluster 14 is part of a major swarm

that began on 8 June 2014 (Figure C.3). Michas et al. (2021) did not find

high diffusion rates that are related to fluid pore pressure. However, the large

background rate found in our study (µ = 4.86) and the low a value (a = 0.92)

suggest the existence of a non-typical main shock–aftershock sequence, with

more complex triggering mechanisms being responsible, such as aseismic creep.
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Similarly, the largest cluster in the dataset, the C15, located offshore Nafpak-

tos, is characterized by relatively high background rate (µ = 1.32) and low

productivity (a = 1.38), more typical values for swarm activity. In contrast,

clusters C18 and C19 that are more typical main shock–aftershock sequences

with a distinct in magnitude event in the initiation of the sequence (Figure

C.4), have low background rates (µ = 0.05, 0.76) and relatively high productiv-

ity rates (a = 1.77, 1.80). The two clusters near Itea Gulf show contradictory

results and in particular, the first one, C13, is characterized by a high back-

ground rate (µ = 3.41), whereas the second, C17, which occurred four months

later, exhibits a much smaller background value (µ = 0.35) more typical for

main shock–aftershock sequences. However, biases can exist in the inversion

of the parameters for clusters with a small number of events, so we should be

cautious with the characterization and interpretation.

Application to Central Ionian Islands

In Table 3.17, the inverted parameters for the nine clusters identified in the

area of CII with N ≥ 30 events are given, where we kept fixed the Omori law

parameters p and c (generic values in Table 3.15) for clusters with N < 80

during the estimation procedure.

Table 3.17: Details on the 9 clusters with N ≥ 30 events in CII area and the
inverted ETAS parameters. The generic values of the Omori law, p and c, are
adopted for clusters with N < 80.

ID Tin Tend N p c b a K µ Mmax

I1 19/1/14 16/9/14 2829 1.42 0.24 0.79 1.31 0.40 0.17 6.1
I2 23/1/14 14/9/14 55 1.31 0.11 1.23 1.38 0.30 0.12 3.7
I3 5/11/14 11/12/14 134 1.36 0.06 0.99 1.44 0.29 0.99 5.1
I4 13/11/14 12/12/14 66 1.31 0.11 0.93 1.43 0.38 0.37 4.9
I5 5/1/15 27/4/15 164 1.05 0.01 0.93 2.82 0.10 0.76 4.4
I6 18/1/15 24/4/15 71 1.31 0.11 1.08 1.91 0.36 0.15 3.8
I7 13/11/15 26/6/16 1396 1.45 0.30 0.86 1.51 0.29 0.45 6.5
I8 20/11/15 25/6/16 65 1.31 0.11 0.84 0.94 0.53 0.07 4.3
I9 4/4/17 4/5/17 67 1.31 0.11 0.95 2.26 0.18 0.70 3.9
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The estimated ETAS parameters of the sequence I1 are in accordance with

the existence of a main shock–aftershock sequence described in Section 3.3.2.5.

In particular, the background rate is relatively low (µ = 0.17), indicating that

the seismicity is adequately described by the triggering part of the ETAS in-

tensity function. The seismic activity of clusters I3 and I5 (shown by green

and blue color in Figure C.8, respectively) are characterized by relatively high

background rates (µ = 0.99, 0.76, Table 3.17). The space-time evolution of

the former indicates a rapid migration in the beginning of the sequence (Fig-

ure C.8), whereas, for the latter, it is characterized by the smallest K value

(K = 0.10) in the area although the a value is rather large. Taking into ac-

count the lack of distinct main shocks at the initiations of the sequences, they

can be characterized as earthquake swarms, one of the few observed in an area

which comprises mostly main shock–aftershock sequences. Concerning cluster

I9, located in the transition zone between Lefkada and Kefalonia Islands, there

is evidence for swarm activity due to the relatively high background seismicity

rate (µ = 0.70). Ultimately, the major main shock–aftershock sequences in

the area, I1, I7, get the highest p values (p = 1.42, 1.45), meaning that they

are characterized by rapid aftershock decay in time.

Application to North Aegean Sea

In NAS area cluster N1, which comprises two moderate events (M = 5.2 and

M = 5.3) within a period of 3 weeks, exhibits the lowest a value (a = 1.10)

among the main detected clusters, which could be an indicator of fluid dif-

fusion in the area (Table 3.18). Another case worth mentioning is the 24

May 2014, M = 6.9, Samothraki seismic sequence which is divided into three

major clusters (N4, N5, N6, in Figure 3.22). The estimated background

rates of the three major clusters are relatively small (µ = 0.16, 0.60, 0.29),

whereas the opposite holds for the scaling parameter, a, for the first two clus-

ters (a = 1.82, 1.76). Concerning the seismic excitation that consists of clus-
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Table 3.18: Details on the 17 clusters with N ≥ 30 events in NAS area and
the inverted ETAS parameters. The generic values of the Omori law, p and c,
are adopted for clusters with N < 80.

ID Tin Tend N p c b a K µ Mmax

N1 14/2/12 4/4/12 136 1.41 0.03 0.96 1.10 0.40 0.54 5.3
N2 27/4/12 3/5/12 30 1.26 0.03 0.53 1.64 0.16 1.07 4.8
N3 8/1/13 6/3/13 285 1.07 0.06 0.88 2.39 0.06 0.55 5.8
N4 24/5/14 9/7/14 94 1.41 0.78 0.74 1.82 0.01 0.16 6.9
N5 24/5/14 11/7/14 153 1.60 0.16 0.69 1.76 0.16 0.60 4.5
N6 24/5/14 22/6/14 83 1.49 0.04 0.64 1.25 0.30 0.29 4.4
N7 6/12/14 29/12/14 41 1.26 0.03 0.67 1.60 0.15 0.31 4.9
N8 26/3/15 2/4/15 30 1.26 0.03 0.97 1.45 0.36 1.76 4.1
N9 29/10/16 31/10/16 49 1.26 0.03 0.89 2.44 0.28 2.88 3.4
N10 26/1/17 28/3/17 568 1.29 0.04 0.73 1.31 0.36 1.00 5.1
N11 7/4/17 12/5/17 38 1.26 0.03 1.05 1.29 0.11 0.91 3.4
N12 12/6/17 8/8/17 614 1.48 0.12 0.79 1.46 0.25 0.86 6.4
N13 13/6/17 29/7/17 48 1.26 0.03 1.03 2.42 0.17 0.35 3.7
N14 15/8/17 23/10/17 38 1.26 0.03 1.06 1.13 0.39 0.26 3.5
N15 16/8/17 11/11/17 34 1.26 0.03 1.08 1.46 0.36 0.15 3.5
N16 17/8/17 8/11/17 39 1.26 0.03 1.24 2.39 0.14 0.31 3.2
N17 24/8/17 11/11/17 35 1.26 0.03 1.01 2.23 0.13 0.27 3.6

ters N10, N11 and N14, the relatively low productivity rates of the ETAS

model (a = 1.31, 1.29, 1.13) and, conversely, the relatively high background

rates for the first two, N10 and N11, clusters (µ = 1.00, 0.91) may indicate

fluid intrusion. This observation is in accordance with the study of Mesimeri

et al. (2018b) who derived high background rates after the estimation of the

ETAS model to the empirically divided 5 sub-clusters of the primary seis-

mic activity (January–March 2017). A fast-diminishing aftershock activity is

observed for the main shock (M = 6.4) that is located SE of Lesvos Island

(N12), which is translated into a high Omori exponent, p = 1.48. Addition-

ally, low background rates characterize the three main clusters, N12, N16 and

N17, indicating that they are probably related to tectonic and coseismic stress

transfer from previous seismicity (Papadimitriou et al., 2018). Worth men-

tioning are the remarkable high background rates for clusters N8 (µ = 1.76)

and N9 (µ = 2.78), which could be an indicator for seismic activity driven by

transient forces, however, the number of events is rather small and could have
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led to significant biases in the inversion of the parameters.

3.4 Summary and discussion

In the first part, we introduce the MAP model and its use as a change point

tool for seismicity rates. We evaluated its ability to detect changes in the

seismicity rate related either to main shock-aftershocks or earthquake swarms

to the 1964-2017 Corinth Gulf earthquake catalog withM ≥ 4.5. This is a data

set that includes well studied seismic sequences that facilitate the evaluation

of the model.

Concerning the estimation of the parameters we used the grid-based method

for the choice of the initial values of EM algorithm and the parallel framework

(described in Section 2.4) reducing the highly demanding computation cost.

AIC and BIC demonstrate that the temporal evolution of the 1964-2017 earth-

quakes with M ≥ 4.5 in the two subareas of Corinth Gulf can be described

through the adoption of four occurrence rates, i.e., low, moderate, high and

very high and the duration of the associated periods can be estimated by the

model. The residual analysis shows that the MAP model captures the main

temporal features of the observed seismicity. In addition, we compared the

MAP model with the MMPP which belongs to the same class of stochastic

models and it has been used for the modeling of earthquake’s temporal distri-

bution (Benali et al., 2020; Lu and Vere-Jones, 2011). Their difference lies on

the structure of their rate matrices. In MAP, changes in the seismicity rate

can be triggered by a previous event, while under the MMPP formulation seis-

micity rate can change multiple times before the earthquake occurrence. We

believe that these conditions have an impact on the adaptability of the model

to the data, as the MAP model shows better results compared to MMPP in

terms of AIC and BIC differences.

The evaluation of the transitions among the hidden states of the model

showed that main shocks with M ≥ 5.6 in the western subarea occurred in

127



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

CHAPTER 3. MARKOVIAN ARRIVAL PROCESS FOR EARTHQUAKE
CLUSTERING

states 3 and 4 with mean sojourn time until the next earthquake occurrence

9 hours and 11 minutes, respectively. This means that an aftershock with

M ≥ 4.5 is expected in the next hours after the occurrence of an earthquake

with M ≥ 5.6. States 3 and 4 correspond mainly to main shocks and the

immediate aftershocks in both subareas, whereas mostly in the western subarea

state 2 in some cases corresponds to secondary aftershocks and foreshocks. In

the eastern subarea a more episodic behavior dominates, since intense seismic

periods of short duration alternate with long relatively quiescent ones.

Since our model is purely temporal, it would be challenging to apply the

MAP on induced seismicity catalogs, where the spatial area is restricted, in

order to detect changes in the seismicity rates. Assigning a spatial component

could increase the association between seismicity rate changes and seismic

excitation, as there are cases where events occur very close in time but not in

space.

The two-step clustering procedure, MAP-DBSCAN, for the detection of

spatiotemporal seismic clusters combines the Markovian Arrival Process for

an initial separation of the background seismicity from potential seismic exci-

tations detecting changes in the seismicity rate and a density-based clustering

algorithm, DBSCAN, for the detection of areas with high spatial density. The

consistency and efficiency of the MAP-DBSCAN method is examined on a

simulated ETAS catalog that produces the main features of seismicity in the

region of Greece. In particular, we showed that our method is able to identify

the connections among the events generated by a spatiotemporal ETAS model,

as well as the mother events that initiated each cluster. The knowledge of the

links among the events enabled the comparison of the method with some well

known clustering algorithms, like the Gardner and Knopoff, the Reasenberg

and the Nearest-Neighbor, by the use of the Jaccard index. This is a tool for

measuring the overlap between the original partition of events into clusters and

background seismicity, and the estimated one after the implementation of each

clustering method. The results show that MAP-DBSCAN method is very com-
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petitive and in most cases outperforms the tested algorithms. The NN achieves

the best reconstruction of the clusters (Table 3.12), which is probably related

to the similarity of its metric with the ETAS one that is used for the genera-

tion of the seismicity. The window-based method overestimates the clustered

seismicity in accordance with the observations made by Peresan and Gentili

(2020), whereas the Reasenberg link-based method seems to overestimate the

background events (Figure 3.14).

We applied the method to three major seismic zones in Greece during

2012–2019, identifying the major seismic sequences and a plethora of smaller

ones which are in accordance with the main seismotectonic properties of the

study areas. Depending on the quality of the data set the method can be also

used for the detection of secondary faults (Bountzis et al., 2021). The rich

seismic activity during 2013-2014 in the western subarea of the Corinth Gulf is

detected in detail, a nontrivial issue, especially for the area between Nafpaktos-

Psathopyrgos and offshore Aigion, where multiple excitations occurred in close

proximity and within short periods (Figures 3.19, C.4 and C.5). Seismicity

in the eastern subarea of the Corinth Gulf is found to be more sparse with

few major clusters located near Itea Gulf (Figures 3.20 and C.7) and offshore

Perachora and Xylokastro (Figure 3.19 and C.6). On the contrary, seismicity

in the Central Ionian Islands is dominated by the 2014 Kefalonia and the 2015

Lefkada seismic sequences (Figure 3.21). Together they comprise the 81% of

the clustered seismicity in this area. Many large clusters are identified in the

North Aegean Sea area that includes both main shock–aftershock sequences

and earthquake swarms.

We investigated the properties of clustering seismicity among the three

study areas with the use of the ETAS model. The results indicate that there

are differences in aftershock productivity rates between Corinth Gulf, Cen-

tral Ionian Islands and North Aegean Sea, showing that productivity can vary

regionally. As showed by Page et al. (2016) and Llenos and Michael (2017)

adopting the regional variations of productivity can produce a significant gain
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on aftershock forecasts. In the Central Ionian Islands, main shock–aftershock

sequences seem to be more productive with the North Aegean Sea and the

Corinth Gulf to follow (Figure 3.23). The sequences in the Corinth Gulf in

particular are characterized by the highest background rate among the three

areas (Table 3.15), meaning that a significant portion of clustered seismicity

is not caused by the triggering of a main shock coseismic slip, but by the

contribution of different triggering mechanisms. Many studies have focused on

this area, suggesting pore-pressure changes due to fluid migration and aseismic

creep as possible triggering mechanisms for the clustered seismicity (Kapetani-

dis et al., 2021; Mesimeri and Karakostas, 2018). In the North Aegean Sea,

the swarm activity coexists with aftershock sequences, implying that for fore-

casting purposes, a finer regionalization might be more appropriate.

We also investigated potential differences in the productivity and the back-

ground rates among sequences of each region and their relation to different

underlying triggering mechanisms. Results show that the high background

seismicity (µ) and low productivity (a) values of the ETAS model are related

to earthquake swarm activity triggered by fluid pore-pressure changes, such as

the 2013 Aigion swarm (clusters C6, C9 and C10, Table 3.16, Figures 3.19 and

C.3) in Corinth Gulf (Kapetanidis et al., 2015) and the 2017 Tuzla earthquake

swarm (clusters N10, N11 and N14, Table 3.18, Figures 3.22 and C.15) in

North Aegean Sea (Mesimeri et al., 2018b). This is in accordance with stud-

ies suggesting the dependence of low productivity values to the existence of

fluids (Hainzl and Ogata, 2005; Hainzl et al., 2013). In general, 18 out of 26

clusters in Corinth Gulf have background rates µ > 1 and low productivity

values (11 out of 26 with a < 1), whereas in the Central Ionian Islands, where

main shock–aftershock sequences dominate, we observe very low background

rates of the ETAS model (all with µ < 1) and relatively high productivity

values. In the North Aegean Sea area, we cannot observe a clear pattern,

however, the majority of the detected clusters are characterized by low back-

ground rates and relatively high productivity, suggesting the dominance of
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typical main shock–aftershock sequences.

The advantage of using the MAP model lies in its generality, as any sta-

tionary point process can be approximated by a sequence of MAPs under the

framework of multiple embedded seismicity rates (Asmussen and Koole, 1993).

It can be extremely beneficial in detecting different types of clusters (dynamic

modeling of seismicity rate) by capturing the changes in seismicity rate, with-

out considering any physical assumption, in the sense that each hidden state or

group of states might be associated to a different underlying triggering mecha-

nism. Furthermore, in case of non-stationary background seismicity, the MAP

model can approximate the different phases by embedding multiple states into

the Markov process Jt, i.e., distinct occurrence rates, and adopting a multi-

ple rate threshold alternating according to the phase of the process at each

time. In this way, although it is more complicated, we can model both the

non-stationary background seismicity and the triggered events without declus-

tering the earthquake catalog (Bountzis et al., 2021). For instance, Benali

et al. (2020) applied a Markov Modulated Poisson Process for the description

of the background seismicity in northeastern Italy after removing all the trig-

gered events, suggesting the existence of three distinct average trends. The

ETAS model assumes a stationary background seismicity rate that is sensitive

to transient aseismic forces such as fluid intrusion, and leads to poor fitting

results on data sets that include seismic sequences of swarm type according

to Kumazawa and Ogata (2014). Lombardi and Marzocchi (2010) showed the

inadequacy of a stationary ETAS model with constant background rate to re-

produce the temporal patterns of observed seismicity in the Umbria-Marche

region due to the increase of the background seismicity rate after the repeated

Colfiorito main shocks, as a consequence of the perturbation to the coseismic

stress field. They approximated the non-stationary background rate by fitting

stationary ETAS models to data in moving windows. Moreover, the modified

Omori law which is used to model the aftershock activity, is difficult to predict

how long an earthquake swarm may last. The DBSCAN algorithm does not

131



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

CHAPTER 3. MARKOVIAN ARRIVAL PROCESS FOR EARTHQUAKE
CLUSTERING

assume any specific spatial distribution of earthquakes and settles them into

groups based solely on their spatial density.

3.5 Conclusions

We proposed a novel stochastic modeling for earthquake’s temporal distribu-

tion through Markovian Arrival Process and the use of a local-decoding algo-

rithm for the detection of changes in seismicity rate. The application of the

model to the Corinth Gulf earthquake catalog during 1964-2017 for events with

M ≥ 4.5 showed that the model efficiently captures the evolution of seismicity

in time and shows better results than the Markov Modulated Poisson Process,

a model that belongs to the same class of Markov processes. We verified on

well studied seismic sequences that the model is capable to detect changes

in the seismicity rate related either to main shock-aftershocks or earthquake

swarms, so it can be used as a change point tool for seismicity rates.

We established a new clustering procedure, MAP-DBSCAN, that is a com-

bination of the MAP model for an initial separation of the background seis-

micity from potential seismic excitations, using the detected changes in the

seismicity rate, and the density-based clustering algorithm, DBSCAN, for the

detection of elevated spatial density areas. We demonstrate the efficiency of

the clustering procedure on a simulated ETAS earthquake catalog where the

structure of the clusters is known a priori. We proposed the Jaccard index as

a validation metric, which we believe is an appropriate tool that incorporates

not only the correct links but also the false and missed ones in its form and we

encourage its use in performance studies for earthquake clustering. Addition-

ally, we introduced a similar metric for the validation of the model to identify

the mother events of each cluster. Moreover, we showed the competitiveness

of the MAP-DBSCAN procedure against well-known clustering algorithms, as

in most cases, exhibits better results. The method is applied on earthquake

catalogs of three major seismic zones in Greece and their clustering properties
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are investigated with the use of the temporal ETAS model. The main seismic

clusters in the Corinth Gulf, Central Ionian Islands and North Aegean Sea dur-

ing 2012–2019 for events with M ≥ 1.5, M ≥ 2.2 and M ≥ 2.1, respectively,

are detected by our method, revealing the main seismotectonic structures of

the areas.

A stacking procedure is implemented for inverting the generic ETAS pa-

rameters of each area. In particular, a common log-likelihood is defined that

is the product of the log-likelihood of each individual identified cluster with

N ≥ 30. The inverted parameters correspond to the maximization of the

product. Regional variability in aftershock productivity and background rates

among the areas is observed. The Corinth Gulf is characterized by low pro-

ductivity values and high background rates related to the dominance of earth-

quake swarms, whereas seismicity in the Central Ionian Islands consists of

main shock–aftershock sequences with high productivity.

We also inferred sequence-specific parameters of the temporal ETAS model

implementing a parallel procedure for reducing the computational cost. We

evidence the dependence between low productivity values and high background

rates with pore-pressure due to fluids migration. We believe that future studies

on Operational Earthquake Forecasting should incorporate localized parame-

ters into the models to improve the forecasting accuracy.
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Chapter 4

Markovian Arrival Process for

forecasting large earthquakes

number

4.1 Introduction

The apparent increase in the occurrence frequency of the great (M ≥ 8.0)

global earthquakes since 2004 (Beroza, 2012), led many authors to investigate

the existence of non-stationarity in their temporal distribution. Lay (2015) ob-

served an increase in the frequency of great subduction earthquakes (M ≥ 8.0)

in circum-Pacific belt after 2004. Bufe and Perkins (2005) suggested the ex-

istence of mega-quakes (M ≥ 8.6) clustering based on the apparent concen-

tration of events during the time period 1950-1965 which was followed by 36

years of seismic quiescence. They generated 100,000 simulations of Poisson

simulated catalogs to test the times the apparent clustering during 1950-1965

is observed. They found that only in 2% of the catalogs this behavior can

be repeated by chance. More recently, Luginbuhl et al. (2018) investigated

whether the temporal distribution of large global earthquakes (M ≥ 7.0) dur-

ing 2004-2016 departs from Poisson process and exhibits clustering. They
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found statistical significant deviations from Exponential distribution for the

inter-event times based on a large number of synthetic catalogs. There are

also regional studies that examine the existence of time-dependency and non-

stationarity for large earthquakes. Faenza et al. (2003) evidenced long-term

changes in the seismicity rate of earthquakes with M ≥ 5.0 since 1600 in Italy,

and Iliopoulos et al. (2020) found long-range memory for earthquakes with

M ≥ 6.5 in Greece during 1845-2017.

The brevity of the seismological record, along with the limited number of

global earthquakes influence the robustness of the statistical tests to identify

non randomness in their occurrence (Daub et al., 2015; Dimer de Oliveira,

2012) leading to a large debate in the scientific community with contradictory

results (Kerr, 2011). However, we believe that even if the hypothesis of the

stationary Poisson process for the temporal distribution of global earthquakes

cannot be rejected with high statistical power, we should not grant as negli-

gible the possibility for a better approximation of the physical process with

non-stationary stochastic models, that could combine the long-term properties

of seismicity with the short-term clustering of events. Towards this direction

we establish a two-step modeling procedure of the Markovian Arrival Process

to model the temporal distribution of long quiescence periods and short-term

seismicity simultaneously that exist in large earthquake catalogs and we im-

plement catalog-based pseudo-prospective forecasting experiments for the full

distribution of the occurrence frequency to evaluate its performance.

An important assumption concerning the features of the large earthquakes

temporal patterns is the existence of long-term changes in the occurrence rate,

between extended periods of seismic quiescence with long inter-event times

that characterize the tail of their distribution and periods of moderate seismic

activity. We show that their temporal behavior cannot be captured well by

the MAP model due to the presence of short inter-event times. The strong

spatiotemporal concentration of seismicity often obscures long-term features

that may characterize the earthquakes temporal distribution (Zaliapin and
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Ben-Zion, 2022). In our study, we will model both temporal behaviors of

the large earthquakes distribution by considering the long inter-event times

as extreme events due to their rarity. Statistical analysis and forecasting in

problems that incorporate extreme events is known to be highly complex as the

short times do not conform well with the rare large values (L’vov et al., 2001).

Based on that, we proceed with a modification on the formulation and propose

a two-step estimation procedure of the model, where the extreme events are

estimated separately from the short-time values. This procedure has been

applied to assess the volcanic hazard for the Canary Islands by Sobradelo et al.

(2011). They considered time-dependence for the series of eruptions and used

a non-homogeneous Poisson process to forecast future events. This method

can also be seen in environmental (Eastoe and Tawn, 2009; Towe et al., 2020)

and financial (Schneider et al., 2021) applications among others, where the

extremes are estimated separately under the Extreme Value Theory, ignoring

the potential effects of the short-time data. An important parameter that

needs to be defined is the threshold value above which events are considered

extremes (Hill, 1975; Smith, 1989).

The aim of this approach is to assess if the MAP model with non-stationary

characteristics contributes to the forecasting of the large earthquakes number.

For that purpose, we present two main approaches. Firstly, we introduce a

two-step modeling procedure based on the extreme values of the observations.

Then, we implement a pseudo-prospective experiment based on simulations of

the earthquake temporal distribution for the comparison against the Poisson,

non-Poissonian renewal models and the temporal ETAS model.
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4.2 Data

4.2.1 Catalog description

We focus on megathrust environments where the amount of data permits a

robust statistical analysis on the temporal features of large earthquake occur-

rences. We considered an earthquake catalog comprising subduction earth-

quakes, trenches, outer rise and overriding plate earthquakes (Figure 4.1) in

the circum-Pacific belt. The data set is taken from the International Seis-

mological Centre–Global Earthquake Model (ISC–GEM) version 7.0 of the

worldwide earthquake catalog (Di Giacomo et al., 2018; Storchak et al., 2013,

2015), supplemented by the U.S. Geological Survey (USGS) catalog (http:

//earthquake.usgs.gov/earthquakes), up to 31 December 2020.

Figure 4.1: Epicentral map of the 909 earthquakes with M ≥ 7.0 that occurred
from 01 January 1918 up to 31 December 2020 in the circum–Pacific belt.
Events with 7.0 ≤ M < 7.6 and M ≥ 7.6 are shown in blue and red circles,
respectively.
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The magnitude of completeness for shallow earthquakes of the ISC-GEM

earthquake catalog is found equal to Mc = 7.0 since 1918 (Michael, 2014).

Taking this into account, we applied the MAP model to an earthquake catalog

with the magnitude cutoff equal to the completeness threshold, i.e., Mthr = 7.0

including 909 events and three data subsets with corresponding magnitude

thresholds Mthr = 7.6, 7.7 and Mthr = 7.8 that contain 239, 178, 138 events

since 1918, respectively. We consider different magnitude cutoffs to investigate

the effect of the minimum magnitude, Mthr, on the forecasting gain of the

MAP compared to other statistical models. Essentially, we want to examine

whether the non-stationarity that we consider through the MAP modeling for

the temporal occurrence of large earthquakes is a universal characteristic or

it depends on the adopted magnitude range. The maximum focal depth is

set to 60 km, which is a reasonable lower cutoff of interplate subduction zone

earthquakes according to Scholz (2019).

An issue that is encountered in studies that investigate the existence of in-

teractions among large earthquakes, for instance on whether the surge of great

earthquakes (M ≥ 8.0) since 2004 is random or not, is the use of a declus-

tering algorithm for the separation of triggered from independent seismicity.

Since these algorithms tend to produce declustered catalogs with stable rate

(Poissonian) it could have a direct impact on our investigation. Moreover,

we believe that each earthquake is considered distinct, with its own tectonic

context and failure process, comprising equally important threat in terms of

hazard. Finally, removing potential aftershocks and foreshocks would reduce

the size of the data sets, decreasing the statistical power of the goodness of

fit tests. Hence, in this study we consider the complete earthquake catalogs

without removing short-term triggered seismicity.
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4.2.2 Non-stationary features of the catalog

Figure 4.2 illustrates summary results for the four data sets, where similar

patterns are exhibited independently of the magnitude thresholds. The seismic

moment (in Nm) is calculated from the reported magnitude (all magnitudes

in ISC-GEM and USGS catalogs are reported as Mw) according to the relation

M0 = 101.5Mw+9.05 (Hanks and Kanamori, 1979).

From the inter-event times distribution in Figure 4.2a we can visually rec-

ognize a distinct peak of small values (black vertical arrow) for all magnitude

thresholds that could be attributed to localized aftershocks and foreshocks, as

well as two groups of events with different sets of values (horizontal dashed dot

bidirectional arrows), although less pronounced for M ≥ 7.0. The first group

can be associated to periods of relatively high seismic activity (red color) com-

pared to the second one (blue color) that consists of some quite large values

corresponding to long periods of relative seismic quiescence such as in the mid-

1920, mid-1950 and early 1980 (Figure 4.2c). This could be an indicator that

the inter-event times distribution has heavy-tailed characteristics, i.e., the val-

ues in the tail are not bounded by an exponential distribution. Finally, the

abrupt jumps of the cumulative seismic moment in 1960 and after 2004 (Figure

4.2b) coincide with periods of increased seismicity. This agrees with Zaliapin

and Kreemer (2017) who observed changes in the moment release during these

periods.

We argue that the temporal characteristics of the earthquakes show at least

after visual inspection (Figure 4.2), that seismicity can be temporally divided

into three distinct periods. For instance, there are periods of relative seismic

quiescence alternating with periods of relatively high seismicity. Specifically,

in 1924-1927 2 events (M ≥ 7.6) occurred then a 5-year period, 1928-1932,

with 14 events (M ≥ 7.6) follows. In 1973-1978 14 events (M ≥ 7.6) oc-

curred and then a 6-year period, 1979-1984, follows with 6 events (M ≥ 7.6).

The third period exhibits more intense seismicity related to foreshocks and
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Figure 4.2: Temporal characteristics for M ≥ 7.0 (blue), M ≥ 7.6 (orange),
M ≥ 7.7 (yellow) and M ≥ 7.8 (purple) earthquakes that occurred from 01
January 1918 to 31 December 2020 in the circum-Pacific belt. (a) Inter-event
time distribution. A peak of short inter-event times is evident (black vertical
arrow), probably related to localized aftershocks and two groups of inter-event
times, indicated by the dashed-dot horizontal bidirectional arrows, that can be
interpreted as periods of increased seismicity (red color) and of relative seismic
quiescence (blue color), respectively. (b) Cumulative seismic moment (in Nm)
release as a function of time. (c) Yearly seismicity rate as a function of time.

aftershocks, like in 1960 with the giant (Mw9.6) Chilean earthquake and its

two foreshocks (Mw = 8.1, 8.6) within 2 days or in 1938 with the four large

(Mw = 7.8, 7.7, 7.7 and 7.6) Honshu earthquakes.

The yearly seismicity rate in Figure 4.2c indicates the existence of idle
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periods, namely periods with low seismicity rate and consequently longer inter-

event times for the large earthquakes. Additionally, the boxplots of the inter-

event times in Figure 4.3 show that events outside the boxes appear in all data

sets, indicating variability above the upper quantiles. These long inter-event

times can be seen as extreme events rather than outliers, which characterize

the tail of the inter-event times distribution.

Figure 4.3: Boxplots for the four datasets tested in this study. In all cases,
there is a significant subset of events outside the third quantile plus one stan-
dard deviation.

4.3 Methodology

The framework of a hidden process whose states modulate the seismicity rate,

λJt , of a counting process, Nt, as in MAPs, is anticipated to facilitate the

modeling of changes in the earthquake occurrence rate when the responsible

physical mechanisms are unknown. The occurrence rate of the MAP model
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is varying according to the transitions among the states of the latent Markov

process, Jt, making it suitable for the investigation of the assumption of non-

stationarity for the seismicity rate of large earthquakes. The forecasting prob-

abilities in the MAP framework depend on the current state of the process

Jt, for instance, when the model is in a state with high occurrence rate (in-

terpreted as a period of increased seismicity) the probability of an earthquake

occurrence is different (higher) than the one when the model is in a state with

low occurrence rate (period of relative seismic quiescence). Hence, we compare

the forecasting performance of the proposed MAP model described in Chap-

ter 2 with other renewal models as well as with the standard ETAS model.

Better performance can indicate the significance of embedding non-stationary

characteristics to the modeling procedure.

4.3.1 Establishment of MAP model with an ”idle” state

Our main assumption is that long-term changes in the seismicity rate might

exist, where quiescence periods alternate with periods of moderate seismic

activity. However, the long-term features of the large earthquakes cannot be

captured simultaneously with the short inter-event times. Hence, we proceed

with a modification on the formulation of the model and propose a two-step

estimation procedure where the long inter-event times that characterize the

tail of the temporal distribution can be seen as extreme events due to their

rarity and their occurrence rate will be estimated separately from the rest of

the data set.

Firstly, we consider the existence of an “idle” state that corresponds to pe-

riods of relative seismic quiescence with long inter-event times, where events

occur according to a Poisson process with occurrence rate, λidle. Let Tr =

{τ1, . . . , τn} be the initial n sample and τ(1) < · · · < τ(n) its order statis-

tics. There is an upper part of the sample based on a threshold value τthr,

Tidle = {τ(n−i+1)}i=1,...,k, where τ(k) < τthr and τ(k+1) ≥ τthr, that follows an
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Exponential distribution, Exp(λidle). We divide therefore the trace into two

parts, the first Tidle corresponds to the extreme events of the sample that fol-

low an Exponential distribution and the second, T
′

idle, comprises the rest of

the sample that follows a mixture of K Exponential components under the

MAP framework, whose parameters will be determined from the EM algo-

rithm described in Section 2.4. The “idle” rate is estimated prior from the

other parameters of the MAP model, and then is embedded to the parameter

set so that the state-space of the MAP is extended by one, K∗ = K + 1. We

should recall that the sample T is drawn from a Hyper-exponential distribution

under the MAP model, and we believe that the adoption of a mixture of Expo-

nential distributions for the approximation of a sample that includes extreme

events that characterize the tail of the distribution is not deemed unreasonable

(Feldmann and Whitt, 1998).

So, we fit an Exponential distribution to inter-event times larger than a

threshold value, τthr, and the fitted parameter λ̂idle is the maximum likelihood

estimator of the distribution. The threshold does not need to be the smallest

value for the assumption to hold, it can be chosen quite conservatively aiming

to fit the few observations at the tail of the inter-event times distribution but

still to include enough data to allow a robust statistical analysis. Finch et al.

(1989) have showed that for fitting mixture distributions the determination

of the mixture proportion is crucial to converge to the global maximum in

iterative algorithms where a starting vector of points is needed. Therefore,

we implemented the following procedure to determine the minimum thresh-

old. Firstly, we need to define the minimum threshold, τmin
thr , which we find

reasonable to set as the mean value of the trace Tr to exclude the bulk of

data (inter-event times) that do not characterize the tail of the distribution

(extreme events). Then, we create an increasing set of τthr values

T thr = {τmin
thr , τmin

thr + s, . . . , τmax
thr },
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with an assigned step, s, chosen arbitrarily, until no less than 30 events exist.

Next, we move to the second part of the estimation procedure, where we com-

pute the LL value of the MAP for each adopted τthr ∈ T thr value. We know

that in general when we use the EM algorithm the convergent LL value is

highly dependent on the initial selection of the parameter set, especially as the

number of latent states is getting higher (more local maximum points). Since

there is no standard method to define the initial set, we followed a system-

atic procedure which is based on the k-means clustering algorithm, following

a similar procedure with Okamura and Dohi (2009). The algorithm groups

the trace into K clusters, {c1, . . . , cK}, where K corresponds to the number

of MAP states and then, the diagonal elements of rate matrix D0, λ1, . . . , λK ,

are estimated from the inter-event times of each cluster assuming K Poisso-

nian distributions, P (λi), i = 1, . . . , K. So, an initial starting vector for the

implementation of the EM algorithm concerning the rate matrix, D0, is the

following

{λ0
1, . . . , λ

0
K} = { 1

c̄1
, . . . ,

1

c̄K
}.

For each repetition of the algorithm, new diagonal elements are drawn uni-

formly from the 99% confidence bounds of the Poisson distribution

λnew
i = λ0

i ± za/2

√
λ0
i

ni

,

where ni is the sample length of cluster ci, and za/2 corresponds to the standard

normal distribution for a = 0.01. The rest of the parameters, i.e., elements of

rate matrix, D1, are derived from a random transition probability matrix, P ,

of the embedded Markov Chain of the model. The procedure is repeated many

times (N0) and the Nbest maximum LL values along with their corresponding

parameter sets are stored and used as input to the EM algorithm (Algorithm

1). The BuTools program package (Bodrog et al., 2014) is used in the MAT-

LAB environment for the implementation of the EM algorithm. Essentially, a
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grid-based procedure is followed around the estimated values of the occurrence

rates. Finally, we choose as optimal τthr point the one that corresponds to the

maximum LL value. At the E-step of the EM algorithm the log-likelihood

function is evaluated at the observation vector, Tr, but the estimated value of

the idle state, λidle, at the diagonal matrix, D0, is considered a constant that

we do not update at the M-step where the maximum likelihood estimates are

computed.

Algorithm 1 Estimation of “idle” occurrence rate and EM implementation

1: Input: Tr = {τ1, . . . , τN} trace
2: Output: MAP(D0,D1)
3: Set initial τthr: Tidle = {τi : τi > τthr} = {τnewi , . . . , τnewNidle

}
4: Fit an Exponential distribution to Tidle → λ̂idle =

1
τ̄∗
, where τ̂ ∗ mean value

of trace Tidle

5: K-means algorithm to T
′

idle = {τi : τi ≤ τthr} inter-event times that
correspond to the K “no idle” states → clusters c1, n1, . . . , cK , nK , equal
to the number of states

6: Compute the occurrence rates, λ0
i =

1
c̄i
, i = 1, . . . , K

7: Repeat:

8: Update λnew
i = λ0

i ± U(−c∗, c∗), where c∗ = za/2

√
λ0
i

ni
the upper constraint

9: Generate a random probability transition matrix P → D1 = −D0 · P
under conditions

10: i) irreducible and ii) aperiodic
11: Compute LLnew = log(L({θ̂, λ̂idle}/T ))
12: if LLnew > min

i=1,...,Nbest

LLi then

13: store parameter set θ̂new and LLnew

14: else
15: reject parameter set
16: end if
17: Until: Maximum number of iterations, N0, is reached
18: Implement EM algorithm for the Nbest parameter sets
19: Return: Optimal parameter set {θ, λidle} after the EM algorithm conver-

gence

For instance, let’s assume a process with K = 2 states and rate matrices

D0 =

−λ1 0

0 −λ2

 and D1 =

q11(1) q12(1)

q21(1) q22(2)

.
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Then, we add an “idle” state with total occurrence rate, λidle, so the new MAP

will have K∗ = 3 states with new transition rate matrices

D0 =


−λidle 0 0

0 −λ1 0

0 0 −λ2

 and D1 =


q1∗1(1) q1∗2(1) q1∗3(1)

q21∗(1) q22(1) q23(1)

q31∗(1) q32(1) q33(1)

.

4.3.2 Pseudo-prospective forecasting framework

The two main statistical inference approaches for forecasting are the alarm and

the probabilistic based forecasts. The former relies on a binary output, i.e., an

alarm is switched on when the value of an alarm function exceeds a threshold

and vice versa (Lippiello et al., 2012; Zechar and Jordan, 2008). The prob-

abilistic forecasts consider a distribution for the earthquake frequency in the

space-time-magnitude domain yielding occurrence probabilities, and they can

be divided into grid-based and catalog-based forecasts. The methodology of

the Collaboratory for the Study of Earthquake Predictability uses grid-based

probabilistic forecasts implementing likelihood-based tests (Rhoades et al.,

2011; Schorlemmer et al., 2007) for the comparison among the testing mod-

els. The main assumption is that the n space-time-magnitude testing bins of

the experiment are considered independent, and earthquakes follow a Poisson

distribution with parameter λi at each bin i based on the testing model Λ.

Finally, a log-likelihood score is obtained by summing over the testing bins,

LL =
∑n

i=1 ln
e−λiλ

xi
i

xi
, with X = {xi| i = 1, . . . , n} the observed catalog, which

is subsequently compared with different models.

However, the Poisson assumption for the earthquake distribution inside the

testing bin might be unrealistic in cases where dependencies among events exist

and additionally can lead to false rejection of models with overdispersion char-

acteristics since the Poisson model considers its mean and variance values to be

equal. Nandan et al. (2019) have shown that catalog-based probabilistic fore-

casts that consider the full distribution of earthquake number provide better
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results than the forecasts that are forced to use only the mean estimate rate un-

der the Poisson assumption for each forecasting bin. In catalog-based forecasts

simulated catalogs are provided for each bin under the testing model and the

probabilities, p(Yi), that Yi earthquakes occur inside the testing bin i, are used

to obtain the log-likelihood score LL =
∑n

i=1 log(P (Yi)). This type of forecast

assumes that simulations of the testing model should be converging to the ob-

servations if the model is the one that generates the data. Recently, the CSEP

has developed new evaluation tools for forecasts specified as catalog-based and

applied them to UCERF3-ETAS during the 2019 Ridgecrest sequence Savran

et al. (2020). In the sequel, we will apply the catalog-based forecasting for the

evaluation of the testing model, the Markovian Arrival Process.

One way to assess probability forecasts is based on the idea of defining a

likelihood score in terms of consistency among forecasted and observed number

of earthquake rates during a testing period T . The testing period is divided into

n forecasting bins, such that Ti = [t∗i−1, t
∗
i ), with t∗i = t∗i−1 + δ for i = 1, . . . , n,

and t∗0 = T0, where T0 is the ending time of the learning period and δ the

length of the testing interval. If we denote as Yi the variable that indicates

the number of forecasted events at the i-th interval, Ti, then we can assign

the forecasting probabilities pi,k = P (Yi = k) with
∑nmax

k=1 pi,k = 1 for all the

testing bins, where nmax is an upper threshold for the maximum number of

events. To compute the probabilities pi,k, the model can use information only

from the training period. In our procedure, we start with the first training

period until time T0, which is then updated by δ time units until T0 + δ, to

compute the forecasting probabilities of the testing interval [T0 + δ, T0 + 2δ)

and so on. If the observed number of events is equal to Xi, then we can define

the forecasting score as

Si =
nmax∑
k=0

log(pi,k)IXi
(k), (4.1)
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where IXi
(k) =

 0 Xi ̸= k

1 Xi = k
for the interval Ti, which is the logarithmic

probability to forecast the observed number of events and its negative value is

known as entropy score (Daley and Vere-Jones, 2004).

It is easy to expand the definition to the total testing period, S =
∑n

i=1 Si =∑n
i=1

∑nmax

k=0 log(pi,k)IXi
(k). It represents the logarithmic probability to fore-

cast the observed number of events at each interval Ti, i.e., log(P (Y1 = X1, . . . , Yn =

Xn)). In the case, where the forecasting probabilities are the real ones of the

physical process, the log-likelihood score gets its maximum value which is equal

to zero. We are interested in the information that we gain against a reference

model, with corresponding forecasting probabilities prefi,k . Thus, we define the

quantity,

D = S − Sref =
n∑

i=1

n∑
k=0

log(pi,k/p
ref
i,k ), (4.2)

which is essentially the probability gain of the tested model against the refer-

ence one.

Next, we need to estimate the forecasting probabilities, pi,k, for each inter-

val Ti. We proceed with K simulations of the corresponding model Λ up to the

end of each testing interval Ti. Each simulation produces one possible scenario

for each forecasting interval Ti = [t∗i−1, t
∗
i ), so after the implementation of K

simulations we define as Ni the number of realizations with Xi events (suc-

cesses), which is the observed number of events, within the interval Ti. The

forecasting probability estimates are then given by the fraction over all the

simulations and are defined as p̂i,k =
Ni

K
, i = 0, . . . , n. Essentially, we calibrate

forecasting probabilities over multiple testing intervals based on simulations

generated from the tested model and we assume that they should converge to

the observations if the model is the “true” one.
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4.3.2.1 Competing forecasting models

Figure 4.4 shows an example of a data set that includes the training period up

to time T0 and the first testing bin T1.

Figure 4.4: An example that includes the training period [Tinit, T0), the oc-
currence time of the last event in the training period, tlast, with the blue star
and the first testing bin T1 = [T0, T0 + δ) along with the observed seismicity
(yellow stars).

For the generation of the K simulations with the MAP, we proceed as

follows. Firstly, the model parameters are calibrated based on the observations

up to time T0, which coincides with the starting time of the testing period.

Then, the state probabilities of the hidden process Jt, pi(T0) = P (JT0 = i),

are estimated based on the forward and backward equations through Equation

2.14 which we consider as the initial probability vector for the simulation

procedure. This is equivalent with the state probability at the last earthquake

occurrence of the learning period, at tlast in Figure 4.4, since transitions among

the hidden states coincide with the occurrence of earthquakes, namely pi(tk) =

pi(t) for tk ≤ t < tk+1. Then, an Exponential distribution is assumed for the

generation of the time until the first event, τ1, with parameter that depends

on the estimated state of the hidden process at time tlast. Details on the

simulation from the MAP model are given in Section 2.5. Here, we sum up

the simulation procedure for forecasting purposes in the following steps:

• Set J(T0) = argmax1≤i≤K pi(T0) where p(T0) the initial probability vec-

tor.
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• Let us denote J(T0) = i the most probable state. The sojourn time,

τ , until the next earthquake occurrence is extracted by an Exponential

distribution with parameter {−D0}ii = λi through Equation (2.12).

• Generate the state of the hidden process at time T0+ τ, J(T0+ τ), based

on the conditional distribution P (J(T0 + τ)/J(T0)), given by Equation

(2.2) , i.e., { qi1(1)
λi

, . . . , qiK(1)
λi

}.

• Update time t = T0 by t = T0 + τ and go to step 2.

• Continue until the end of the testing period T1.

For the Poisson model with parameter λpois, the inter-event times follow an

Exponential distribution. Therefore, the number of events in the testing bin

T1 is independent of the time elapsed since the last event, Tlast, in the training

period, i.e., P (T ≤ τ + Tlast/T > Tlast) = P (T ≤ τ). The simulation of

the earthquake occurrence times is a typical procedure based on the thinning

method (Equation 2.12).

Concerning Gamma and Weibull renewal models, the time to the next

earthquake depends on the elapsed time since the last event, Tlast. There-

fore, for the generation of the first event into the testing interval T1 we should

consider the truncated distribution of the Gamma and Weibull models, respec-

tively. In particular, the truncated Weibull cumulative distribution from the

left, with a the shape and β the scale parameters, respectively, is easily derived

using the Bayes theorem and has the following form

P (x ≤ Tlast + T/x > Tlast) = 1− e
Ta
last−(Tlast+T )a

βa , T ≥ 0.

The truncated Gamma distribution, G(a, b), has a more complex functional

form with corresponding density

f(x) =
ba

Γ(a, bTlast)
e−xbxa−1, x ≥ Tlast.
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For the subsequent events inside the testing bin the corresponding distribution

functions of the models are used. Finally, we generate forecasts under the

temporal ETAS model, which is considered the standard model for aftershock

forecasting. The main assumption of the model is that there is a constant

loading of independent events under a Poisson process with rate µ and that

each earthquake generates its own aftershocks under the triggering term λj(t)

given by Equation A.1. The ETAS model is proven appropriate for aftershocks

modeling, whereas in our study it is fitted to data sets of large earthquakes

where its empirical laws incorporated into the triggering term (the Omori law

for the aftershocks temporal decay and the productivity law for the expected

number of direct aftershocks) might not be appropriate. The procedure to

produce forecasts is similar to the one implemented at Nandan et al. (2019).

In step 1 the earthquakes of the training set are considered mother events

that can create daughters inside the testing period. Consequently, these daugh-

ters can trigger their own ones and so on. To obtain the magnitudes and the

times of these earthquakes the simulation procedure given in Appendix A.3

is followed. In particular, the first-generation of aftershocks for all the earth-

quakes in the training period are generated. Each earthquake with magnitude

mi triggers aftershocks according to a Poisson process with rate k(mi) (Equa-

tion A.2). The times of those aftershocks are generated from the Omori law

distribution (Equation A.3). The magnitudes are independent from the events

temporal distribution and follow the GR law truncated from the left at the

completeness magnitude, mthr. The functional form of their distribution is

given by Equation A.7, and the b-value of the GR law is estimated from the

training data set. For next generation aftershocks, the triggering step is re-

peated until there are no more generated events. Events that exceed the time

of the testing period are neglected.

In step 2 we generate the background earthquakes that are expected to oc-

cur during the testing period as well as the cascade of aftershocks that are trig-

gered by these background events. We produce independent events according
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to a Poisson distribution with mean value equal to the estimated background

rate, µ, of the ETAS model. Therefore, inter-event times are simulated from an

Exponential distribution Exp(1/µ), until they exceed the ending time of the

testing period, tend. We then simulate the triggered aftershocks corresponding

to all the background events as described at step 1 and store them along with

the ones produced during step 1.

4.4 Application in circum-Pacific belt

In this section we show that the temporal behavior of the large earthquakes

in circum-Pacific belt cannot be captured well by the MAP model due to the

presence of short inter-event times and the brevity of the earthquake catalog.

Subsequently, we proceed with the application of the MAP model with the

idle state. We investigate the non-stationary features of the data sets with

M ≥ 7.0, 7.6, 7.7, 7.8, and we perform pseudo-prospective experiments to

evaluate its performance in forecasting the full distribution of earthquakes

number. We compare its efficiency to renewal models and the temporal ETAS

model.

4.4.1 Application of MAP

For the data sets with M ≥ 7.6, 7.7, 7.8, MAP models with 2 and 3 states

are fitted to the data, whereas for the data set with M ≥ 7.0 an additional

MAP with 4 states is considered. The temporal evolution of seismicity is more

complex for the last data set as short-term clustering is more intense, so more

states might be needed. We estimate the parameters through the maximization

of the log-likelihood function given in Equation 2.6 with the use of the EM

algorithm and a grid-based procedure for the determination of the algorithm’s

initial input described in Section 4.3.1. In all cases a MAP model with 3 states

seems sufficient for the description of the earthquake temporal distribution
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according to the AIC values. In Appendix C.2 we give the supplementary

results concerning the LL and AIC values of the fitted models as well as the

goodness of fit results.

Figure 4.5: The most probable path of the hidden states along with the earth-
quake magnitudes (grey vertical lines) as a function of time for the data sets
with M ≥ 7.0 (a), M ≥ 7.6 (b), M ≥ 7.7 (c) and M ≥ 7.8 (d). Red color
corresponds to state 1, yellow color to state 2 and orange color to state 3 for
all the panels, respectively.

Figure 4.5 shows the most probable sequence of transitions among the
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latent states of the MAP model for the four data sets based on the evalu-

ation of the state probabilities, pi(t), i = 1, . . . , K, (Equation 2.14). In all

cases, the estimated hidden path is dominated by the lowest seismicity rate,

λ1 = 7.94, 2.08, 1.52, 1.18 events/yr (red color), for Mthr = 7.0, 7.6, 7.7, 7.8,

respectively. This is either an indicator of stationarity for the background

seismicity or the inadequacy of the model to capture the long-term seismic-

ity changes. The estimated rates of state 1 are higher than the empiri-

cal occurrence rates in the upper part of the inter-event times distribution,

λ̂ = 3.38, 0.9, 0.66, 0.51, i.e., the events corresponding to the fourth quantile

(Figure 4.3). Finally, the other two states seem to correspond to the apparent

short-term clustering.

To verify the influence of the short-term clustering to the fitting results

of the MAP model, we proceeded to the separation of the clustered from the

background seismicity based on the implementation of the Nearest-Neighbor

algorithm (Zaliapin and Ben-Zion, 2013a) to the data sets with Mthr = 7.0 and

Mthr = 7.6. This is a clustering algorithm that is based on the space-time-

magnitude distance metric among two earthquakes given by Equation B.4 by

Baiesi and Paczuski (2004). The details of the method are given in Appendix

B.3. There are only two free parameters, the spatial fractal dimension df and

the b value, which are considered equal to b = 1.05, 1.28 for earthquakes with

M ≥ 7.0 and M ≥ 7.6, respectively, and df = 1.29, for both thresholds. The

logarithm of the separation distance is equal to log η0 = −5.80 (Figure 4.6a)

and log η0 = −7.67 (Figure 4.6c), respectively, based on the intersection of the

two modes in the 1D density distribution of distances.

The resulted declustered earthquake catalogs comprise 697 events with

M ≥ 7.0 and 195 events with M ≥ 7.6, respectively. Then, MAP models

with 2 and 3 states are fitted to the data, and the two-state MAP models are

considered optimal based on the AIC values. Figure 4.7a,c illustrate the transi-

tions among the two states of the MAP models for the data sets with M ≥ 7.0

and M ≥ 7.6, respectively. After the removal of the short-term clustering ef-
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Figure 4.6: 1D density distribution of log η, with estimated Gaussian densities
for clustered (yellow) and background (orange) components for the earthquakes
with M ≥ 7.0 a) and M ≥ 7.6 c), respectively. 2D joint distribution of re-
scaled space and time distances among all pair of events for the earthquakes
with M ≥ 7.0 b) and M ≥ 7.6 d), respectively.

fect with the NN algorithm, two main observations can be made. Firstly, the

background seismicity seems to be characterized by non-stationarity as the two

states are alternating for both data sets in contrast with the initial data sets

where a single state (state 1) is associated to the background seismicity (red

color in Figure 4.5). The intense short periods with the high seismicity rates

(yellow and orange colors in Figure 4.5) are replaced by a state with a low

seismicity rate, λ1 = 5.06, 1.58, for M ≥ 7.0 and M ≥ 7.6, respectively (red

color in Figure 4.7a,c) that is closer to the empirical rates of the long inter-

event times distribution. This can also be seen from the estimated intensity

function of the two models, λ(t) (Equation 2.15), in Figures 4.7b,d. Long-term

variations are observed, with three common periods of seismic quiescence for

the two data sets, during 1948-1963, 1978-1992 and 2002-2004, respectively.

So, the constant background rate is not a feature of the data. Secondly, we can
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Figure 4.7: The most probable path of the hidden states along with the earth-
quake magnitudes as a function of time for the data sets with M ≥ 7.0 (a)
and M ≥ 7.6 (c). Red color corresponds to state 1 and yellow color to state
2. The expected seismicity rate is denoted by the blue continuous line and the
cumulative number of events with the maroon line, as a function of time for
the data sets with M ≥ 7.0 (b) and M ≥ 7.6 (d).

conclude that the MAP models fitted to the initial earthquake catalogs cannot

capture the long-term changes in seismicity due to the existence of short-term

events.
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4.4.2 Application of MAP with idle state

4.4.2.1 Evaluation

Firstly, we investigated whether a stationary Poisson model can adequately

describe the earthquake occurrence patterns in each data set. We know that

statistical tests cannot always reveal the non–stationarity of large earthquake

catalogs due to data shortage (Daub et al., 2015). We believe, however, that

it is important to investigate the goodness of fit to the data of the simplest

model before proceeding to more refined models. We tested whether the inter-

event times follow the Exponential distribution with the Lilliefors goodness

of fit test (Lilliefors, 1969), which is an analog of the KS test when the pa-

rameters of the null hypothesis distribution, F0(x), need to be estimated from

the sample and the p values are computed through Monte Carlo simulations

(Section 2.8). Next, the Runs test is applied to decide if correlations exist

among them and the resulted p values are given in Table 4.1. We note that

this is a common procedure to detect non Poissonian behavior (Lombardi and

Marzocchi, 2007; Touati et al., 2016). Concerning, the data set with M ≥ 7.6

even though, we cannot reject the hypothesis of randomness (p = 0.08), its

value is relatively low providing evidence against the null hypothesis. The

Exponential distribution does not adequately fit the observations (p = 0.003).

Similar results are obtained for earthquakes with M ≥ 7.0, M ≥ 7.7 and

M ≥ 7.8. A common feature for all data sets is that the Poissonian behav-

ior is rejected with very low p-values (Table 4.1). This implies that a renewal

process with non–exponential times might be more appropriate than a station-

ary Poisson process for the approximation of the temporal distribution of the

earthquakes. Therefore, Weibull and Gamma distributions which are widely

used to study quasi–periodic earthquake occurrences are also tested as null

hypothesis. Again, the p values (p = 1E− 5, 2E− 5) for M ≥ 7.6 suggest that

the null hypothesis cannot be accepted for both distributions. Very low values

are also derived for the other 3 data sets.
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Table 4.1: Statistics and MAP fitting evaluation for the earthquakes with
M ≥ 7.0, M ≥ 7.6, M ≥ 7.7 and M ≥ 7.8. The p values of the Runs test for
the inter-event times are given in column 4 and the p values of the Lilliefors
test under the null hypothesis of the Exponential, Weibull and Gamma distri-
butions are given in columns five, seven and nine, respectively.

Mthr N0
Rate
yr−1

Runs
Test

Exponential Weibull Gamma
Lilltest ∆AIC Lilltest ∆AIC Lilltest ∆AIC

7.0 909 8.84 0.80 0 145.6 1E-4 29.0 5.5E-3 0
7.6 239 2.32 0.08 3.1E-3 50.4 1E-5 17.7 2E-5 2.4
7.7 178 1.73 0.36 2.0E-4 49.83 1.4E-3 11.77 1.9E-2 0
7.8 138 1.34 0.86 3.8E-3 44.46 4.2E-3 9.85 1.9E-2 0

MAP3

λidle λ1 λ2 ∆AIC Runs Test KS
7.0 2.90 8.54 1889 4.9 0.39 0.12
7.6 1.13 2.59 1080 0 1.00 0.76
7.7 0.78 1.93 257 15.91 0.48 0.30
7.8 0.61 1.62 818 14.07 0.90 0.36

Moving to the MAPs fitting, we considered different values for the free

parameter of Algorithm 1, τthr = {τ̄ , . . . , τmax
thr }, with corresponding λidle =

λ(τthr) values. The optimal threshold corresponds to the maximum log-likelihood

following the procedure described in Section 4.3.1. MAPs of two and three

states are fitted to the data and the three states model with S = 0, 1, 2,

is selected based on the minimum value of the Akaike Information Criterion

(Equation 2.16). State 0 will be expressed as “idle” state henceforth.

According to the occurrence rates (λidle, λ1, λ2) shown in Table 4.1, idle

state implies the existence of relative seismic quiescence periods with seismicity

rate equal to λidle = 1.13 (yr−1) and corresponding expected sojourn time equal

to 6.08 years for M ≥ 7.6, whereas the middle state, state 1, indicates the

presence of periods of relatively higher seismicity rates, with value λ1 = 2.59

(yr−1) and sojourn time 4.42 years, again for M ≥ 7.6. The state 2 might be

related to regional triggering due to the very short sojourn periods (12.3 hours)

of intense seismicity rate with value equal to λ2 = 1080 (yr−1) for M ≥ 7.6.

The occurrence rates given in Table 4.1 (non–negative diagonal elements of

rate matrix D0), act as an index for the seismicity evolution for each data

set, however, the elements of matrix D1 determine the sequence of transitions
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among the states. A thorough analysis based on the hidden paths will be given

below.

We conduct a residual analysis for the MAP model fitting and apply the

Runs and KS tests to the transformed successive inter-event times. The trans-

formed times along with the 95% KS confidence bounds are presented in Fig-

ures 4.8a,b,e,f, along with the auto-correlation function which is computed and

illustrated for a visual inspection in Figures 4.8c,d,g,h. The transformed times

pass the randomness and goodness of fit tests with high p-values (p > 0.05

shown in Table 4.1 for all data sets) and the residuals do not show significant

discrepancies from the bisector that corresponds to the stationary unit Poisson

process.

Next, we proceed to a quantitative comparison of the MAPs with the fitted

renewal processes based on their LL values and their complexity (considering

the number of their parameters). Table 4.1 shows for each model the difference

between its AIC value from the minimum one, ∆AIC = AIC −AICmin. Zero

value is assigned to the one with the minimum AIC value. We observe that the

Gamma distribution returns similar or better values from the MAP model. For

Mthr = 7.6 the difference is equal to ∆AIC = 2.4 in favor of the MAP model

(Table 4.1), whereas for the other data sets the differences are in favor of the

Gamma and Weibull distributions. Gamma distribution suggests the existence

of short–term clustering due to the factor xa−1 (higher probabilities for short

inter-event times than the Poisson distribution) with an exponential decay for

the long–term behavior of independent events. MAP is anticipated to be a

more complex model due to the comparatively large number of parameters in

relation with the limited data set. However, the embedded hidden states allow

us to reveal additional details of the temporal patterns. Knowing the state

probabilities, pi(t), and therefore the seismicity rate at time t, we can infer if

there are systematic periods of seismic quiescence or short-term clustering and

their expected duration. In Section 4.4.3 we show that this information might

contribute to the forecasting skill of the MAP compared to the other models.
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Figure 4.8: Comparison between the cumulative number of residuals (blue step
function) and the stationary Poisson process with unit rate (brown line) (a)
for threshold Mthr = 7.0, (b) Mthr = 7.6, (c) Mthr = 7.7 and (d) Mthr = 7.8.
The pink dashed lines indicate the 95% confidence bounds. Auto-correlation
function of the ∆τi values (red vertical lines) and the blue horizontal lines
indicate the corresponding confidence bounds for threshold (c) Mthr = 7.0, (d)
Mthr = 7.6, (g) Mthr = 7.7 and (h) Mthr = 7.8, respectively.

4.4.2.2 Existence of non-stationarity

In what follows, the transitions among the three states with rates, (λidle, λ1, λ2)

are evaluated through the state probabilities which are given by Equation 2.14.

In addition, the expected seismicity rate at each time, namely the intensity

function λ(t), is estimated through Equation 2.15, and can be used as one more

indicator for temporal changes in the seismicity. Figure 4.9 visualizes the evo-
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Figure 4.9: (a) The most probable path of the latent states along with the
earthquake magnitudes of the events as a function of time with M ≥ 7.6. Inset
magnifies the transitions among states 1 and 2, which are otherwise difficult to
visualize due to the short sojourn time in state 2. (b) The expected seismicity
rate is denoted by the blue continuous line and the cumulative number of events
with the maroon line, as a function of time. The highest peaks of the intensity
rate correspond in most cases to events that occurred during the sojourn of the
process in state 2. The black vertical arrows on panel (b) show two peaks of
the intensity function that do not correspond to state 2, nevertheless, they are
associated with regional earthquake interactions after the investigation of their
spatial distribution. The first one corresponds to the 1919 Tonga earthquake
with Mw8.1 and the second one to the 2014 Iquique, Chile earthquake with
Mw8.1.

lution of the seismicity for the earthquakes with M ≥ 7.6. In this way, we

can explicitly depict the estimated seismicity rate during the entire period and

reveal intervals of relative quiescence, as well as periods of excessive activity

and of possible triggering.

For earthquakes with Mthr = 7.6 we observe that the transitions between

periods of relative seismic quiescence (red color in Figure 4.9a, λidle = 1.13) and

the ones of relatively high seismicity rate (yellow color Figure 4.9a, λ1 = 2.59)

occur in a non–regular time scale varying from a couple of years to a couple of

decades. Although there can be slight differences in the corresponding state
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sequences of the higher magnitude thresholds (M ≥ 7.7, M ≥ 7.8 Figure

4.10), there are some persistent temporal intervals with increased seismicity

rate (state 1, yellow color) such as between 1935-1947, 1958-1960, 1963-1978

and 1993-1997 (Figures 4.9 and 4.10). Common periods of relative seismic

quiescence like during 1924-1928, 1953-1957 and 1980-1990 for all data sets

are observed (Figure 4.9), increasing in number with the magnitude threshold

(Figure 4.10), especially between 1977 and 2000, which is a period that coin-

cides with an observed decreased moment rate (Figure 4.2b) mentioned also

by Zaliapin and Kreemer (2017). The apparent increase in great (M ≥ 8.0)

earthquakes occurrence since 2004 is also recognized as a period of relatively

high seismicity in all cases (sojourn of the process in state 1-yellow color in

Figures 4.9 and 4.10).

Figure 4.10: The most probable path of the latent states along with the mag-
nitude distribution in time of the events with M ≥ 7.7 (a) and with M ≥ 7.8
(b). Red color corresponds to λidle = 0.79, 0.61, yellow color to λ1 = 1.94, 1.62
and orange color to λ2 = 257.08, 818.69 for the panel (a) and panel (b), re-
spectively. (c), (d) The expected seismicity rate is denoted by the blue color
and the cumulative moment of the events with the maroon.

Concerning the dataset withMthr = 7.0, state 1 (yellow color in Figure 4.11,

λ1 = 8.54) is dominant during the entire period, with short seismic quiescence

periods during 1956-1957 and 1982-1985 (red color in Figure 4.11, λidle = 2.91)
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Figure 4.11: The most probable path of the latent states along with the mag-
nitude distribution in time of the events with M ≥ 7.0. Red color corresponds
to λidle = 2.91, yellow color to λ1 = 8.54 and orange color to λ2 = 1889.66 for
the panel (a). (b) The expected seismicity rate is denoted by the blue color
and the cumulative number of the events with the maroon.

In Section 4.4.1 we show that after neglecting the clustered events from the

initial dataset with M ≥ 7.0, long-term changes in the remained seismicity

are revealed by the MAP model (Figure 4.7), and two long seismic quiescence

periods exist during 1948-1966 and 1981-1991 (red color in Figure 4.7a and blue

step-function in Figure 4.7b). The abundance of smaller magnitude events

compared to the dataset with M ≥ 7.6 increases the short-term clustering

effect so that the MAP model cannot capture the long-term changes in the

occurrence rate. Considering the existence of the idle state and implementing

the two-step estimation procedure might not be appropriate for data sets with

smaller magnitude cutoffs.

Clear evidence is provided from state 2 (yellow color in Figure 4.9a), which

is the state with the highest corresponding Poisson rates. Events that occurred

during the sojourn of the hidden process in state 2 seem to express the short-

term localized clustering, which is visible in Figure 4.12 where we plot the
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Figure 4.12: Epicentral distribution of the events with M ≥ 7.6 that occurred
in the state with the highest seismicity rate, λ2 and two cases with high in-
tensity values (black vertical arrows in Figure 4.9b). All cases correspond to
regional spatiotemporal clustering. Blue stars correspond to the events with
the largest magnitude, cyan and red circles to prior and subsequent events,
respectively. The date at each panel represents the duration of each group of
events.

epicenters of earthquakes with M ≥ 7.6 for each subset of consecutive events

that occurred in this state. All cases correspond to large (M ≥ 7.8) main

shocks (blue stars) and their triggered subsequent events (red circles), except

the 1960 Chilean and 2009 Vanuatu earthquakes, where prior (cyan circles)

events are also observed. In all eleven cases spatiotemporal clusters of known

main shock-aftershock pairs are formed, evidencing that state 2 is related to

the existence of spatiotemporal clustering. Considering the expected seismic-

ity rate, λ(t), (Figure 4.9b, blue step–function), we observe some peaks with

λ(t) > λ1, that correspond to regional earthquake interactions, however, with-

out belonging to state 2. The two black vertical arrows in Figure 4.9b show
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the 1919 Tonga earthquake (in Figure 4.12) with Mw8.1 and λ̂t = 8.28 (yr−1)

and the April 2014 Iquique, Chile earthquake (in Figure 4.12) with Mw8.1 and

λ̂t = 399.99 (yr−1).

4.4.3 Pseudo-prospective experiments

In this section we perform a comparison among the proposed MAP model

with the idle state and the Exponential, Gamma and Weibull renewal models

in terms of their forecasting skills. Additionally, we implement a sensitivity

analysis on the forecasting interval and on different versions of the MAP model.

We investigate whether the MAP model with the three embedded occurrence

rates is efficient to forecast the large subduction earthquakes number and if

it performs better than renewal processes with the Exponential, Gamma and

Weibull distributed inter-event times. Firstly, the learning and testing periods

are defined and then the MAP model along with the Poisson, Gamma and

Weibull distributions are fitted to the observations of the learning period. We

set the ending time of the learning period, T0, equal to 31 December 2003, and

the testing period from the beginning of 2004 until the end of 2020, lasting 17

years (Table 4.2).

Table 4.2: Details on the setup of the forecasting experiment for the data sets
with M ≥ 7.0, M ≥ 7.6, M ≥ 7.7 and M ≥ 7.8.

Mthr
Learning period

[1918, T0]
Testing period

(T0, 2020]
T0 K

7.0 748 161

31/12/2003 100000
7.6 190 49
7.7 135 35
7.8 86 29

Next, we proceed to the implementation of K = 100000 simulations with

each forecasting model and we evaluate their performance based on the score

function defined in Equation 4.1. Figure 4.13 shows the score of the four models

as a function of time obtained from 6-months, 1-year, 2-year, and 3-year long
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experiments for earthquakes with M ≥ 7.6.

Figure 4.13: Scores of the forecasting models defined by Equation 4.1 for
(a) 6-months, (b) 1-year, (c) 2-year and (d) 3-year long testing periods over
the 17-year testing interval for events with M ≥ 7.6. Different colors and
shapes correspond to different testing models. Orange vertical bars show the
observed number of events during each testing period at the starting time of
each interval. Values closer to zero indicate better performance.

For the MAP model, all the simulations are initiated at the starting time
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of each testing period based on the evaluated state probability, following the

procedure described in Section 2.5. In this way, we use the full potential of the

model, as it has been illustrated in Figure 4.9. The forecasting probabilities,

pi,k, are estimated for each interval Ti = [t∗i , t
∗
i +δ), δ = 0.5, 1, 2, 3 years, and

each forecasting model. If the MAP model provides more accurate forecasts

for the number of earthquakes in the testing period, then the difference in

the logarithmic scores, Si, should be positive. We observe in Figure 4.13 that

the MAP model achieves higher scores than the other models for most of

the testing bins, Ti, independently of their duration. Especially in periods

with high frequency the differences are larger, like during 2007-2008 and 2009-

2010 in Figure 4.13b or 2006-2008 and 2009-2011 in Figure 4.13c. This is

probably due to the large variance that characterizes the counting process

of the MAP model. Conversely, in periods with low frequencies the renewal

models are superior, especially in testing periods with zero observed events.

The information that the renewal models consider for the elapsed time since the

last event is more critical for testing periods with few events, however, they

produce less significant results as the number of observed events increases.

The Weibull and Gamma scores for consecutive periods with zero observed

events are increasing like in T9 = (2008, 2008.5] and T10 = (2008.5, 2009] in

Figure 4.13a with S9 = −1.02,−1.00 and S10 = −0.85,−0.88 for Weibull and

Gamma models, respectively. Increasing the duration of the testing interval δ,

the differences between the MAP and the renewal models are getting higher.

We expand the comparison using the differences among the total forecasting

scores of each model. This is essentially the difference in the sum of the scores

over all the testing periods for each model given in Equation 4.2. As it can

be seen in Table 4.3, the superiority of the MAP model is increasing with

longer testing intervals for earthquakes with M ≥ 7.6. It is also clear that

MAP model performs better than the Poisson process for all testing intervals,

with D = 1.34, 1.68, 2.61, 3.96, respectively. The differences with Weibull

(D = 1.44, 1.25, 2.45, 3.24) and Gamma (D = 1.27, 0.98, 2.43, 2.88) models
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are also in favor of the MAP model for all testing intervals (Table 4.3). The

Poisson model exhibits the worst performance among the compared models.

Table 4.3: Logarithmic scores of the MAP, Weibull, Gamma and Poisson mod-
els for the data sets with M ≥ 7.0, 7.7 and M ≥ 7.8, respectively. The differ-
ences, D, are given in parenthesis.

Model δ Mthr = 7.0 Mthr = 7.6 Mthr = 7.7 Mthr = 7.8

SMAP

6 month -79.24 -53.33 -47.63 -44.55
1 year -49.19 -34.78 -31.11 -29.02
2 years -53.07 -36.72 -35.12 -34.79
3 years -55.21 -38.58 -37.98 -38.89

Spois

6 month -80.50 (1.26) -54.6753 (1.34) -48.80 (1.16) -46.15 (1.60)
1 year -50.80 (1.61) -36.4761 (1.68) -32.55 (1.43) -31.02 (1.99)
2 years -55.37 (2.29) -39.3415 (2.61) -36.88 (1.75) -37.43 (2.63)
3 years -58.55 (3.33) -42.5438 (3.96) -40.51 (2.53) -41.99 (3.09)

Swbl

6 month -80.40 (1.15) -54.7816 (1.44) -49.16 (1.52) -45.68 (1.12)
1 year -48.95 (-0.24) -36.0391 (1.25) -32.58 (1.46) -30.81 (1.79)
2 years -52.99 (-0.08) -39.1832 (2.45) -37.08 (1.95) -36.55 (1.75)
3 years -55.12 (-0.09) -41.8295 (3.24) -39.64 (1.66) -39.72 (0.82)

Sgam

6 month -79.93 (0.68) -54.6078 (1.27) -49.14 (1.50) -45.78 (1.23)
1 year -48.96 (-0.22) -35.7732 (0.98) -32.39 (1.28) -30.76 (1.73)
2 years -53.08 (0.01) -39.1589 (2.43) -36.83 (1.70) -36.52 (1.73)
3 years -55.01 (-0.20) -41.4690 (2.88) -39.31 (1.33) -39.75 (0.85)

Similar results are derived for the data sets with M ≥ 7.7 and M ≥

7.8 that are shown in Table 4.3. For the data set with the lowest magni-

tude cutoff, Mthr = 7.0, we observe that the differences in Gamma (D =

0.68, −0.22, 0.01,−0.20) and Weibull (D = 1.15, −0.24, −0.08,−0.09) mod-

els fluctuate around zero, without permitting us to make an inference on the

superiority of one model from the other. The decrease of the magnitude thresh-

old might lead to the dominance of the short-term clustering, so more compli-

cated MAP models might be needed, i.e., more states or different assumptions

for the existence of the idle state.

Next, we check whether the difference in the scores between the MAP and

the Poisson, Gamma, and Weibull, models, D = SMAP − Sref , is statistically

significant. Therefore, we generate 10,000 simulated catalogs, namely 10,000

testing periods, assuming that these events are generated according to a ref-
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Figure 4.14: Cumulative distribution of the 10,000 Di values calculated from
Equation 4.2 and from simulated samples assuming that the earthquakes are
generated according to a Poisson a-d), Gamma e-h) and Weibull i-l) distribu-
tion, for events with Mthr = 7.6 and 6-month, 1-year, 2-year and 3-year testing
periods, respectively.
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erence model, in our case the ones mentioned above, for the data set with

Mthr = 7.6. For each sample we calculate the two logarithmic scores as be-

fore and then their corresponding differences, Di, with i = 1, . . . , 10.000. The

observed D is indicative of a statistically better performance of the model

with respect to the reference model if the associated p-value is low enough.

Figure 4.14 shows the cumulative distribution of the differences Di between

the MAP model and the Poisson, Gamma and Weibull models according to

which 10,000 samples were generated. The p-values indicate that the scor-

ing differences are statistically significant, except from few cases where the

p-values are larger than 0.05 but still less than 0.1 which provide evidence

against the null hypothesis. When Gamma is used as a reference model the

p-values are p = 0.066 and p = 0.097 for δ = 6 months and δ = 1 year (Figures

4.14e,f), respectively, indicating that the probability to observe the differences

D = 1.27 and D = 0.98 (red vertical lines in Figures 4.14e,f and Table 3) when

data is generated from a Gamma renewal model are still relatively low. For

longer testing intervals the probability to observe the differences D = 2.43 and

D = 2.88 for δ = 2 and δ = 3 years, respectively, are even lower (p = 0.045

and p = 0.052 in Figures 4.14g,h, respectively). For Poisson as a reference

model the observed differences (D = 1.34, 1.68, 2.61, 3.96 given in Table

4.13) are statistically significant for all testing intervals with corresponding

p-values equal to p = 0.039, 0.023, 0.032, 0.022 (Figures 4.14a,b,c,d). Fi-

nally, when we consider Weibull as a reference model the observed differences

between MAP and Weibull (D = 1.44, 1.25, 2.45, 3.24 given in Table 4.13)

seem to be significant as indicated by the low p-values almost in all cases

(p = 0.052, 0.070, 0.046, 0.039 for δ = 6 months and δ = 1, 2, 3 years,

respectively in Figures 4.14i,j,k,l).

Same observations are made for the two data sets with M ≥ 7.7, 7.8.

In particular, Figure 4.15 shows the the cumulative distribution of the differ-

ences, Di, between the MAP and Gamma models, which exhibit the small-

est differences among the tested models (see Table 4.13). Apart from Figure
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4.15h for δ = 3 years testing interval, in all other cases, the probability to

observe the initial differences (D = 1.50, 1.28, 1.70, 1.33 for Mthr = 7.7 and

D = 1.23, 1.73, 1.73, 0.85 for Mthr = 7.8) is very low, in particular, p < 0.1.

The same or even lower p-values are derived for the other models.

Figure 4.15: Cumulative distribution of the 10,000 Di values calculated from
Equation (4.2) and from simulated samples assuming that the earthquakes are
generated according to a Gamma distribution, for events with Mthr = 7.7 a-d)
and Mthr = 7.8 e-h), respectively.
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4.4.3.1 Comparison with the ETAS model

Gamma and Weibull renewal processes proved insufficient especially for cap-

turing the short-term clustering of seismicity. For this reason, the temporal

ETAS model is also fitted to the learning period, which is a model known

for its efficiency in representing aftershock sequences. Figure 4.16 shows the

logarithmic scores of ETAS and MAP models for earthquakes with M ≥ 7.6

following the procedure described in Section 4.3.2. We find that the scores

of the MAP model are higher than the ETAS ones in most of the intervals,

with some exceptions again in testing intervals with few events. Similar re-

sults are obtained for thresholds Mthr = 7.7, 7.8, where the total scores over

all the testing periods shown in Table 4.4 indicate the superiority of the MAP

model. An additional background rate applied to the intensity function of the

ETAS model might be necessary for increasing its forecasting skill. Only for

the dataset with Mthr = 7.0, the ETAS model seems to perform better, where

MAP yields similar results when compared to the Gamma and Weibull models

(Table 4.13). The effect of aftershocks and foreshocks is enhanced when we

consider this magnitude cutoff, so it might be more appropriate to consider the

initial MAP model or increase the states of the current modified MAP model

that is used in the study.

Table 4.4: Logarithmic scores of the MAP and ETAS models. The differences,
D, are given in parenthesis.

Model δ Mthr = 7.0 Mthr = 7.6 Mthr = 7.7 Mthr = 7.8

SMAP

6 month -79.24 -53.33 -47.63 -44.55
1 year -49.19 -34.78 -31.11 -29.02
2 years -53.07 -36.72 -35.12 -34.79
3 years -55.21 -38.58 -37.98 -38.89

Setas

6 month -79.31 (0.07) -54.72 (1.38) -48.69 (1.05) -46.32 (1.77)
1 year -48.61 (-0.57) -36.19 (1.40) -32.14 (1.03) -31.14 (2.11)
2 years -51.45 (-1.62) -39.42 (2.69) -36.66 (1.54) -37.69 (2.90)
3 years -52.44 (-2.76) -42.62 (4.04) -39.51 (1.53) -42.27 (3.38)
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Figure 4.16: Scores of the forecasting models for (a) 6-months, (b) 1-year,
(c) 2-year and (d) 3-year long testing periods over the 17-year testing interval
for earthquakes with M ≥ 7.6. Different colors and shapes correspond to
different testing models. Orange vertical bars show the observed number of
events during each of the testing periods at the starting time of each interval.
Values closer to zero indicate better performance.
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4.4.3.2 Comparison with the initial MAP

We showed in Section 4.4.1 that when we consider the initial MAP, i.e., without

implementing the two-step procedure, the estimated seismicity rates cannot

discriminate the long periods of seismic quiescence from periods of moderate

seismicity. State 2 and state 3 (yellow and orange color in Figure 4.5) cor-

respond to high seismicity rates for all data sets and are associated with the

occurrence of events in temporal proximity, whereas the main seismic activity

is approximated by a stable rate associated with state 1 (red color in Figure

4.5). Nevertheless, we computed the forecasting efficiency of the initial MAP

and the one proposed in this study with the idle state. Figure 4.17 shows

that the initial MAP yields a worse performance in terms of the forecasting

scores over almost all testing intervals for earthquakes with M ≥ 7.6. Same

behavior is observed for the other large magnitude thresholds (Table 4.5). Our

proposed two-step estimation procedure for the MAP model contributes sub-

stantially to the forecasting of the earthquake occurrences, especially for the

higher magnitude thresholds (Mthr = 7.6, 7.7, 7.8). Worth mentioning is the

slight superiority of the initial MAP compared to the MAP with the idle state

for earthquakes with M ≥ 7.0. As we mentioned earlier, short-term clustering

effect seems to dominate as we decrease the magnitude cutoff, so it might not

be appropriate to consider the two-step procedure for lower thresholds.

Table 4.5: Logarithmic scores of the modified MAP, MAPidle, and the initial
one, MAPinit. The differences, D, are given in parenthesis.

Model δ Mthr = 7.0 Mthr = 7.6 Mthr = 7.7 Mthr = 7.8

MAPidle

6 month -79.24 -53.33 -47.63 -44.55
1 year -49.19 -34.78 -31.11 -29.02
2 years -53.07 -36.72 -35.12 -34.79
3 years -55.21 -38.58 -37.98 -38.89

MAPinit

6 month -78.35 (-0.88) -54.7970 (1.46) -49.0052 (1.36) -46.02 (1.47)
1 year -48.74 (-0.44) -35.94 (1.15) -32.20 (1.08) -30.78 (1.75)
2 years -53.06 (-0.008) -39.18 (2.45) -36.81 (1.68) -37.07 (2.28)
3 years -55.13 (-0.08) -42.14 (3.56) -39.97 (1.99) -41.06 (2.16)
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Figure 4.17: Scores of the forecasting models for (a) 6-months, (b) 1-year,
(c) 2-year and (d) 3-year long testing periods over the 17-year testing interval
for earthquakes with M ≥ 7.6. Different colors and shapes correspond to
different testing models. Orange vertical bars show the observed number of
events during each of the testing periods at the starting time of each interval.
Values closer to zero indicate better performance.
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4.5 Discussion

In this study, we provided an advancement towards the long-term modeling

of large earthquake occurrences by contributing to the forecasting of their

occurrence number. Towards this direction, we followed the Nandan et al.

(2019) suggestion that “. . . the idea of embracing the full distribution of earth-

quake numbers should be extended to earthquake forecasting models of other

types, such that their true forecasting potential is revealed.” We introduced

a two–step modeling procedure for the MAP model, that reveals the non-

stationary characteristics of the temporal distribution of the large earthquakes

(M ≥ 7.6, M ≥ 7.7 and M ≥ 7.8) in circum-Pacific belt taking advantage of

our empirical observations on the data sets and we conducted a catalog-based

pseudo-prospective experiment considering the full earthquakes distribution.

There are some efforts to create a link between a plausible physical mecha-

nism and the worldwide temporal clustering of large events under the concept

of seismic cycles synchronization. Dynamic stress interactions between dis-

tant faults can advance or delay their respective seismic cycles, leading to

synchronization, or in other words to the production of temporal clusters of

events (Sammis and Smith, 2013). Bendick and Bilham (2017) statistically

quantified the worldwide synchronization of earthquakes with M ≥ 7.0 since

1900 through topological networks and time series analyses and Bendick and

Mencin (2020) underpinned the occurrence of large events as a time-dependent

process that depends on previous seismicity with similar recurrence intervals

and occurrence times and therefore a degree of predictability might exist. Our

speculation is that earthquake occurrences close in time among different re-

gions can be superimposed producing elevated levels of seismic activity for

the large earthquakes (M ≥ 7.6, 7.7, 7.8) in a global scale for irregular periods

varying among them from a couple of years to a couple of decades. In this

case, state 1 of the MAP model might capture long-term periods of increased

seismicity that could comprise independent synchronizations, different groups
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of faults with aligned seismic cycles, associated to the occurrence of some of

the largest instrumentally recorded events, since 12 out of the 15 events with

M ≥ 8.5 occurred in periods of increased seismicity for all magnitude thresh-

olds. Hence, non-stationarity might characterize their temporal distribution,

where persistent periods of increased seismic activity alternate with long ir-

regular intervals of seismic quiescence. Finally, the regional spatiotemporal

clustering is expressed through state 2 of the model for great events along the

Sumatra, Japan, Kuril, Tonga, Solomon Islands and New Hebrides subduction

zones (Figure 4.12).

The investigation of the temporal patterns of large earthquake occurrences

in circum–Pacific belt revealed the existence of non–regular periods of increased

seismicity, including short–term seismicity clusters, and long-term changes of

the seismicity rate. The short–term earthquake clustering in close distances

can be to a degree attributed to fault interactions due to static stress (Parsons

and Velasco, 2011; Scholz, 2010) and even though it can be related to the

existence of large aftershocks or foreshocks, they should not be removed by

a declustering algorithm since they are as important as main shocks in terms

of seismic hazard. We believe that the incorporation of non-stationarity for

the forecasting of the large earthquakes number is significant for earthquake

hazard assessment because estimates for future occurrence probabilities are

based on whether it is considered a period of increased seismicity or a relative

quiescence according to the earthquake history.

4.6 Conclusions

In this Chapter, we established a two-step estimation procedure via a Marko-

vian Arrival Process to approximate the temporal distribution of large earth-

quakes in circum-Pacific belt. Long inter-event times are considered extreme

events due to their rarity and they are modeled separately from the rest of

the seismicity. In this way, non-stationary characteristics are revealed for
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large earthquake occurrences that are persistent for magnitude thresholds

Mthr = 7.6, Mthr = 7.7 and Mthr = 7.8.

Our findings imply that: (1) there is evidence for non–stationarity in the

observed seismicity with Mthr = 7.6, 7.7 and Mthr = 7.8, although less pro-

nounced for M ≥ 7.0, that due to the presence of short-time events the

MAP model cannot approximate well. After removing the short-term clus-

tered events from the initial data sets with M ≥ 7.0 and M ≥ 7.6, long-term

changes in the background seismicity rate are revealed by the MAP model

(see Section 4.4.1), and two common, for both data sets, long seismic quies-

cence periods exist during 1948-1966 and 1981-1991 (red color in Figure 4.5).

(2) Incorporating an idle state to the parameter set of the MAP model that

approximates separately the long inter-event times we revealed two distinct

patterns that are preserved with small variations for the data sets with the

higher magnitude thresholds (Mthr = 7.6, Mthr = 7.7 and Mthr = 7.8), i.e.

long–term interactions varying from a couple of years to a couple of decades

and intense spatiotemporal clustering (Figures, 4.9, 4.10 and 4.12). (3) The

pseudo–prospective forecasting experiments indicate that the modified MAP

model outperforms the Poisson, Weibull and Gamma models during all test-

ing intervals and for the three higher magnitude cutoffs (Mthr = 7.6, 7.7 and

Mthr = 7.8) of the data sets (Tables 4.3 and Figures 4.13, 4.14, 4.15). It yields

also better performance over the temporal ETAS model during all testing in-

tervals. However, the two-step procedure might not be appropriate for lower

magnitude thresholds since the MAP model returns comparable or slightly

worse results against the Gamma and ETAS models for Mthr = 7.0 (Figure

4.16 and Tables 4.3, 4.4) and the initial MAP yields better scores compared

to the MAP with the idle state for earthquakes with M ≥ 7.0 (Table 4.5).
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Chapter 5

Concluding Remarks

Earthquake clustering is an essential feature of seismicity that contributes

to the understanding of the long-term trends of seismicity and to reveal its

short-scale dynamics. In the present thesis, we have studied the short and

long-term properties of the temporal distribution of seismicity through the use

of stochastic modeling and explored the difficulties in addressing both types

of clustering.

Our first contribution, is the proposal of the Markovian Arrival Process

for the approximation of the earthquakes temporal distribution. Towards this

direction, we constructed a grid-based procedure for the selection of the initial

values of the EM algorithm and developed a parallel framework for its imple-

mentation. In this way, we improved the chances to converge to the maximum

value of the log-likelihood function and reduced the required computation time.

We also proposed the use of a local decoding algorithm for the evaluation of

the most probable path of hidden states for the model. Its stability is verified

on simulated data sets where the sequence of the hidden states is known. This

is extremely important, because it provides us with the seismicity rate of the

counting process of the model at each time of the study period. In this way,

the MAP model can be used a change point tool for the detection of changes

in seismicity rate.
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In Chapter 3 we verified the efficiency of the MAP model to detect seismic-

ity rate changes on well studied seismic sequences of the Corinth Gulf earth-

quake catalog during 1964-2017 for events with M ≥ 4.5. We showed that

that the identified seismicity rate changes are mainly related either to main

shock-aftershock sequences or earthquake swarms. Based on this observation,

we established a new clustering procedure, which we called MAP-DBSCAN.

The method proved efficient on detecting the clusters of a simulated ETAS cat-

alog where the links among the events are known. We used the Jaccard index

as a validation metric, which we believe is an appropriate tool in performance

studies for earthquake clustering. Moreover, we showed the competitiveness of

the MAP-DBSCAN procedure against well-known clustering algorithms, as in

most cases, exhibits better results.

We applied the method to three major seismic zones of Greece and investi-

gated their clustering properties. The detected seismic clusters in the Corinth

Gulf, Central Ionian Islands and North Aegean Sea during 2012–2019 for events

with M ≥ 1.5, M ≥ 2.2 and M ≥ 2.1, respectively, are concentrated to the

main seismotectonic structures of the areas. We examined the regional vari-

ability among the three areas by inverting the generic ETAS parameters with

a stacking procedure. The aftershock productivity is extremely high in Central

Ionian Islands, where main shock-aftershocks are dominant, whereas Corinth

Gulf is characterized by low productivity values and high background rates due

to the existence of swarm activity. We also inferred sequence-specific parame-

ters of the temporal ETAS model for clusters with N ≥ 30. Low productivity

values and high background rates are related to sequences that occurred in

areas with high pore-pressure due to fluids migration.

In Chapter 4, we proposed the use of the Markovian Arrival Process for

the modeling of the long-term properties of large earthquakes in circum-Pacific

belt. To confront the difficulties in modeling both the short-time values and

long quiescence periods we established a two-step estimation procedure. In

this way, non-stationary characteristics are revealed for large earthquake oc-
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currences that are persistent for high magnitude thresholds (Mthr ≥ 7.6).

We showed that the existence of short-term seismicity complicates the study

of the long-term variations in the temporal distribution of large earthquakes.

After removing the short-term clustered events from the initial data sets, we

provided evidence for long-term changes in the background seismicity rate. In-

corporating an idle state to the parameter set of the MAP model that approx-

imates separately the long inter-event times we revealed two distinct patterns

that are preserved with small variations for the all the data sets with high

magnitude thresholds (Mthr ≥ 7.6), i.e. long–term interactions varying from

a couple of years to a couple of decades and intense spatiotemporal cluster-

ing. The pseudo–prospective forecasting experiments that we performed with

the modified MAP model show better results than the Poisson, Weibull and

Gamma models and the temporal ETAS model for multiple testing intervals

and Mthr ≥ 7.6. For lower magnitude thresholds the modified MAP model

returns comparable or slightly worse results against the Gamma and ETAS

models for Mthr = 7.0.
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Appendix A

A.1 ETAS formulation

The ETAS model is a stochastic point process that incorporates the basic

empirical laws of seismicity in space and time. Ogata (1988) has established

the temporal ETAS model, that is essentially a self-exciting Hawkes process

(see Hawkes (1971)) that is defined by the conditional intensity function,

λ(t) = λ(t/Ht) = lim
dt→0

Pdt(t/Ht)

dt
= µ+

∑
j:tj<t

h(t− tj), (A.1)

where Pdt gives the probability of an earthquake to occur at an infinitesi-

mal time interval (t, t + dt), conditional on the history of the process, Ht =

{(tj,mj) : tj < t}, with tj the occurrence times up to time t and corresponding

magnitudes mj.

The first part of Equation A.1, µ, is the background rate (migration rate)

that is stationary in time and is based on the constant tectonic loading that

produces independent earthquakes (mother events). The second part is the

triggering function, that expresses the contribution of past events with tj < t

to the occurrence rate of a new event at time t. This is based on the main

assumption of ETAS model that each event is possible to trigger a future
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event or in terms of epidemic models that both mother events and daughters

can generate their own daughters.

Ogata (1988) adopted the two following main empirical laws that express

the time-dependent seismicity in the triggering function, h(t−tj) = k(mj)g(t−

tj):

• the productivity law (Utsu (1971) pp 420-427),

k(mj) = Kea(mj−mc), (A.2)

which gives the number of aftershocks with M ≥ mc triggered by a

mother event with magnitude mj;

• the modified Omori law,

g(t− tj) = (p− 1)c(p−1)(t− tj + c)−p, (A.3)

with p > 1, that describes the temporal decay of aftershocks.

The a parameter of the productivity law, given by Equation A.2, scales

the effect of an event with magnitude mj to the triggering of first generation

aftershocks. A large value of a means that the proportion of triggered events

from large earthquakes is higher than from small ones. This is easily under-

stood from the equation k(M1)/k(M2) = ea(M1−M2) between two events with

magnitudes M1 and M2, respectively. For instance, when a = 2.0 then the

fraction between the produced aftershocks of the events with M1 = 7.5 and

M2 = 5.5, respectively, is almost 55 (the first event will produce 55 times more

aftershocks than the second), whereas when a = 1.0 the ratio of the same

events would be almost 8. It has been observed that small a values charac-

terize swarm type sequences where secondary bursts of seismic activity occur,

whereas higher a values are usually observed in earthquake catalogs that are

dominated by main shock-aftershock sequences (Hainzl and Ogata, 2005). Pa-

rameter K gives the expected aftershock productivity independently of the
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main shock magnitude and is depending on the magnitude cutoff when a ̸= β

(Seif et al., 2017), where β = b · ln 10.

The modifed Omori law is a power-law function that gives the decay of af-

tershocks with time. Some studies suggest that parameter c reflects the incom-

pleteness in the early stage of the aftershock sequences (Kagan and Knopoff,

1981) and is also depending on the cutoff magnitude (Seif et al., 2017). More

interpretations can be derived for exponent p that describes the decay rate of

the aftershock sequence. Higher p values indicate fast diminishing sequences

whereas as p decreases the duration of an aftershock sequence is elongating.

Due to normalization of function, g(t), p should always be p > 1.

Following the formulation of the temporal ETAS model, Ogata (1998) ex-

tended the functional form of the conditional intensity function, λ(t), embed-

ding the space component of seismicity. It takes the following form,

λ(t,x = (x, y)/Ht) = lim
dt,dx,dy→0

Pdt,dx,dy(t/Ht)

dtdxdy
= µ(x) +

∑
j:tj<t

h(t− tj,x− xj),

(A.4)

where Pdt,dx,dy gives the probability of an earthquake occurrence at an infinites-

imal time interval (t, t+ dt) and in a small region [x, x+ dx)× [y, y+ dy). The

background rate, µ(x), is stationary in time and heterogeneous in space due

to the concentration of events around the faults and the triggering function

consists of three terms, h(t− tj, x− xj, y − yj) = k(mj) · g(t− tj) · f(x− xj).

The last component of the equation is the spatial distribution of aftershocks,

f(x− xj/mj) =
q − 1

πd(mj)q−1
[∥x− xj∥22 + d(mj)]

−q, (A.5)

with q > 1, and d(mj) = d010
γ(mj−mc), considering an isotropic distribution of

aftershocks around the main shock. Parameter q is the power law exponent of

the spatial distribution and gives the decay of aftershocks in space, whereas

d0 expresses the spatial spreading of aftershocks. Small values of d0 indicate

high concentration and vice versa. Parameter γ scales the aftershock spreading
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with the main shock magnitude mj.

A.2 Estimation procedure

The parameter set of the space-time ETAS model consists of 8 variables, θ =

{a,K, p, c, d, γ, q, µ}. The most common estimation method is the maximiza-

tion of the log-likelihood function, L = L(θ/Tr), with Tr = {(ti, xi, yi,mi), i =

1, . . . , N} the events that occurred in the spatio-temporal region A = Σ ×

[tin, tf ] with M ≥ mc and is given by

LL =
∑
i∈A

log λ(t,x)−
∫∫

Σ

∫ T

tin

λ(t,x) dt dΣ. (A.6)

Concerning the evaluation of λ(t,x), it is shown that the missing links between

events inside the target region A and below the magnitude threshold, before the

start and outside the spatial boundaries of the data set influence the final LL

value and as a consequence the inverted estimated parameters (Wang et al.,

2010). So, events in the broader region Σ0 and time interval [t0, T ], with

t0 < tin should be included in the evaluation of, λ(t,x).

For the maximization of the LL function we implement an iterative proce-

dure following Lippiello et al. (2014). An initial parameter set, θ0, is chosen

based on the seismic features of the corresponding study area. Then, at each

iteration step, (r), we update the model parameters by adding a random factor

so θ
(r)
k = θ

(r−1)
k +u, for k = 1, . . . , 8. We compute the new log-likelihood value,

LL(r) and store the new parameters under the condition LL(r) > LL(r−1). After

some iterations, the logarithm converges and the algorithm stops. Essentially,

this is a grid-based procedure, since we use a large number of iterations.
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A.3 Simulation

The simulation procedure that we use here is based on the branching structure

of the ETAS model (Zhuang et al., 2004). In particular, each mother event

generates its daughters (first generation), the daughters generate their own

descendants (second generation), and so on.

For the simulation of an ETAS earthquake catalog, first, we need to gen-

erate the mother events based on the non-stationary in space background rate

µ(x, y). The heterogeneity in space can be preserved from the spatial coordi-

nates of the seismicity in the study area. We identify the background events

in the original earthquake catalog using a declustering algorithm and then we

generate Nmain mother events from a Poisson distribution with mean value

equal to the number of the identified background events. Their coordinates

are sampled with replacement from the declustered catalog by adding a ran-

dom factor. The occurrence times are simulated from a uniform distribution

U(t0, tf ), where t0 and tf are the starting and ending time of the simulated

earthquake catalog, respectively.

The magnitudes are independent from the earthquakes’ spatial and tempo-

ral distribution and follow the Gutenberg–Richter law truncated from the left

at the completeness magnitude, mc, and from the right at a maximum upper

threshold, mmax. The functional form of their distribution is the following,

s(m) =
βe−βm)

(e−βmc − e−βmmax)
. (A.7)

Next, for each mother event i with i = 1, . . . , Nmain, we simulate their

aftershocks number from a Poisson distribution with expected rate equal to

the productivity of the model, k(mi) = Kea(mi−mc). Their occurrence times

are sampled from the modified Omori law, g(t), given by Equation (A.3), and

the locations from the isotropic spatial distribution function, f(x), given by

Equation (A.5). Events outside the region Σ0, time period (t0, tf ) and below
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the magnitude threshold, mc, are neglected. For next-generation daughters

the triggering step is repeated considering each daughter a mother event until

there are no more generated events.

To avoid the boundary issue, i.e. triggering effect of events outside the tar-

get region and from an earlier period, we implement a simulation in a broader

spatial and temporal area Σ0 × [t0, tf ] and then consider events in the smaller

target area Σ× [tin, tf ] with Σ ⊆ Σ0 and tin > t0 for our study.
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B.1 Gardner and Knopoff algorithm

The procedure introduced by Gardner and Knopoff (1974) for the detection

of aftershocks is based on specific magnitude dependent space-time windows.

It is known as the window-based method, and it is one of the simplest forms

of aftershock identification. For each earthquake with magnitude M , the sub-

sequent events are assigned as aftershocks if they occur within a temporal

window t(M) and a spatial interval d(M), respectively. Foreshocks are treated

as aftershocks when a larger earthquake occurs later in the sequence. The

event is considered as an aftershock and the algorithm is repeated based on

the largest magnitude.

We give in Equation (B.1) the functional form of the spatial and temporal

windows suggested in Gardner and Knopoff (1974), which are denoted as GK1.

Additionally, in Equations (B.2) and (B.3) we present alternative window pa-

rameter settings that can be found in van Stiphout et al. (2012). We denote

them as GK2 and GK3, respectively.

d = 100.1238∗M+0.983 (km) and t =

 100.032∗M+2.7389 M ≥ 6.5

100.5409∗M−0.547 M < 6.5
days

 (B.1)
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d = e1.77+
√
0.037+1.02∗M (km) and t =

 102.8+0.024∗M M ≥ 6.5

e−3.95+
√
0.62+17.32∗M M < 6.5

days


(B.2)

d = e−1.024+0.804∗M (km) and t = e−2.87+1.235∗M days. (B.3)

B.2 Reasenberg Linked-Based algorithm

In the Reasenberg method (Reasenberg, 1985), an interaction zone among

earthquakes is assumed that is modeled based on estimates of the stress re-

distribution for the spatial extent and on a probabilistic model, the Omori

law, for the temporal extent, respectively. Any earthquake that occurs within

the interaction zone of a prior earthquake is considered an aftershock and is

included in the cluster. The parameters τmin and τmax correspond to the min-

imum and maximum elapsed time since the last event, in order to observe the

next correlated earthquake at a certain probability, p1. Additionally, xmeff

denotes the minimum magnitude threshold for the earthquake catalog, whose

value in the clusters is raised by a factor xk of the largest earthquake, M ,

within, and is given by xmeff = xmeff + xk ∗M . Finally, the parameter rfact

corresponds to the radii we adopt to consider linking a new event with the

cluster. Overlapping clusters are merged.

B.3 Nearest-Neighbor algorithm

The Nearest-Neighbor approach is based on the space-time-magnitude distance

metric among two earthquakes given by Baiesi and Paczuski (2004):

ηij = (tj − ti)r
df
ij 10

−bmi , (B.4)
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where rij is the epicentral distance between events i and j, df is the spatial

fractal dimension and b is the component of the Gutenberg–Richter distribu-

tion. Each event j is connected to its nearest neighbor i = argmini:tj>tiηij if

their distance, ηj, is lower than a predefined threshold η0. The earthquake cat-

alog is then partitioned on distinct clusters, each containing at least one event.

The space and time distances between two events are normalized considering

the logarithm of metric ηij and they are given by

Tij = (tj − ti)10
−0.5bmi , Rij = r

df
ij 10

−0.5bmi ,

so

log ηij = log Tij + logRij. (B.5)

Zaliapin et al. (2008) showed that seismicity follows a bimodal distribution in

relation to (Tij, Rij). One mode corresponds to the background seismicity and

the other one is located in short space and time distances and is related to the

correlated seismicity.

For the selection of the threshold value, η0, the distribution of the logarithm

of the nearest neighbor distance η∗ = {ηj}j=1,...,N is investigated, where N

denotes the events number. It follows an 1D Gaussian distribution with two

components, which is essentially a mixture model of two Gaussian densities

with parameters N(µ1, σ1), N(µ2, σ2) and a1, a2 weights, respectively. The

threshold value is defined as the intersection of the two modes.
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Appendix C

C.1 Additional figures of cluster analysis

Figure C.1: a) Epicentral map of the main seismic clusters during the first
semester of 2012. Three major clusters are occurred, the C1, C2 and C3
and eight smaller clusters with N ≥ 10 events. b) Space-time evolution of
seismicity. Colours correspond to different clusters and the size of circles is
proportional to the earthquakes magnitude.
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Figure C.2: a) Epicentral map of the 2013 Aigion swarm and subsequent se-
quences in the area with N ≥ 10 events. b) Space-time evolution of seismicity.
Colours correspond to different clusters and the size of circles is proportional
to the earthquakes magnitude.

Figure C.3: a) Epicentral map of the seismic activity between November,
2013 and June, 2014. Twelve clusters with N ≥ are occurred, including the
C11, C12 and C14 clusters. b) Space-time evolution of seismicity. Colours
correspond to different clusters and the size of circles is proportional to the
earthquakes magnitude.
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Figure C.4: a) Epicentral map of the intense seismic activity during the second
half of 2014. Five major clusters are occurred, the C15, C16, C18, C19 and
C20 and four smaller clusters with N ≥ 10 events. b) Space-time evolution
of seismicity. Colours correspond to different clusters and the size of circles is
proportional to the earthquakes magnitude.

Figure C.5: a) Epicentral map of the seismic sequence Offshore Perachora.
One major cluster, C4, including two sub sequences, the first initiated on 22
September and the second on 30 September 2012. b) Space-time evolution of
seismicity. Colours correspond to different clusters and the size of circles is
proportional to the earthquakes magnitude.
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Figure C.6: a) Epicentral map of the seismic activity near Itea Gulf during
2014. Two major clusters are occurred, the C13, C17 and four smaller ones
with N ≥ 10 events. b) Space-time evolution of seismicity. Colours correspond
to different clusters and the size of circles is proportional to the earthquakes
magnitude.

Figure C.7: a) Epicentral map of the 2014 Kefalonia earthquake sequence, I1,
and a sub-cluster, I2, that occurred offshore the southern part of Kefalonia
Island. b) Space-time evolution of seismicity. Colours correspond to different
clusters and the size of circles is proportional to the earthquakes magnitude.
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Figure C.8: a) Epicentral map of four main clusters, I3, I4, I5 and I6 with
N ≥ 30 between November, 2014 and April, 2015. b) Space-time evolution
of seismicity. Colours correspond to different clusters and the size of circles is
proportional to the earthquakes magnitude.

Figure C.9: a) Epicentral map of the 2015 Lefkada sequence, I7, along with two
sub-clusters in the southern part of Kefalonia Island. b) Space-time evolution
of seismicity. Colours correspond to different clusters and the size of circles is
proportional to the earthquakes magnitude.
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Figure C.10: a) Epicentral map of cluster I9 located on the area between
Lefkada and Kefalonia. b) Space-time evolution of seismicity. Colours corre-
spond to different clusters and the size of circles is proportional to the earth-
quakes magnitude.

Figure C.11: a) Epicentral map of cluster N1 comprised by two sub-sequences.
b) Space-time evolution of seismicity. Colours correspond to different clusters
and the size of circles is proportional to the earthquakes magnitude.
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Figure C.12: a) Epicentral map of the 2013 North Aegean sequence, denoted
N3. b) Space-time evolution of seismicity. Colours correspond to different
clusters and the size of circles is proportional to the earthquakes magnitude.

Figure C.13: a) Epicentral map of the 2013 North Aegean sequence, denoted
N3. b) Space-time evolution of seismicity. Colours correspond to different
clusters and the size of circles is proportional to the earthquakes magnitude.
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Figure C.14: a) Epicentral map of the seismic activity near the Aegean coast of
NW Turkey during January–October 2017 confined into three clusters, N10,
N11 and N12. b) Space-time evolution of seismicity. Colours correspond
to different clusters and the size of circles is proportional to the earthquakes
magnitude.

Figure C.15: a) Epicentral map of the seismic activity near the Aegean coast of
NW Turkey during January–October 2017 confined into three clusters, N10,
N11 and N12. b) Space-time evolution of seismicity. Colours correspond
to different clusters and the size of circles is proportional to the earthquakes
magnitude.
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C.2 Additional fitting results in circum-Pacific

belt

Table C.1: The log-likelihood and AIC values of the fitted MAP models to the
events with M ≥ 7.0, 7.6, 7.7, 7.8 in circum-Pacific belt during 1918-2020.

Mthr7.0 Mthr = 7.6 Mthr7.7 Mthr = 7.8
# of S LL AIC # of S LL AIC LL AIC LL AIC

3 1166 -2309.1 2 -3.8 19.6 -53.5 119.0 -73.5 159.1
4 1172 -2304.8 3 6.6 10.6 -45.4 114.9 -65.8 155.7

Figure C.16: Comparison between the cumulative number of residuals (blue
step function) and the stationary Poisson process with unit rate (brown line)
(a) for thresholdMthr = 7.0, (b)Mthr = 7.6, (c)Mthr = 7.7 and (d)Mthr = 7.8.
The pink dashed lines indicate the 95% confidence bounds.
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Table C.2: P-values of the Runs and Kolmogorov-Smirnov tests implemented
to the inter-event times of the residuals, Ei, for the three-states MAPs of the
events with M ≥ 7.0, 7.6, 7.7, 7.8 in circum-Pacific belt during 1918-2020.

Statistical tests Mthr = 7.0 Mthr = 7.6 Mthr7.7 Mthr = 7.8

Runs test 0.442 0.804 0.819 0.947
KS test 0 2.025 · 10−4 0.003 0.054
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Bause, F. and Horváth, G. (2010). Fitting markovian arrival processes by

incorporating correlation into phase type renewal processes. In 2010 Seventh

International Conference on the Quantitative Evaluation of Systems, pages

97–106. IEEE.

Bayliss, K., Naylor, M., and Main, I. G. (2019). Probabilistic identification

of earthquake clusters using rescaled nearest neighbour distance networks.

Geophysical Journal International, 217(1):487–503.

Bebbington, M. S. (2007). Identifying volcanic regimes using hidden Markov

models. Geophysical Journal International, 171(2):921–942.

Ben-Naim, E., Daub, E., and Johnson, P. (2013). Recurrence statistics of great

earthquakes. Geophysical Research Letters, 40(12):3021–3025.

Ben-Zion, Y. and Sammis, C. G. (2003). Characterization of fault zones. Pure

and applied geophysics, 160(3):677–715.

Ben-Zion, Y. and Zaliapin, I. (2020). Localization and coalescence of seismicity

before large earthquakes. Geophysical Journal International, 223(1):561–

583.

Benali, A., Peresan, A., Varini, E., and Talbi, A. (2020). Modelling background

seismicity components identified by nearest neighbour and stochastic declus-

204



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

REFERENCES

tering approaches: The case of Northeastern Italy. Stochastic Environmental

Research and Risk Assessment, 34(6):775–791.

Bendick, R. and Bilham, R. (2017). Do weak global stresses synchronize earth-

quakes? Geophysical Research Letters, 44(16):8320–8327.

Bendick, R. and Mencin, D. (2020). Evidence for synchronization in the global

earthquake catalog. Geophysical Research Letters, 47(15):e2020GL087129.

Bernard, P., Briole, P., Meyer, B., Lyon-Caen, H., Gomez, J.-M., Tiberi, C.,

Berge, C., Cattin, R., Hatzfeld, D., Lachet, C., et al. (1997). The Ms= 6.2,

June 15, 1995 Aigion earthquake (Greece): evidence for low angle normal

faulting in the Corinth rift. Journal of Seismology, 1(2):131–150.

Beroza, G. C. (2012). How many great earthquakes should we expect? Pro-

ceedings of the National Academy of Sciences, 109(3):651–652.

Bodrog, L., Buchholz, P., Heindl, A., Horváth, A., Horváth, G., Kolossváry,
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