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Preface

The aim of this doctoral dissertation is to study the short and long-term
properties of the temporal distribution of seismicity through the use of stochas-
tic modeling. The dissertation is structured in four chapters.

In Chapter 1, we provide a short introduction that includes the motivation
to the considered problem and our scientific goals. We present a description
of the current state of related work in the literature concerning the Hidden
Markov Models and the clustering algorithms that are applied in earthquake
catalogs, and we give the theoretical background of studies related to the ex-
istence of non-stationarity for the occurrence of large earthquakes. There is
also an introduction to the selected study areas which satisfy the requirements
for each application. We give a description about the seismotectonic proper-
ties of the areas, as well as the seismic activity with emphasis on the strong
earthquakes.

In Chapter 2, we provide the necessary mathematical background and we
describe in detail the Markovian Arrival Process (MAP) model along with its
analytical properties. We present a brief overview on the available estimation
methods and focus on the Expectation-Maximization algorithm, which we use
in the thesis. We introduce a grid-based method for the determination of the
initial parameter set that we implement in a parallel-framework for reducing
the required computational time. Next, we deploy the procedure for simulating
data sets with the MAP model and we give the estimators of the hidden state
probabilities of the model with the use of the forward-backward equations. We
provide a series of simulations to validate their stability. Finally, we present
the tools for model selection and for the evaluation of the process.

In Chapter 3, we introduce the idea of MAP to be used as a change point
tool for seismicity rates and we investigate its efficiency on earthquake catalogs.
Then, we establish a two-step clustering algorithm that combines the MAP
model with a Density-Based Clustering Algorithm (DBSCAN). We believe that



incorporating a model with multiple embedded occurrence rates, the MAP,
we can separate potential seismic clusters from background seismicity. We
evaluate its performance on a simulated earthquake catalog where the structure
of the clusters is known a-priori. Finally, we apply the method to three major
seismic zones of Greece and investigate their clustering properties.

In Chapter 4, we introduce a two-step modeling procedure based on the
extreme values of the observations to reveal the long-term properties of large
earthquakes temporal distribution. The aim of this approach is to assess if the
MAP model with non-stationary characteristics contributes to the forecasting
of the large earthquakes number. We implement pseudo-prospective experi-
ments based on simulations of the earthquake temporal distribution for the
comparison of the proposed model against the Poisson, non-Poisson renewal
models and the temporal Epidemic Type Aftershock Sequence (ETAS) model.

Finally, Chapter 5 concludes the thesis presenting and summarizing the

research results.

i



Acknowledgements

First of all, I would like to express my gratitude to my academic supervisor
Prof. Eleftheria Papadimitriou for her guidance and support, as, without her,
I would not have been able to complete this endeavor. Her endless energy and
commitment to hard work motivated me the most. I appreciate her strong
prompt for collaborating and visiting other institutions and for participating
in scientific conferences. 1 would also like to thank my supervisor Prof. George
Tsaklidis for his scientific support and advice when I most needed him during
the challenges I faced. I appreciate Asst. Prof. Irene Votsi for her help and
guidance during my thesis and I would also like to express my gratitude to Prof.
Eugenio Lippiello from the University of Caserta, for his scientific assistance
during all these years and the fruitful discussions we had.

[ am also grateful to Prof. Vasileios Karakostas for his valuable contribution
and collaboration regarding the seismotectonic analysis. I would like to thank
my committee members Asst. Prof. Georgios Vasiliadis and Senior Researcher
Zuniga F. Ramoén for evaluating my thesis and for their remarks.

A special thanks is devoted to my friends and my colleagues, Anastasios
Kostoglou, Christos Kourouklas, Dr. Dimitrios Chorozoglou, Dr. Ourania
Mangira and Pavlos Bonatis, for being real partners all these years and for
sharing with them all these efforts, thoughts and feelings. Most importantly, I
am full of gratitude for my parents, my brother and my sister who have always

supported me in every step of my live.

11l



Contents

Preface
Acknowledgements

Abstract

ITepiandn
Publications

1 Introduction
1.1 Context . . . . . . .
1.2 Background and Related Work . . . . . . .. ... ... ... ..
1.2.1 Markov models with hidden states. . . . . . . ... ...
1.2.2  Clustering algorithms . . . . . . . ... .. .. ... ...
1.2.3 Non-stationarity of large earthquakes . . . . . . . . . ..
1.3 Study areas . . . . . . . ...
1.3.1 Corinth Gulfarea . . . . . . ... ... ... ... ....
1.3.2 Central [onian Islands area . . . . . . ... ... .. ...

1.3.3 North Aegean Sea area . . . . . . . . .. ... ... ...

2 Markovian Arrival Process modeling
2.1 Introduction . . . . . . ... ...
2.2 Mathematical preliminaries . . . . .. ... ... ... .....

2.2.1 Markov Processes . . . . . . . .. ...

v

iii

11
11
14
14
18
25
28
30
33
35



CONTENTS CONTENTS

2.2.2  Phase-Type distributions . . . . . . . .. ... ... ... 43

2.3 Markovian Arrival Process . . . . . . . ... ... 47

231 Generalcase . . . . . . ... 47

2.3.2 Special case . . . . ... 51

2.3.3 Markov Modulated Poisson Process . . . . . ... .. .. 52

2.4  Parameter estimation . . . . .. ... 53

2.4.1 Determination of the initial values. . . . . . . . .. . .. 58

2.5 Simulation procedure . . . . ... ... 59

2.6 Inference of the latent states . . . . . . .. ... ... ... ... 60

2.6.1 Stability of the local decoding algorithm . . . . . . . .. 61

2.7 Model selection . . . . . .. ... 63

2.8 Evaluation . . . .. ... oo 64

3 Markovian Arrival Process for earthquake clustering 67

3.1 Imtroduction . . . . . . . ... 67

3.2 MAP-DBSCAN method . . .. ... .. ... ... .... ... 70

3.2.1 MAP as a tool for change point detection. . . . . . . .. 70

3.2.2 Temporal Constraints . . . . . . ... ... ... ..... 72

3.2.3 DBSCAN algorithm . . .. ... ... ... ....... 73

3.2.4 Evaluation of the MAP-DBSCAN method . . ... ... 75

3.2.5  Generic ETAS parameters . . . . . ... ... ... ... 78

3.3 Applications . . . . ... 80
3.3.1 Seismicity rate changes through MAP in Corinth Gulf,

Greece . . . . .. 80

3311 Data. ... ... ... 81

3.3.1.2 Model evaluation and comparison with MMPP 82

3.3.1.3  Identified seismic sequences . . . . . . ... .. 87

3.3.2 Application of MAP-DBSCAN . . . . . . ... ... ... 94

3321 Data. ... ... ... 96

3.3.2.2  Evaluation on synthetic catalog . . . . . . . .. 100



CONTENTS CONTENTS

3.3.2.3  Potential clusters identification in three seismic

zones of Greece . . . . . . ... ... .. 106
3.3.2.4  Sensitivity analysis . . . ... ... 108
3.3.2.5  Cluster analysis in the three seismic zones . . . 113

3.3.2.6 Regional variability of clustering properties . . 119

3.3.2.7 Sequence-specific clustering properties . . . . . 122
3.4 Summary and discussion . . . . .. ..o L 127
3.5 Conclusions . . . . . . .. . ... ... 132

4 Markovian Arrival Process for forecasting large earthquakes

number 135
4.1 Introduction . . . . . . . .. .. 135
4.2 Data . . . .. 138
4.2.1 Catalog description . . . . . . .. ... 138
4.2.2 Non-stationary features of the catalog. . . . . . . .. .. 140

4.3 Methodology . . . . . . . . ... 142
4.3.1 Establishment of MAP model with an ”idle” state . . . . 143
4.3.2 Pseudo-prospective forecasting framework . . . . . . .. 147
4.3.2.1 Competing forecasting models . . . . . . .. .. 150

4.4 Application in circum-Pacific belt . . . . . ... ... ... ... 153
4.4.1 Application of MAP . . . . . . ..o 153
4.4.2 Application of MAP with idle state . . . . . . . ... .. 158
4421 Evaluation . . ... ... ... ... 158

4.4.2.2 Existence of non-stationarity . . .. ... ... 161

4.4.3 Pseudo-prospective experiments . . . . . . .. ... ... 166
4.4.3.1 Comparison with the ETAS model . . . . . .. 173

4.4.3.2 Comparison with the initial MAP . . . . . . .. 175

4.5 Discussion . . . . . ..o 177
4.6 Conclusions . . . . . . . ... 178
5 Concluding Remarks 181

vi



CONTENTS CONTENTS

A Appendix A 184
A.1 ETAS formulation . . . . . . ... ... ... ... ... 184
A.2 Estimation procedure . . . . . . . ... ... ... L. 187
A3 Simulation . . . . ... 188

B Appendix B 190
B.1 Gardner and Knopoff algorithm . . . . . . ... ... ... ... 190
B.2 Reasenberg Linked-Based algorithm . . . . . . ... .. ... .. 191
B.3 Nearest-Neighbor algorithm . . . . .. ... ... ... ... ... 191

C Appendix C 193
C.1 Additional figures of cluster analysis . . . . ... ... .. ... 193
C.2 Additional fitting results in circum-Pacific belt . . . . . . . . .. 201

References 202

vil



£ L wn@iaki ouhAoyi O
! :,ff BiBAioOnkn \

YOEOZPAZTOL"

o
%

DY - ThApa rewAoyiag
AR
N ANLO /6




Abstract

Strong earthquakes exhibit the largest fatality among natural hazards, pos-
ing a unique threat to the society, and causing serious damage and loss of life.
In recent years an increased emphasis is given on the development of stochas-
tic models for earthquake forecasting and the quantification of their predictive
skills, which provide information that help to reveal aspects of seismogenesis
and contribute to the seismic hazard assessment. This is a part of the sta-
tistical seismology research field that is focused on the statistical modeling of
earthquake occurrences for the better understanding of their distribution in
time, space and magnitude. The main goal of this dissertation is to propose
new stochastic models and advanced statistics for the study of the short and
long-term properties of seismicity in time.

Towards this direction, we introduce the use of the Markovian Arrival Pro-
cess for modeling the temporal distribution of seismicity, which can be seen
as a stochastic point process with intensity rate driven by a hidden Markov
model. It shows large flexibility that has been emerged to be useful for cap-
turing a large variety of behaviors and under appropriate parameterization
can approximate a wide class of counting processes like the Poisson process,
renewal models and more bursty ones. However, the increased flexibility of the
model is linked to the large parameter set necessary for the approximation of
the observed behavior sufficiently close. For the fitting of the parameters we
use the Expectation-Maximization algorithm which is an appropriate approach
in problems with unobserved data. We introduce a grid-based method for the
choice of the initial parameter set which we implement in a parallel-framework
for reducing the required computational time. One basic issue when a hidden
process is applied, is to estimate the most probable sequence of latent states.
For this problem, we propose the use of a local decoding algorithm that con-
siders the forward-backward equations, and we verify its stability on simulated

catalogs.



The evaluated transitions among the hidden states of the MAP model in-
dicate changes in seismicity rate, therefore, we propose the use of the model as
an off-line tool for change point detection. The identification of seismicity rate
changes is important as they can be associated with seismic clusters triggered
either from stress changes or fluid intrusion. We establish a two-step clustering
procedure that comprises the MAP model, for an initial separation of the back-
ground seismicity from potential seismic excitations, using the revealed changes
in the seismicity rate, and a density-based clustering algorithm, DBSCAN, for
the detection of elevated density areas in space. We evaluate its performance
on a simulated earthquake catalog where the structure of the clusters is known
a-priori. Earthquake clustering is an essential aspect of short-term seismicity
that can provide crucial information for the determination of faulting geom-
etry as well as to extract useful information on the aftershock productivity
of the study area and the behavior of the foreshock activity, whereas back-
ground seismicity is also essential to probabilistic seismic hazard analysis for
the production of hazard maps. We detect the seismic clusters of three major
seismic zones in Greece and provide their clustering properties with the use
of the Epidemic Type Aftershock Sequence model, that incorporates the well

established Utsu productivity law and Omori-Utsu law, respectively.

Concerning the long-term properties of seismicity, we assume that large
earthquakes temporal distribution is characterized by non-stationarity, be-
tween extended periods of seismic quiescence with long inter-event times that
characterize the tail of their distribution and periods of moderate seismic ac-
tivity. The short-term concentration of seismicity often obscures long-term
features that may characterize the earthquakes temporal distribution, there-
fore we consider the long inter-event times as extreme events due to their rarity
and propose a two-step estimation procedure of the model, where the extreme
events are estimated separately from the short-time values. Statistical analysis
and forecasting in problems that incorporate extreme events is known to be

highly complex as the short times do not conform well with the rare large val-



ues, and the extremes are estimated separately ignoring the potential effects
of the short-time data. We provide pseudo-prospective experiments based on
simulations of the earthquake temporal distribution to demonstrate the con-
tribution of the MAP model to the forecasting of large earthquakes number
and for the comparison against the Poisson, non-Poisson renewal models and
the temporal ETAS model.

Keywords: Statistical Seismology, Stochastic Modeling, Marko-
vian Arrival Process, DBSCAN, Seismic Clustering, Non-stationarity,
Change Point Detection, Large Earthquakes, Greece, Earthquake

Forecasting
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Ou woyvpol oetopol mpoxaholv T peyorbTepn YvnowdTnTa UETAE) TWV QUOL-
AWV HUTAC TEOPOY, ATOTEAWMVTAS ONUAVTIXT| ATEWAY| Yo TNV XOWVWVIA XaL TEOXA-
Aovtog cofopée {nuiég xan amwhieeg Cowv. To teheutalor ypdvior mapatneeiton
€VIOVO ETUGTNHOVIXO EVOLUQEPOY YLOL TNV OVATTULY GTOYACTIXDY UOVIEAWY UE
OXOTO TNV TROYVWOT| CELOUMY X0k TNV TOCOTIXOTOMON TWY TROY VWO TIXGDY TOUG
IXAVOTHTOY, TOREYOVTAS TANEogopies Tou Pordoly oTny amoxdAudn TTUYGOY TNS
OELOHOYEVESTC X0t GUUBAAAOLY GTNY exTiUNoT TNE OEloUiX|C embavduvoTnTog. H
O TUTIO TIXT) OELOUOAOYIN AOTEAEL EVAL ETOTNUOVIXOG TEEDIO TOU EMXEVTPWVETAL 0T
OTUTIOTLXY) LOVTENOTIOIMNGT) TNG CELOULXOTNTAS UE OXOTO TNV XUAVTERY XUTAVONOT
NG XATOVOUNS TWV GELOUMY GTO Ypovo xal y0eo. llpog auth v xatebduvon
elvol TpocavaTOMGUEVT 1 Tapoloa BlaTEl3Y), UE xVplo GTOYO Vo TEOTElVEL VEO
OTOYAO TS LOVTERN 0L TIPONYUEVA OTATIO TS EpYUAElat Lo T1) MEAETY TwV [Ppa-
YUTEOVEGUOY Xl HOXEOTIEOVEGUMY WBIOTHTWY TNG CECUXOTNTIS OTO YPOVO.

ITpoteivouye 0 yprion tou povtéhou Mapxoflavey Aladixactdv Agiewy
(MAA) vy TN HOVTEAOTOINOT NG YPOVIXHG XaTavourc Tng oetlouxotntac. To
novtéro Jewpeiton wa otoyao T onuetoxy ddixacio ue puiud yéveong mou
xordodnyelton and €va xpupd Moapxofioavd poviéro. Tapovoldlet ueydhn suehéio
xadwg LG TNV XATIAANAN TopoueTEOoTONCT UTopel Vo Tpooeyyioel po eupela
XATN Y0Pl OTOYACTIXMY BLABIXACLOY, OTwS 1) dadtxacior Poisson, povtéha ava-
VEWONG %ot o expnxTixég Oladixaciec. 2oT600, To Tlunuo Yoo TV audnuévn
gueAZla TOU UOVTEAOU GUVBEETOL UE TO UEYIAO TARVOC TOEOUETEWY TOU YEEL-
aleton v extipnoly. T v mpocopuoyr Twv TapauéTewy Yenotuonotiinxe
o alyopriuo Expectation-Maximization mou Yewpelton xatdAAnAn npocéyyion
oe meoPBAfuaTa pe un mopotneionua dedopéva. o TNV emAOYH TV aEyix®y
TOPUUETEWY TOU alyopliuou ewodyoue pla uédodo mou Bactlleton 6TV XATACKELN
TAEYHATOC, TNV OTolol UAOTIOW|CUUE UE TUPSAANAO TROYQUUUATIONOS Yol TN UEWOT)
TOU amATOVUEVOU LTOAOYLOTIX0U Ypedvou. ‘Eva Boacixd npdBinuo oe diadacieg

E %pUPES xaTao TdoELS elvan 1 extiunon g To miavAg axohovdlag TwY xEUPEHY

4



xataotdoswy. [lpotelvaye évay ahyopriuo amoxwdixomoinong Ye T yerion Twv
eunEOC-Tlow e€loMoewY, xat emahniclooue T oTadepdTNTd TOU GE TEOCOUOLL-
HEVOUC XATAAGYOUC.

Ou extippeveg YeTofdoelg PETOCD TWV XEUPOY XATUO TACEWY TOU LOVTENOU
MAA unodeixviouv ahhayéc 6To pUUULS CELOUXOTNTOC, ETOUEVWS, TROTEVOUUE
™ yeNon Tou povtélou w¢ gpyakeio Yo TN aviyveuor onueinv oAloyric ot
oelopxotnTe. O TPOGdLOPIoUOS TwV ahhaydY Tou pLIUOU CeloUXOTNTAC Elval
ONUUVTIXOG, xaW¢ PTopEl Vo GUCYETIGVEL UE CELOUIXEG CUGTADES TTOU TEOXANO-
Ovton elte and petoforéc oTo mEdio TWV TAoEWY ElTE amd TN BLdyUCT| PEUCTHV.
Avanticooupe pio dtadixacio cuotadonoinong 600 Brudtwy tou teptauBdvel To
novtého MAA, yio Tov apyind dlaywpeloud tng oetouxdTnTag utofddpou amd mi-
Yoveg oeloUEG DIEYEQPOELS, YPNOYLOTOLMYTIS TIG EXTUIWUEVEG AANXYEG GTOV pUU-
MO CELOUXOTNTOS XAk EVOY ohyOpLiuo UG TUBOTOMONG UE XELITHPLO TNV TUXVOTNTA
TV 6edouévey 6Tto yweo, DBSCAN, yio tnv aviyveuon meploy®y ye auinuévn
oLYXEVTEWOT| GEOUGY. AIOAOYOUUE TNV AmOB0CT) TOU GE €VaY TEOCOUOWUEVO
XATHAOYO GELOUWY OTOU 1) BoUN TWV GUCTABLY Eival YVKOOTY| EX TV ToTépny. H
ouadoTolNon GEWOUOY AmOTEAEL xoupdTt TS PeayunedVeounc CEICUXOTNTIC XAl
TaPEYEL XPlOWES TANEOYOPRLES Y1al TOV TPOGOLOPIOUO TNG YEWUETELAS PNYUATWY Xar-
YOS xou Yo THY TURAYOYIXOTNTA TWV UETACELOULXGY axolouhwy ulag Teptoyhic
ueRéTng Omwe eniong yla Ty Unopdn mpoocelouxhc dpactnotdtntac. Ilopdhin-
Ao, 1 oewouxoTnTa utofdioou eivon amapaltnTy Yior TNV Tdovoloyxr avdiuo
ToL oEloUXoL xwvdUVou. Egapuélouye tov alydpripo cucTadonolnong o TeElg
x0pleg oeloinég LiVES TOU EAANVIXOU YOEOU o UTOAOYILOUNE TIC LOLOTNTES TOV
OVLY VEUUEVOY GUCTAOWY PE TN Yerion Tou poviéhou ETAS, o onolo evowya-
TWVEL EUTELPXOUC VOUOUS 0TS TOV VOUOS Taparywyxotntag tou Utsu xat tov
vopo Omori-Utsu.

LYETUE PE TIC LOXQOTIEOVEOUES LOLOTNTES TNG CEICUXOTNTAS, UTOUETOUNE OTL
T YEOVIXT| XUTOVOUT| TWV LOYUEWY CELOUWY YapaxTneiletol and un oTaoyloTnTa,
CUYXEXQUIEVOL EXTETOPEVOL TEPLOBOL CEICUXAC NEEUNG EVOANIGOOVTUL UE TEQL-

0B0UC UETPLIG OELoUTC BpaoTNEOTNTAS. AclyVouue 6T 1) YPOViXT CUUTERLYPOES

>



Toug Bev unopel va tpooeyylolel xavoroinTixd amd to woviého MAA Aéyw tng
nopouciog Beoayunpdieoung oelopwdtnrag. H Booyunpdieoun cuyxévtpwon tng
CEIOUXOTNTAG OUY VA UTOBILEL TN UEAETY HoxEOTEOVECUMY WOLOTHTWY TOU UTOREL
va Yoo TNEilouv T YEOVIXTH XAUTOVOUT| TWV CELOUWY, ETOUEVWS YEWPOVUE TOUg
HEYSAOUC YpoVouS UETAE) CUUPBAVTLY K¢ oxpala YEYOVOTA AOY® TNG OTAVLOTY-
Té¢ Toug xou TpoTelvouue Wi dadixactio extiunong 800 Brudteny Yo To HOVTEAO,
OTOU TOL axEafol PAUVOUEVOL EXTIUWVTOL YWEWOTA and Ta untdhotna dedouéva. H
oTaTlo TN avdhuor xar TEOBAED ot TEOBAAUATI TOU EVOWUATMVOLY oxpaio
powvoUEVaL €lval YVWo 6 OTL eivon TOAD TeplmAoxT), xadog oL GUVTOUOL YPOVOL BEV
CUUHOPPOVOVTOL XYL UE TIG OTIAVIEG UEYUAES TWES, X0 O TOMAEG TEPLTTWOELS
AowPdvovtar uTody YWELETE HOTE Vo AmoPUYOLNE TIC TAVES ETUTTWOELS TV
Booyuypoviwy dedouévmy. Tlupéyouue Tpoyvewo Tixd Telpduoata Baclouévo oe Teo-
COUOWMGCELS TNG YPOVIXHS XATAVOUNG TWV OELOUXOY CUUPBEVTWY Yo var deiloupe
™ oudfBoly| Tou povtéhou MAA oty medfiedn tou TAHouC LoyUE®Y GELGUGOY
xou ytar T oUyxplon pe ta povtéla Poisson, un Poisson povtéha avavéwong xau

T0 Yoo povtého ETAS.



Publications

The scientific findings of this thesis have been published in peer-reviewed
journals and international conference proceedings. Below we present the com-

plete list.

Refereed International Journals:

1. Bountzis, P., Papadimitriou, E., & Tsaklidis, G. (2020). Earthquake
clusters identification through a Markovian Arrival Process (MAP): Ap-
plication in Corinth Gulf (Greece). Physica A: Statistical Mechanics and
its Applications, 545, 123655;

2. Bountzis, P., Papadimitriou, E. and Tsaklidis, G. (2021) Markovian Ar-
rival Processes for earthquake clustering analysis. In: Statistical Methods
and Modeling of Seismogenesis (eds. Limnios, N., Papadimitriou, E. and

Tsaklidis, G.), Wiley-ISTE: London, UK, 241-270;

3. Bountzis, P., Papadimitriou, E., & Tsaklidis, G. (2022). Identification
and Temporal Characteristics of Earthquake Clusters in Selected Areas

in Greece. Applied Sciences, 12, 1908;

4. Bountzis, P., Tsaklidis, G., & Papadimitriou, E. (2022). Pseudo-prospective
forecasting of large earthquakes full distribution in circum-Pacific belt in-
corporating non-stationary modeling. Physica A: Statistical Mechanics

and its Applications. Accepted.
Refereed Conference Proceedings:

1. Bountzis, P., Papadimitriou, E. & Tsaklidis, G., (2018). Markovian
Arrival Process modeling for the detection of seismicity rate changes for
the strong earthquakes in Greece. In: Proceedings of the 31st Panhellenic

Statistics Conference, 278-291.

Other presentations:



1. Bountzis P., Papadimitriou E. & Tsaklidis G. (2018). Detection of seis-
micity rate changes for the strong earthquakes of Greece by Markovian
arrival process modeling In 31st Panhellenic Statistics Conference, Thes-

saloniki, Greece;

2. Bountzis P., Papadimitriou E. & Tsaklidis G. (2018). Markovian Arrival
Process modeling of seismicity patterns in Corinth Gulf, Greece. In 36th

General Assembly of the ESC, ESC2018, Valletta, Malta,;

3. Bountzis P., Papadimitriou E. & Tsaklidis G. (2019). Earthquake clus-
ters in Corinth Gulf, Greece: Identification through a Markovian arrival
process (MAP). In 15th International Congress of the Geological Society

of Greece, Athens, Greece;

4. Bountzis P. & Papadimitriou E. (2019). Are large earthquakes trig-
gered on a global scale?, 32nd Panhellenic Statistics Conference, loan-

nina, Greece;

5. Bountzis P. & Lippiello E. (2019). An approximation method for a fast
evaluation of the Epidemic Type Aftershock Sequence (ETAS) occur-
rence probability. In 11th International Workshop on Statistical Seis-

mology, Hakone, Japan;

6. Bountzis P., Papadimitriou E. & Tsaklidis G. (2019). A Phase-Type
approximation of the earthquake size distribution. In 11th International

Workshop on Statistical Seismology, Hakone, Japan;

7. Bountzis, P., Papadimitriou, E. & Tsaklidis G. (2021). Pseudo-prospective
forecasting of large earthquakes in circum-Pacific belt incorporating non-
stationary modelling. In Virtual 37th General Assembly of the ESC,
ESC2021.

Peer-reviewed papers outside the scope of the thesis:

8



. Bountzis, P., Papadimitriou, E. & Tsaklidis, G. (2019). Estimating the
earthquake occurrence rates of Corinth Gulf through Markovian Arrival

Process modeling. Journal of Applied Statistics, 46, 995-1020

. Kostoglou, A., Karakostas, V., Bountzis, P., & Papadimitriou, E. (2020).
The February-March 2019 Seismic Swarm Offshore North Lefkada Island,
Greece: Microseismicity Analysis and Geodynamic Implications. Applied

Sciences, 10, 4491

. Bountzis, P., Kostoglou, A., Papadimitriou, E., & Karakostas, V. (2021).
Identification of spatiotemporal seismicity clusters in central Ionian Is-

lands (Greece). Physics of the Earth and Planetary Interiors, 312, 106675

. Papadimitriou, E., Bonatis, P., Bountzis, P., Kostoglou, A., Kourouklas,
Ch. & Karakostas, V. (2022). The intense 2020-2021 earthquake swarm
in Corinth gulf: faulting architecture and cluster analysis from high res-
olution microseismicity. Pure and Applied Geophysics. Under minor

revision.



£ L wn@iaki ouhAoyi O
! :,ff BiBAioOnkn \

YOEOZPAZTOL"

o
%

DY - ThApa rewAoyiag
AR
N ANLO /6




Chapter 1

Introduction

1.1 Context

The need for a resilient society motivates the scientific community to intensify
its efforts for reliable earthquake forecasts and advanced ground-motion mod-
els, two key ingredients for seismic hazard assessment. The development of
modern methods, which will be based on established or new models, as well as
new tools for the evaluation of their effectiveness and the quantification of their
uncertainties, could provide a higher level of preparedness for the upcoming

destructive earthquakes ( , ).

Towards this direction we need to fully understand the mechanisms that
generate earthquakes, a process called seismogenesis. We know that an earth-
quake occurs when the accumulated stress on a fault exceeds its strength, so
a physics-based model that incorporates this information could predict future
large earthquakes. However, the fault geometry is complex, as they form pop-
ulations and secondary structures within a region which could be linked with
each other ( , ). Additionally, the physical processes
responsible for the generation of large earthquakes are not directly observable
and require near-fault seismic and geodetic dense sensor networks in conjunc-

tion with improved analysis techniques that can resolve multi scale processes
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( 2021).

The field of statistical seismology endeavors to fill in the gap between
physics-based models without statistics, and statistical modeling. The use
of stochastic modeling is based on the fact that some features of the earth-
quake generation process remain unknown, and they are replaced within the
model by a random component. It includes the quantification of the earth-
quakes distribution in time, space and magnitude along with their correspond-
ing uncertainties. This information helps to reveal aspects of seismogenesis
and provides probability estimates for the genesis of strong earthquakes that
could contribute to the seismic hazard assessment. In a sense, stochastic mod-
eling can be considered physical in terms of its aim to describe the physical
process of earthquakes generation ( , ).

Earthquake clustering is one of the main aspects of seismicity, and is ex-
pressed by the concentration of earthquakes in time and space. Earthquakes
generation is neither characterized by periodicity nor is it random over time,
but exhibits strong short-term clustering and weak long-term variations (

, ). The first is expressed in the form of either triggered
aftershocks after the occurrence of large events or earthquake swarms, whereas
the latter is associated with the temporal distribution of main shocks. Clus-
tering algorithms provide significant information on the identification of active
faulting structures and the well-revealed spatiotemporal clustering of seismicity
can be embedded in stochastic models to construct time-dependent earthquake
forecasts ( , ). The Collaboratory for the Study of Earthquake
Predictability (CSEP) highlighted the significant probability gain of clustering

models, such as the Reasenberg—Jones model ( ) ),
the Short-Term Earthquake Probability model ( , ),
and the Epidemic-Type Aftershock Sequence model ( , ), during af-
tershock sequences over time-independent models ( , ).

The knowledge on the spatiotemporal aftershock patterns is important because

large aftershocks can pose their own hazard and can be used for operational
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aftershock forecasting. Clustering algorithms can also be implemented to pro-
duce "declustered” earthquake catalogs, i.e., to remove all triggered events,
which are subsequently given as input for long-term probabilistic seismic haz-
ard analysis ( , ).

The worldwide expansion of the seismic networks along with the constant
development of methods for earthquake monitoring increased the earthquake
detectability and larger data sets which include smaller earthquakes, e.g. mag-
nitude completeness m. =~ 0.3 ( , ) with 1.8 million events for
Southern California earthquake catalog during 2008-2017, are now available.
This avalanche of data can provide us with additional information regarding
the clustering features of a region (foreshock activity, aftershock duration and
productivity, existence of swarms) which can be used for constructing more ac-
curate forecasts and reveal secondary faulting structures. However, it requires
the development of refined and robust statistical tools for the identification of
the short-term seismic clusters.

A second type of clustering concerns the long-term variations of seismicity
attributed to large main shocks. Combining the intense space-time concentra-
tion of events and the short duration of the available instrumental earthquake
catalogs, this type of clustering is often indistinct. The effectiveness of statis-
tical methods for the evaluation of the large earthquakes long-term behavior
might be limited in regional fault systems, and CSEP suggests to explore new
forecasting models in a global scale ( : ). The recent
surge of great earthquakes in circum-Pacific belt ( , ; , )
with the 2004 M 9.0 Sumatra, the 2010 M 8.8 Maule, Chile, and the 2011 M9.1
Tohoku, Japan earthquakes that constitute the half of the six largest earth-
quakes on record, implies the need to investigate extensively whether or not
non-stationarity in large earthquakes exist.

The aim of the present PhD thesis is to study the short and long-term prop-
erties of the temporal distribution of seismicity with stochastic modeling. This

thesis addresses the following research topics and proposes novel algorithms,
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leveraging advanced statistics and stochastic modeling theory, that can be

applied within the scope of seismicity clustering and earthquake forecasting:

e The development of a change point procedure for detecting seismicity

rate changes through stochastic modeling.

e The establishment of a two-step procedure for the identification of earth-

quake clusters.

e The development of a two-step modeling procedure for the large earth-
quakes temporal distribution that incorporates non-stationary character-

istics.

e The contribution of the procedure to the earthquakes number forecasting.

1.2 Background and Related Work

1.2.1 Markov models with hidden states

The Hidden Markov models (HMMs), constitute a general category of time-
dependent stochastic processes with non-observed states in the data (

, ). In many cases, the underlying earthquake mechanisms are
not evaluated with an adequate accuracy, which leads to lack of knowledge
regarding the causal relationship with the observed seismicity. The hidden
factor embedded in a process can serve as an appropriate tool for modeling
the process of seismogenesis.

New techniques and analytical tools have been developed by
( ), who identified the unobserved stress level controlling the strong earth-
quakes occurrence with magnitudes M > 6.5, in Greece and its surrounding
areas, since 1845. A discrete time Hidden semi-Markov model (HSMM) was
applied for the first time by the same authors ( ), by providing a

statistical estimator of the intensity function, further extended by
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( ) who assumed different emission and jump times of the HSMM.
The seismicity rates in the area of Ionian Sea, Greece, for the period 1900-
2006 were estimated through a Poisson HMM (PHMM) by
( ). The model revealed changes of seismicity and recognized earth-
quake clusters with the aim to estimate future seismicity rates. Migration
of seismic activity to adjacent areas within North Aegean Sea is revealed by
a multivariate PHMM, which was developed by
( ). ( ) proposed a simple HMM for earthquake declustering and
compared it with the ETAS model using data from central and western Japan
and developed another class of models, called quasi-HMMSs, to estimate the
location of the next aftershock (Wi, ). The HMMs have been also used
for the short-term forecasting of M > 4.0 earthquakes in Southern California
region under the RELM experiment ( , ) and for main shock
seismic activity in southern California and western Nevada ( ,
). ( ) developed a version of a HMM where forecasts of the
occurrence times and magnitudes of earthquakes are generated simultaneously.
The HMMs have also been used for the modeling of volcanic eruptions.
( ) found that during a period of 406 years (1600-2006) the
volcano of Mount Etna is characterized by long Poisson periods alternating
frequently with periods of triggered eruptions. Tremor (non-volcanic) activity
is another type of data that has been investigated with the use of HMMs.
( ) developed a type of hidden Markov models, where each state
represents a distinct segment of tremor sources and revealed the existence of
migration patterns of tremors within the Tokai region. They further proceeded
to their classification based on the observed occurrence patterns: episodic,
weak concentration, and background ( ) ).
However, for the application of the HMMs a fixed-length time interval
needs to be chosen, which can lead to missing information due to the overdis-
persion of earthquake occurrences. The dynamics of the generation process

are often characterized by episodic trends and heterogeneity, which makes ex-
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tremely demanding the correct choice for the length of the time step. Figure
1.1a illustrates an example of a data set that is characterized by fluctuations
in the seismicity rate. The peaks (vertical black arrows) in the distribution
of the inter-event times (Figure 1.1b), show small values with high frequency
compared to their neighbors and provide visual proof on the existence of dis-
tinct periods of relatively high seismic activity. The framework of a hidden
Markov process in the continuous domain where each state can be associated
to each of those peaks through a distinct seismicity rate, is expected to enable
the modeling of changes in the earthquake dynamics without considering a

fixed-length time-step.

(a)

Magnitude

i

o 0
Jun 2015 0 1 2 3 4 5 6
Interevent times (days)

Figure 1.1: Earthquakes with M > 3.5 that occurred in the area of Greece
from January 2015 to June 2015. (a) Magnitude distribution as a function of
time; (b) distribution of the inter-event times during this period. Black arrows
indicate inter-event times with high frequency compared to the neighboring
bins. Their values are relatively small, 0.05 and 1.25 days, respectively, so
they can correspond to different periods of relatively high seismic activity.

Wang et al. (2012) proposed a Markov-modulated Hawkes process with
step-wise intensity function at arrival instants for the modelling of the varia-
tions in the seismicity rate. This is a class of a self-exciting stochastic point
process whose intensity function is driven by a Markov process, where hid-
den states correspond to distinct background and decay rates. They inves-
tigated the temporal patterns of Landers-Hector Mine series of earthquakes,
where they captured the evolution of main shocks, their aftershocks duration

and periods of seismic quiescence. More recently, Wang et al. (2020) pro-
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posed a marked point process with varying intensity function to model the
non-stationary features of the volcanic eruptions caused by missing data. A
Poisson process seems insufficient for forecasting eruptions, so point processes
incorporating multiple change points might be more appropriate.
The Markov Modulated Poisson Process (MMPP)

( ) is another class of time-varying intensity rate process, where each hid-
den state is associated with a homogeneous Poisson occurrence rate. Temporal
variabilities of deep earthquake occurrences in New Zealand are investigated
through MMPP ( ) revealing the existence of active and
quiescence seismicity periods. The extension of the process by adding state-
dependent marks enabled the association of the occurrence times and magni-
tudes of New Zealand deep earthquakes with two levels of seismicity L ( ).
The model has been also used to detect changes in the magnitude—frequency
distribution for both deep (I, ) and shallow (L, ) earthquakes
in New Zealand. In both cases, the variability of the b-value is found into two
alternate episodes, one of relatively low and one of high b-value. In addition,
the b-value is decreasing before the occurrence of large earthquakes (M > 6)
and periods of low b-values are mainly associated with both shallow and deep
major events. Recently, the concept of a switched Poisson process for modeling
the temporal features of the background seismicity in Northeastern Italy has
been used by ( ), suggesting the existence of heterogeneity
in the occurrence patterns. However, on a MMPP the rate of the intensity
function is varying inside an arrival epoch, so that after a (kK — 1)-th earth-
quake occurrence the latent process can move several times to different hidden
states, following the k-th event with a transition to the same state. From a
seismological point of view, this means that seismicity rate can only change
between the occurrence of the last event and the following one, without any
apparent causal relationship.

( ) proposed another special case of a counting process

whose occurrence rate changes step-wise at arrival instants based on a latent
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Markov process with unobserved states, called Markovian Arrival Process. Un-
der this MAP formulation the time between (k—1)-th and k-th events depends
on the state of Markov process at the (k — 1)-th arrival, namely, changes of
the seismicity rate in MAP can only be triggered by a previous event. The
inter-event times follow a hyper-exponential distribution, which is a mixture
of n exponential distributions for some n. It has very tractable properties for
both analytical and simulation purposes ( , ) and it
can capture the variability in the arrival rate, such as the one that exists in
the earthquake occurrences. A mixture of exponential distributions has been
adopted by ( ) in order to provide an assessment of
the volcanic hazard between explosive eruptions of the Colima and Popocate-
petl volcanoes, in Mexico. Each component corresponds to a different eruption
rate, characterizing in this way efficiently successive regimes of non-stationary
processes and long-tail distributions. The first definition of the MAP model
was given by ( ), which is considered a seminal work that extended
the Markov models beyond the Exponential distribution and the Poisson pro-
cess. ( ) simplified the notation of the MAP model and

( ) established a general version of the current model, the Batch
Markovian Arrival Process, where groups of events are allowed to occur at the
same time. The MAP is a non-renewal process which due to its versatility
includes as special cases the MMPP, PH-renewal process and the Poisson pro-
cess among others. ( ) presented a wide range of
MAP applications from queuing systems and inventory control theory up to
telecommunications networks where the MAP models approximate the bursty

behavior of the data traffic.

1.2.2 Clustering algorithms

Seismicity clustering incorporates many different forms of triggering mecha-

nisms such as static and dynamic stress changes, fluid migration and aseismic
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slip. The detected clustered seismicity can provide information on many differ-
ent aspects of the earthquake dynamics, such as in ( ) who
extracted the foreshocks and aftershocks of the Southern California earthquake
catalog based on space-time windows and used their spatio-temporal organi-
zation to improve the forecasting of future earthquakes through a modified
ETAS model. ( ) related variations of the af-
tershock productivity to potential physical factors such as earthquake depth,
lithosphere age and plate boundary type and ( ) showed
that the productivity distribution in AM, is independent of the magnitude
of triggering events and decreases with depth. The Bath’s law properties are
extended in space, time and focal mechanisms by ( ) who ob-
served variations on the size and distance of the largest aftershock from the
main shock with faulting type. In addition to the necessity of cluster iden-
tification, robust algorithms for earthquake declustering, i.e., the separation
of the background seismicity from clustered events, contribute to the develop-
ment of long-term seismic hazard maps ( , ; ,

; , ) or the regional optimization of background
rates ( , ). Finally, some studies use seismicity clus-
tering techniques for the reconstruction of the faulting network ( ,

: , 2020; , 2021).

Seismicity clustering is quantified through the dependencies of earthquake
occurrences in time, space and magnitude and is based on the existence of
physical interactions such as stress changes induced by previous events ( ,

) or fluid diffusion over a region ( : ). In the first case, it is
translated into main shock—aftershock sequences, whereas in the latter case it
is translated into earthquake swarms, i.e. events close in time and space with-
out a distinct main shock. The first study of the clustering properties in time,
namely, an increase of seismicity rate in a certain area, was provided by Omori
in 1894 ( , ), who proposed a power-law distribution for the deter-

mination of the aftershocks number after a main shock. One century later,
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( ) modified the functional form leading to the Omori-Utsu
law. The empirical law has been incorporated into point process models, the
most known one being the ETAS model ( , : ). According to the
Collaboratory for the Study of Earthquake Predictability
( ) clustering models demonstrate reliable forecasts of future earthquakes,
such as the ETAS model ( ), which in many cases
perform much better than long-term smoothed seismicity models mainly dur-
ing the aftershock sequences ( ); ( );

( ). However, swarms are not driven by the same physical mech-
anisms, which makes it difficult to extract reliable forecasting results when
swarm activity is dominant in a region.

Traditional approaches for clustering detection or declustering include window-
based methods where space-time windows around main shocks are defined and
events within them are extracted ( , :

) ; : ). ( ) studied
the efficiency of the Gardner-Knopoff (GK) algorithm to separate clustered
from background seismicity on earthquake catalogs from north-eastern Italy
and showed that for moderate and small main shocks where aftershock ac-
tivity might be low the GK method can lead to overestimated results.

( ) showed that the method also provides dubious results on
induced seismicity, in particular, it removed 80% of earthquakes in the Okla-
homa—Kansas region and failed to approximate the observed changes in back-
ground rates.

Another approach to identify clusters of events is by creating links among
earthquakes based on spatial and temporal zones ( , ;

: ). The Reasenberg (RB) linked-based model ( :

), which is one of the most commonly used approaches especially for seis-
mic hazard studies, assumes a spatial zone based on stress redistribution near
the main shock and a temporal zone based on the Omori law. The cluster is de-

fined by the linked events, where the largest earthquake is considered the main
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shock and the others are divided into foreshocks and aftershocks. Probabilistic
seismic hazard analyses are based on the RB approach for the declustering of
earthquake catalogs in New Zealand ( ) ) and Ttaly (

, ) among others and ( )
provided a range of parameter values for the RB model, that should be used

for long-term forecasting models in the RELM testing center.

The Nearest-Neighbor (NN) is an approach for clustering detection which
has been initially proposed by ( ). They developed
a space-time-magnitude metric based on empirical laws for earthquake trig-
gering. The metric is a decreasing function of the time and space proximity
among two earthquakes, i.e., the metric value for events close in time and space
is smaller than the value for two events that are in long distance. The method-
ology has been further explored by ( ), who introduced a
rescaled distance, R, and time, 7', formula among events and observed that
the seismicity is divided into a clustered and a background component when
(R,T) is plotted. The first component corresponds to the clustered seismicity
with short inter-event values in time and space and the second component
comprises the background seismicity. The key factor in their approach is the
threshold value 7y, according to which the two components are divided. A
robust analysis of the method is made to the 1981-2011 relocated seismicity
catalog of southern California by ( ), who demon-
strated the efficiency of the algorithm. They further classified the detected
clusters into burst-like and swarm-like sequences and showed the existence of
correlation among the spatial variability of the clusters and the heat flow of
the corresponding areas ( , ). The same authors
( , ) associated the triggering mechanisms of clus-
tering on a global scale mainly with the heat flow level, whereas the tectonic
regime seems to have an indiscernible contribution ( ,

). The method has been used to investigate the clustering properties of

seismicity in the Sea of Marmara region, NW Turkey ( ,
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), where regions related to repeaters are identified and to Northeastern
Italy ( : ) where two areas with distinct cluster charac-
teristics are revealed. In particular, swarm-like sequences are associated to the
north-western part and burst-like sequences with the south-eastern part of the
study area. The method is also applied to swarm-type clusters by

( ), who managed to recognize and associate swarms to fluid and
heat flow as well as aseismic slip. However, uncertainties on the choice of the
binary threshold led to the incorporation of a probabilistic frame by

( ), specifically the Markov Chain Monte Carlo mixture modeling,
for the classification of the nearest neighbor events. Recently,

( ) suggested the use of machine learning techniques for the choice
of the threshold value and the parameter tuning of the algorithm. Except
of cluster detection the NN algorithm can be used for the construction of a
declustering catalog (two closely related problems).

( ) introduced a modified version of the NN algorithm that includes the
stochastic thinning for separating background and clustered events, according

to a threshold value which is determined by randomized-reshuffied catalogs.

A stochastic approach for the discrimination of clustered seismicity from the
background one was first implemented by ( ). The method is
based on the assumption that seismicity is well described by the ETAS model
and the probability for every event being a triggered or a background one is
estimated through an iterative method according to the intensity function of
the model. According to these probabilities, the clusters are separated from
the background events and significant features of the triggered earthquakes
are analyzed and revealed in various regions ( , , , ).
Important information can be extracted also from the declustered catalog,
for mapping the background seismicity or the moment rate in a seismic area
like in ( ) for the Southern California and
( ) for Iran earthquake catalogs, respectively. However, ( )

demonstrated that the a-parameter of the stationary ETAS model, which de-
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termines the number of aftershocks in relation to the main shock magnitude,
is underestimated in catalogs with swarm activity, while the estimation of the
background seismicity component, u, is influenced by the existence of slow
slip events ( , ). Hence, the fitting of the ETAS
parameters can be biased due to transient aseismic forces and can lead to
dubious cluster detection in regions that include seismic swarms. A compari-
son among the stochastic and the nearest-neighbor method from

( ) showed that they produce similar partitions of the Northeastern Italy
and Western Slovenia earthquake catalogs, but they differ in the internal con-
nections among the grouped events. The clusters derived from the stochastic
method exhibit more complicated structures than the ones from the nearest-
neighbor method. Another probabilistic method for separating main shocks
from aftershocks is proposed by ( ). Their proce-
dure does not require the adoption of any particular intensity function and
is non-parametric. The main assumption concerns the linearity of earthquake
triggering and enables the discrimination between directly and indirectly trig-

gered aftershocks.

There are also clustering methods that are based on the assumption of a
common physical trigger during the sequence, expressed by fluctuations in the
occurrence rate, such as the CURATE algorithm ( , ). The
method is based principally on the comparison among the observed cumulative
rate and the average one, and subsequently on the implementation of a distance
and day rule without any physical constraint. The method is useful for the
detection of swarm-type clustering ( , ), where the seismic
activity cannot be explicitly explained by earthquake interactions, and for
identifying temporal variations of tremor activity ( ) ). However,
the choice of the free parameters should be based on the tectonic characteristics
and the earthquake epicentral catalog accuracy of the region rather than being
defined blindly, since it lacks a rigorous optimization procedure.

( ) proposes the use of the coefficient variation among inter-event
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times as a tool to determine the starting and ending point of a sequence. Other
statistical methods for the detection of changes in the seismicity rate concern
the application of Change point Analysis (CptA). ( )
applied a CptA on an earthquake catalog with independent inter-event times

through a Bayesian approach, whereas ( ) and
( ) developed a methodology on the spatiotemporal domain for the
detection of rate changes, which they tested in induced seismicity. Recently,
( ) applied a CptA based on non-parametric tests in the Gulf

of Corinth area (Greece), with remarkably well online performance.

Finally, some studies implement two-stage clustering approaches, where
they categorize separately the seismicity in terms of their temporal and spa-
tial proximity. ( ) developed a hybrid method that in-
corporates a density-based clustering algorithm, the DBSCAN ( ,

), for the grouping of events concentrated in time and an agglomerative
hierarchical procedure for separating the events also in space. The DBSCAN
algorithm is a versatile tool for grouping events as the number and the form
of the clusters is not determined a-priori. Additionally, earthquakes can be
grouped according to different attributes based on the definition of the dis-
tance metric. For instance, it has been used for classifying focal mechanisms
using the Kagan angle ( , : , ), and earth-
quake repeaters using the waveform similarity as distance metric (

, : , ), respectively. Another two-step clustering
procedure has been proposed recently by ( ). In the first
step a Gaussian kernel-based temporal density estimation is used for grouping
the events in time and in the second step events are also separated in space
based on a decision graph of the events spatial density. For a more compre-
hensive review and technical details on clustering algorithms in seismology we

refer to ( ) and ( )-
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1.2.3 Non-stationarity of large earthquakes

( ) in their milestone work concluded that earthquake
clustering is characterized by (1) a short-term, strong clustering related to
foreshock-main shock-aftershock sequences, and (2) a long-term, weak cluster-
ing of main shocks. However they noted that ”investigating long-term prop-
erties of seismicity is much more difficult than similar studies of short- and
intermediate-term variations of earthquake occurrence rates. One of the rea-
sons is obvious: we lack well documented, uniform long duration catalogues of

earthquakes.”

Nevertheless, during the last 15 years the interest on the assumption of
non-stationarity for the occurrence of large earthquakes has raised due to the
noticeable increase of the great earthquakes (M > 8.0) since 2004 ( :

; , ). Relative results indicate the existence of temporal clus-
tering, time-dependency of great earthquakes or even the non-stationarity of
the stochastic process that describes the procedure of seismogenesis, which
could contribute to the improvement of these earthquakes forecasting.

( ) displayed the existence of temporal clustering in a global
scale during 1950-1965 for earthquakes with M > 8.6, followed by a long last-
ing relative seismic quiescence until 2001. They found statistically significant
deviations from a stationary Poisson process through Monte Carlo simula-
tions. The non-stationarity of earthquakes with M > 7.0 during 1900-1990
was investigated by ( ), who found both short-
term triggering activity and long-term fluctuations of the earthquake rate in
decades or longer, based on the application of an ETAS model. However,
the non-stationary ETAS model does not detect the times of the long—term
seismicity rate changes which should be defined before. Similar results are de-
rived by ( , ) who evidenced temporal clustering of large
earthquakes with M > 7.0 during 1900-2004 in a worldwide scale and with

M > 5.5 since 1600 in a regional scale (Italy), respectively. They suggest that
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the physical processes that generate aftershocks and large earthquakes might
be different ( ) ). More recently, ( ) con-
cluded that global seismicity with earthquakes of M > 7.0 from 2004 to 2016
is not random in time, after comparison of synthetic random catalogs with
the observational one, through the concept of natural time, whereas
( ) provided statistical evidence for large (M > 7.0) earthquakes inter-
actions within months between the triple junction of the Nazca, Cocos and
Pacific plates. Evidence for long-range correlations among strong earthquakes
(M > 6.5) during 1845-2017 has also been found in the Greek region by
( ). They suggest the existence of interactions between

strong earthquakes in intermediate time scales and in long spatial ranges.

The physical mechanisms behind the large earthquakes temporal behav-
ior, namely, the long—term non-stationarity of the seismicity remain vague,
although there has been increasing evidence for the existence of remotely
triggered small earthquakes from the passage of seismic waves after a large
earthquake occurrence ( , ). ( )
showed that all examined earthquakes with M > 8.6 in subduction zones since
1960 triggered M > 5.5 crustal earthquakes within days and distances up
to a few multiples of the dimensions of the triggering events in accordance
with ( ). However, ( ) evidenced dy-
namic triggering even in far field distances. ( ) suggest
that these remote events usually small in magnitude could advance or delay a
seismic cycle producing temporal clusters of events or in other words synchro-
nization and ( ) observed the phase locking of nearby faults which
he called fuzzy synchronization.

( ) statistically quantified the worldwide synchro-
nization of earthquakes with M > 7.0 since 1900 through topological networks
and time series analyses and more recently, ( ) re-
vealed the existence of temporal earthquake clustering based on the renewal

interval alignment by testing whether events with similar renewal intervals
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tend to occur closer in time than it would be expected for independent events.
Nevertheless, the Topological Data Analysis cannot be used for forecasting the
productivity of large earthquakes. ( ) tried to explain the ob-
served burstiness (clusters separated by long irregular periods of quiescence)
of worldwide events with M > 6.0 during 1904-2016 through the Devil’s Stair-
case. It is a fractal property of non-linear complex systems where one rupture
could affect the behavior in the whole area.

Many statistical studies in global earthquake catalogs reach to contradic-
tory conclusions, i.e., earthquakes originate from a stationary Poisson pro-
cess, implying that they occur randomly in time with a stable seismicity
rate. ( ) performed statistical tests to investigate whether a null
hypothesis for the occurrence of random events with a constant rate along
with localized aftershock sequences can be rejected for the inter-event times
of M > 7.0, 7.5 and 8.5 earthquakes since 1900. The identified temporal
clustering was attributed to the aftershock activity. Similarly,

( ) concluded that events originate from a Poisson process, however,

they focused on the existence of correlated events in global distances neglect-
ing potential regional-scale clustering. ( ),
( ) and ( ) compared the occurrence frequencies of large
(7.0 < M < 8.3) global events since 1900 with numerical simulations drawn
from Poisson processes without finding any significant departure from the sta-
tionary Poisson process. ( ) applied a change point analysis
for the detection of changes in the global rate of events with M > 7.0, 7.5, 8.0
and 8.5 since 1918, concluding that there is not any strong evidence that global
earthquakes are correlated in time.

The brevity of the seismological record (duration of instrumental earth-
quake catalogs is very short), along with the limited number of global great
earthquakes reduce the robustness of the statistical tests to identify non ran-
domness ( , ). Therefore, the seismic activity might not

be representative of the potential long-term variations. ( )
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produced magnitude and time-dependent simulated catalogs and concluded
that the ability of the statistical tests to distinguish random fluctuations in
time from temporal clustering, depends on the type of cluster and the amount
of data. Since the detection of non-stationarity in the seismicity rate might
not be always possible, ( ) proposed the investiga-
tion of significant seismic moment temporal variations. They concluded that
time-dependent parameters of the tapered Pareto distribution are in favor over
time-independent models for events with M > 7.0 during 1918-2014 and sug-
gested that the increased global rate after December 2004 is a statistically
significant feature. However, even though they robustly verified the existence
of sub-intervals in time with different parameters, the duration and the number
of the time-windows are rather subjectively chosen. One extra difficulty when
investigating the temporal distribution of earthquakes is the co-existence of two
time-scales. The short-term clustering which is expressed through foreshocks
and aftershocks and the long-term variations in the seismicity rate. The strong
space-time concentration in short-times might obscure the long-term features

of earthquakes ( : ).

1.3 Study areas

Greece is characterized by a complex seismotectonic environment that is dom-
inated by the intense crustal deformation due to the subduction of the eastern
Mediterranean oceanic lithosphere beneath the overriding Aegean plate (Fig-
ure 1.2), forming the Greek subduction zone and the back arc area ( ,
; , ). The Aegean microplate accommo-
dates a southwestward movement relative to the stable Eurasia imposing a
widespread extension in the interior of the plate. A characteristic case of
extension is the Corinth Gulf area (purple box in Figure 1.2).
The second major seismotectonic structure in Greek area is associated with

the lateral extrusion of the Anatolian microplate as a result of its collision
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Figure 1.2: Seismotectonic properties of the Aegean Sea and the surrounding
areas including the dominant structures (thick black lines), such as the Hel-
lenic Arc (thick black line with triangles), the North Aegean Trough, which
accommodates the westward prolongation of NAF into the Aegean, the Kefalo-
nia dextral Transform Fault Zone and the Rhoades sinistral Transform Fault
Zone. Red arrows represent the kinematics along major fault zones as well as
the main deformational pattern in the Aegean, characterized by compression
along the Hellenic Arc and extension in the back-arc area. Corinth Gulf area
is confined by the purple box, the Central Ionian Islands area by the yellow

box and the North Aegean Sea area by the blue box, respectively.

against the Arabian plate and the westward prolongation of the North Anato-
lia Fault (NAF) into the Aegean Sea (Jackson and Mclenzie, 1988; Taymaz
et al, 1991). The NAF is propagating to the west reaching the Aegean Sea
and forming the Northern Aegean Trough (NAT) (Mclenzie, 1972) (blue box
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in Figure 1.2). As the right-lateral slip on the North Anatolian Fault enters
the Aegean region, it distributes on several parallel faults. Dextral strike slip
faulting prevails along the North Aegean Sea and its boundaries, the Kefalo-
nia Transform Fault (KTFZ) with a dextral strike slip motion ( :

) to the west and the Rhoades Transform Fault (RTF) with a sinistral
strike slip motion to the east ( : ). The two
transform fault zones delimit the Hellenic Arc at its northwestern and south-
eastern ends, respectively. The KTFZ which can be distinguished in its two
branches Kefalonia and Lefkada ( : ), connects the subduc-
tion to the south and the continental collision on the west coast of Greece in
the north and Albania (yellow box in Figure 1.2).

All the earthquake data sets that are used in the thesis are from the re-
gional catalog of the Geophysics Department of the Aristotle University of
Thessaloniki ( , ), compiled with the
recordings of the Hellenic Unified Seismological Network (HUSN) (

, 2008).

1.3.1 Corinth Gulf area

The Corinth Gulf (CG), constitutes one of the fastest extending continental
regions in the world. The width of the gulf is not constant, but increases from
west to east. Based on geodetic measurements, the rate of expansion between
the western and eastern parts of the Corinth Gulf are different ( ,
; , ). In particular, its western part expands with
a rate of 13-14 mm/yr, whereas the eastern part exhibits a slower extension
rate of 10-12 mm/yr.
Several destructive earthquakes (M > 6.0) both in historical and instru-
mental era are observed, which verify the intense crustal deformation of the re-
gion ( , ; , ). The

seismicity is mainly associated with eight major faults that bound the rift to the
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south and dip to the north (Hatzfeld et al.; 2000). The Offshore Akrata, Xy-
lokastro, Offshore Perachora, Skinos and Alepochori fault segments attribute
to the eastern subarea, whereas the western one includes the Psathopyrgos,
Aigion and Eliki fault segments (Figure 1.3). In addition to Corinth gulf the
study area encompasses secondary structures such as Trichonis Lake, Achaias
and Kapareli faults. The seismicity in Lake Trichonis graben is studied due
to its proximity to the Corinth Gulf and the recent seismicity which consists
of sparse activity interrupted by the occurrence of several strong earthquakes,
like the 2007 earthquake swarm with M,, = 5.2 (IKiratzi et al., 2008). The last
strong earthquake in the study area took place in the northwestern Pelopon-
nese on June 8, 2008 with M, = 6.4 (Ganas et al., 2009; Karakostas et al.,
2017).

38.6°

38.4°

38.2°

38°

21.4° 21.6° 21.8° 22° 22.2° 22.4° 22.6° 22.8° 23° 23.2°

Figure 1.3: Study area with the eight major faults bounding the southern
coastline. In addition, the Trichonida, Kapareli and Achaia faults edging the
Corinth Gulf are given, which are associated with the 1975, M,, = 6.0, 1981,
M, = 6.3 and 2008, M, = 6.4 events, respectively, and the Nafpaktos and
Eratini faults. Epicentral distribution of earthquakes with 2.5 < M < 4.5 that
occurred in the study area during 2012 — 2019 are shown with white circles,
with 4.5 < M < 6.0 during 1964 — 2019 with pink circles and with M > 6.0
during 1964 — 2019 with yellow stars. Vertical line divides the area into the
western and eastern subareas.
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The sequence of the three destructive earthquakes (M > 6.3) in less than
10 days in 1981 which are associated with adjacent and antithetic faults in the
eastern part of the Corinth Gulf, in Alkyonides Bay, has aroused interest and
is well studied ( , : , ). The western part
has also been hit by destructive earthquakes such as the one near Galaxidi in
1992 ( , ) and in Aigio in 1995 ( , ). Two
moderate earthquakes with M,, = 5.4 and M,, = 5.4 took place near Efpalio
in January 2010. They occurred within four days and at a distance of about
5km. They correspond to two adjacent faults, which probably ruptured at the
same period ( , : , : , ).
Until the end of 2019 two earthquakes with M > 5.0 have occurred in the
study area, one in November 2014 with M,, = 5.0 ( : ) and
one in March 2019 with M5.1.

The Corinth Gulf area is also characterized by seismic activity triggered
by fluid diffusion ( , ; , ). One
of the major sequences is the 2013 Aigion swarm which initiated on 21 May
2013 with a bulk of small events and several bursts associated to earthquakes
with magnitudes ranging between 3.3-3.7 ( : ;

). Two seismic excitations followed, the first one associated to the

I

M = 3.7 event on 15 July, 2013 ( , ). The second half of 2014
is also a well-studied period with intense seismic activity such as the M4.6
event on 21 September 2014, associated with the earthquake swarm located
between Nafpaktos and Psathopyrgos ( , ).

In general, the Corinth Gulf, especially the western part, is characterized
by strongly clustered seismicity that triggered the interest of many indepen-
dent studies that investigated the properties of the microseismicity in the area
( , 2018; , 2021; , :

, ; , ). Finally, there is evidence for the existence of
aseismic slip expressed through multiple repeating events ( ,

; : )-
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1.3.2 Central Ionian Islands area

The central Ionian Islands (CII) constitute the most seismically active area
of the Mediterranean region. Historical information and instrumental record-
ings evidence intense seismic activity ( : ) with
strong earthquakes (M > 6.0) occurring frequently, in many cases clustered
in time possibly due to stress transfer and triggering of adjacent, optimally
oriented fault segments ( , ). The dominant seismotectonic
characteristic is the Kefalonia Transform Fault Zone extending more than 100
km along the western coastlines of Lefkada and Kefalonia Islands and com-
prising two distinct main branches, the Lefkada and Kefalonia fault segments.
It manifests right lateral strike slip motion with a minor thrust component
( : ; : ) with NNE-SSW strike for
the Lefkada and NE-SW for the Kefalonia segment ( : ) (Fig-
ure 1.4). The KTFZ designates the transition between the termination of the
Hellenic subduction zone to the south and the continental collision between
the Adriatic and Aegean microplates to the north, causing a compressional
tectonic regime with the maximum stress component at a NE-SW direction,
as confirmed by both seismological ( , ) and geodetic data
( , ). Microseismicity is mainly concentrated along the KTFZ
and manifests both swarm-type and main shock-aftershock sequences. The
investigation of the clustering features is crucial to shed light on the secondary
structures and the complex geodynamics of the area. It may constitute as
well a tool for exploring the evolution of the seismic sequences in the region
and the preparatory phase of main shocks, contributing to the seismic hazard

assessment.

The area of the central Ionian Islands offers a unique opportunity to study
the clustering properties of seismicity, since the recent strong (M > 6.0) earth-
quakes have motivated the installation of a constant monitoring of the region

with a dense seismological network. The 2003, M, = 6.2, Lefkada main shock
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Figure 1.4: Map of the central Ionian Islands area showing the main seismo-
tectonic characteristics. The thick yellow line illustrates the fault trace of the
KTFZ and red arrows describe the right lateral motion in the zone. Epicentral
distribution of earthquakes with 2.5 < M < 4.5 that occurred in the study
area during 2012 — 2019 are shown with white circles, with 4.5 < M < 6.0
during 1964 — 2019 with pink circles and with M > 6.0 during 1964 — 2019
with yellow stars.

and its aftershock sequence stimulated a detailed investigation of the acti-
vated fault network by an adequately accurate earthquake catalog based on

the recordings of a dense portable digital network ([<arakostas and Papadim-
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; 2000).

Among the major seismic sequences is the 2014 Kefalonia doublet with
the first main shock occurring on 26 January with M = 6.1, and aftershock
activity extending over 35 km, including the second main shock with M =
6.0 that occurred on 3 February along with its own aftershocks. Earthquake
relocation allowed for a thorough investigation of the aftershock distribution
based on focal distribution and offered additional insight in the details of the
rupture kinematics of the transform fault zone ( , :

, ). Another major event is the 2015 M,, = 6.5 Lefkada earthquake
( , ) 12 years after the 2003 M,, = 6.2 main shock that
struck the northwestern part of Lefkada Island ( , ).
The main shock ruptured a segment of the KTFZ which is adjacent to that
of the 2003. The area between Lefkada and Kefalonia, extended to about 15
km, is considered as a transition zone with E-W-oriented, parallel step-over
faults ( , ) that were activated in the three ruptures and
are also related with smaller clusters of microseismicity ( , ).

Finally, some seismic swarm activity is observed in the northernmost terminus

of the KTFZ, offshore Lefkada island ( : ).

1.3.3 North Aegean Sea area

The third area is located in the North Aegean Sea (NAS) (Figure 1.5) and is
dominated by dextral strike-slip faulting, along the North Aegean Trough and
its parallel branches ( , ), as a consequence of the west-
ward propagation of the North Anatolian Fault into the Aegean ( ,

). The driving mechanism of the active deformation in the Aegean region
is the subduction of the oceanic lithosphere of the Eastern Mediterranean un-
der the continental Aegean microplate, forming the Hellenic Subduction Zone.
The almost NS-oriented backward extension of the Aegean, due to the roll-

back of the submerged lithospheric plate, is the driving force for the high rate
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of expansion of the backward area in the Aegean (Le Pichon and Angelier,
1979). The combination of the NS expansion with the westward movement of
the Anatolian plate results in rapid deformation in the wider Aegean region
with NE-SW direction. The area is characterized by the frequent generation
of strong earthquakes (M > 6.0).

Figure 1.5: Map of the North Aegean Sea area showing the main seismotectonic
characteristics. The thick yellow line illustrates the fault trace of the North
Aegean Trough, which accommodates the westward prolongation of NAF into
the Aegean. Epicentral distribution of earthquakes with 2.5 < M < 4.5 that
occurred in the study area during 2012 — 2019 are shown with white circles,
with 4.5 < M < 6.0 during 1964 — 2019 with pink circles and with M > 6.0
during 1964 — 2019 with yellow stars.

One of the two major earthquakes in the last decade is the M, = 6.9
earthquake of May 24, 2014 that is located approximately 20 km southeast
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of Samothraki island in the NAT. Its aftershock sequence is lacking of strong
aftershocks with M > 5.0, as well as aftershocks very close to the main shock
( , : , ). However, the entire North Aegean
Trench was activated in the west from Mount Athos to the western end of
the Gulf of Saros in the east. The length of the slip zone has been estimated
to be approximately 95 km longer than that predicted by empirical relation-
ships, of the order of 50-70 km ( , ). The second
major earthquake occurred on June 12, 2017 with M,, = 6.4 and is located
approximately 15 km south of the SE coast of the Lesvos island. It was a
destructive earthquake that caused one death, 15 injuries and serious damage
on the island. The main shock was followed by intense aftershock activity with
the strongest earthquake (M,, = 5.3) on June 17 and its subsequent triggered
seismic activity being concentrated in the eastern part of the ruptured area
( , 2018).

Another moderate event during the last decade is the 2013 January 8
M, = 5.8 North Aegean earthquake sequence that took place on one of the
ENE-WSW trending parallel dextral strike slip fault branches in the area, in
the continuation of 1968 large (M = 7.5) rupture ( : ).
Finally, an earthquake swarm took place near the Aegean coast of NW Turkey
during January-March 2017, probably related to the existence of the Tuzla
geothermal field ( : ).
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Chapter 2

Markovian Arrival Process

modeling

2.1 Introduction

The MAPs are very flexible models that can approximate, given the appro-
priate parameterization, any complex behavior. They are extremely useful for
the stochastic modelling of correlated and bursty inter-event times, as they
provide a generalization of the Poisson process, PH distribution and MMPP.
The development of new computational efficient methods for the estimation
of the parameters led to a wider use in applied fields, especially in reliability
( : ), queuing systems ( : ) and
internet traffic flows ( , ). A comprehensive review on MAPs
and its applications, along with some important special cases are given in
(2010).

First, we give the necessary mathematical background for the introduction
of the MAP model along with its properties. The optimal fitting of the pa-
rameters is an open problem in the context of MAPs, so we will give a brief
overview on the available methods and discuss our approach which is based

on the maximization of the likelihood function through the EM (Expectation-
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Maximization) algorithm ( : ). A common difficulty in the
implementation of the EM algorithm is the selection of its input values. We
introduce a grid-based method for the choice of the initial parameter set which
we implement in a parallel-framework for reducing the required computational
time. Next, we deploy the procedure for simulating data sets with the MAP
model. One basic issue when a hidden process is applied, is to estimate the
most probable sequence of latent states. For this problem, we propose a local
decoding algorithm with the use of the forward-backward equations ( ,

), and we verify its stability on simulated catalogs where the state of
the process at each time t is known. Finally, we present the tools for model

selection and for the evaluation of the process.

2.2 Mathematical preliminaries

2.2.1 Markov Processes

The first term that we need to define is the stochastic process, i.e., a collection
of random variables, {X;}, with index ¢t € R™ in continuous time. Throughout
the thesis we will study processes with discrete state space, S = {1,...,n}.
Now, we can give the definition of a stochastic process with the Markov prop-

erty.

Definition 2.2.1 A stochastic process { X, : t > 0} with state space S has the
Markov property when P(X; s = j | Xs =1, X,,0 <u<s) = P(Xps =7 |
X =1) holds, for eachi,j € S and t,s > 0 and is called Markov process.

Essentially, the distribution of the random variable X, , is independent of the
past, Xy, 0 <wu < s and depends only on the present, X;. The Markov process
is further called homogeneous if its conditional distribution depends only on

the elapsed time, t, since the current time, s,

pij<t):P(Xt+s:i’Xs:j):P(Xt:HXO:j)-
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From now one, we will consider only the homogeneous case. These quantities
are called transition probabilities and denote the probability the process to be
in state ¢ at time ¢t when it starts from state j at time 0. For each time ¢ a
transition probability matrix, P(t) = {p;;(t)}: jes, is defined, whose elements
are the transition probabilities among the states of the process.

The amount of time the Markov process spends in state ¢ before moving to
another state j is a random variable denoted by 7' that follows an Exponential
distribution with parameter );. It has therefore, the memoryless property.

Next, we introduce the transition rates of a Markov process.

Lemma 2.2.1 For every Markov process with transition probability matriz

P(t) and state space S the following two limits exist.

1. limh_>0+ 1—p;:(h) == )\i;
2. limy,_,o+ ”]T(h) = q;; when i # j.

The transition rates give the infinitesimal probabilities to move among the
states of the Markov process and they are represented by the matrix @ =
{@i;}ijes which is called the infinitesimal generator of the Markov process.
So, the previous limits can be now written with matrix representation in the
following form

Q = lim %,

h—0t

where I is the identity matrix. The generator of a Markov process has two

main properties that are given next.
Proposition 2.2.1 If Q is the generator of a Markov process X; then
1. ZjeSQij =0 for each i € S,

2. the non-negative values of the diagonal elements of the generator matriz,
—qii = \;, are the exponential parameters of the sojourn time distribution

at each state 1.
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For each Markov process we can define a Markov Chain, Y, = Xp,, k € N,
which is a stochastic process with the Markov property defined in discrete
time. It is called embedded Markov Chain and gives at each step k the state
of the Markov process at the end of the sojourn time, T}, in the previous one.
It is specified by a transition probability matrix, P = {p;;}:  jes, and an initial
probability vector, a, after each transition. The elements of the matrix P can

be easily derived by the transition rates of the generator matrix Q

qij qij

Pij == = -
! Zj;éi Gij A

Finally, we will give the stationary probabilities of a Markov process, X;.
These are probabilities after a long time ¢ to be at a state j that converge to

a value independently from the initial state of the process.

Definition 2.2.2 In a Markov process X; with state space S ={1,...,n} we

say

1. state j is reachable from state i, if P(X, = j | Xo = 1) > 0 for some
t>0,

2. states 1,7 are communicating, if i is reachable from j and vice versa,
3. we call the process irreducible if all states communicate,

4. state i is called positive recurrent if the expected amount of time to return

to state i given that the process started in state i is finite.

When these conditions hold, then the stationary probabilities, m; = lim;_,o p;; (%),

exist and are derived through the linear system

7TQ:0, Zﬂ'jzl.

jes
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2.2.2 Phase-Type distributions

For the definition of this wide class of probability distributions we will follow
the notation of ( ) who was the one that introduced them.
A Markov process has an absorbing state when there exists a state ¢ that

it moves to with probability equal to 1 and stays there for infinite time.

Definition 2.2.3 Let, X; a Markov process with a generator matrix Q. If for

a state i € S, q; = 0, then state i is called an absorbing state.

The transition probabilities from an absorbing state ¢ to another state j are

zero (p;; = 0).

Definition 2.2.4 A state i € S of a Markov process X, is called transient if

the return time probability is less than one.

Definition 2.2.5 A Markov process X; with state space S is called an absorb-

ing Markov process if all the states are transient or absorbing.

Let us now have an absorbing Markov process, X;, with a finite space of

transient states, £ = {1,...,n}, and an absorbing state, F4x = {n + 1}.

Definition 2.2.6 A Phase-Type distribution is defined as the time X that an
absorbing Markov process X; meeds to move from the transient space to the

absorbed one, n + 1.

The generator matrix of the Markov process X; has the following form

D, 4,
0 O

where Dy = {¢;;}: jer is a non-singular (n x n) transition rate matrix between
the transient states and d; the (n x 1) vector of transition rates from the
transient states to the absorbing state of the process. The transient states

of the Markov process X; are called phases and their number corresponds to
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the order of the Phase-Type distribution. Finally, we need to define the initial
probability vector, a = {ay, ..., a,}, which gives the probability to start from a
transient state i = 1,....,n. The probability to start from the absorbing state
is neglected. So, it can be easily seen that the parameter set (a, Dg) specifies

a Phase-Type distribution. The vector d; can be easily derived through

D0'1—|—d1:0,

as a consequence of the definition of a generator matrix, where 1 stands for

the unit column vector.

Next, we give a brief description of a PH distribution with three states and

the following matrix representation

-1 0.5 0.5
Q=|3 -4 1|, a=][06,04].
0 0 0

The sojourn time at states one and two follows an Exponential distribution
with parameters, —¢;1 = 1 and —ga2 = 4, respectively. At the end of the
sojourn time at each phase a transition will occur either to a transient state
1, 2 with probability, p;; = ¢;;/ — ¢ii, with @ = 1,2 or to the absorbing state 3
with probability, d;;/ — gi;, where d;; the i-th element of vector d;. Figure 2.1

shows the flow diagram among the phases of the Markov process.

The distribution function of a PH distributed random variable with repre-

sentation (a, D) is given by
F(x) =1—aeP"1, 2>0,
and its density distribution is given by

f(z) = aeP*d,, x>0,
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Figure 2.1: A state transition diagram of an absorbing Markov process with 2
transient and 1 absorbing state, respectively.

respectively. One of the main properties of PH distributions that makes them
versatile and wide applicable in stochastic modeling is that they are dense in
the class of real positive valued distributions. That is, any distribution with a
strictly positive density in (0,00) can be approximated arbitrarily close by a

PH distribution ( ) ).

Finally, we give some examples of special cases that can be formulated
as PH distribution. The simplest one is the Exponential distribution, with a

single phase and cumulative distribution function
Flr)=1—¢e?" z>0.
In this case, the generator matrix has the following form

A A
0 0

Another widely used special case of PH distributions is the Erlang distri-
bution which is the sum of Exponential ones with the same parameter \. Let

us have n random variables X; ~ Fxp(\), i = 1,...,n. Then, the random
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variable ¥ = " | X; follows an Erlang distribution, E(n, \), with generator

matrix
-A A 0 ... 0 O
0O —Xx X ... 0 0
Q= -2 0 0
0O 0 0 -2 A
0O 0 0 0 0
and cumulative function
S Q2)
Flz)=1- e, x>0,

Finally, the Hyper-Exponential distribution is another widely used class of
distributions that can be represented as a PH one which we will adopt in the
sequel. A Hyper-Exponential (HE) distribution is a mixture of k£ exponentials

for some k with corresponding cumulative function

k
F(z)=1-aeP"1,=1— Zaie_’\"x, x> 0.
i=1
where Dy = diag(—M\y,...,—\;) is a diagonal matrix. The generator matrix

of the PH distribution has the following form

-\ 0 ... 0 N\

0 =X 0 ... X

Q= 0o
0 0 X M

O 0 . 0 0

This class of distributions has been proven efficient in approximating long-
tail probability distributions such as the Pareto and Weibull (
) and has been widely applied in communication and network

Y

theory ( ) ).
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2.3 Markovian Arrival Process

2.3.1 General case

Let us now consider a phenomenon where events occur at time instants, ¢;,
and their inter-event times, 7; = t; —t;,_1, are correlated. Lets denote as IV; the
counting process that represents the number of events up until time ¢. In PH
distributions the absorption state can be considered as an arrival, however, the
inter-event times (time until absorption X) are independent since after each
arrival the initial state is determined by the probability vector a.

To overcome this issue, ( ) introduced a Markov process with
two different levels of transitions. The first one concerns transitions among
K states which are given by the transition rate matrix, Dj. The second one,
concerns transitions among the K states of the Markov process along with
an arrival, which we denote ¢;;(1) and are given through the rate matrix D).
Essentially, there are two processes running simultaneously. A counting one,
{Ni}>0, that determines the number of arrivals up to time ¢ and a Markov
process, J;, with state space F = {1,..., K}, K € NT that modulates the
intensity of the counting process according to its state at time t. The states of
J; are unobserved and it is called the underlying process of the MAP model.
Henceforth, arrivals are translated into earthquake occurrences.

A sample path with two hidden states, initial probability vector a =

-20 0
[0.8 0.2] at time 0 and corresponding rate matrices Dy = and
0 -1
17 3
D, = is presented in Figure 2.2 in order to illustrate the behav-
0.25 0.75

ior of the model. When the underlying process, J;, is in state 1 at time ¢t = 0
(blue line in Figure 2.2) the sojourn time of the process follows an exponential
distribution with parameter \; = —¢;;(0) = 20 and as a consequence, events
occur according to a Poisson process with occurrence rate 20 (orange line in

Figure 2.2). After each arrival the MAP may switch to state 2, with probabil-
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ity ¢12(1)/(—q11(0)) = 0.15, or stay in the same state, state 1, with probability
0.85. These are the transition probabilities of the embedded Markov Chain.
Similarly, when the process is in state 2 earthquakes are generated following
a Poisson process with occurrence rate Ay = —@22(0) = 1, and thus the time
until the next arrival follows an exponential distribution with parameter value
equal to 1. Examples with different structures of the rate matrices are given

by He (2010).

Sample path
50 _ T T T T T T T T
40 s
30 g
20 F —#— Hidden process i
Counting process
10 .
0 — -
Rl I [ ] [ ]

2 ‘: % % % .
| | | | | | Il |

0 1 2 3 4 5 6 7 8

time

Figure 2.2: An illustration of a MAP with two states for a period (0,8.2).

Another way to visualize the two different types of transitions is through a

flow diagram, given in Figure 2.3, for initial probability vector @ = [0.8 0.2] and

-4 1 2 1
corresponding rate matrices Dy = and D, =

0.1 —0.5 0.15 0.25
The transitions among the same states are not allowed in Markov processes,

however, introducing the second rate matrix, D, this can be achieved along

with an occurrence of an event. The transitions among the states without an

48



CHAPTER 2. MARKOVIAN ARRIVAL PROCESS MODELING

arrival, governed by rate matrix D, are shown with the thick black arrows,
whereas transitions along with an arrival, governed by rate matrix, Dy, are
shown with the dashed arrows. It can be clearly seen the dependence of the

next inter-event time to the last visited state of the underlying Markov process,

Jy.

Figure 2.3: A state transition diagram of a MAP process with two states.

Hence, given the parameters (a, Dy, D;) the MAP can be defined in the

following way.

Definition 2.3.1 A Markovian Arrival Process is a two-dimensional Markov
process, (Ny, Ji)i>o with state space E = {1,..., K} and infinitesimal generator
matriz of the underlying Markov process Do+ D1, of order K. All the elements
of the two matrices are non-negative except the diagonal elements of Dg, which

are negative.

The generator matrix of the MAP process is an infinite block matrix with the

following form
D, D,

Q: DO Dl

Every latent state of the Markov process, J;, is linked to an occurrence rate,

K
Ni=1I'D1y = Z%’j(l)a (2.1)

j=1
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which is the total arrival rate during the sojourn of the process at state i and
is a superposition of K Poisson processes with ¢;;(1) occurrence rates, respec-
tively. In the sequel, we consider the stationary version of the MAP which is
composed solely by parameters (Dg, D). The initial probability vector is now
denoted by 7 and is the stationary distribution of the so called underlying or
latent process, J;. It is given through the solution of the linear system wQ = 0
and wlg = 1. The stationary probability vector after arrival instants, denoted

as Tqr, 1S given by
—ﬂ'DO

Tarr = —37 7
7'l‘.D1].K7

which is the solution of the linear system m,,,P = 7., and 7, 1x = 1, with
P - (-Do)ilDl, (22)

the transition probability matrix of the embedded Markov Chain of the un-
derlying process, J;.

One of the most important theoretical properties of the MAP models that
demonstrate their generality and versatility is due to
( ), who showed that any stationary point process can be approximated
arbitrarily close by a MAP model. We can see that through the parameteriza-
tion of the rate matrices, Dy, Dy, that can produce different types of arrival

process.

One such example is the PH-renewal process ( , ), which is a
renewal process with independent inter-event times having a common PH-
distribution (..., Dy) after each arrival. A MAP representation is with
D, = d;m,,. The transitions associated with Dy have no arrivals, whereas

transitions associated with d;m,,, concern arrivals.
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2.3.2  Special case

In our case, we focus on a MAP with a diagonal matrix, Do = diag(Aq, ..., A\k),
as the example presented in Figure 2.2. The arrival rate is modulated step-wise
only at the occurrence times, which is more compatible with the assumption
that earthquakes are triggered by previous ones. We denote Ay, ..., Ak, the
non-negative diagonal elements of D, which correspond to distinct Poisson

rates and are equal to the total occurrence rate at each hidden state (Equation

2.1).

The variability of the seismicity rate in earthquake catalogs, triggered by
various effects, can be captured through the transitions among different in-
tensity rates of the counting process N;. For instance, we know that the
aftershock decay of earthquakes is following the Omori law ( , ),
whereas earthquake swarms which are sequences driven by other underlying
triggering mechanisms are evolving based on different temporal distributions.
With MAP modeling, we can approximate both behaviors by considering two
different groups of states, each one indicating a mixture of Exponential dis-
tributions for the inter-event times or equivalently a switch between Poisson
rates. The transitions among states are determined through matrix D; and
specify whether we are in the class that describes aftershock sequences or in the
one for earthquake swarms. Generalising, the concept of embedding multiple
arrival rates into the model enables the modeling of all the different temporal
behaviors of earthquakes. However, it is evident that the number of states
needed to approximate the temporal evolution of an earthquake catalog can

be very large.

In addition, ( ) showed that the tractability of the MAP
due to the analytical forms of the generating functions and moments of the
inter-event and arrival distributions enable to infer details on the evolution
of the seismicity rate in time as well as the expected frequency of events at

different time periods. Let the trace Tr = {7,..., 7y} be a sequence of inter-
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event times with 7, = ¢,,1 — t; and N 4 1 occurrences. The joint density
function of a MAP generating N + 1 consecutive events with inter-event times,
T;, is given by

f(Tl,...7TN) :ﬂzrreDoTlDl...GDOTNDllK. (23)

We consider the stationary version of the MAP and as initial time, ¢ = 0, the
occurrence of the first event.
The inter-event times are distributed according to a special case of the PH

distribution, the Hyper-Exponential distribution, with density function

K
f(T) = WarreDOTDl ]-K = Z 7TZ'€7)\2‘T)\Z'. (24)
i=1

Considering a diagonal matrix for Dy we derive much simpler functional forms
and avoid matrix exponential computations. The embedded transition proba-

bility matrix given in Equation 2.2 can be easily derived by

15(1 .
pij = q&( >, Vi,j € E. (2.5)
More analytical measures that capture potential correlations among the events

such as the joint moments of k consecutive events and the auto-correlation

function between the first and k-th event are given in ( ).

2.3.3 Markov Modulated Poisson Process

A widely used special case of MAPs is the Markov Modulated Poisson Process
( , ). The transition rate matrices take the
following form Dy = Q — A, D, = A, where A is a diagonal matrix with
positive elements. In this MAP formulation, changes in the occurrence rate can
be made only between arrivals and new occurrences are generated only during

the sojourn of the process in the same state. Namely, on MMPP the rate of the
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counting process varies between the occurrence of two events according to the
underlying Markov process, J;, but transitions are not allowed at an occurrence
instant, contrary to our case, where changes in the occurrence rate are allowed
only when an earthquake occurs. Thus, the time between the (k—1)-th and k-
th events depends on the state of J; at the (k — 1)-th occurrence, whereas on a
MMPP, the underlying process, J;, can move several times to different hidden
states, following the k-th arrival with a transition to the same state. From a
seismological point of view, we assume that changes in the seismicity rate can
be triggered by a previous earthquake, while under the MMPP formulation
seismicity rate can change multiple times before the earthquake occurrence.
We believe that these conditions have an impact on the adaptability of the

model to the data, as the structure of the infinitesimal generator changes.

2.4 Parameter estimation

Fitting of MAPs is the most challenging part for real data applications mainly
due to the large number of free parameters and the lack of canonical represen-
tations. The former increases the complexity since we need large data sets to
capture the correlations among the events. In addition, the parameters of the
model are not uniquely determined, meaning that the same likelihood function
can be derived by at least two different parameter sets, known as identifiabil-
ity problem. This explains the multimodality of the likelihood function which
consists one of the most significant problems for the selection of the param-
eters. However, recent efforts have successfully found unique representations
for different classes of MAP models ( , ; ,
).

In general, there are two main approaches for the estimation of the MAPs
parameters. Moment matching methods, where the theoretical moments should
be equal to the observed ones and likelihood-based methods where the param-

eter set corresponds to the maximum value of the likelihood function. In the
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first case, analytical closed forms exist for the two-state MAP with hyper-
exponential inter-event times distribution ( , ). However, the spec-
trum of states that the method can be applied is limited. As their number
increases the higher order or joint moment equations become non-linear and
optimization methods do not work. There are although some compositional
efforts that combine the fitting capability of lower order MAPs with the flex-
ibility of ones with more states. One such effort is by ( )
who proposed the Kronecker Product Composition method, where MAPs are
constructed by processes of a smaller number of states through Kronecker
products. Another popular framework consists of a two-phase fitting proce-
dure. At the first step, a PH distribution with parameters (7, Dy) is fitted by
any available method to the data and at the second phase the elements of the
transition matrix D are estimated by various methods, such as first (

: ) and higher lag joint moments ( , ) or

matching the lag-k auto-correlation function ( , ).

There are several Maximum Likelihood Estimation (MLE) fitting methods
that are adopted for the MAP transition rates. The general form of the likeli-
hood function is given through Equation (2.3),

L(6|Tr) = wl ePomD, ... eP™" D 1y, (2.6)

arr

with parameter set @ = {g;;(0), ¢;;(1)}, trace Tr, N + 1 events and K latent
states. It considers the whole trace in order to capture the correlations among
the events. The optimization of the function, 8 = argmaxy L(0|Tr), is based
on the implementation of an iterative algorithm, the EM algorithm (

, ), which is an appropriate technique especially in problems
with unobserved data and it consists of the E-step (Expectation) and M-step

(Maximization).

If 8y is a given initial parameter set, then in the E-step random variables

are created related to the unobserved data T" and an expected log-likelihood
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function (LL), E[logL(8 | Tr,T") | Tr; 8], is computed conditional on the
complete data vector (T'r, T’). In our case, the variables are related to the
transitions among the latent states of the process, J;. In the M-step, the new
parameter set 0, is estimated through maximizing the expected LL function,
0, = argmax, Ellog L(0 | Tr,T") | Tr; ). At each iteration of the algorithm
the likelihood function is expressed through the forward and backward vectors.
The i-th element of the forward row vector f[k] = {fi(k),i =1,..., K} denotes
the likelihood to be in state ¢ conditional on the history of the process up to
the occurrence time t;,; and can be obtained recursively by f[0] = , f[k] =
flk — 1]ePo™ D;. Similarly, we can define the backward vectors b[N + 1] =
1x,blk] = ePo™ Dyb[k + 1], with k = 1,..., N. The algorithm ends when a

convergence criterion is satisfied or a certain number of iterations is applied.

( ) and ( ) incorporated the algorithm into
the framework of PH distributions and MMPPs, respectively. Their innova-
tive work was followed by ( ) who enhanced the computational
speed for general MAPs through the uniformization method for the matrix-
exponential computations, whereas ( ) and

( ) worked on applying EM algorithm on grouped data of disjoint
intervals, since many times real data is provided in groups, especially on net-
work traffic data. A comprehensive survey on the most recent state-of-art
results on MAP fitting methods can be found in ( ) and

( ). However, the implementation of the EM algorithm
demands a large number of iterations, each one with high computational effort
due to the evaluation of matrix-exponentials for the likelihood function.

( ) suggested that the fitting with a sub-class of MAPs will
reduce the computational effort. They proposed a structure with components
following PH and as a special case Erlang distribution. They found that the
time until convergence is being reduced significantly while the likelihood val-
ues remained high, whereas ( ) have extended the

method to multiclass MAPs, keeping the same special structure.

95



CHAPTER 2. MARKOVIAN ARRIVAL PROCESS MODELING

In our study, we need to fit the parameters of a simpler MAP structure de-
scribed in 2.3.2. We assume that the marginal distribution of the inter-event
times is given by a mixture of exponential ones, namely a Hyper-Exponential
distribution. Given that the MAP is in state i just after an earthquake oc-
currence, the density function of the inter-event times distribution is given
by

fi(T) = e T,

following Equation (2.4). Due to the special structure of the matrix, Dy, the
forward and backward vectors and as a sequence the likelihood function can

be expressed in a simpler way

K K

FIk =Y flk— e qy(1), blk]; =Y e ™M™ qu(blk+1];,  (2.7)

i=1 i=1
and

L(O| Tr) = f[k]blk + 1], k=0,...,N,

respectively, with parameter set @ = {\;, ¢;;(1)}. In this way, we avoid the
computation of matrix-exponentials (see Equation (2.6)) reducing the compu-

tational cost for the evaluation of the likelihood function.

Considering the unobserved data, 7" = {sy,..., sy}, to be known, i.e., the
hidden states at each occurrence time, we can easily obtain the maximum likeli-
hood estimates of the parameter set 8. The inter-event times are conditionally

independent, therefore,

N
log L(At, ... Ax|Tr, T') = log(f (7)),
k=1

and considering its derivative for each \; we can obtain its maximum value

N
A = Zk:l I(Sk:i)

e
Zk:l Tl (s1,=i)

26
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which is the number of intervals that the process is in state ¢ divided by
the total sojourn time in state . The maximum likelihood estimates of the
transition probabilities, p;;, of the MAP’s embedded Markov Chain at arrival

instants, are obtained by ( ) and are given by

ﬁij _ k=1 (Sk:i73k+1:j). (2.9)

= N1
k=1 I(SkZi)
Then, the elements of the transition rate matrix, Dy = {q;;(1)}i jcr, are easily

obtained from Equation (2.5).

In the E-step of the EM algorithm the expected values of the unobserved
variables that correspond to the latent states that generate the NV 4 1 earth-
quake occurrences, are derived and are expressed through the forward and
backward vectors. In particular,

P(sy =1,8p41 = J4,17|0)
P(Tr|0)

fk)i - fi(Tw) - pij - B[k + 1]
P(Tr|0) ’

gij[k] = P(sp = i, g1 = j|0,Tr) =

and
P(sy =1,Tr|0)  flk —1]; - blk];

ailk] = P(Tri) ~  P(Tr]0)

Then, in the M-step the expected values are maximized (Equations (2.8)

and (2.9)) and give the estimated parameters of set 6,

o = ok Gl S Sl - iblK) (210
>ohmr Tetilk] Doy TS [k — 1]:blk];

and

e aulk] Xl SR — lie Mgy (1)blk + ;.

Po = ST ST (0

Finally, the transition rates, ¢;;(1), are easily obtained by, ¢;;(1) = A - Dij-
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2.4.1 Determination of the initial values

For the implementation of the EM algorithm, BuTools program package (

, ) is used in the MATLAB environment. The algorithm requires
as input the trace and an initial choice for the parameter vector. However, as
the number of parameters is increasing, the LL shows more local peaks, mak-
ing it more difficult to converge to the global maximum. The dependency on
the choice of the initial parameter values is also increasing as the length of the
sample is decreasing.

Therefore, we implemented a grid-based procedure for the initial choice

that it consists of the following steps:

e Construct grid for the occurrence rates, A;, ¢ = 1,..., K, ranging from
obs obs : : N&bfz —Ngbe

— min _

N5 to N2s with a constant step, s, leading to Ny = ~ val

ues. The first is the maximum observed number of events in the time
unit and the second the minimum one, respectively. Divide it into K in-
tervals equal to the number of hidden states and consider all the possible

combinations. This equals to Ny = (N /K)¥ sets of values.

o Generate the transition probabilities, p;;, uniformly under ergodicity con-
ditions. For each set {\,..., )\%}, with 7 = 1,..., Ny, correspond N

random transition probability matrices, P.
e The total LL computations for the choice of the initial vector: N x Ngy;.

The choice of N is independent of the occurrence rates grid length. There-
fore, we can reduce the computation time by implementing a parallel proce-
dure. Let M be the number of parallel workers. Then, we can divide the initial
grid into M groups leading to N, /M of {A1,..., Ak} sets in each one. The
rest of the procedure is the same, leading to N x (N, /M) final computations.
Finally, Ny.s memory storage is needed for the best parameter sets in terms of

their log-likelihood values which are given then as input to the EM algorithm.
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Concerning the complexity of the EM algorithm, essentially we need to
compute and store the forward and backward vector, f[k] and b[k|, respec-
tively, for £ = 1,..., N. This requires 2N vector-matrix multiplications of
size K, which is the number of latent states, and a 2N memory storage, re-
spectively. Recently, 3 refined algorithms for the parallel implementation of
the EM algorithm have been developed by ( ), that showed

very good performance on numerical experiments.

2.5 Simulation procedure

We want to create a simulated sequence of events that is generated by the
counting process, Ny, based on the rate matrices, Dy = —diag(A1, ..., k),
D, = {4;j(1)}; jer and the stationary probability vectors 7, and 7 depend-
ing on whether an arrival occurred at the initial point ¢y = 0 or not.

To simulate a MAP, first we need to determine the hidden state of the
process at time ty = 0. Select an initial probability vector, in our case, a
stationary vector and generate the initial state J(ty) with the use of a multi-
nomial trial from the discrete probability distribution 7., or . Then, the
sojourn of the process at each state and the type of arrival need to be deter-
mined. In our case, we have only a single type of arrival since Dy is a diagonal
matrix, namely, transitions among the hidden states occur only along with an
earthquake occurrence. So, sojourn times, 7, are generated from Exponential

distributions with parameters {—Dg};; = \; under the relationship

_an
A

T =

(2.12)

that is derived by a typical thinning procedure. At the end of the sojourn
time at each state we need to determine the next hidden state of the process,
Jy. This is resolved by the conditional probabilities of the MAP, P(J(Ty +
7)/J(1o)) = {pij }i,jer where P is the embedded transition probability matrix
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of the process, J;, and its elements are given by Equation (2.5). In particular,
the next state j is generated by a multinomial trial from the discrete probability

distribution
qi1 (1) %‘K(l)
{ AZ A ) AZ }7

under the condition that the previous state is <. The procedure is repeated

until a certain number of events is derived or a time t.,q is exceeded.

2.6 Inference of the latent states

One of the three basic issues related to the HMMs and as a consequence to
the MAPs is the decoding problem. In other words, to find the optimal path
of latent states that have generated the sequence of observations, t1,...,tx11,
given the parameter set, @ = {\;, ¢;;}. From a set of probabilities we choose

the one with the maximum value, i.e.,

Jy, = argmax P(Jy, =1 |Tr,0), (2.13)

1<i<K

which is known as local decoding problem. To solve this kind of problem we
need to follow the corresponding formulation for the HMMs from
( ). In particular, the probabilities given in Equation (2.13),

which we will call state probabilities, can be written

P(Tl,...,TN,th :Z>

P(th =1 | TT, 0) :pl<tk) = P(Tl o TN) ’

through a simple implementation of Bayes theorem. Then, we use the forward
and backward vectors defined by Equation (2.7) to evaluate these probabil-
ities. Both of them are crucial as the first, f[k];, gives the probability the
state at time t; to be ¢ and k earthquakes to have occurred with inter-event
times, 71, ..., 7. Conversely, the backward vector, b[k];, is the probability of

observing N + 1 — k earthquakes with inter-event times, 7411, ..., 7y, and the
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latent state, i, at time ¢;. The state probabilities therefore, take the following

form

flk —1J; -blkl; _ flk —1]; - blk];
L(6 | Tr) SO FIR] bk 4+ 1]

pi(ty) = (2.14)

Due to the large number of matrix multiplications for the computation of the

forward and backward vectors it is quite often to have overflow and underflow

problems, so the vectors f[k] and b[k| are scaled accordingly ( :
).

Finally, since the MAP model can be defined as a stochastic point process
we can also evaluate the intensity function, A(¢), of the counting process, Ny,
expressed by

Py (t/Hy)

A = Jim ==

Its estimator, can be easily derived through the forward and backward vectors

as follows
e S S flk - bl fTk 1) bl
M= 2 A = 2 S el S g v,

for te <t <tpyr.

2.6.1 Stability of the local decoding algorithm

The stability of the state probability estimates given in Equation 2.14 is tested
on simulated data sets from a MAP model with four states where the hidden
path is known a-priori. In more detail, four samples with N, = 50, 100, 200
and 300 events are simulated from a MAP with four states along with the path
of the hidden states (thick grey line in Figure 2.4). Then, a new MAP is fitted
based on the trace, the inter-event times, of each sample for 100 times, and
the sequence of the latent states that have generated the events is re-evaluated
for each fitted MAP though Equations 2.13 and 2.14. The average estimated
state at each occurrence time is computed and in Figure 2.4 the simulated

hidden path is shown with the grey color and the average estimated hidden
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path over the 100 estimated hidden sequences with the dash-dotted black line.
We note, that the average value does not have a physical meaning, since the
states are integer values, however, it can be seen as an index of how close to the
simulated path our estimation is after 100 implementations. We can see that
the average values approach the true sequence with high accuracy especially

as the number of events increases.
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Figure 2.4: The MAP is fitted to simulated samples of a four-state MAP with
N, = 50, 100, 200 and 300 events for 100 times. The line in gray color
corresponds to the hidden path of each simulated sample. Next, the sequence
of the underlying states that have generated the events is evaluated (100 times)
and the average estimated state for each occurrence time is computed (dash-
dotted black line).
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2.7 Model selection

When we want to approximate empirical data, in our case earthquake data sets,
with the use of the MAP model, first we need to select the appropriate number
of states, K, of the Markov process, J;. Due to its property, that can approx-
imate any stationary stochastic point process ( ) ),
increasing its state space the model’s theoretical moments are converging to
the empirical ones. However, this can lead to overfitted models with large
estimated variances exhibiting poor forecasting results. Conversely, choosing
few states might lead to underfitted models that miss important features of
the data.

This means that the selection of the appropriate number of states is crucial
for a robust stochastic modeling and for the statistical inference of the empirical
data. Here, for the selection of the optimal model we will use two criteria that
are based on information theory with desirable statistical properties (

, ). The first one is the Akaike Information Criterion (AIC)
( , ) which is based on the maximum value of the log-likelihood

function and has the following form

AIC = -2 LL+2 K, (2.16)

where LL is the maximum log-likelihood value and K the number of the
model’s free parameters. Essentially, we achieve a balance between errors
due to underfitting and overfitting. The penalized criterion is computed for
all the fitted models and the one with the lowest value is preferred as the best
fit to the data without, however, quantifying the level of the fitting.

The second criterion that we will use throughout the study is the Bayes
Information Criterion (BIC) ( ) ) which additionally considers the
length of the sample. Its form is

BIC =—-2-LL+ K -InN, (2.17)
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where N is the length of the sample. Again, the model with the minimum value
among the candidates is selected as optimal. The difference of the two criteria
lies on the coefficient multiplying the number of parameters, in other words,
on the penalized effect. ( ) showed that the BIC is consistent in
selecting the true model when this model is considered as a candidate (among
other assumptions), however, he concludes that even if the true model is under
consideration, the BIC is not a clear choice. An extended review concerning

selection criteria related to maximum likelihood models is given in

(2004).

2.8 Evaluation

Information criteria are useful when we want to perform a comparison among
competing models. However, they do not tell us how well the fitted models
approximate the target data set. A useful technique for evaluating the point
process goodness-of-fit is the residual analysis ( , ), which is a time
transformation test.

Let {t1,...,tx} be aset of occurrence times generated by a stochastic point
process IN* with intensity function A(¢). Let also consider the integral of the

intensity function
t
A = / BVt (2.18)
0

where A(t) is a monotonic increasing function of ¢. ( ) showed
that with probability 1, the sequence of transformed times, 7;* = A(¢;), i =
1,..., N, is a realization of a Poisson process with a unit rate. Hence, if
the fitted point model approximates well the empirical data, we expect the
transformed times, 7, derived by the estimated intensity function, ;\(t), will

follow a Poisson distribution with arrival rate equal to one.

An advantage of the test is that it can be visualized. In particular, we can

compute the cumulative number of the transformed times, 7, and see whether

P A
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they depart from the bisector, y = x, which is the typical behaviour of events
randomly distributed in time with rate equal to one.
( ) proposed an algorithm for testing the goodness-of-fit of a point process

based on the residual analysis that consists of the following 4 steps.
e Compute the sequence of transformed times, 7;°, through Equation (2.18).

e Plot the cumulative step-function through the pairs (z;, y;) = (7/T,1/N)
with 2 =1,..., N, and T the total duration.

Za/2
T

ing to the standard normal distribution, N (0, 1).

e Plot the confidence bounds y;,; = v+

, where z is distributed accord-

e Observe whether the transformed data lies within the 100(1 — a)% con-

fidence interval drawn in the previous step.

There are also a number of hypothesis tests that can be implemented to
test whether the transformed times follow a Poisson distribution with known
parameter, A,,s = 1. Considering the inter-event transformed times, E; =
TF—717 4, 1 =1,..., N, we can apply two types of test to verify the assumption
of a stationary Poisson process.

The first one concerns the assumption of independence among the events.
The Runs test ( , ) is used to answer to the question on whether a
sample data is generated from a random process or not. We put the values on
a line and mark the ones above the median as positive whereas the ones below
as negative. A run is defined as a series of consecutive positive (or negative)

values and the two alternatives are defined as:

Hy: the sequence of events is distributed randomly

H;: the sequence of events is not distributed randomly.

The test statistic is -
R—R

Y

SR

7 —

where R is the observed number of runs, R, is the expected number of runs,

and sp is the standard deviation of the number of runs. The values of R and
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sgr are computed through the following formulas

2711712 I . 2711712(2?11712 — N1 — ng)

R: ) SR = )
R (n1 + 77/2)2(711 + ng — 1)

ny + No
where n; and ny the number of positive and negative values in the sample,
respectively. An alternative technique for investigating possible correlations
among the events is through the auto-correlation function ( ) ),

which is defined as

SN (B — B) (B — E)
Zf\;(EZ - E)2

Pk =

9

for lag k. If its values lies within the 95% confidence bounds there is no
evidence that the inter-event times, F;, are not independent.
The next type of test is the Kolmogorov-Smirnov (KS) test (

, ) which is applied on the sample E; to verify that it follows an
Exponential distribution, Exp(A = 1). It computes the differences between
the empirical and exponential cumulative distribution over all the sample and
the test statistic is defined as the maximum distance among the two curves.
An important limitation of the test is the requirement the parameters of the
distribution to be fully specified instead of being estimated from the data.

When the parameters of the null distribution are not known and need to
be estimated from the sample, the Lilliefors goodness of fit test ( ,

) is the appropriate one to use. It is similar to the KS test, however,

the parameters of the null hypothesis distribution, Fjy, are estimated from the

sample and the p values are computed through Monte Carlo simulations since

the distribution of the test-statistic is not fully defined.
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Chapter 3

Markovian Arrival Process for

earthquake clustering

3.1 Introduction

Earthquake clustering is an essential feature of seismicity that provides crucial
information on the earthquake dynamics, expressed as the concentration of
earthquakes in space and time. There are various forms of triggering mech-
anisms responsible for the different types of clusters including static and dy-
namic stress changes induced from previous events (main shock-aftershocks)
( , : , ), fluid migration and aseismic slip

(earthquake swarms) ( : ).

The improvement of seismic monitoring worldwide and the development
of new powerful algorithms for earthquake detectability ( , )
increased the amount of seismic data that is available for data processing,
motivating the development of more refined clustering algorithms. Earthquake
clusters can be used for the determination of faulting geometry ( ,

: , ) as well as to extract useful information on the
aftershock productivity of the study area and the behavior of the foreshock

activit , ; , . However, many studies
y Yy
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focus on the data after the removal of clustered events, known as background
seismicity and the procedure as declustering. Background seismicity is used
to Probabilistic Seismic Hazard Analysis (PSHA) for the production of hazard
maps ( , : , ) and can be also used to
infer physical properties of main shocks such as the localization of seismicity

before large earthquakes by ( ).

In the first part of this chapter, we establish a two-step clustering procedure
that comprises a temporal stochastic point process, the Markovian Arrival Pro-
cess, for an initial separation of the background seismicity from potential seis-
mic excitations, using the changes in the seismicity rate, and the density-based
clustering algorithm, DBSCAN, for the detection of elevated density areas in
space. We assume that the physical mechanisms governing the earthquake clus-
tering are unknown and the prevailing parameter to separate the background
seismicity from seismic excitations are the temporal variations of the seismicity
rate. For this reason, the MAP, (Ny, J;)ier+ is used, whose intensity function,
A(t), is modulated by the latent Markov process, J;. The earthquakes temporal
distribution is essentially approximated by a non-homogeneous Poisson process
with a piece-wise constant intensity rate determined by the underlying Markov
process, J;. The sequence of hidden states is evaluated through a local decod-
ing algorithm, and the level of the occurrence rate at each time ¢ is revealed. In
this way, the MAP can be used as a tool for change point detection, namely to
detect changes in the seismicity rate. We show here that the model is suitable
for capturing prevailing patterns of the seismicity dynamics, by corresponding
the estimated rates to known foreshock-main shock-aftershock sequences and
swarms, as well as to periods of relative seismic quiescence. Recent works by

( ) and ( ) are based on non-stationary Poisson models
whose rate is modulated by a hidden Markov process to determine a set of
change-points for seismicity rate. Subsequently, the DBSCAN ( ,

) mentioned before is used for grouping the events into spatiotemporal

clusters.
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In the second part of this chapter we present a comprehensive analysis of
the clustering properties in three major seismic zones of Greece. Several studies
suggest that the clustering properties of seismicity (spatiotemporal distribu-
tion, productivity rates) might be controlled by the tectonic regime.

( ) showed that the adoption of region-specific aftershock pa-
rameters can improve forecast estimates, as the information from the tectonic
region is particularly useful, and suggest the determination of clustering fea-
tures in smaller regions where high-quality earthquake data are available. The
global analysis of earthquake clusters from ( ) sug-
gests that seismicity clusters in a region strongly depend on the heat flow
and believe that considering region specific deviation can improve local seis-
mic hazard assessment. More recently, ( ) updated the
generic parameters of sequences in California incorporating the regionalization
of the former work for their determination. In this way, there was an improve-
ment of the aftershock forecasts accuracy. The temporal ETAS model assumes
that background events occur according to a stationary Poisson process with
rate, p, which can trigger other earthquakes and in turn can trigger more
earthquakes and so on. In our study, we utilize the estimated parameters of
the ETAS model to investigate regional variabilities in the productivity of the
seismic sequences and gain insights into the involved triggering mechanisms
( , 2021 , 2005;

, 2013).

We will thoroughly discuss the features of multiple embedded occurrence
rates that can separate potential seismic clusters from background seismic-
ity, generalized into the idea of MAP to be used as a change point tool for
seismicity rates. Then, we establish a two-step clustering algorithm that com-
bines the MAP model with a density based clustering algorithm, DBSCAN,
and we evaluate its performance on a simulated earthquake catalog where the
structure of the clusters is known a-priori. Finally, we apply the method to the

three major seismic zones of Greece as already mentioned and investigate their
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clustering properties. In particular, we focus on the statistical analysis of the
detected clusters based on the ETAS model producing generic and sequence

specific parameters for each area.

3.2 MAP-DBSCAN method

3.2.1 MAP as a tool for change point detection

The temporal distribution of seismicity can be approximated by a stochastic
point model, the Markovian Arrival Process. Following the notation given in
Section 2.3, the MAP is a two-dimensional Markov process (Ny, J;)icr+, where
N; counts the number of earthquakes that occur up to time ¢ with a rate \,,
which is associated with the hidden states7 =1, ..., K, of the Markov process,
J;. For the representation of the MAP model, we need the K x K rate matrices
Dy and Dy, where Dy is a diagonal matrix whose non-negative elements we
denote as, A1, ..., Ak, and correspond to K Poisson rates, each one assigned to
a hidden state of process J;, and Dy consists of the transition rates among the
states along with the occurrence of an earthquake, which we denote as ¢;;(1).

A brief description of the process is given next. When the Markov process
Ji is in state ¢, earthquakes occur according to a Poisson process with seismic-
ity rate \; and, therefore, the sojourn time in this state follows an Exponential
distribution with expected value 1/);. When an earthquake occurs, the MAP
can move with transition rate ¢;;(1) = p;;\; to another state j, so now, earth-
quakes occur according to a Poisson process with rate \;, or remain in the
current state ¢ with transition rate g;;(1) = pi; \;.

Firstly, we need to find the number and the corresponding values of the
seismicity rates that are sufficient for the description of the temporal evolution
of seismicity. Hence, we fit MAPs from 2 to K states through the EM algo-
rithm to the corresponding trace (inter-event times of the data set). For the

determination of the initial values that are given as input to the algorithm, a
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grid-based procedure is established implemented in a parallel framework to re-
duce the computational cost that is increased exponentially with the number of
hidden states. All the details on the estimation procedure are given in Section
2.4. Then, the Bayesian or Akaike Information Criterion is used (Equations
2.17 and 2.16, respectively) as a metric for finding the most preferable model,
which is the one with the lowest value.

Next, the most probable sequence of transitions for the underlying process,
Jy, is evaluated through the state probabilities, p;(t) = p(J; = i) (Equation
2.14) for i = 1, ..., K, whose estimator is a function of the forward and back-
ward equations given in Section 2.6 and its stability is proven on simulated data
sets where the true sequence of the hidden states is known (Section 2.6.1). The
state of the hidden process at each time ¢ is defined as the one with the highest
probability, i.e., argmax,<,< g pi(t), with p;(t) = p;(tx) for t, <t < tj41. Each
state ¢ corresponds to an occurrence rate, \; (Equation (2.1)), therefore, by
evaluating the transitions among the states of the model, we can detect change
points in the seismicity rate and the duration of each seismicity level through
the sojourn time at each hidden state.

Our main assumption is that due to the multiple embedded occurrence rates
of the model each state corresponds to a distinct evolution phase of a seismic
sequence, independently of its underlying mechanism. In Section 3.3.1, we
evaluate the performance of the model to approximate the temporal evolution
of earthquake catalogs that incorporate both main shock-aftershock sequences
and earthquake swarms and investigate whether the detected seismicity rate
changes are associated with either the occurrence of main shocks and their
aftershock sequences or the burst of earthquake swarms.

Concerning the clustering procedure, we are mostly interested in separating
periods that are characterized by background and triggered seismicity that is
associated with seismic sequences. In particular, we introduce a rate thresh-
old, A, according to which a potential sequence starts when the rate of the

counting process, V;, achieves Aj, > M\, and ends as soon as the process J;

71



CHAPTER 3. MARKOVIAN ARRIVAL PROCESS FOR EARTHQUAKE
CLUSTERING

moves for the first time to a state with a Poisson rate below that threshold.

3.2.2 Temporal Constraints

The earthquakes that occurred in periods with estimated occurrence rate above
the defined rate threshold, A;,,, comprised in the potential clusters. However,
results on methods that are solely based on changes in the seismicity rate can
sometimes be misleading and additional temporal constraints should be consid-
ered. One such case concerns the determination of the aftershock sequences du-
ration. When the rate at the tail of aftershock sequences has reached the level
of the background seismicity, it becomes difficult to discriminate these events
from background ones, especially for small main shock magnitudes (

, : , ). One similar case is related to the
sparse foreshock activity, which as it is shown in ( ), ex-
hibits significantly smaller frequency than the aftershock activity. Therefore,
a day rule, dt, is assigned in the sense that events in +dt from the poten-
tial cluster are included within. Another case is related to the existence of
fluctuations during a seismic excitation, when the seismic activity that is trig-
gered by the same underlying mechanism is divided into smaller clusters. A
large aftershock sequence can be divided into distinct clusters due to cascade
triggering, i.e., main shocks trigger aftershocks which in turn cause their own
aftershock sequences ( , ). For this reason, we assign
a time window, T', so that clusters in temporal distance smaller than or equal
to T" are merged into one.

We should note that the choice of the parameters is depending on the goals
of each cluster analysis. In a sequence specific study, where the aim is to
use the detected clusters for the identification of even the smallest ruptured
patches, we would focus on a thinner separation of triggered seismicity (small
merging factor, T'). For studies in large data sets when we intend to investigate

the generic clustering properties of seismic sequences, such as the productivity
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and temporal decay of aftershocks, the temporal constraints should be looser

(larger values for dt and T).

3.2.3 DBSCAN algorithm

The grouped events can be spatially sparse and are falsely assigned into the
same cluster. To overcome this ambiguity, the DBSCAN is applied to sepa-
rate events in space based on a distance metric. Depending on the adopted
distance metric, the algorithm can be used for grouping events with waveform
similarities ( , ) as well as earthquakes with related types of
faulting (focal mechanism similarity) ( : ).

Density-based algorithms search for areas where the density level exceeds a
threshold. When the spatial density falls bellow a certain threshold the bound-
aries are defined and the clusters are formed. The main idea for the DBSCAN
algorithm is that for each element of a group of events, the neighborhood of a
given radius, €, has to include a minimum number of events, V., namely the
density has to exceed a threshold value. The geometry of the neighborhood
is determined by the adopted distance metric. Hence, the algorithm requires
as input the distance threshold, ¢, and the minimum number of neighboring
events, N (density level).

The clustering model defines two kinds of events, core points, i.e., events
inside the cluster with at least N,;s neighbors within the area including them-
selves and border points, i.e., events on the border of the cluster. Four main

terms are needed to define a cluster:

e Events up to a distance € from a core point i (||Nc(7)|| > Nps where
Nc(i) = {j : d(i,j) < €}) are considered part of the cluster (directly

density reachable).

e If a neighbor event j is also a core point then its neighbors are also

part of the cluster - the transitive property holds (density reachable). In
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general, for any two events, ¢; and i,, a sequence of directly reachable

events, i1, ...,1%,, exists.

e Non-core events are considered border points and they are all density

reachable through a common point (density connected).

e Events that are not density reachable from a core point are considered

noise and do not belong to any cluster.

Figure 3.1 shows an example of the DBSCAN method with N, = 3 and
radius €. The blue circles correspond to the core points and the arrows indicate
the directly density reachable property. Events with yellow color correspond to
border points and are density connected since they are both density reachable
from any blue event. Finally, the grey event is not density reachable from any

other event and is characterised as noise.

Border

Figure 3.1: An example of the DBSCAN method. Minimum number of neigh-
bors is Vs = 3 and distance threshold equals to e.
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The algorithm starts with a random event, i, and forms a cluster if at
least N,;s events are within distance d < e, including itself. Earthquake 7 is
then considered a core point of the cluster and the algorithm moves to the
investigation of the other events. If N, neighbors are identified in the next
step, they are also considered core events; otherwise, they are the boundary
points of the cluster and the algorithm moves to the next unassigned event of

the data set.

In our case, events that have not been assigned to any cluster at the end of
the procedure compose the background seismicity and are merged with events
that occurred during periods with estimated rate under the rate threshold,
Ainr- I this way, the algorithm can remove events that are spatially sparse.
It has been efficiently applied for detecting similarities among earthquake lo-
cations, origin times and focal mechanisms ( , : ,

). An advantage of the algorithm is that it does not require as input a pre-
defined number of earthquake clusters, such as the k-means algorithm, where
further optimization techniques for the determination of the clusters number

are necessary ( : ).

3.2.4 Evaluation of the MAP-DBSCAN method

The efficiency of the MAP-DBSCAN procedure to correctly identify spatio-
temporal correlated seismicity will be evaluated on a simulated ETAS catalog,
where the number of clusters and the links among the events are known a
priori. The ETAS model is developed by ( : ) and belongs to
a wide class of branching processes where the expected rate of earthquakes,
known as intensity function, depends on the history of all previous seismicity.
In Appendix A we present an extensional review of the ETAS framework for
those not familiar with the model, a thorough description of its parameters

and of the simulation procedure. Its intensity function consists of two parts
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given by

Atx = (,g)/H) = p() + K S o), (3.0)
jiti<t,x;E€Xg

where H; = {(t;,x;,m;) : t; < t} the subset of all past earthquakes with
magnitude larger than or equal to m,. that occurred inside the region .
The background component (mother events), p(x), is stationary in time but
heterogeneous in space due to the fault network geometry. For the second term
of the right-hand side of Equation 3.1, the modified Omori law (Equation A.3)
is considered for the temporal component, the productivity law (Equation A.2)
and an isotropic spatial kernel (Equation A.5).

We chose the ETAS model because it captures the main properties of the
spatio-temporal evolution of seismicity and it is considered “a de facto standard
model, or null hypotheses, for other models and ideas to be compared to”
( , ). It has already been used as a reference model for both
forecasting experiments ( , ) and for evaluating clustering
methods such as the Nearest-Neighbor algorithm in
( )-

For the evaluation of the MAP-DBSCAN method we additionally demon-
strate its performance against widely used clustering algorithms. In particular,
our approach is compared with the Nearest-Neighbor, Gardner and Knopoff
window-based and Reasenberg link-based algorithms. A detailed review on
each one of them is given in Appendix B.

The simulated ETAS catalog consists of clusters that are defined either as
single events, i.e., mother events without any subsequent triggered earthquake
or as a sequence of events with a common mother event (first event in the
cluster). For the validation of the similarity between the initial structure of
the clusters and the one after the implementation of the clustering algorithm,
we should first define the true partition of the catalog, X = {Xj}r=1,. n..

where N, corresponds to the number of clusters and each subset X, includes

76



CHAPTER 3. MARKOVIAN ARRIVAL PROCESS FOR EARTHQUAKE
CLUSTERING

all the events of cluster k. The partition after the implementation of the
MAP-DBSCAN and the other K — 1 methods, including different tuning of
the algorithm’s parameters, is defined as Y; = {Y,}n=1,.n,, ¢ = 1,..., K,

where N, is the number of clusters after the implementation of method .

Next, we will use the Jaccard index, which is a measure to quantify the
overlap between two partitions, in our case, the true one of the ETAS cata-
log, X, and the one of the i — th implemented algorithm, Y;. According to

( ) the Jaccard index belongs to the class of similarity
measures that are based on pair counting, i.e., counting the number of events

assigned to the same (different) cluster. It is expressed by

Jl(X, Y) = |X N Y’/|X U Y’ = CLH/(CLH + a9 + CLgl), (32)

where a1 indicates the number of pairs of elements which are correctly assigned
into the same cluster (true links), ap; the number of pairs of elements which
are in the same cluster in the simulated ETAS catalog and in different clusters
in the estimated one (missed links) and a;o the number of pairs of elements
which are wrongly identified as clustered events (false links). If all the initial
clusters are correctly identified by the testing method, then a;y = 0 = ag; and
J1(X,Y) = 1. Conversely, if all pairs are wrongly identified as clustered or

independent, then a;; = 0 and, as a consequence, J;(X,Y) = 0.

In addition, we introduce a generalization of the Jaccard index,

JQ(X, Y) = bll/(bll + blO -+ b01), (33)

to identify the partition Y with the best discrimination between the back-
ground seismicity and clustered elements, following the definition in

( ). We consider as background seismicity single events and
the mother events of each cluster, i.e., the ones that initiate a cascade of events.

b1 represents the number of common background events in the two partitions,
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b1p is the number of elements wrongly identified as mother events in the parti-
tion Y, whereas by; corresponds to the number of true mother events identified

as clustered elements in the partition Y.

3.2.5 Generic ETAS parameters

We will adopt the temporal ETAS model for the investigation of the prop-
erties of the detected clusters. It incorporates into its functional form two
empirical relationships that characterize the temporal and size distribution of
earthquakes, the normalized Omori-Utsu law, ¢(t), given by Equation A.3,
and the productivity law, N = k(M;) (Equation A.2), where N is the number

of events triggered by an earthquake of magnitude, M;.

The constant factor K in the productivity law is an index of proportionality,
which expresses the expected number of triggered events per main shock above
the magnitude cutoff, whereas parameter a describes the impact of magnitude
on the number of triggered events. Increasing parameter a indicates the in-
crease of the proportion of triggered events from large earthquakes compared to
small ones typical for main shock-aftershock sequences. Small a values suggest
that the overall productivity is separated into bursts of smaller earthquakes
usually the case for earthquake swarms.

To infer the clustering properties of a region we will compute the “generic”
ETAS parameters by jointly inverting the ETAS parameter set @ = (p, ¢, a, K, 1)
from the identified clusters. We use the maximum likelihood procedure, which
is the most common method for the estimation of the ETAS parameters. In
particular, neglecting the spatial component in Equation A.6, the log-likelihood

function takes the following form
ng tf
LL; =) logA(t;) — / \(t)dt (3.4)
j=1 to

which corresponds to the log-likelihood of the i-th sequence, namely, the log-
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arithmic probability of observing n; events with occurrence times ¢;, j =
1,...,n;, during the period of the sequence (tp,ts). The intensity function,
A(t), of the model is given by Equation (A.1) and takes the following form

when we embed the two empirical laws in the triggering function

At) = p+(p—=1)c?™D > " Ke®™imm) . (t —t; 4 ¢) 7", (3.5)
j:tj<t
Then, we stack all the detected sequences of the study area, compute their

corresponding logarithmic probabilities, LL;, and define as the common log-

likelihood .
LL=) LL, (3.6)
=1

where N* is the number of sequences. The optimal inverted parameters are
the ones that maximize Equation (3.6). For the maximization of the common
log-likelihood, LL, we implement the numerical procedure in A.2. However,
in this case at each iteration step, (r), we compute N* log-likelihood values,

L™

7 Y

i =1,...,N*, and store the new parameters under the condition LL(" >

LL"=Y where LL is the common log-likelihood given by Equation (3.6).

For the comparison of the aftershock productivity among areas with dif-
ferent completeness magnitudes, we adopt a common magnitude cutoff (the

maximum) and use the following relation,
N = k(M))P(M > m}) = KetMimme)g=plme=me), (3.7)

which yields the number of earthquakes above magnitude m}, generated by
a main shock of magnitude M;. The exponent of the exponential magnitude
distribution is expressed by 3 and is defined as g = le\:l Bi/N*, where N* is
the number of clusters for each study area and [3; their corresponding exponent

values.
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3.3 Applications

We firstly apply the MAP model to the Corinth Gulf area and evaluate its
efficiency to separate potential seismic sequences from background seismicity in
an earthquake catalog. In the second part, we will apply the two-step clustering
procedure, MAP-DBSCAN, first on a synthetic earthquake catalog where the
structure of the clusters is known a-priori and subsequently to three major
seismic zones of Greece with different seismotectonic properties. The selected
areas are the Corinth Gulf, the Central Ionian Islands and the North Aegean
Sea, all characterized by intense seismic activity and therefore a large amount
of data is available. We will investigate their regional clustering properties
based on the ETAS model and will produce generic and sequence specific

parameters for each study area.

3.3.1 Seismicity rate changes through MAP in Corinth
Gulf, Greece

In this section we will test the efficiency of the MAP model to detect seismicity
rate changes in Corinth Gulf area. The MAP is a temporal model that does
not take into account spatial correlations, so a sufficiently small region for
its application is assumed for any given earthquake to may interact with all
following events, regardless of their spatial locations, as suggested by

( ). The Corinth Gulf area is divided into its eastern and western
parts, based on seismotectonic criteria, like fault segmentation, slip rates and
variations in seismicity rates ( , : , ). We
note, that a number of strong (M > 6.0) events outside the study area could
have a triggering effect, which could further improve the fitting of the model,
however, due to lack of a spatial component we are extremely reluctant into

extending the area.
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3.3.1.1  Data

The 1964-2017 earthquake catalog was used and is considered complete for
earthquakes with M > 4.5 (Console et al., 2015) including 274 events within
an area bounded between 21.3° — 23.2° and 37.97%%%". The high magnitude
cutoff enables the use of a long period earthquake catalog that includes well
studied swarm type sequences as well as an adequate number of strong main
shocks. This will allow us to evaluate the ability of the model on capturing
changes in the seismicity rate related to both main shock-aftershock sequences
and earthquake swarms. In Table 3.1 details on the sub-catalogs of the eastern
and western subareas are given and Figure 3.2 shows with yellow stars the

epicenters of the 274 events with M > 4.5 during 1964-2017.

38.6" 1

38.4°

38.2°

38’

21.4° 21.6° 21.8° 22° 222° 224" 226" 228 23° 23.2°

Figure 3.2: Epicentral distribution of earthquakes with M > 4.5 that occurred
in the area of Corinth Gulf during 1964-2017 are shown with yellow stars.
Vertical line divides the area into the western and eastern subareas.

Among the seismic excitations with special interest in the eastern subarea
is the sequence of three strong earthquakes (M > 6.3) that occurred during
nine (9) days in February-March 1981, associated with adjacent and antithetic
fault segments in eastern Corinth Gulf (Papazachos et al.; 1981). In the west-
ern subarea, recent strong earthquakes include the 1993 Patras, M, = 5.6

(Karakostas et al.; 1994), 1995 Aigion, M,, = 6.4 (Bernard et al.; 1997), 2008
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Achaia, M,, = 6.4 ( , ; : ), and the 2010
Efpalio doublet, with M, = 5.5 and M,, = 5.4 ( , ). Table

3.1 provides information on these strong earthquakes.

Table 3.1: Strong earthquakes (M > 5.5) in Corinth Gulf area during 1964-
2017. T and N denote the study period and the number of events comprised
in each data set, respectively.

Date Time Lat. Lon. M, M, T N
1965, Jul 6 03:18:42 38.270 22.300 6.3 Corinth
1975, Jun 30 13:26:55 38.466 21.641 5.6 Gulf 45 1964-2017 274
1975, Dec 31 09:45:45 38.486 21.661 6.0 || Western
1981, Feb 24 20:53:37 38.153 22.961 6.7 || subarea
1981, Feb 25 02:35:51 38.083 23.139 6.4 || Eastern
1981, Mar 4  21:58:05 38.204 23.236 6.3 || subarea
1993, Jul 14 12:31:49 38.170 21.770 5.6
1995, Jun 15 00:15:50 38.362 22.200 6.4
2008, Jun 8 12:25:28 37.952 21.537 6.4
2010, Jan 18  15:56:9 38.404 21.961 5.5

4.5 1964-2017 139

4.5 1964-2017 135

3.3.1.2 Model evaluation and comparison with MMPP

Firstly, we need to determine the optimal number of states for the MAP model.
Thus, MAPs with two to four states are fitted to the events with M > 4.5 that
occurred during 1964-2017 in both subareas. We believe that a MAP with four
states is sufficient as an upper limit of state space for the description of the
earthquakes temporal distribution ( , ). The AIC and BIC
values of the fitted models as well as the corresponding log-likelihood values
are given in Table 3.2. Both criteria are in favor of the four-states model for
the eastern subarea (lowest values with AIC=916 and BIC=974), however, in
the western subarea AIC and BIC suggest the four and three-states model
(AIC=1395 and BIC=1443), respectively.
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Table 3.2: The log-likelihood and AIC and BIC values of the fitted MAP
models to the events with M > 4.5 that occurred in the eastern and western
subarea of Corinth Gulf during 1964-2017.

Western subarea Eastern subarea

#of S LL AIC BIC LL AIC BIC
2 -708 1429 1447 -496 1005 1023

3 -692 1408 1443 -461 946 981

4 -677 1395 1453 -438 916 974

For each MAP, the transformed times are calculated with the relation (2.18)
and the cumulative number of the residuals versus the transformed times are
plotted in Figure 3.3 along with the Kolmogorov-Smirnov (KS) confidence
bounds. A good approximation of the true process is achieved when the resid-
uals follow a stationary Poisson process with unit rate (solid line). For the
three-states MAP in the western subarea (Figure 3.3a) the 95% confidence
bounds are almost exceeded in three cases, whereas for the four-states MAP
the residual process is well approximated (Figure 3.3b). Similar performance
with the latter shows the four-states MAP of the eastern subarea (Figure 3.3c).

Concerning the inter-event times, F; = 7,1 — 7, ¢ = 1,...,n — 1, with
n being the number of events, two types of tests need to be implemented for
the assumption of a stationary Poisson process to hold. Firstly, the Runs test
and the auto-correlation function are computed in order to seek for possible
correlations and next Kolmogorov-Smirnov test is applied to verify that the
E; follow an Exponential distribution. Figure 3.4 shows the auto-correlation
of F; and Table 3.3 gives the p-values of the Runs and KS tests for each of
the three fitted MAP models. According to the p-values of the Runs test,
we cannot reject the null hypothesis of uncorrelated events (p > 0.05), which
is also verified from the auto-correlation plot (all values within the confidence
bounds). Concerning the KS goodness-of-fit test, besides the three-states MAP
of the western subarea of Corinth Gulf where p = 0.009, there is no evidence
for a significant departure from the stationary Poisson process hypothesis.

Therefore, we choose the four-states MAP as the optimal model that captures
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Figure 3.3: The residual process for the western subarea with the a) three-
states MAP and b) four-states MAP and for the eastern subarea with the c)
four-states MAP. The solid straight line corresponds to the stationary Poisson
process with unit rate and the dashed lines to the 95% Kolmogorov-Smirnov
confidence bounds.

the main temporal features of seismicity with M > 4.5 in both subareas.
Table 3.4 presents the estimated parameters of the rate matrices, Dy and

D, for the four-states MAPs of the western and eastern subarea of Corinth

Gulf, respectively. We should note that a MAP model with an extra hidden

state (corresponds to occurrence rate, A\,“*" = 182.8261) is found compared
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Table 3.3: P-values of the Runs and Kolmogorov-Smirnov tests implemented
to the inter-event times of the residuals, FE;, for the three-states and four-states
MAP of the western subarea of Corinth Gulf and for the four-states MAP of
the eastern subarea of Corinth Gulf.

Statistical tests Western subarea  Eastern subarea
MAP(3) MAP(4) MAP(4)
Runs test 0.775 0.536 0.247
Kolmogorov-Smirnov test ~ 0.009 0.199 0.999
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Figure 3.4: The auto-correlation of the inter-event times, F;, for the western
subarea of Corinth Gulf with the a) three-states MAP and b) four-states MAP
and c) for the eastern subarea of Corinth Gulf with the four-states MAP. Solid
blue lines indicate the 95% confidence bounds.

to ( ) where the same MAP model is applied to the west-
ern subarea for earthquakes with M > 4.5 during 1964-2016. The use of the
grid-based procedure for the choice of the initial input values of the EM algo-
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rithm, led to a higher peak of the log-likelihood for the four-states MAP, large
enough to be in favor over the three-states model. The investigation of the log-
likelihood landscape profile shows an increased number of peaks as the number
of states is getting higher, which makes the choice of the initial parameter set
really crucial. Therefore, the condition under which the EM algorithm was
implemented in the previous work, when initial parameter set was chosen to
match the first moment of the trace, seems very sensitive when small data sets
are combined with large parameter sets, which is the case here. Nevertheless,
characteristics concerning the dynamics of the two subareas do not differ sig-
nificantly, as the episodic seismicity behavior of the eastern subarea compared
to the western one still remains. According to the estimated transition rates
given in Table 3.4 the probability to move from the state with the highest
seismicity rate (state 4, A\ye* = 182.82, A\{*' = 41.72 events/day), to the
one with the lowest occurrence rate (state 1, A" = 0.0022, A\{*** = 0.0029
events/day), is higher in the eastern (p5$** = q41(1)/qa(0) = 0.1054) than in
the western subarea (p4f*" = 4.0516e — 34) and vice versa (p§3** = 0.0716,
piest = 2.2459¢ — 07). This is an indicator of a more bursty behavior for the
eastern subarea, i.e., faster transitions from periods with high productivity to

periods of relative seismic quiescence.

Table 3.4: Parameter estimates of the Dy and D; matrices corresponding to
the four-states MAPs for the events with M > 4.5 that occurred in western
and eastern subarea of Corinth Gulf during 1964-2017. Time unit is in days.

Estimated Parameters
Subarea

00 (02 (03 (04 | (1) (1.2) (1.3) (14)

(0,1) -0.0022 0 0 0 2.9021e-07 0.0017 0.0004 4.8447e-10
Western (0,2) 0 -0.0113 0 0 0.0036 0.0065 0.0003 0.0007
o (0,3) 0 0 -2.6586 0 1.6734e-10 1.3771 1.1527 0.1287
(0,4) 0 0 0 -182.8261 | 7.4073e-32 44.1805 68.9208 69.7246

(0,1) -0.0029 0 0 0 0.0026 6.4091e-05 8.8485e-11 0.0002

Eastern (0,2) 0 -0.0859 0 0 0.0058 0.0656 0.0082 0.0061
" (0,3) 0 0 -2.6525 0 0.0844 0.2644 2.1382 0.1653
(0,4) 0 0 0 -41.7287 4.4002 3.4708e-08 6.3211 31.0073

We also moved to the fitting of a MMPP on the sub-catalogs of the western
and eastern subareas in order to compare it with the corresponding fitted MAP

models. First, N = 1FE6 initial values are randomly chosen and the parameter
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set corresponding to the maximum log-likelihood is selected as input value to
the EM algorithm. The Hidden Markov package developed by ( ) is
used and the convergent log-likelihood values for the eastern (LL = —456) and
western (LL = —690) subareas are given in Table 3.5, respectively. In addition,
the AIC and BIC differences between the two models (AAIC = AICyypp —
AICyap, ABIC = BICyypp — BIC)y4p) are computed for both subareas.
Positive values indicate that the MAP model is preferred compared to the
MMPP and vice versa. In both data sets the differences (Table 3.5) are positive
which means that with the MAP model we achieve a better fitting.

Table 3.5: The Akaike’s and Bayes Information Criteria differences among the
Markov Modulated Poisson Process and the Markovian Arrival Process for

the western and eastern subareas with M > 4.5 during 1964-2017 and the
corresponding log-likelihodd values for the MMPP.

Area LLMMPP(4) LLMAP(4) AAIC ABIC
Eastern subarea -456 -438 28.2531 16.6618
Western subarea -690 -677 18.4433 6.7343

3.3.1.3 Identified seismic sequences

Figure 3.5a visualizes the transitions among the states of the four-states MAP
for the data set of the western subarea of Corinth Gulf with the use of colored
boxes. The color at each temporal interval ¢, <t < t,,, indicates the state
with the maximum probability at the certain time, derived with Equation 2.14,
and the legend contains its corresponding occurrence rate, given by Equation
2.1. Red color indicates the sojourn of the process in state one (A; = 0.002),
yellow to state two (A = 0.01), orange to state three (A3 = 2.66) and cyan
to state four (A, = 182.83). The intensity function of the MAP model is
also evaluated by Equation 2.15 and expresses the expected occurrence rate,
At) = Mtg), tp <t < tgy1 at each time ¢. This is an alternative way to
illustrate the fluctuations in the seismicity rate during the study period.

We observe more frequent fluctuations of the intensity function (Figure
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Figure 3.5: a) The most probable sequence of hidden states along with the
magnitude distribution as a function of time (grey vertical lines) for the events
with M > 4.5 of the western subarea of Corinth Gulf during 1964-2017. Each
color is assigned to a different state ¢ with seismicity rate ;. Red color corre-
sponds to A\; = 0.002, yellow color to Ay = 0.01, orange color to A3 = 2.66 and
cyan color to Ay = 182.83. (b) The expected seismicity rate is denoted by the
blue color and the cumulative number of the events with the maroon.

3.5b) until 1995, where the majority of strong earthquakes with M > 5.5
occurred. This can also been seen in Figure 3.5a from the more frequent visits
of the model to states 3 and 4, which are associated with the highest seismicity
rates (A3 = 2.66, \y = 182.83). After 1995 we see that state 1 with the
lowest occurrence rate (A; = 0.002) is dominant compared with the previous
period where the sojourn time of the model to state 2 (A = 0.01) is longer.
States 1 and 2 can be associated to periods of relative seismic quiescence with
A1 = 0.002 and Ay = 0.01, respectively, and separate the data from periods
of high (states three and four) seismic activity that might be related with a
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seismic excitation. For this reason, we focused on the events that occurred
during the sojourn of the process in states 3 and 4. We observe that strong
earthquakes (M > 5.5) with special interest mentioned in Table 3.1 and their

associated events are related to these states.

Table 3.6: Information on the earthquakes that occurred during the sojourn
of the process in states three and four in the western subarea of the Corinth
Gulf during 1964-2017. # denotes the potential cluster index, second column
corresponds to the time interval, ”No” denotes the number of events occurred
during the sojourn of the process in states three and four, in the fourth column
the main shocks are presented and in the last column some details are given.

# Time interval No Main shocks Details

1 6/07/1965 2 M =6.3 (state 3) The main shock and its aftershock just 3 hours later occurred
in state 3 (Figure 3.6a) .

2 4/01/1967 2 M =55 (state 3) The main shock and an aftershock is observed after one hour
in state 3 (Figure 3.6b).

3 29-30/06,/1975 3 M =5.7 (state 3) A foreshock one day before the 30 Jun 1975 main shock with

M = 5.7 is observed, and one aftershock in 5 hours. All events
occurred in state 3 (Figure 3.6¢).

M = 6.0 (state 3) The 31 December 1975 main shock of M = 6.0 occurred, and

an aftershock sequence followed with 6 events in four days
(Figure 3.6d).

5 11/12/1984 3 M =756 (state 4) The model captures the main shock-aftershock sequence (Fig-
ure 3.6e). However, the two events that occurred close in
space during the last month before the main shock, and the
secondary aftershock sequence of two more events during the
next 17 days occurred in state 2, probably associated with
the relative increase and decrease in the seismicity before and
after the main shock, respectively.

6 14/07/1993 2 M =5.6 (state 4) The July 14, 1993 (M = 5.6) Patras earthquake (

, ) and the immediate aftershock with M = 4.6
(eight minutes later) (Figure 3.6e).

7 15/6/1995 3 M =6.5 (state 4) The 1995 Aigion sequence ( , ) is revealed.
The M = 6.5, June 15, 1995 Aigion earthquake together with
two immediate aftershocks (in almost 4 hours after the main
shock) occurred in state 3, whereas two foreshocks and two
more aftershocks (state 2) occurred one month before and
after the main shock, respectively. (Figure 3.6g).

8 9-10/04,/2007 6 M =53 (state 3) The April 2007 earthquake swarm occurred near the Lake
Trichonis ( s ). An intense seismic sequence
is observed where three strong earthquakes, all of magnitude
M = 5.3, along with three events of magnitude 4.5 < M < 4.9
that occurred in less than 24 hours, all in states 3 and 4.
(Figure 3.6h).

9 4/02/2008 2 M =55 (state 3) A main shock with M = 5.5 and its immediate aftershock
with M = 5.2 (in less than two hours) occurred in state 3
(Figure 3.61).

10 8-9/06/2008 8 M =6.4 (state 4) The 2008 Achaia sequence ( , ;

R ) is revealed. The M = 6.4 June 12, 2008 main
shock together with four immediate aftershocks (within an
hour after the main shock) occurred in state 4 moving after-
wards to state 3 where three aftershocks occurred until next
day. (Figure 3.6j).

-

1 31/12/1975-3/01/1976

Table 3.6 details the events that occurred during the periods of high seis-
micity rate according to the model (A3 = 2.66, A, = 182.83) and Figure 3.6
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shows their epicentral distribution. State 3 and 4 correspond in most cases to
main shocks and their immediate aftershocks. For instance, the intense after-
shock sequence of December 1975 (cluster 4 in Table 3.6, Figure 3.6d) close to
Lake Trichonis ( , ) was recorded during the sojourn of the
model in state 3. In 31 December 1975 a main shock of M = 6.0 occurred,
that was followed by an aftershock sequence of 6 events in four days. In cluster
7 (Table 3.6), the main shock (M = 6.5) is associated to state four, which is
followed by an aftershock 15 minutes later moving to state three (Figure 3.6g).
The April 2007 earthquake swarm that occurred near the Lake Trichonis (

, ) is also associated with the sojourn of the process in states 3
and 4. An intense seismic sequence is observed with three strong earthquakes,
all of magnitude M = 5.3, along with three events of magnitude 4.5 < M < 4.9
all within 24 hours. The epicenters of the swarm are in close proximity to the
epicenters of the June 1975 (cluster 3 in Table 3.6) and December 1975 (cluster
4 in Table 3.6) sequences, both unveiled by the underlying process (Figures
3.6¢,d,h).

In general, we conclude that transitions to or from states 3 and 4 indicate
the initiation or the end of a seismic sequence with M > 4.5, respectively.
There are only two groups of events that lack spatial proximity and occurred
in states 3 and 4, which cannot be associated to a known seismic sequence. A
sojourn period in state 2 without a transition to states with higher seismicity
rates (states 3 and 4), might be related to an earthquake swarm or a main
shock sequence where the maximum magnitude is close to the completeness
threshold, M. = 4.5. In this case, events with M < 4.5 that can be part of
the sequence, are not included in the data set and therefore they were not
considered when we estimated the occurrence rates. This is the case of the
two moderate events (M = 5.5, M = 5.4) that occurred in January 2010
during the sojourn of the process in state 2, where the main seismic activity
consists of events with M < 4.5 ( , ). Finally, all eight

(8) events of the data set with M > 5.6 occurred in state 3 or 4, and since
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Figure 3.6: Epicentral distribution of the earthquakes that occurred during
the sojourn of the process in states 3 and 4 in the western subarea during
1964-2017. Stars (blue) represent main shocks and circles correspond to earth-
quakes that occurred before (cyan) and after (red) the main shock, respectively.
Earthquakes associated with the (a) 6 July 1965, (b) 4 January 1967, (c) 30
June 1975, (d) 31 December 1975 (e) 11 February 1984 main shocks. (f) The
main shock of the 14 July 1993. (g) The Aigion sequence on June 1995. (h)
The April 2007 earthquake swarm near Lake Trichonis. (i) Earthquakes asso-
ciated with the 4 February 2008 and (j) 8 June 2008 main shocks.

the mean sojourn time until the next earthquake occurrence is 1/A3 = 9 hours

and 1/\y = 8 minutes, respectively, we may conclude that an event with
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magnitude M > 4.5 is expected in the next few hours after states 3 or 4 are

reached, namely after the occurrence of an event with M > 5.6.
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Figure 3.7: a) The most probable sequence of hidden states along with the
magnitude distribution as a function of time (grey vertical lines) for the events
with M > 4.5 of the eastern subarea of Corinth Gulf during 1964-2017. Each
color is assigned to a different state i with seismicity rate \;. Red color corre-
sponds to A\; = 0.002, yellow color to Ay = 0.01, orange color to A3 = 2.66 and
cyan color to Ay = 182.83. (b) The expected seismicity rate is denoted by the
blue color and the cumulative number of the events with the maroon. Magni-
fied in the inset is the evolution of the Alkyonides seismic sequence according
to the hidden path of the model.

Figure 3.7 presents the most probable path of the hidden states along with
the intensity function for the four-states MAP of the eastern subarea of Corinth
Gulf, for earthquakes with M > 4.5 during 1964-2017. As before, red colored
boxes represent the sojourn of the underlying process to state one (A; = 0.003),
yellow boxes to state two (A = 0.086), orange boxes to state three (A3 = 2.652)
and cyan boxes to state four (A, = 41.729). In western subarea 13 events with

M > 5.5 occurred, whereas in the eastern subarea these are only 6 events
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with M > 5.5. Consequently, according to the hidden path longer quiescent
periods are observed (state 1 with A; = 0.003, red color in Figure 3.7a), which
are interrupted by intense seismic periods, i.e., transitions to states with higher
seismicity rates (states 2, 3 and 4 with Ay = 0.086, A3 = 2.652 and Ay = 41.729,
respectively, in Figure 3.7a). Large variations of the seismicity rate are also
observed from the model’s intensity function in Figure 3.7b. Compared with
the corresponding plot for the western subarea (Figure 3.5b), the expected
occurrence rate is more stable, especially since 1982. The productivity is very
low with state 1 (A\; = 0.003) being dominant during the whole study period.
State 1 is associated to periods of relative seismic quiescence, and we can say
that it represents the background rate for the data set. States 2, 3 and 4 are
related to bursts of activity, so we focus on events that occurred during the

sojourn of the model in these states.

Table 3.7: Information on the earthquakes that occurred during the sojourn of
the process in states 2, 3 and 4 in the eastern subarea of Corinth Gulf during
1964-2017. # denotes the potential cluster index, second column corresponds
to the time interval, "No” denotes the number of events occurred during the
sojourn of the process in these states, in the fourth column the main shocks
are presented and in the last column some details are given.

Time interval No Main shocks Details
8/6/1967-12/6/1967 5 M = 5.2 (state 2) The 8 Jun 1967 main shock (M = 5.2) occurred in

state 2 and four aftershocks followed in the next 4
days (Figure 3.8a).

14/11/1974-4/12/1974 6 M = 5.2 (state 4) A foreshock and two aftershocks occurred in less
than a day after the main shock (M = 5.2). Then
the model moved to state 2 (g2 = 0.0859) until the
beginning of the seismic activity in the adjacent
area (Figure 3.8b).

1/1/1975-8/1/1975 4 M = 5.5 (state 4) Two events before the main shock (M =5

curred and one aftershock within one hour (
3.8¢).

24/02/1981-27/08/1981 64 M =6.6,6.4,6.3 (state 4) The February-March, 1981 seismic sequence is re-
markably well revealed through the path of the
hidden states (Figure 3.7). The major part of the
February 24th main shock aftershock sequence oc-
curred during the sojourn time in state 4 (14 events
in approximately 10 hours). In the sequel, another
transition to state 3 occurred not long before the
occurrence time of the third destructive event on
March 4, in the northeastern part of the gulf. In 8
Mar the model moved to state 2 up until 27 Aug
(Figure 3.8d).
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The five groups of events (consecutive events in states 2, 3 and 4) corre-
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spond to potential clusters (concentrated in space and time) and four of them
are detailed in Table 3.7. Their epicentral distribution is shown in Figure 3.8.
We should mention, however, that clusters 2 and 3 were recognized as one
group, probably due to their temporal proximity. The underlying process with
the four hidden states succeeded to reveal the three moderate main shocks
along with their aftershocks, the June 1967 (Figure 3.8a), the November 1974
(Figure 3.8b) and the January 1975 (Figure 3.8¢c) sequences as well as the com-
plicated temporal structure of the February-March, 1981 Alkyonides seismic
sequence (Figure 3.8d), validating previous observations.

To sum up, the multiple embedded occurrence rates of the underlying
Markov process J; capture the seismicity temporal evolution of earthquakes
with M > 4.5 in Corinth Gulf during 1964-2017, and reveal the seismicity rate
changes associated in many cases with the occurrence of main shocks and their

aftershock sequences or earthquake swarms.

3.3.2 Application of MAP-DBSCAN

In this section, we firstly test the ability of the two-step clustering procedure
to detect spatiotemporal clusters on an simulated ETAS earthquake catalog
where the number of clusters and the links among the events are known a
priori.

Subsequently, we apply the procedure to earthquake data sets and study the
properties of the detected clusters. For the application of the MAP-DBSCAN
procedure, we firstly need to define the earthquake catalog, specifically, the
spatial boundaries, the time window and the completeness magnitude. The
former is crucial since the structure of the clusters is related to the seismotec-
tonic properties of a region. Seismic sequences can extend outside the bound-
aries if they are chosen arbitrarily, which produces misleading results (

)

). Hence, it is important to define the boundaries of the study area,

taking into account the tectonic setting and the seismic activity. The time win-
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Figure 3.8: Epicentral distribution of the earthquakes that occurred during the
sojourn of the process in states 3 and 4 in the eastern subarea during 1964-2017.
Stars (blue) represent main shocks and circles correspond to earthquakes that
occurred before (cyan) and after (red) the main shock, respectively. Earth-
quakes associated with the (a) June 1967 seismic sequence, (b) 14 November
1974, (c) 8 January 1975 events and (d) February-March, 1981 seismic se-
quence.

dow is one more parameter that should be defined with caution. For a robust
evaluation of the clustering method, we need a sufficiently long time interval to
include a significant number of seismic sequences. The third parameter is the
completeness magnitude, which is defined as the magnitude threshold above
which we do not miss any earthquake mainly due to deficiencies of the seismic
network. It is related to the choice of the time window in the sense that we

look for determining a starting date of our catalog when the seismic network
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is sufficiently developed to achieve a low magnitude of completeness including
in this way seismic excitations of a lower scale.

Three major seismic zones in the region of Greece (Figure 3.10), which con-
stitute distinctive seismotectonic units, are chosen to investigate the clustering
properties of seismicity with the use of the proposed MAP-DBSCAN method
in Section 3.3.2.3 . The selection of the three study areas is based on criteria
related to the homogeneity of the type of faulting, the comparatively intense
continuous seismicity and the existence of seismic excitations during the study

period.

3.3.2.1 Data

Simulated ETAS catalog

For the generation of the simulated ETAS catalog firstly we define the broader
spatial and temporal area to avoid the boundary issue, i.e., triggering effect
of events outside the target region and from an earlier period, and then the
target area ¥ X [t;,,tf] with ¥ C 3, and t;, > to which will be the data set
for our study. The broader region is confined by the Greek territory (Figure
1.2) with duration 20 years [to,tf] = [0,20] and the target region will be the
Corinth Gulf area (Figure 1.3), lasting 18 years [t;,, 7] = [2,20].

We generate the mother events of the catalog using the coordinates from
the background seismicity of the Greek earthquake catalog. In this way, they
will be distributed in space according to the faulting geometry of the area. We
consider earthquakes with m,. = 2.5 during the time period 2011-2019 and im-
plement the Nearest-Neighbor declustering algorithm to separate the clustered
from the background events. Then, we produce NV,,q;,, mother events according
to a Poisson distribution with mean value equal to the number of the identi-
fied background events. Their coordinates are sampled with replacement from
the declustered catalog and a small random factor is added. The occurrence

times of the mother events are simulated from a uniform distribution U (¢, tf),
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where o = 0 and t; = 20 years and the magnitudes are generated accord-
ing to the Gutenberg-Richter law (Equation A.7) truncated from the left at
the completeness magnitude, m,. = 2.5, and from the right at the maximum
observed magnitude of the instrumental earthquake records in Greece plus a
small factor, such that m,,., = 7.8. We set the b-value of the GR law equal to
one, b = 1.0, where § = b - log(10).

After the generation of the background events, we simulate their aftershock
number, their occurrence times and the locations according to the productivity
law (Equation A.2), the Omori law (A.3) and a spatial power law (Equation
A.4), respectively, using a typical thinning method. We stop when no more
events are triggered inside the target region. In Table 3.8, we give the param-

eter set that produced the ETAS catalog.

Table 3.8: Parameters used for the generation of the simulated ETAS earth-
quake catalog with m, = 2.5. The target area is 3 X [ti, tf] = [21.3°E —
23.2°F] x [37.9°N — 38.6°N] x [2,20]. The number of clustered events is
N = 4253 and the number of mother events is IV, = 1595.

Parameter Parameter
K 0.1 d 2.41x107°
a 2.19 q 1.805
D 1.13 7y 0.59
c 0.024 (days) p(events/day) 4.50

Earthquake catalogs

The earthquake catalogs of CG, CII and NAS, which we denote henceforth
as D1, D2 and D3, include 25,595, 24,085 and 21,139 events, respectively,
occurring between 2012 and 2019 (Table 3.9). An upgrade on the magnitude
determination software of the Greek seismic network happened in early 2011,
that led to the significant decrease of the completeness magnitude (

, ). So, we chose 2012 as starting year to avoid significant

temporal fluctuations in the magnitude cutoff and include as many earthquakes

as possible in our study.
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Table 3.9: The completeness magnitude, M., for the datasets of the three areas
CG, CII and NAS, along with the productivity, a, and the b-value of the GR
law. N and N, denote the initial number of events and the ones with M > M.,
respectively.

Region Notation N M, N, a b

CG D1 25,595 1.5 13,043 5.57 0.97
CII D2 24,085 2.2 6981 5.80 0.88
NAS D3 21,139 2.1 8328 5.79 0.89
D1 D2 D3
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Figure 3.9: (a-c) Residuals (purple triangles) as a function of minimum cutoff
magnitude, M., for the D1, D2 and D3 data sets, respectively. Blue and cyan
dotted horizontal lines indicate the 10% and 5% residual thresholds, respec-
tively. M. (red triangle) is found as the first magnitude cutoff at which the
confidence 95% is reached. (d-f) incremental (red triangles) and cumulative
frequency (blue triangles) as a function of magnitude. The dashed black line
is the GR law fit according to the GFT method with M. = 1.5, 2.2, 2.1 for
data sets D1, D2 and D3, respectively.

For the determination of the completeness magnitude, we applied the Goodness-
of-Fit (GFT) method (Wiemer and Wyss, 2000). It is based on the assump-
tion that a power law, known as Gutenberg-Richter (GR) law (Gutenberg and
Richter, 1944), logN = a — b+ M, where N the cumulative number of events

with magnitude larger than or equal to M, can approximate the frequency
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Figure 3.10: Maps of the study areas depicting seismicity along with major
faults (yellow lines). (a) The area of Greece with the main structures (thick
black lines), such as the Hellenic Arc (thick black line with triangles), the
North Aegean Trough, and the Kefalonia dextral Transform Fault Zone. Red
arrows represent the kinematics along major fault zones as well as the main
deformational pattern in the Corinth Gulf, characterized by extension. (b) The
area of Corinth Gulf where the major faults are shown (yellow lines) along with
seismicity during 2012-2019. (c) The area of Central Ionian Islands where the
Kefalonia Transform Fault Zone and the collision front are shown (yellow lines)
along with seismicity during 2012-2019. (d) The area of North Aegean Sea
where the NAT is traced (yellow line) along with seismicity during 2012-2019.
The legend is common for the three study areas.

magnitude distribution of earthquakes. In particular, the differences, which are

called residuals, between the observed and the synthetic frequency-magnitude

99



CHAPTER 3. MARKOVIAN ARRIVAL PROCESS FOR EARTHQUAKE
CLUSTERING

distribution are computed for increasing magnitude bins as threshold values.
The completeness magnitude corresponds to the first magnitude bin at which
the difference falls under a predefined error threshold, usually 5%. The pa-
rameters of the synthetic distribution, a and b, are calculated by means of the
maximum likelihood method (Aki, ) and the residuals, R;, for each mag-
nitude bin, M;, between the observed and synthetic distributions are given by
R, =100— (W -100), where B; and S; are the observed and expected
cumulative number of events with M > M;, respectively. Figures 3.9a—c show
the residuals for the three data sets and Figures 3.9d—f present the cumula-
tive and noncumulative frequency and the fitted GR law for the corresponding
complete data sets. The magnitude thresholds and the corresponding esti-
mated b-values for the three data sets are equal to M. = 1.5, 2.2, 2.1, and
b=0.97, 0.88, 0.89 with 13,043, 6981, 8328 events (Table 3.9), respectively.
The epicenters are shown in the map of each study area, for Corinth Gulf in

Figure 3.10b, for Central Ionian Islands in Figure 3.10c and for North Aegean
Sea in Figure 3.10d.

3.3.2.2 Evaluation on synthetic catalog

We implemented the GK, RB, NN and MAP-DBSCAN clustering algorithms
to the simulated ETAS catalog that lasts 18 years and is located within the
Corinth Gulf area. For the window-based method we used three different
temporal and spatial intervals, given by Equations (B.1) (GK1), (B.2) (GK2)
and (B.3) (GK3), respectively. They resulted to 341, 223, 319 earthquake
clusters and 596, 152, 1821 single events, respectively.

For the Reasenberg algorithm, we used the ZMAP tool ( , )
where we provided as input the simulated ETAS catalog and we adopted 3 dif-
ferent sets of parameters, notated as RB1, RB2 and RB3, respectively, which
are given in Table 3.10. RB1 (Table 3.10) corresponds to the original param-
eters proposed in ( ). In the second set, RB2, we extend the

spatial zone by increasing the factor 7, from 10 to 20 km, whereas, in the
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third set, RB3, we also extend the temporal window modifying the parameters
Tmin a0d Tpae (Table 3.10). As a result we have 189, 188, 139 earthquake
clusters and 2437, 2324, 2428 single events, respectively.

Table 3.10: Input parameters for the Reasenberg clustering algorithm. The
first row corresponds to the standard parameter set (Reasenberg, 1985).

PS Tmin Tmax P LTk mmeff ’rfact
RB1 1 10 0.95 0.5 2.5 10
RB2 1 10 0.95 0.5 2.5 20
RB3 0.5 20 0.95 0.5 2.5 20

The Nearest-Neighbor algorithm requires as input only two free parame-
ters, the spatial fractal dimension, dy, and the b value (Equation B.4), which
are considered equal to dy = 1.51 and b = 1.0, respectively. The logarithm of
the separation distance is equal to logny = —5.04, based on the intersection
of the two modes in the 1D density distribution of the logarithmic spatiotem-
poral distances, 7;;, computed through Equation B.5 (Figure 3.11). The NN
algorithm detected 311 earthquake clusters and 1648 single events.

Earthquake proximity Space and time components

0.3 = 0.12
a) b)
0.25¢ o« 0.1
0.2} 8100
z 5 o0 o
c 0.15 o c
2 5 0.06 @
(@] Ro) (@)
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é 0.04
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; 0.02
107 ‘ ‘ ‘ ‘
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Earthquake proximity, log, (1) Rescaled time, T

Figure 3.11: Distribution of the NN distances among all pairs of earthquakes
of the ETAS synthetic catalog. (a) 1D density distribution of logn, with
estimated Gaussian densities for clustered (yellow) and background (orange)
components. (b) 2D joint distribution of rescaled space and time distances.

Next, we implemented the MAP-DBSCAN procedure. In the first step we

need to choose the optimal number of occurrence rates for the MAP model.
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Figure 3.12: Most probable path of the hidden states of the model along with
the magnitude of events as a function of time (grey vertical lines). Each color
is assigned to a different state ¢ with seismicity rate ;. The rate threshold,
Ainr, 18 set equal to Ay = 0.37.

We fitted MAP models up to 7 states and the BIC criterion (Equation 2.17)
suggested a MAP with 6 states. The most probable sequence of the hidden
states of the MAP model is computed through the state probabilities given in
Equation 2.14 and is shown in Figure 3.12. From Figure 3.12 is evident that
state 1 with A; = 0.37 corresponds to the background rate of the data set, so
it was set as the rate threshold )\;,, = A; for the initial separation of seismicity

into potential clusters.

Next, different temporal windows, (T, dt), are tested for merging the po-
tential clusters. The most rigorous selection is with 7" = 0 and dt = 0 and
the most loose one is with 7' = 14 days (potential clusters within 14 days are
merged into one) and dt = 7 (events £7 days from the potential cluster are
included), respectively. Finally, the DBSCAN algorithm is implemented for
5 different distance thresholds (e = {2.5, 7.5, 10, 12.5} km). The minimum
number of events is set to N, = 2 for a better comparison with the other
methods where clusters with at least 2 events can be defined. In Table 3.11

we present details on the parameter tuning.
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Table 3.11: The 30 different parameter sets used for the clusters detection of
the simulated ETAS catalog.

€ Ny, PS T dt PS T dt
1-5 0 0 1620 0 7

2557510125 2 610 7 0 2125 7 7

11-15 14 0 2630 14 7

The method seems rather insensitive to the parameter selection. In par-
ticular, Figure 3.13 presents the Jaccard index values given by Equations 3.2
and 3.3, that describe the efficiency of the method to correctly reconstruct the
initial clusters (J;) as well as to identify the single events (.Js), respectively.
We observe that the Jaccard index values are quite stable with small fluctua-
tions, apart from the smallest upper-distance cutoff, e = 2.5 km, which seems
inadequate to capture the spatial correlations among the events. Furthermore,
the contribution of the temporal constraints to the clustering procedure seems
negligible, with the exception of the two peaks for PS12 and PS27. This is
an indicator that the MAP model has already achieved a sufficient separation
between background and triggered seismicity with the six embedded rates,
Ai, 1 =1,...,6, of the model.

In Table 3.12, we show the Jaccard index values (J;,7 = 1,2) (Equations
3.2, 3.3) for all the clustering algorithms. In particular, for the MAP-DBSCAN
algorithm we show the one with the best results in terms of the Jaccard index

(MAP-DBSCAN27).

Table 3.12: The J;,7 = 1,2, values for 3 parameter sets (PS) of the Reasenberg
and Garden-Knopoff algorithms, respectively, and for the corresponding MAP-
DBSCAN and Nearest-Neighbor methods.

MAP-DBSCAN

PS RB1 RB2 RB3 GK1 GK2 GK3 (PS27) NN
Ji 0.530 0.593 0.648 0.382 0.397 0.585 0.627 0.756
Jo 0.612 0.630 0.617 0.418 0.192 0.676 0.647 0.727
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Figure 3.13: The Jaccard index values, J; with blue and .J, with orange color,
respectively, for all the input parameters of the MAP-DBSCAN method.

The Nearest-Neighbor method shows the best performance among the test-
ing algorithms in the reconstruction of the clusters (J; = 0.756) and in the de-
tection of the mother events (Jo = 0.727). This is also evident by its cumulative
number of background seismicity (purple line in Figure 3.14a), which is the
closest one to the initial catalog (dotted black line). The temporal evolution of
background seismicity is shown in Figures 3.14b—f across the longitude for ease
of reading as west—east normal faults dominate the Corinth Gulf area. For the
NN method the space-time evolution of the declustered seismicity is smooth
without large gaps, although there is a significant concentration of events be-
tween the 7th and 8th year of the catalog, which is also persistent in both RB2
and GK3 methods (orange ellipses in Figures 3.14d-f) and less apparent on
MAP-DBSCAN method (orange ellipse in Figure 3.14c¢). The high efficiency of
the NN method is probably related to the metric it uses, which is similar to the
ETAS one with \;(¢;, z;) = (ti—tj)_lri_jdfl()bmj andc=0,p=1,d=0, ¢=d;

and a = b. The windowing technique seems to overestimate the temporal and
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spatial windows, since it removes large amounts of seismicity (blue ellipse in
Figure 3.14f), in accordance with previous results ( : ).
The same gap between the 14th and 15th year of the catalog is also evident
in the background seismicity from the MAP-DBSCAN method, however, it is
smaller and some sparse seismicity is left (blue ellipse in Figure 3.14¢). On the
other hand, Reasenberg’s declustered catalog has more events than any other
method (pink, magenta and green line, Figure 3.14a) and significant concen-
trations of events are visible in the space-time evolution of the background

seismicity (orange and purple ellipses in Figure 3.14e).
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Figure 3.14: (a) Cumulative number of background events for each algorithm,
the initial ETAS catalog with black color and the mother events of the ETAS
synthetic catalog with the black dotted line. The space-time evolution (b) of
the initial ETAS catalog and of the background seismicity for the four best
algorithms, (c) MAP-DBSCAN27 (J, = 0.647), (d) NN(J, = 0.727), (e) RB2
(Jo = 0.630), (f) GK3 (J; = 0.676). Colored ellipses stand for large gaps and
significant concentration of events.

Best overlapping among the true, X, and the estimated partition, Y, does

not mean necessarily the best detection for the declustered seismicity. For
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instance, the GK3 partition is characterized by a lower index, J; = 0.585,
than the MAP-DBSCAN27 partition, J; = 0.627, however, its declustering
catalog is more accurate (GK3-J; = 0.676 > J, = 0.647-MAP-DBSCAN27).
Nevertheless, both indexes combined (J; + J5), the MAP-DBSCAN partition

shows a higher efficiency from the rest of the algorithms, except from NN.

3.3.2.3 Potential clusters identification in three seismic zones of

Greece

We applied the MAP-DBSCAN procedure to the data sets of the three major
seismic zones, Corinth Gulf, Central Ionian Islands and North Aegean Sea
for earthquakes with M > 1.5, M > 2.2 and M > 2.1, respectively, that
occurred during 2012-2019. We fit MAP models from two up to seven states
for each earthquake sub-catalog, computationally a very demanding process as
the number of states increases, especially for large data sets such as D3 with
13043 events. The BIC is used as a metric to determine the optimal number
of hidden states for each model as it tends to the ”true” model for large data
sets ( , ). The lowest BIC values correspond to
six, seven and again six states of the MAP model for the D1, D2 and D3 data
sets, respectively.

Next, we evaluate the most probable path of the hidden states of the models
though the state probabilities p;(t) = p(J; = @) for i = 1,..., K, given in
Equation 2.14. Figures 3.15a—c illustrate the transitions among the states for
the data sets D1, D2 and D3, respectively. The colored box at each temporal
interval t, <t < t; indicates the state with the maximum probability at the
certain time and the legend contains its corresponding occurrence rate.

The temporal patterns of dataset D1 indicate the dominance of state 2 (yel-
low color, Figure 3.15a) with occurrence rate Ay = 3.01 events/day for almost
the entire period. Nevertheless, there is a slight decrease in the occurrence of
earthquakes (\; = 1.23 events/day) in the second part of the catalog, starting
from 02/2016 with transitions to state 1 (red color, Figure 3.15a) until almost

106



CHAPTER 3. MARKOVIAN ARRIVAL PROCESS FOR EARTHQUAKE
CLUSTERING

(o2}
o

1 HIH \H \ \H“H!m AHH\IHII\IHI\{ I‘I IIHH| I’IIIHIII LI ‘I’I

IH ' HI Ll

r
il

i
o

———1

N
o

: — 0
|-A1=1.23 2,=3.01 [ ,=6.86 [ ,=2643 I \.=58.53 [N ».=140.28 ‘

7_6) T T T T 200
6f |
gs 1T ] v sy I i
zar Il 11
P3r | 1 | i | |
2

0
(.08 %,=2.03 [N A,=7-72 [ ,=25-58 [N *5=62.81 [N »=70-5¢ [N »,~19111 |

*ﬁ | R L1
Hil | HH \ i \H (RN RO

Daily frequency

-
(&)
o

o
i o
Daily frequency

T
1
a
o

]
i i [
] H | TR

Daily frequency

0
2012 2013 2014 2015 2016 2017 2018 2019 2020
Time
I 2,=3.53 [ 2,=11.39 [N >,=36.73 [N 5=6725 [ ;16667 |

Figure 3.15: Most probable path of the hidden states of the model along with
the daily frequency of events (gray vertical bars) with (a) M > 1.5 for DI,
(b) M > 2.2 for D2 and (c) M > 2.1 for D3 datasets, respectively. Each color
is assigned to a different state ¢ with seismicity rate ;. Inset magnifies the
transitions among the states, which are otherwise difficult to visualize due to
the short sojourn times compared to the study period. The rate threshold,
Ainr, 18 set equal to Ay = 3.01, Ay = 0.58, A\ = 1.53 for the D1, D2 and D3
datasets, respectively.

the end of the catalog in 12/2019. This is probably related to the lack of
seismic sequences during the last part of the study period compared to the
previous intense seismic activity especially during the period 2013-2014 in the
western subarea of the CG (I<apetanidis et al.; 2021). The rate threshold is
set equal to Ay = A9, which we consider as the background rate during the

study period.
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The seismicity of the CII area is dominated by the two major sequences
during the study period, the 2014 Kefalonia doublet (M,6.1 and M,,6.0)
( , ) and the M,6.5 2015 Lefkada earthquake sequence
( : ). States 7 (brown), 6 (dark cyan), 4 (dark blue), 3
(orange) and 2 (yellow) in Figure 3.15b are clearly associated with the after-
shock evolution of the two sequences, essentially, they approximate the Omori
temporal distribution. Background seismicity is described by state 1 (red)
with occurrence rate A\; = 0.58 events/day, which we set as rate threshold for
the primary classification of seismicity into potential clusters.

Finally, dataset D3 also contains some major sequences, the 2013 M,,5.8
North Aegean ( , ), the 2014 M,,6.9 Samothraki (

, ) and the 2017 M,6.4 Lesvos earthquake sequences (

, ), whose aftershock temporal distribution is approxi-
mated by states 6 (dark cyan), 4 (dark blue), 3 (orange) and 2 (yellow) of the
model (Figure 3.15¢). The rate threshold value is set equal to Ay, = A;.

In general, we observe significant variations in the temporal evolution of
the seismic excitations between the CG and the CII and NAS areas. Figure
3.15 illustrates that the daily frequency of events (grey vertical bars) during
seismic sequences in CII and NAS is decreasing in time, typical of main shock—
aftershock sequences, whereas in CG we observe large fluctuations in the daily
frequency, common for earthquake swarms, as in 2014 when multiple seismic
excitations occurred in the western subarea of CG.

Consecutive events above the rate threshold, A\, are classified into groups
which are called potential clusters. The three data sets, D1, D2 and D3 consist

of 314, 49 and 281 potential clusters, respectively.

3.3.2.4 Sensitivity analysis

We now provide more details on the choice of the parameters and how they
affect the spatiotemporal evolution of background seismicity. We implemented

the clustering procedure, MAP-DBSCAN, for 16 different combinations of pa-
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rameters which are shown in Table 3.13. In particular, we tested four different
sets of temporal constraints, (T, dt), for the merging of the potential clusters
of the three data sets and then we applied the DBSCAN algorithm to the
merged clusters in order to separate them based on their spatial density. The
minimum number of neighbors for the determination of a cluster is set equal to
4 (Npts = 4) for avoiding cases with few events. This is an appropriate choice

for two-dimensional data according to ( ).

Table 3.13: The 16 tested parameter of MAP-DBSCAN method for the three
datasets D1, D2 and D3.

€ Nt PS T dt PS T dt
1 0 0 3 0 5
25575100 4 ) - 0 | - .

For the determination of the distance threshold e, we computed the k-
distances between events assigned to the same potential cluster, since the DB-
SCAN algorithm is implemented in events that have been already grouped into
clusters based on their temporal proximity. This is a procedure proposed by

( ), which is commonly used to constrain the distance threshold
( , ). In particular, for each event included in the potential
cluster, its k-nearest neighbor is computed and plotted in ascending order. If
we choose an arbitrary event, i, set the distance threshold € to k-dist(i) and
the parameter N, to k, all events with an equal or smaller k-dist value will
become core points, in other words, they will be assigned into a cluster.

( ) proposed as best € value the one that corresponds to a change
in the slope of the curve, as corner points indicate a change in the degree
of correlation among events. For k& = 4, which corresponds to the minimum
number of neighbors (N,), gradient changes in the slope range between 2.5
and 10 km in the data sets of both CG (Figure 3.16a) and NAS (Figure 3.16¢)
areas, whereas for the CII area (Figure 3.16b), changes in the slope of the

curves initiate slightly sooner (below 2.5). The minimum one is chosen as
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equal to € = 2.5 in order to also ensure that the location errors of the catalog

are considerably lower.
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Figure 3.16: The k-nearest neighbor plot of the potential clusters with N' > 100
events in (a) CG (b) CII and (c) NAS. Black horizontal dashed lines indicate
the range of € values given as input to the DBSCAN algorithm and each color
corresponds to a potential cluster.

For the 16 different realizations of the clustering algorithm, MAP-DBSCAN,
we investigated the spatiotemporal properties of the background seismicity,
i.e., events that have not been assigned to a cluster. Figure 3.17 presents
the cumulative number of the declustered seismicity for each set of parame-
ters along with the initial data sets. Peaks and pronounced concavities in the
cumulative curves are indicators of triggered seismicity wrongly assigned as
background and vice versa. In data sets D1 and D2 we observe such concaves
for thresholds e > 5 km and a rather stable curve for ¢ = 2.5 km (Figure
3.17a-h), suggesting that events are correctly separated as background and
triggered ones. Therefore, the distance threshold is set to € = 2.5 km, for both
data sets. In data set D3, Figure 3.17i-1 show that the curves with ¢ > 7.5
km exhibit large concaves, indicating that background seismicity is incorrectly
assigned to clusters. For the smallest threshold € = 2.5 km, some small peaks
appear and thus the e = 5 km as the optimal value was selected. Data set D3

contains offshore seismicity in the NAS area, with probably higher location
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Figure 3.17: Cumulative number of the initial data sets (red line) and cumu-
lative number of background seismicity for each parameter set (PS1-PS4) and
for four different distance thresholds (¢ = 2.5, 5, 7.5, 10 km). (a—d) Data set
D1, (e-h) dataset D2 and (i-1) dataset D3.

errors. This supports our choice for a larger distance threshold.

To further explore the differences between the spatiotemporal evolution
of the declustered catalogs, the space-time pattern of the background events
is examined, comparing the full and the declustered catalogs. In data set
D1, a persistent gap of seismicity appears during the second half of 2014,
independently of the chosen temporal constraints, associated with the two large
earthquake swarms in that period (Duverger et al.; 2018). Due to the intense
seismic activity during 2013-2014 in the western Corinth Gulf (Kapetanidis
et al, 2021; Michas et al.; 2021), the classification of seismicity into clusters
becomes more complicated, so we have chosen a rather conservative parameter
set, PS3, with T" = 0. In this way, we avoid merging distinct clusters that
are spatio-temporally close to each other. Figure 3.18a shows the space-time

evolution of the declustered catalog that corresponds to the final parameter
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Figure 3.18: Space-time evolution of the background and initial seismicity for
data set (a,b) D1, (c,d) D2 and (e,f) D3. Purple lines denote the cumulative
number of events.

set. The main seismic excitations present in Figure 3.18b are detected, while
preserving the patterns of the background seismicity. In dataset D2, the results
are quite similar for all the tested temporal constraints, and for this reason, we
adopted parameter set PS4 with T' = 5 days, which is a more loose constrain.
It is more likely for seismic excitations close in time to be part of the same main
shock—aftershock sequence, due to the two major sequences that dominate in
the study period. In the initial dataset (Figure 3.18¢), the two major sequences
are visible, whereas they are removed after the implementation of the clustering
algorithm, while preserving the main patterns of background seismicity (Figure
3.18d). Finally, for the NAS area, the differences over the temporal constraints
seem negligible, therefore, we chose parameter set PS4. Figure 3.18e illustrates
a standard scattering of the background seismicity in space without gaps and

high-density areas, whereas the main seismic sequences visible in Figure 3.18f
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have been identified.

3.3.2.5 Cluster analysis in the three seismic zones

Table 3.14 gives the final parameter set of the clustering procedure for each
data set based on the analysis in Section 3.3.2.4 and a summary on the statistics
of the detected clusters. In the CG area, we identified the largest number of
seismic clusters (255) due to the increased detectability of micro-seismicity
(low completeness magnitude threshold), however, they are short in size (n =
18.28) and duration (7 = 12.50). Conversely, the CII area is characterized
by a small number of seismic clusters (45) but with large mean size (n =
118.43) and duration (7 = 54.60). The clustered seismicity is prevalent (75%),
whereas in CG and NAS, the background component is more dominant than
clustered seismicity with 64% and 56%, respectively (Table 3.14). In CG, this
is explained by the lack of large main shocks during the study period and the

occurrence of few moderate events, the largest number with M = 5.2.

Table 3.14: Cluster statistics and the parameter set of the clustering algorithm
for the three data sets. N corresponds to the number of clustered events
and N, to the background seismicity frequency. 7 and 7 are the mean duration
in days and size of the clusters, respectively.

Dataset (T, dt, €, Np) Nejust Nig # clusters T n
D1 (0, 5, 2.5, 4) 4662 (36%) 8381 (64%) 255 12.50 18.28
D2 (5, 5, 2.5, 4) 5221 (75%) 1770 (25%) 45 54.60 118.43
D3 (5, 5, b, 4) 3688 (44%) 4640 (56%) 187 15.08 19.72

Corinth Gulf Area

The majority of the clusters are located on the western subarea where 22 out
of 27 clusters with N > 30 occurred. The main activity is located offshore
Aigion and also offshore Psathopyrgos fault (Figure 3.19a). The activity of
the eastern subarea consists of smaller clusters that are mainly concentrated
offshore Xylokastro and Perachora faults, as well as near Itea Gulf (Figure

3.20a).
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Figure 3.19: (a) Spatial distribution of the centroids of the identified clusters
for the western subarea of Corinth Gulf along with major faults (yellow lines).
The size of the circles is proportional to the earthquake number in each cluster,
whereas the duration is represented by the color scale. (b) Spatial distribution
of the clusters with N > 30 events. The index of each cluster is provided in
the inset box.
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The western subarea of the Corinth Gulf is characterized by rich seismic
activity, especially in 2013-2014, when 13 out of the 22 clusters with N > 30
occurred. One of the major detected sequences is the 2013 Aigion swarm (C'6
in Figure 3.19b) which initiated on 21 May 2013 with a plethora of small events
(M > 1.5) and several bursts associated with earthquakes of magnitudes rang-
ing between 3.3-3.7 (Figure C.2) ( , ; :

). Two distinct excitations followed (C8 and C'10 in Figure 3.19b) in
accordance with the ones observed by ( ). The first clus-
ter began on 7 July with some activity prior to the M = 3.7 event on 15
July, 2013, and lasted until 27 August, 2013 (Figure C.2). The second half of
2014 is also a well-studied period with intense seismic activity. Five clusters
with N > 30 are detected (C15, C'16, C18, C19 and C20) in the western
subarea, including the offshore Aigion M4.8 earthquake on 7 November 2014,
associated with C'19 (Figure 3.19b), and the M4.6 event on 21 September
2014, associated with the earthquake swarm located between Nafpaktos and
Psathopyrgos ( , ) (C15 in Figure 3.19b). Persistent activity
since 22 July 2014 is also observed offshore Aigion (C'16), close to the earth-
quake swarm, C'15, which began on 7 November 2014 (Figure C.4). In 2012,
fewer clusters are observed, mostly during the first semester, with three clus-
ters comprising N > 30 events, C'1, C2 and C3, and a plethora of smaller ones
(Figures 3.19b and C.1). Between November 2013 and July 2014, the activity
is sparse with three relatively large clusters, C'11, C'12 and C'14 (Figures 3.19b
and C.3). Six more clusters with N > 30 are observed until the end of 2017
(C21, C22, C23, C24, C25, C27, Figure 3.19b).

The eastern subarea is characterized by more sparse activity. A major seis-
mic sequence, Offshore Perachora (C4 in Figure 3.20b), is detected, including
two sub-sequences, the first initiated on 22 September and the second on 30
September 2012 (Figure C.5). Two relatively large clusters, C'13 and C'17,
are observed near Itea Gulf; the former lasted almost two weeks at the end

of March, 2014, and the latter—almost three months between August and
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October 2014 (Figures 3.20 and C.6).
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Figure 3.20: (a) Spatial distribution of the centroids of the identified clusters
for the eastern subarea of the Corinth Gulf along with the major faults (yellow
lines). The size of the circles is proportional to the earthquake number in
each cluster whereas the duration is represented by the color scale. (b) Spatial
distribution of the clusters with N > 30 events. The index of each cluster is
provided in the inset box.

Central Ionian Islands area

The seismicity of CII is dominated by the 2014, Kefalonia and 2015, Lefkada
major main shock—aftershock sequences, each one comprising 2829 and 1396
events, respectively. Essentially, 4225 out of the 5221 clustered events belong
to these sequences (Table 3.14). Furthermore, 45 clusters are detected in total
with the main activity concentrated along the KTFZ (Figure 3.21a).

The two main shocks of sequence /1 (Figure 3.21b) with M = 6.1 and
M = 6.0 occupy the southern and the central part of the onshore area of
Kefalonia Island. The 2014 Kefalonia earthquake sequence (I1 Figure 3.21)
started on 19 January with the first main shock occurring on 26 January
(M = 6.1), and aftershock activity extending over 35 km (Karakostas et al.,
2015), part of which hosted the second main shock (M = 6.0) that occurred

on 3 February and the compound aftershock activity. A sub-cluster is also de-
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Figure 3.21: (a) Spatial distribution of the centroids of the identified clusters
for the area of Central Ionian Islands along with the trace of the Kefalonia
Transform Fault Zone (yellow lines). The size of the circles is proportional to
the earthquake number in each cluster, whereas the duration is represented by
the color scale. (b) Spatial distribution of the clusters with N > 30 events.
The index of each cluster is given in the inset box.

tected offshore to the southwest of Kefalonia Island (/2 in Figure 3.21b) that
is deployed concurrently with the main sequence (Figure C.7). In addition,
two distinct clusters, I3 and 74 (Figure 3.21b), are revealed, which occurred
between November and December 2014 (Figure C.8), across the edges of the
double rupture. They might be triggered by the stress transfer of the main
ruptures, indicating activation of adjacent fault segments. The seismic activity
of cluster I5 (Figure 3.21b) comprises 164 earthquakes that occurred within
100 days (Figure C.8). It retains the most interest because it is essentially two
seismic excitations evolving at the same time. The first initiated in the Myrtos

Gulf and the second offshore the south part of Kefalonia Island. The activity
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of the I7 cluster (Figures 3.21b and C.9) spreads along the western coastline
of Lefkada and Kefalonia Islands, far beyond both sides of the 2015 Lefkada
main rupture. To the south the aftershock activity is sparse, probably due
to the large amount of stress released in the main rupture, revealing that the
main slip is associated with a fault of about 17 km in length (

: ). In addition to cluster 14, two clusters (16 and I9 in Figure C.8
and Figure C.10, respectively) are detected in the area between Lefkada and
Kefalonia, extending to about 15 km, which is considered as a transition zone
encompassing step-over structures ( , ). All of them relate
to the E-W-oriented, parallel step-over faults, similar to the ones detected in
the microseismicity cluster analysis between September 2016 and December

2019 in the study area ( , ).

North Aegean Sea area

The NAS area consists of 187 clusters, including both main shock—aftershock
sequences and earthquake swarms (Table 3.14). Figure 3.22a shows that the
main clustered activity is concentrated along the NAT and the sub-parallel
branches, as well as in the southeastern subarea.

The first seismic excitation with N > 30 events (N1 in Figure 3.22b) is
a sequence of interest since two moderate events (M = 5.2 and M = 5.3)
occurred in 3 weeks, both producing their own aftershocks (Figure C.11). The
2013, January 8 M = 5.8 North Aegean earthquake ( , )
along with its aftershock activity (cluster N3 in Figure 3.22b) is also detected.
The aftershock activity is temporally divided into two clusters (Figure C.12).
The 24 May 2014 M = 6.9 Samothraki main shock was followed by after-
shock activity confined to three major clusters (N4, N5, N6 in Figure 3.22b)
and some secondary clusters with N > 10 events (Figure C.13), which are
in accordance with the ones observed by ( ). The seis-

mic activity that took place near the Aegean coast of NW Turkey during
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Figure 3.22: (a) Spatial distribution of the centroids of the identified clusters
for the area of North Aegean Sea along with the trace of North Aegean Trough
(yellow lines). The size of the circles is proportional to the earthquake number
in each cluster, whereas the duration is represented by the color scale. (b)
Spatial distribution of the clusters with N > 30 events. The index of each
cluster is given in the inset box.

January-October 2017 (Mesimeri et al., 2018b) is divided into three clusters
with N > 30 (N10, N11 and N14 in Figure 3.22b) and two minor clusters
with 22 and 23 events, respectively (Figure C.14). The strong main shock
(M = 6.4) that occurred on the 12th of June 2017 offshore, south of the SE
coast of Lesvos Island, along with its intense aftershock activity, is identi-
fied and illustrated in Figure 3.22b (N12). Two major (N > 30) secondary
outbursts of clustered activity occurred concurrently on the west (N17) and
east (IN16) side of the sequence (Figure C.15). A thorough analysis revealing
multiple spatial clusters of the sequences is conducted by Papadimitriou et al.

(2018).

3.3.2.6 Regional variability of clustering properties

In this section, we investigate regional variations in the clustering behavior

of the detected seismic sequences, in particular, on their productivity rates
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and on their temporal evolution that can differ among areas with distinct
seismotectonic characteristics.

The inverted generic ETAS parameters for the three areas are given in
Table 3.15. There are 27 sequences in CG (Figures 3.19 and 3.20), 9 in CII
(Figure 3.21) and 17 in NAS (Figure 3.22) from 2012 until 2019 with N > 30
events, however, we removed cluster C26 from the computations, since it is
located at the boundaries of the study area (Figure 3.20) with part of the

aftershock data being omitted.

Table 3.15: Generic ETAS parameter values for the three study areas and the
B value of the GR law. N* denotes the number of sequences with N > 30.

Area p c a K u B N*
CG 1.23 0.0171 0.82 0.74 043 2.13 26
CII 1.31 0.11 1.29 0.44 0.15 221 9
NAS 1.26 0.0324 1.04 0.51 0.28  2.03 17

The parameter a for CG (a = 0.82) is the lowest among the three areas,
indicating the dominance of swarm activity presumably due to fluid flow in
accordance with many relevant studies ( , : ,

). Low a values characterize areas with high fluid flow ( ,

), even though the estimated value can be underestimated due to mag-
nitude incompleteness after the occurrence of the main shock or due to the
existence of time-dependent background seismicity ( , ). Con-
versely, in CII, the estimated value (a = 1.29) is relatively larger compared
to the former region (¢ = 0.82), indicating the dominance of typical main
shock—aftershock sequences. In the NAS area, a moderate value is acquired
(a = 1.04), probably due to the co-existence of swarm activity and aftershock
sequences. Another indicator for the existence of swarm activity in CG is the
large value of the background seismicity (x = 0.43) compared to NAS and CII.
High values of the background rate can indicate the existence of aseismic load-
ing transients ( , ). ( ) observed increased

values of the background component of the fitted ETAS model when it was
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applied to pre-swarm and swarm activity, respectively.
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Figure 3.23: (a) The number of events triggered by an earthquake of magni-
tude M; at CG (blue), NAS (orange) and CII (yellow), respectively. (b) The
temporal distribution of triggered aftershocks.

Figure 3.23a shows the number of direct triggered events, K (M;), from an
earthquake of magnitude M; for the three areas. We used Equation 3.7 for the
computations and considered m} = 2.2, which is the maximum completeness
magnitude among the three data sets. The exponent 3 is the mean value over
all detected clusters of each area and its value is given in Table 3.15. In CII, the
seismic sequences seem to be more productive, as shown in Figure 3.23a, with
NAS and CG to exhibit smaller values. Combined with the higher background
rate for the area of CG (u = 0.43), we could say that a significant part of
Corinth Gulf’s sequences cannot be attributed to the triggering effect of main
shocks but different underlying mechanisms seem to play an important role.
Conversely, in CII area, main shock—aftershock sequences seem to dominate,
generating a rich number of aftershocks (very low background rate, ;= 0.15,
and high productivity of mother events). Concerning the distribution of af-
tershocks in time, the normalized Omori law distribution is used, given by

Equation A.3 (Figure 3.23b).
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3.3.2.7 Sequence-specific clustering properties

Next, we estimate the a-values for the individual sequences of each area by
maximizing LL as a function of a, K and the background rate p, while keep-
ing the rest of the parameters fixed for clusters with N < 80. In this way, we

increase the robustness of the inversion procedure since there are sequences

with few events. A similar procedure was followed by ( ) and
( ) who demonstrated that fitting multiple parameters
for a single sequence can be unstable and ( ) who im-

plemented this method for the estimation of California aftershock parameters.
We intend to investigate potential differences in the productivity (a, K) and
the background rate, u, among sequences of each area and their relation to
different underlying triggering mechanisms. Productivity parameters a and K
are correlated, so we enabled both to run during the iterative procedure. We
also examine the value of the background rate among sequences since it can
be also an indicator of aseismic transients in a region. Both parameters, a and
K, are not influenced by pu, as we verified it by implementing the inversion

procedure, also keeping parameters a and K fixed.

Application to Corinth Gulf

In Table 3.16, the inverted parameters for the 26 clusters of dataset D1 with
N > 30 are given. We adopt the generic values of Omori law (p and ¢ in Table
3.15) for clusters with N < 80 to increase the stability of the inverted param-
eters. We observe relatively high background rates for most of the sequences

and low a values, in particular, a < 1 for 10 out of the 26 clusters.

Concerning the 2013 Aigion earthquake swarm and its subsequent bursts
of activity (clusters C6, C8 and C'10), we observe relatively low productivity
values of the ETAS model (a = 0.20, 0.34, 0.10, Table 3.16) in accordance

with studies suggesting pore-fluid pressure as the main triggering mechanism
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Table 3.16: Details on the 26 clusters with N > 30 events in CG area and the
inverted ETAS parameters. The generic values of the Omori law, p and ¢, are
adopted for clusters with N < 80.

1D T; Tend N p (& b a K K Maa

Cl  12/1/12  23/1/12 33 123 0017 1.20 049 079 1.03 3.1
Cc2  13/1/12  27/1/12 33 123 0017 083 1.69 023 125 3.1
C3  4/3/12  6/4/12 65 123 0017 1.03 153 026 1.05 3.0
C4  22/9/12  3/10/12 69 123 0017 099 036 094 144 5.0
C5  27/12/12  1/1/13 34 123 0017 0.82 184 021 132 3.8
C6  22/5/13  28/6/13 310 145 0.012 0.96 020 090 047 3.7
C7  8/6/13  28/6/13 144 1.11 0.007 1.22 0.60 130 1.00 3.0
C8  7/7/13  27/7/13 128 1.04 0.001 0.77 034 248 059 3.7
Co  8/9/13  13/9/13 65 123 0017 1.19 128 0.79 2.74 2.8
C10 29/10/13 6/11/13 68 123 0.017 1.27 0.10 091 287 3.1
Cl1l 19/1/14 16/1/14 33 123 0017 092 126 050 1.37 3.8
C12 29/1/14 10/2/14 70 123 0017 0.81 1.39 029 1.92 3.9
C13 21/3/14  1/4/14 52 123 0017 0.83 297 0.009 341 4.0
Cl4 8/6/14 11/6/14 74 123 0017 081 092 064 486 4.3
C15 21/7/14 31/10/14 506 1.37 0.051 1.04 1.38 034 1.32 46
C16 22/7/14 1/11/14 95 126 0014 1.15 072 045 044 2.8
C17 24/7/14 26/10/14 61 123 0.017 094 1.72 016 035 3.4
C18 23/7/14 31/10/14 121 125 0.131 095 1.77 024 005 4.7
C19 7/11/14 18/12/14 228 1.07 0.071 092 180 055 0.76 4.8
C20 7/11/14 14/12/14 36 123 0.017 1.05 127 041 042 3.1
C21 1/10/15 6/10/15 44 123 0017 1.16 1.97 049 1.61 2.8
C22 27/7/16  5/8/16 32 123 0017 0.75 350 009 045 2.7
C23  1/8/16  8/8/16 147 279 0.160 098 0.10 0.85 298 3.4
Cc24  9/1/17  23/1/17 104 279 0.702 0.82 1.70 0.15 1.05 4.5
C25 14/7/17 17/7/17 39 123 0.017 043 073 040 595 4.2
C27 30/10/17 2/11/17 31 123 0.017 050 1.68 0.10 6.19 3.5

during the excitation ( : ). Clusters C'11 and C'12 are
part of the same swarm (Figure C.3) that occurred offshore Psathopyrgos fault.
Their relatively high background rates (u = 1.34, 1.92) show that a significant
part of the clustered seismicity cannot be explained by the empirical laws of
the triggering part of the ETAS model. Cluster 14 is part of a major swarm
that began on 8 June 2014 (Figure C.3). ( ) did not find
high diffusion rates that are related to fluid pore pressure. However, the large
background rate found in our study (u = 4.86) and the low a value (a = 0.92)
suggest the existence of a non-typical main shock—aftershock sequence, with

more complex triggering mechanisms being responsible, such as aseismic creep.
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Similarly, the largest cluster in the dataset, the C'15, located offshore Nafpak-
tos, is characterized by relatively high background rate (u = 1.32) and low
productivity (e = 1.38), more typical values for swarm activity. In contrast,
clusters C'18 and (C'19 that are more typical main shock—aftershock sequences
with a distinct in magnitude event in the initiation of the sequence (Figure
C.4), have low background rates (1 = 0.05, 0.76) and relatively high productiv-
ity rates (a = 1.77, 1.80). The two clusters near Itea Gulf show contradictory
results and in particular, the first one, C'13, is characterized by a high back-
ground rate (u = 3.41), whereas the second, C'17, which occurred four months
later, exhibits a much smaller background value (¢ = 0.35) more typical for
main shock—aftershock sequences. However, biases can exist in the inversion
of the parameters for clusters with a small number of events, so we should be

cautious with the characterization and interpretation.

Application to Central Ionian Islands

In Table 3.17, the inverted parameters for the nine clusters identified in the
area of CII with N > 30 events are given, where we kept fixed the Omori law
parameters p and ¢ (generic values in Table 3.15) for clusters with N < 80
during the estimation procedure.

Table 3.17: Details on the 9 clusters with N > 30 events in CII area and the

inverted ETAS parameters. The generic values of the Omori law, p and ¢, are
adopted for clusters with N < 80.

ID T; Tena N p c b a K B Mpas

11 19/1/14 16/9/14 2829 142 024 0.79 131 040 0.17 6.1
12 23/1/14 14/9/14 55 131 011 123 138 030 012 37
I3 5/11/14 11/12/14 134 1.36 0.06 099 1.44 029 099 5.1
14 13/11/14 12/12/14 66 1.31 0.1 093 143 038 037 49
I5  5/1/15  27/4/15 164 1.05 0.01 093 282 010 076 4.4
16 18/1/15 24/4/15 71 1.31 0.1 1.08 191 036 0.15 38
17 13/11/15 26/6/16 1396 1.45 0.30 0.86 1.51 0.29 045 6.5
I8 20/11/15 25/6/16 65 1.31 0.11 0.84 094 053 007 43
19 4/4/17  4/5/17 67 1.31 0.1 095 226 018 070 3.9
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The estimated ETAS parameters of the sequence I'1 are in accordance with
the existence of a main shock—aftershock sequence described in Section 3.3.2.5.
In particular, the background rate is relatively low (x = 0.17), indicating that
the seismicity is adequately described by the triggering part of the ETAS in-
tensity function. The seismic activity of clusters I3 and I5 (shown by green
and blue color in Figure C.8, respectively) are characterized by relatively high
background rates (u = 0.99, 0.76, Table 3.17). The space-time evolution of
the former indicates a rapid migration in the beginning of the sequence (Fig-
ure C.8), whereas, for the latter, it is characterized by the smallest K value
(K = 0.10) in the area although the a value is rather large. Taking into ac-
count the lack of distinct main shocks at the initiations of the sequences, they
can be characterized as earthquake swarms, one of the few observed in an area
which comprises mostly main shock-aftershock sequences. Concerning cluster
19, located in the transition zone between Lefkada and Kefalonia Islands, there
is evidence for swarm activity due to the relatively high background seismicity
rate (= 0.70). Ultimately, the major main shock—aftershock sequences in
the area, I'1, I7, get the highest p values (p = 1.42, 1.45), meaning that they

are characterized by rapid aftershock decay in time.

Application to North Aegean Sea

In NAS area cluster N1, which comprises two moderate events (M = 5.2 and
M = 5.3) within a period of 3 weeks, exhibits the lowest a value (a = 1.10)
among the main detected clusters, which could be an indicator of fluid dif-
fusion in the area (Table 3.18). Another case worth mentioning is the 24
May 2014, M = 6.9, Samothraki seismic sequence which is divided into three
major clusters (N4, N5, N6, in Figure 3.22). The estimated background
rates of the three major clusters are relatively small (u = 0.16, 0.60, 0.29),
whereas the opposite holds for the scaling parameter, a, for the first two clus-

ters (a = 1.82, 1.76). Concerning the seismic excitation that consists of clus-
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Table 3.18: Details on the 17 clusters with N > 30 events in NAS area and
the inverted ETAS parameters. The generic values of the Omori law, p and c,
are adopted for clusters with N < 80.

ID T; Tena N p c b a K B Mpas

N1 14/2/12  4/4/12 136 141 0.03 096 1.10 040 054 53
N2 27/4/12  3/5/12 30 126 003 053 164 016 1.07 48
N3 8/1/13  6/3/13 285 1.07 0.06 0.88 239 0.06 0.55 5.8
N4 24/5/14  9/7/14 94 141 078 0.74 182 00l 016 6.9
N5 24/5/14 11/7/14 153 160 0.16 0.69 1.76 0.16 0.60 4.5
N6 24/5/14 22/6/14 83 149 004 064 125 030 029 44
N7 6/12/14 29/12/14 41 126 003 067 1.60 0.15 031 4.9
N8 26/3/15 2/4/15 30 126 003 097 145 036 1.76 4.1
N9 29/10/16 31/10/16 49 126 0.03 0.89 244 028 288 34
N10 26/1/17 28/3/17 568 129 0.04 073 131 036 100 5.1
NIl 7/4/17 12/5/17 38 126 003 1.05 1.29 0.1 091 34
N12 12/6/17 8/8/17 614 148 0.12 0.79 146 025 086 6.4
N13 13/6/17 29/7/17 48 126 003 1.03 242 0.7 035 3.7
N14 15/8/17 23/10/17 38 126 0.03 1.06 1.13 039 026 3.5
N15 16/8/17 11/11/17 34 126 0.03 1.08 146 0.36 0.15 3.5
N16 17/8/17 8/11/17 39 126 003 1.24 239 0.14 031 3.2
N17 24/8/17 11/11/17 35 126 003 1.01 223 0.13 027 3.6

ters N10, N11 and N14, the relatively low productivity rates of the ETAS
model (@ = 1.31, 1.29, 1.13) and, conversely, the relatively high background
rates for the first two, N10 and N11, clusters (¢ = 1.00, 0.91) may indicate
fluid intrusion. This observation is in accordance with the study of

( ) who derived high background rates after the estimation of the
ETAS model to the empirically divided 5 sub-clusters of the primary seis-
mic activity (January-March 2017). A fast-diminishing aftershock activity is
observed for the main shock (M = 6.4) that is located SE of Lesvos Island
(N12), which is translated into a high Omori exponent, p = 1.48. Addition-
ally, low background rates characterize the three main clusters, N12, N16 and
N17, indicating that they are probably related to tectonic and coseismic stress
transfer from previous seismicity ( , ). Worth men-
tioning are the remarkable high background rates for clusters N8 (u = 1.76)
and N9 (pu = 2.78), which could be an indicator for seismic activity driven by

transient forces, however, the number of events is rather small and could have
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led to significant biases in the inversion of the parameters.

3.4 Summary and discussion

In the first part, we introduce the MAP model and its use as a change point
tool for seismicity rates. We evaluated its ability to detect changes in the
seismicity rate related either to main shock-aftershocks or earthquake swarms
to the 1964-2017 Corinth Gulf earthquake catalog with M > 4.5. This is a data
set that includes well studied seismic sequences that facilitate the evaluation
of the model.

Concerning the estimation of the parameters we used the grid-based method
for the choice of the initial values of EM algorithm and the parallel framework
(described in Section 2.4) reducing the highly demanding computation cost.
AIC and BIC demonstrate that the temporal evolution of the 1964-2017 earth-
quakes with M > 4.5 in the two subareas of Corinth Gulf can be described
through the adoption of four occurrence rates, i.e., low, moderate, high and
very high and the duration of the associated periods can be estimated by the
model. The residual analysis shows that the MAP model captures the main
temporal features of the observed seismicity. In addition, we compared the
MAP model with the MMPP which belongs to the same class of stochastic
models and it has been used for the modeling of earthquake’s temporal distri-
bution ( , : , ). Their difference lies on
the structure of their rate matrices. In MAP, changes in the seismicity rate
can be triggered by a previous event, while under the MMPP formulation seis-
micity rate can change multiple times before the earthquake occurrence. We
believe that these conditions have an impact on the adaptability of the model
to the data, as the MAP model shows better results compared to MMPP in
terms of AIC and BIC differences.

The evaluation of the transitions among the hidden states of the model

showed that main shocks with M > 5.6 in the western subarea occurred in
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states 3 and 4 with mean sojourn time until the next earthquake occurrence
9 hours and 11 minutes, respectively. This means that an aftershock with
M > 4.5 is expected in the next hours after the occurrence of an earthquake
with M > 5.6. States 3 and 4 correspond mainly to main shocks and the
immediate aftershocks in both subareas, whereas mostly in the western subarea
state 2 in some cases corresponds to secondary aftershocks and foreshocks. In
the eastern subarea a more episodic behavior dominates, since intense seismic
periods of short duration alternate with long relatively quiescent ones.

Since our model is purely temporal, it would be challenging to apply the
MAP on induced seismicity catalogs, where the spatial area is restricted, in
order to detect changes in the seismicity rates. Assigning a spatial component
could increase the association between seismicity rate changes and seismic
excitation, as there are cases where events occur very close in time but not in
space.

The two-step clustering procedure, MAP-DBSCAN, for the detection of
spatiotemporal seismic clusters combines the Markovian Arrival Process for
an initial separation of the background seismicity from potential seismic exci-
tations detecting changes in the seismicity rate and a density-based clustering
algorithm, DBSCAN, for the detection of areas with high spatial density. The
consistency and efficiency of the MAP-DBSCAN method is examined on a
simulated ETAS catalog that produces the main features of seismicity in the
region of Greece. In particular, we showed that our method is able to identify
the connections among the events generated by a spatiotemporal ETAS model,
as well as the mother events that initiated each cluster. The knowledge of the
links among the events enabled the comparison of the method with some well
known clustering algorithms, like the Gardner and Knopoff, the Reasenberg
and the Nearest-Neighbor, by the use of the Jaccard index. This is a tool for
measuring the overlap between the original partition of events into clusters and
background seismicity, and the estimated one after the implementation of each

clustering method. The results show that MAP-DBSCAN method is very com-
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petitive and in most cases outperforms the tested algorithms. The NN achieves
the best reconstruction of the clusters (Table 3.12), which is probably related
to the similarity of its metric with the ETAS one that is used for the genera-
tion of the seismicity. The window-based method overestimates the clustered
seismicity in accordance with the observations made by

( ), whereas the Reasenberg link-based method seems to overestimate the
background events (Figure 3.14).

We applied the method to three major seismic zones in Greece during
2012-2019, identifying the major seismic sequences and a plethora of smaller
ones which are in accordance with the main seismotectonic properties of the
study areas. Depending on the quality of the data set the method can be also
used for the detection of secondary faults ( , ). The rich
seismic activity during 2013-2014 in the western subarea of the Corinth Gulf is
detected in detail, a nontrivial issue, especially for the area between Nafpaktos-
Psathopyrgos and offshore Aigion, where multiple excitations occurred in close
proximity and within short periods (Figures 3.19, C.4 and C.5). Seismicity
in the eastern subarea of the Corinth Gulf is found to be more sparse with
few major clusters located near Itea Gulf (Figures 3.20 and C.7) and offshore
Perachora and Xylokastro (Figure 3.19 and C.6). On the contrary, seismicity
in the Central Ionian Islands is dominated by the 2014 Kefalonia and the 2015
Lefkada seismic sequences (Figure 3.21). Together they comprise the 81% of
the clustered seismicity in this area. Many large clusters are identified in the
North Aegean Sea area that includes both main shock—aftershock sequences
and earthquake swarms.

We investigated the properties of clustering seismicity among the three
study areas with the use of the ETAS model. The results indicate that there
are differences in aftershock productivity rates between Corinth Gulf, Cen-
tral Ionian Islands and North Aegean Sea, showing that productivity can vary
regionally. As showed by ( ) and ( )

adopting the regional variations of productivity can produce a significant gain
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on aftershock forecasts. In the Central Ionian Islands, main shock—aftershock
sequences seem to be more productive with the North Aegean Sea and the
Corinth Gulf to follow (Figure 3.23). The sequences in the Corinth Gulf in
particular are characterized by the highest background rate among the three
areas (Table 3.15), meaning that a significant portion of clustered seismicity
is not caused by the triggering of a main shock coseismic slip, but by the
contribution of different triggering mechanisms. Many studies have focused on
this area, suggesting pore-pressure changes due to fluid migration and aseismic
creep as possible triggering mechanisms for the clustered seismicity (

, : , ). In the North Aegean Sea,
the swarm activity coexists with aftershock sequences, implying that for fore-

casting purposes, a finer regionalization might be more appropriate.

We also investigated potential differences in the productivity and the back-
ground rates among sequences of each region and their relation to different
underlying triggering mechanisms. Results show that the high background
seismicity (p) and low productivity (a) values of the ETAS model are related
to earthquake swarm activity triggered by fluid pore-pressure changes, such as
the 2013 Aigion swarm (clusters C'6, C'9 and C'10, Table 3.16, Figures 3.19 and
C.3) in Corinth Gulf ( , ) and the 2017 Tuzla earthquake
swarm (clusters N10, N11 and N14, Table 3.18, Figures 3.22 and C.15) in
North Aegean Sea ( , ). This is in accordance with stud-
ies suggesting the dependence of low productivity values to the existence of
fluids ( , : , ). In general, 18 out of 26
clusters in Corinth Gulf have background rates p > 1 and low productivity
values (11 out of 26 with a < 1), whereas in the Central lonian Islands, where
main shock—aftershock sequences dominate, we observe very low background
rates of the ETAS model (all with p < 1) and relatively high productivity
values. In the North Aegean Sea area, we cannot observe a clear pattern,
however, the majority of the detected clusters are characterized by low back-

ground rates and relatively high productivity, suggesting the dominance of
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typical main shock—aftershock sequences.

The advantage of using the MAP model lies in its generality, as any sta-
tionary point process can be approximated by a sequence of MAPs under the
framework of multiple embedded seismicity rates ( , ).
It can be extremely beneficial in detecting different types of clusters (dynamic
modeling of seismicity rate) by capturing the changes in seismicity rate, with-
out considering any physical assumption, in the sense that each hidden state or
group of states might be associated to a different underlying triggering mecha-
nism. Furthermore, in case of non-stationary background seismicity, the MAP
model can approximate the different phases by embedding multiple states into
the Markov process Jy, i.e., distinct occurrence rates, and adopting a multi-
ple rate threshold alternating according to the phase of the process at each
time. In this way, although it is more complicated, we can model both the
non-stationary background seismicity and the triggered events without declus-
tering the earthquake catalog ( , ). For instance,

( ) applied a Markov Modulated Poisson Process for the description
of the background seismicity in northeastern Italy after removing all the trig-
gered events, suggesting the existence of three distinct average trends. The
ETAS model assumes a stationary background seismicity rate that is sensitive
to transient aseismic forces such as fluid intrusion, and leads to poor fitting
results on data sets that include seismic sequences of swarm type according
to ( ). ( ) showed the
inadequacy of a stationary ETAS model with constant background rate to re-
produce the temporal patterns of observed seismicity in the Umbria-Marche
region due to the increase of the background seismicity rate after the repeated
Colfiorito main shocks, as a consequence of the perturbation to the coseismic
stress field. They approximated the non-stationary background rate by fitting
stationary ETAS models to data in moving windows. Moreover, the modified
Omori law which is used to model the aftershock activity, is difficult to predict

how long an earthquake swarm may last. The DBSCAN algorithm does not
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assume any specific spatial distribution of earthquakes and settles them into

groups based solely on their spatial density.

3.5 Conclusions

We proposed a novel stochastic modeling for earthquake’s temporal distribu-
tion through Markovian Arrival Process and the use of a local-decoding algo-
rithm for the detection of changes in seismicity rate. The application of the
model to the Corinth Gulf earthquake catalog during 1964-2017 for events with
M > 4.5 showed that the model efficiently captures the evolution of seismicity
in time and shows better results than the Markov Modulated Poisson Process,
a model that belongs to the same class of Markov processes. We verified on
well studied seismic sequences that the model is capable to detect changes
in the seismicity rate related either to main shock-aftershocks or earthquake
swarms, so it can be used as a change point tool for seismicity rates.

We established a new clustering procedure, MAP-DBSCAN, that is a com-
bination of the MAP model for an initial separation of the background seis-
micity from potential seismic excitations, using the detected changes in the
seismicity rate, and the density-based clustering algorithm, DBSCAN;, for the
detection of elevated spatial density areas. We demonstrate the efficiency of
the clustering procedure on a simulated ETAS earthquake catalog where the
structure of the clusters is known a priori. We proposed the Jaccard index as
a validation metric, which we believe is an appropriate tool that incorporates
not only the correct links but also the false and missed ones in its form and we
encourage its use in performance studies for earthquake clustering. Addition-
ally, we introduced a similar metric for the validation of the model to identify
the mother events of each cluster. Moreover, we showed the competitiveness
of the MAP-DBSCAN procedure against well-known clustering algorithms, as
in most cases, exhibits better results. The method is applied on earthquake

catalogs of three major seismic zones in Greece and their clustering properties
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are investigated with the use of the temporal ETAS model. The main seismic
clusters in the Corinth Gulf, Central Ionian Islands and North Aegean Sea dur-
ing 20122019 for events with M > 1.5, M > 2.2 and M > 2.1, respectively,
are detected by our method, revealing the main seismotectonic structures of
the areas.

A stacking procedure is implemented for inverting the generic ETAS pa-
rameters of each area. In particular, a common log-likelihood is defined that
is the product of the log-likelihood of each individual identified cluster with
N > 30. The inverted parameters correspond to the maximization of the
product. Regional variability in aftershock productivity and background rates
among the areas is observed. The Corinth Gulf is characterized by low pro-
ductivity values and high background rates related to the dominance of earth-
quake swarms, whereas seismicity in the Central Ionian Islands consists of
main shock—aftershock sequences with high productivity.

We also inferred sequence-specific parameters of the temporal ETAS model
implementing a parallel procedure for reducing the computational cost. We
evidence the dependence between low productivity values and high background
rates with pore-pressure due to fluids migration. We believe that future studies
on Operational Earthquake Forecasting should incorporate localized parame-

ters into the models to improve the forecasting accuracy.
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Chapter 4

Markovian Arrival Process for
forecasting large earthquakes

number

4.1 Introduction

The apparent increase in the occurrence frequency of the great (M > 8.0)
global earthquakes since 2004 ( , ), led many authors to investigate
the existence of non-stationarity in their temporal distribution. ( ) ob-
served an increase in the frequency of great subduction earthquakes (M > 8.0)
in circum-Pacific belt after 2004. ( ) suggested the ex-
istence of mega-quakes (M > 8.6) clustering based on the apparent concen-
tration of events during the time period 1950-1965 which was followed by 36
years of seismic quiescence. They generated 100,000 simulations of Poisson
simulated catalogs to test the times the apparent clustering during 1950-1965
is observed. They found that only in 2% of the catalogs this behavior can
be repeated by chance. More recently, ( ) investigated
whether the temporal distribution of large global earthquakes (M > 7.0) dur-

ing 2004-2016 departs from Poisson process and exhibits clustering. They
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found statistical significant deviations from Exponential distribution for the
inter-event times based on a large number of synthetic catalogs. There are
also regional studies that examine the existence of time-dependency and non-
stationarity for large earthquakes. ( ) evidenced long-term
changes in the seismicity rate of earthquakes with M > 5.0 since 1600 in Italy,
and ( ) found long-range memory for earthquakes with
M > 6.5 in Greece during 1845-2017.

The brevity of the seismological record, along with the limited number of
global earthquakes influence the robustness of the statistical tests to identify
non randomness in their occurrence ( , : )

) leading to a large debate in the scientific community with contradictory
results ( , ). However, we believe that even if the hypothesis of the
stationary Poisson process for the temporal distribution of global earthquakes
cannot be rejected with high statistical power, we should not grant as negli-
gible the possibility for a better approximation of the physical process with
non-stationary stochastic models, that could combine the long-term properties
of seismicity with the short-term clustering of events. Towards this direction
we establish a two-step modeling procedure of the Markovian Arrival Process
to model the temporal distribution of long quiescence periods and short-term
seismicity simultaneously that exist in large earthquake catalogs and we im-
plement catalog-based pseudo-prospective forecasting experiments for the full
distribution of the occurrence frequency to evaluate its performance.

An important assumption concerning the features of the large earthquakes
temporal patterns is the existence of long-term changes in the occurrence rate,
between extended periods of seismic quiescence with long inter-event times
that characterize the tail of their distribution and periods of moderate seismic
activity. We show that their temporal behavior cannot be captured well by
the MAP model due to the presence of short inter-event times. The strong
spatiotemporal concentration of seismicity often obscures long-term features

that may characterize the earthquakes temporal distribution (
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: ). In our study, we will model both temporal behaviors of
the large earthquakes distribution by considering the long inter-event times
as extreme events due to their rarity. Statistical analysis and forecasting in
problems that incorporate extreme events is known to be highly complex as the
short times do not conform well with the rare large values ( : ).
Based on that, we proceed with a modification on the formulation and propose
a two-step estimation procedure of the model, where the extreme events are
estimated separately from the short-time values. This procedure has been
applied to assess the volcanic hazard for the Canary Islands by
( ). They considered time-dependence for the series of eruptions and used
a non-homogeneous Poisson process to forecast future events. This method
can also be seen in environmental ( , : , )
and financial ( , ) applications among others, where the
extremes are estimated separately under the Extreme Value Theory, ignoring
the potential effects of the short-time data. An important parameter that
needs to be defined is the threshold value above which events are considered

extremes (il : , ).

The aim of this approach is to assess if the MAP model with non-stationary
characteristics contributes to the forecasting of the large earthquakes number.
For that purpose, we present two main approaches. Firstly, we introduce a
two-step modeling procedure based on the extreme values of the observations.
Then, we implement a pseudo-prospective experiment based on simulations of
the earthquake temporal distribution for the comparison against the Poisson,

non-Poissonian renewal models and the temporal ETAS model.
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4.2 Data

4.2.1 Catalog description

We focus on megathrust environments where the amount of data permits a
robust statistical analysis on the temporal features of large earthquake occur-
rences. We considered an earthquake catalog comprising subduction earth-
quakes, trenches, outer rise and overriding plate earthquakes (Figure 4.1) in
the circum-Pacific belt. The data set is taken from the International Seis-
mological Centre-Global Earthquake Model (ISC-GEM) version 7.0 of the
worldwide earthquake catalog ( , : , ,

), supplemented by the U.S. Geological Survey (USGS) catalog (http:

//earthquake.usgs.gov/earthquakes), up to 31 December 2020.
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Figure 4.1: Epicentral map of the 909 earthquakes with M > 7.0 that occurred
from 01 January 1918 up to 31 December 2020 in the circum—Pacific belt.
Events with 7.0 < M < 7.6 and M > 7.6 are shown in blue and red circles,
respectively.
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The magnitude of completeness for shallow earthquakes of the ISC-GEM
earthquake catalog is found equal to M, = 7.0 since 1918 ( , ).
Taking this into account, we applied the MAP model to an earthquake catalog
with the magnitude cutoff equal to the completeness threshold, i.e., My, = 7.0
including 909 events and three data subsets with corresponding magnitude
thresholds My, = 7.6, 7.7 and M,,, = 7.8 that contain 239, 178, 138 events
since 1918, respectively. We consider different magnitude cutoffs to investigate
the effect of the minimum magnitude, My, on the forecasting gain of the
MAP compared to other statistical models. Essentially, we want to examine
whether the non-stationarity that we consider through the MAP modeling for
the temporal occurrence of large earthquakes is a universal characteristic or
it depends on the adopted magnitude range. The maximum focal depth is
set to 60 km, which is a reasonable lower cutoff of interplate subduction zone

earthquakes according to ( ).

An issue that is encountered in studies that investigate the existence of in-
teractions among large earthquakes, for instance on whether the surge of great
earthquakes (M > 8.0) since 2004 is random or not, is the use of a declus-
tering algorithm for the separation of triggered from independent seismicity.
Since these algorithms tend to produce declustered catalogs with stable rate
(Poissonian) it could have a direct impact on our investigation. Moreover,
we believe that each earthquake is considered distinct, with its own tectonic
context and failure process, comprising equally important threat in terms of
hazard. Finally, removing potential aftershocks and foreshocks would reduce
the size of the data sets, decreasing the statistical power of the goodness of
fit tests. Hence, in this study we consider the complete earthquake catalogs

without removing short-term triggered seismicity.
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4.2.2 Non-stationary features of the catalog

Figure 4.2 illustrates summary results for the four data sets, where similar
patterns are exhibited independently of the magnitude thresholds. The seismic
moment (in Nm) is calculated from the reported magnitude (all magnitudes
in ISC-GEM and USGS catalogs are reported as M,,) according to the relation
My = 1013Mu+905 ( ’ ).

From the inter-event times distribution in Figure 4.2a we can visually rec-
ognize a distinct peak of small values (black vertical arrow) for all magnitude
thresholds that could be attributed to localized aftershocks and foreshocks, as
well as two groups of events with different sets of values (horizontal dashed dot
bidirectional arrows), although less pronounced for M > 7.0. The first group
can be associated to periods of relatively high seismic activity (red color) com-
pared to the second one (blue color) that consists of some quite large values
corresponding to long periods of relative seismic quiescence such as in the mid-
1920, mid-1950 and early 1980 (Figure 4.2c). This could be an indicator that
the inter-event times distribution has heavy-tailed characteristics, i.e., the val-
ues in the tail are not bounded by an exponential distribution. Finally, the
abrupt jumps of the cumulative seismic moment in 1960 and after 2004 (Figure
4.2b) coincide with periods of increased seismicity. This agrees with

( ) who observed changes in the moment release during these

periods.

We argue that the temporal characteristics of the earthquakes show at least
after visual inspection (Figure 4.2), that seismicity can be temporally divided
into three distinct periods. For instance, there are periods of relative seismic
quiescence alternating with periods of relatively high seismicity. Specifically,
in 1924-1927 2 events (M > 7.6) occurred then a 5-year period, 1928-1932,
with 14 events (M > 7.6) follows. In 1973-1978 14 events (M > 7.6) oc-
curred and then a 6-year period, 1979-1984, follows with 6 events (M > 7.6).

The third period exhibits more intense seismicity related to foreshocks and
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Figure 4.2: Temporal characteristics for M > 7.0 (blue), M > 7.6 (orange),
M > 7.7 (yellow) and M > 7.8 (purple) earthquakes that occurred from 01
January 1918 to 31 December 2020 in the circum-Pacific belt. (a) Inter-event
time distribution. A peak of short inter-event times is evident (black vertical
arrow), probably related to localized aftershocks and two groups of inter-event
times, indicated by the dashed-dot horizontal bidirectional arrows, that can be
interpreted as periods of increased seismicity (red color) and of relative seismic
quiescence (blue color), respectively. (b) Cumulative seismic moment (in Nm)
release as a function of time. (c¢) Yearly seismicity rate as a function of time.

aftershocks, like in 1960 with the giant (1/,,9.6) Chilean earthquake and its
two foreshocks (M, = 8.1, 8.6) within 2 days or in 1938 with the four large
(M, =738, 7.7, 7.7 and 7.6) Honshu earthquakes.

The yearly seismicity rate in Figure 4.2c¢ indicates the existence of idle
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periods, namely periods with low seismicity rate and consequently longer inter-
event times for the large earthquakes. Additionally, the boxplots of the inter-
event times in Figure 4.3 show that events outside the boxes appear in all data
sets, indicating variability above the upper quantiles. These long inter-event
times can be seen as extreme events rather than outliers, which characterize

the tail of the inter-event times distribution.
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Figure 4.3: Boxplots for the four datasets tested in this study. In all cases,
there is a significant subset of events outside the third quantile plus one stan-
dard deviation.

4.3 Methodology

The framework of a hidden process whose states modulate the seismicity rate,
A, of a counting process, Ny, as in MAPs, is anticipated to facilitate the
modeling of changes in the earthquake occurrence rate when the responsible

physical mechanisms are unknown. The occurrence rate of the MAP model
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is varying according to the transitions among the states of the latent Markov
process, J;, making it suitable for the investigation of the assumption of non-
stationarity for the seismicity rate of large earthquakes. The forecasting prob-
abilities in the MAP framework depend on the current state of the process
Ji, for instance, when the model is in a state with high occurrence rate (in-
terpreted as a period of increased seismicity) the probability of an earthquake
occurrence is different (higher) than the one when the model is in a state with
low occurrence rate (period of relative seismic quiescence). Hence, we compare
the forecasting performance of the proposed MAP model described in Chap-
ter 2 with other renewal models as well as with the standard ETAS model.
Better performance can indicate the significance of embedding non-stationary

characteristics to the modeling procedure.

4.3.1 Establishment of MAP model with an ”idle” state

Our main assumption is that long-term changes in the seismicity rate might
exist, where quiescence periods alternate with periods of moderate seismic
activity. However, the long-term features of the large earthquakes cannot be
captured simultaneously with the short inter-event times. Hence, we proceed
with a modification on the formulation of the model and propose a two-step
estimation procedure where the long inter-event times that characterize the
tail of the temporal distribution can be seen as extreme events due to their
rarity and their occurrence rate will be estimated separately from the rest of
the data set.

Firstly, we consider the existence of an “idle” state that corresponds to pe-
riods of relative seismic quiescence with long inter-event times, where events
occur according to a Poisson process with occurrence rate, A\jg.. Let Tr =
{71,..., 7} be the initial n sample and 73y < --- < 7() its order statis-
tics. There is an upper part of the sample based on a threshold value 7,

Tigte = {T(n—it+1) Yi=1,...k, Where 74y < Typ, and T(z41) > Tinr, that follows an
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Exponential distribution, Fzp(\g.). We divide therefore the trace into two
parts, the first T;4. corresponds to the extreme events of the sample that fol-
low an Exponential distribution and the second, T}y, comprises the rest of
the sample that follows a mixture of K Exponential components under the
MAP framework, whose parameters will be determined from the EM algo-
rithm described in Section 2.4. The “idle” rate is estimated prior from the
other parameters of the MAP model, and then is embedded to the parameter
set so that the state-space of the MAP is extended by one, K* = K + 1. We
should recall that the sample T is drawn from a Hyper-exponential distribution
under the MAP model, and we believe that the adoption of a mixture of Expo-
nential distributions for the approximation of a sample that includes extreme

events that characterize the tail of the distribution is not deemed unreasonable

( , 1998).

So, we fit an Exponential distribution to inter-event times larger than a
threshold value, 731,,., and the fitted parameter S\idle is the maximum likelihood
estimator of the distribution. The threshold does not need to be the smallest
value for the assumption to hold, it can be chosen quite conservatively aiming
to fit the few observations at the tail of the inter-event times distribution but
still to include enough data to allow a robust statistical analysis.

( ) have showed that for fitting mixture distributions the determination
of the mixture proportion is crucial to converge to the global maximum in
iterative algorithms where a starting vector of points is needed. Therefore,
we implemented the following procedure to determine the minimum thresh-
old. Firstly, we need to define the minimum threshold, 77", which we find
reasonable to set as the mean value of the trace Tr to exclude the bulk of
data (inter-event times) that do not characterize the tail of the distribution

(extreme events). Then, we create an increasing set of 74, values

. min min max
Tipr = {Tthr s Tthr TS5+ 5 Teng }7
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with an assigned step, s, chosen arbitrarily, until no less than 30 events exist.
Next, we move to the second part of the estimation procedure, where we com-
pute the LL value of the MAP for each adopted 7, € T, value. We know
that in general when we use the EM algorithm the convergent LL value is
highly dependent on the initial selection of the parameter set, especially as the
number of latent states is getting higher (more local maximum points). Since
there is no standard method to define the initial set, we followed a system-
atic procedure which is based on the k-means clustering algorithm, following
a similar procedure with ( ). The algorithm groups
the trace into K clusters, {¢y,...,cx}, where K corresponds to the number
of MAP states and then, the diagonal elements of rate matrix Dy, Ay, ..., Ak,
are estimated from the inter-event times of each cluster assuming K Poisso-
nian distributions, P()\;), ¢ = 1,..., K. So, an initial starting vector for the
implementation of the EM algorithm concerning the rate matrix, Dy, is the

following

1

1
YU L S R p—
{17 ’ K} {617 76}(}

For each repetition of the algorithm, new diagonal elements are drawn uni-

formly from the 99% confidence bounds of the Poisson distribution

[ \O
AP = )\? + Za/2 -,
n;

where n; is the sample length of cluster ¢;, and 2,5 corresponds to the standard
normal distribution for a = 0.01. The rest of the parameters, i.e., elements of
rate matrix, Dy, are derived from a random transition probability matrix, P,
of the embedded Markov Chain of the model. The procedure is repeated many
times (Np) and the Npy maximum LL values along with their corresponding
parameter sets are stored and used as input to the EM algorithm (Algorithm
1). The BuTools program package ( : ) is used in the MAT-
LAB environment for the implementation of the M algorithm. Essentially, a
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grid-based procedure is followed around the estimated values of the occurrence

rates. Finally, we choose as optimal 73, point the one that corresponds to the

maximum LL value. At the E-step of the FM algorithm the log-likelihood

function is evaluated at the observation vector, T'r, but the estimated value of

the idle state, \;qe, at the diagonal matrix, Dy, is considered a constant that

we do not update at the M-step where the maximum likelihood estimates are

computed.

Algorithm 1 Estimation of “idle” occurrence rate and EM implementation

© o N O

10:
11:
12:

13:
14:
15:
16:
17:
18:
19:

1: Input: Tr = {m,...,7n} trace

2: Output: MAP(D,, D,)

3:

4: Fit an Exponential distribution to T;4. — Xidle = %*, where 7" mean value

Set initial 7ypr: Tigre = {73 70 > Tone} = {7, .., TAG

of trace T4,

. K-means algorithm to T,,, = {7 : 7, < Ty} inter-event times that
correspond to the K “no idle” states — clusters ¢i,n4,...,cx, ng, equal
to the number of states

. Compute the occurrence rates, \) = Eii, i=1,....K

: Repeat:

. Update A\?*¥ = \? + U(—c*, ¢*), where ¢* = za/g\/:‘;% the upper constraint

: Generate a random probability transition matrix P — Dy = —Dg - P

under conditions

i) irreducible and ii) aperiodic
Compute LLye, = log(L({0, Niaie}/T))
if LLye, > min  LL; then

i=1,...,Npest

store parameter set 9new and L,y
else

reject parameter set
end if
Until: Maximum number of iterations, NNy, is reached
Implement EM algorithm for the N, parameter sets
Return: Optimal parameter set {0, \;gc} after the EM algorithm conver-
gence

For instance, let’s assume a process with K = 2 states and rate matrices

. 0 1 1
Dy — 1 and D, — C_I11( ) Q12( )

0 — A2 CI21(1) Q22(2)
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Then, we add an “idle” state with total occurrence rate, g, so the new MAP

will have K* = 3 states with new transition rate matrices

—Nigte 0 0 @i+1(1)  qre2(1) qr+3(1)
D, = 0 —Ar 0 | and Dy = |gy+(1) go(1) gos(1)
0 0 =X g31-(1)  ga2(1)  g33(1)

4.3.2 Pseudo-prospective forecasting framework

The two main statistical inference approaches for forecasting are the alarm and
the probabilistic based forecasts. The former relies on a binary output, i.e., an
alarm is switched on when the value of an alarm function exceeds a threshold
and vice versa ( , : , ). The prob-
abilistic forecasts consider a distribution for the earthquake frequency in the
space-time-magnitude domain yielding occurrence probabilities, and they can
be divided into grid-based and catalog-based forecasts. The methodology of
the Collaboratory for the Study of Earthquake Predictability uses grid-based
probabilistic forecasts implementing likelihood-based tests ( ,

; , ) for the comparison among the testing mod-
els. The main assumption is that the n space-time-magnitude testing bins of
the experiment are considered independent, and earthquakes follow a Poisson
distribution with parameter )\; at each bin ¢ based on the testing model A.
Finally, a log-likelihood score is obtained by summing over the testing bins,

LL=3%" In

e N\

x;

with X = {x;| i = 1,...,n} the observed catalog, which
is subsequently compared with different models.

However, the Poisson assumption for the earthquake distribution inside the
testing bin might be unrealistic in cases where dependencies among events exist
and additionally can lead to false rejection of models with overdispersion char-
acteristics since the Poisson model considers its mean and variance values to be
equal. ( ) have shown that catalog-based probabilistic fore-

casts that consider the full distribution of earthquake number provide better
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results than the forecasts that are forced to use only the mean estimate rate un-
der the Poisson assumption for each forecasting bin. In catalog-based forecasts
simulated catalogs are provided for each bin under the testing model and the
probabilities, p(Y;), that Y; earthquakes occur inside the testing bin 7, are used
to obtain the log-likelihood score LL = Y7 log(P(Y;)). This type of forecast
assumes that simulations of the testing model should be converging to the ob-
servations if the model is the one that generates the data. Recently, the CSEP
has developed new evaluation tools for forecasts specified as catalog-based and
applied them to UCERF3-ETAS during the 2019 Ridgecrest sequence

( ). In the sequel, we will apply the catalog-based forecasting for the

evaluation of the testing model, the Markovian Arrival Process.

One way to assess probability forecasts is based on the idea of defining a
likelihood score in terms of consistency among forecasted and observed number
of earthquake rates during a testing period T". The testing period is divided into
n forecasting bins, such that T; = [t |, tf), with tf =t; ; +d fori=1,... n,
and t; = T, where Ty is the ending time of the learning period and ¢ the
length of the testing interval. If we denote as Y; the variable that indicates
the number of forecasted events at the ¢-th interval, T;, then we can assign
the forecasting probabilities p;r = P(Y; = k) with Y ™" p;, = 1 for all the
testing bins, where n,,,, is an upper threshold for the maximum number of
events. To compute the probabilities p; 1, the model can use information only
from the training period. In our procedure, we start with the first training
period until time Tj, which is then updated by ¢ time units until Ty + 4, to
compute the forecasting probabilities of the testing interval [Ty + 6, Ty + 20)

and so on. If the observed number of events is equal to X;, then we can define

the forecasting score as

Nmax

Si =" log(pix)Lx,(k), (4.1)

k=0
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0 X; #k : o L
where Iy, (k) = for the interval T, which is the logarithmic
1 Xi=k

probability to forecast the observed number of events and its negative value is

known as entropy score ( : ).

It is easy to expand the definition to the total testing period, S = > | S; =
Yoiy e log(pig)Ix, (k). It represents the logarithmic probability to fore-
cast the observed number of events at each interval T}, i.e., log(P(Y; = X3,...,Y, =
X,)). In the case, where the forecasting probabilities are the real ones of the
physical process, the log-likelihood score gets its maximum value which is equal
to zero. We are interested in the information that we gain against a reference
model, with corresponding forecasting probabilities p;'zf . Thus, we define the

quantity,
D=S5- Sref = Z Z log(pi,k/p;qjcf)a (4'2)

i=1 k=0
which is essentially the probability gain of the tested model against the refer-

ence one.

Next, we need to estimate the forecasting probabilities, p; ;, for each inter-
val T;. We proceed with K simulations of the corresponding model A up to the
end of each testing interval T;. Each simulation produces one possible scenario
for each forecasting interval T; = [t ,,tF), so after the implementation of K
simulations we define as N; the number of realizations with X; events (suc-
cesses), which is the observed number of events, within the interval T;. The
forecasting probability estimates are then given by the fraction over all the

simulations and are defined as p; ;, = % 1 =0,...,n. Essentially, we calibrate
forecasting probabilities over multiple testing intervals based on simulations
generated from the tested model and we assume that they should converge to

the observations if the model is the “true” one.
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4.3.2.1 Competing forecasting models

Figure 4.4 shows an example of a data set that includes the training period up

to time T and the first testing bin 77.

Tlast 71 Ty
«—
| | e .. I
! ‘I’ ! !
Tinit " TO T = TO + 5
last

Figure 4.4: An example that includes the training period [T}, ), the oc-
currence time of the last event in the training period, ¢;,s, with the blue star
and the first testing bin T} = [Ty, Ty + J) along with the observed seismicity
(yellow stars).

For the generation of the K simulations with the MAP, we proceed as
follows. Firstly, the model parameters are calibrated based on the observations
up to time Tp, which coincides with the starting time of the testing period.
Then, the state probabilities of the hidden process J;, p;(To) = P(Jg, = i),
are estimated based on the forward and backward equations through Equation
2.14 which we consider as the initial probability vector for the simulation
procedure. This is equivalent with the state probability at the last earthquake
occurrence of the learning period, at ¢, in Figure 4.4, since transitions among
the hidden states coincide with the occurrence of earthquakes, namely p;(t;) =
pi(t) for t;, <t < txyq. Then, an Exponential distribution is assumed for the
generation of the time until the first event, 7, with parameter that depends
on the estimated state of the hidden process at time t,,. Details on the
simulation from the MAP model are given in Section 2.5. Here, we sum up

the simulation procedure for forecasting purposes in the following steps:

e Set J(1p) = argmax, ;< x pi(To) where p(Tp) the initial probability vec-

tor.
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e Let us denote J(Tp) = ¢ the most probable state. The sojourn time,
7, until the next earthquake occurrence is extracted by an Exponential

distribution with parameter {—Dg};; = A; through Equation (2.12).

e Generate the state of the hidden process at time Ty + 7, J(Tp + 7), based
on the conditional distribution P(J(Ty + 7)/J(Tp)), given by Equation

(22) , ie., {80 axly

e Update time t =Ty by t = Ty + 7 and go to step 2.

e Continue until the end of the testing period 7.

For the Poisson model with parameter A, the inter-event times follow an
Exponential distribution. Therefore, the number of events in the testing bin
T} is independent of the time elapsed since the last event, T}, in the training
period, i.e., P(T" < 7 + Tjast/T > Tiast) = P(T < 7). The simulation of
the earthquake occurrence times is a typical procedure based on the thinning
method (Equation 2.12).

Concerning Gamma and Weibull renewal models, the time to the next
earthquake depends on the elapsed time since the last event, T;,. There-
fore, for the generation of the first event into the testing interval T} we should
consider the truncated distribution of the Gamma and Weibull models, respec-
tively. In particular, the truncated Weibull cumulative distribution from the
left, with a the shape and (3 the scale parameters, respectively, is easily derived

using the Bayes theorem and has the following form

Tl‘fzst_(Tlast+T)a
a

P(~T§7}ast+T/x>ﬂast):1_e p ) T >0.

The truncated Gamma distribution, G(a,b), has a more complex functional

form with corresponding density

b —axb_a—1
_ X a > ast-
flz) = —(a,b last)e 4, T > Tiast

151



CHAPTER 4. MARKOVIAN ARRIVAL PROCESS FOR FORECASTING
LARGE EARTHQUAKES NUMBER

For the subsequent events inside the testing bin the corresponding distribution
functions of the models are used. Finally, we generate forecasts under the
temporal ETAS model, which is considered the standard model for aftershock
forecasting. The main assumption of the model is that there is a constant
loading of independent events under a Poisson process with rate p and that
each earthquake generates its own aftershocks under the triggering term \;(¢)
given by Equation A.1. The ETAS model is proven appropriate for aftershocks
modeling, whereas in our study it is fitted to data sets of large earthquakes
where its empirical laws incorporated into the triggering term (the Omori law
for the aftershocks temporal decay and the productivity law for the expected
number of direct aftershocks) might not be appropriate. The procedure to
produce forecasts is similar to the one implemented at ( ).

In step 1 the earthquakes of the training set are considered mother events
that can create daughters inside the testing period. Consequently, these daugh-
ters can trigger their own ones and so on. To obtain the magnitudes and the
times of these earthquakes the simulation procedure given in Appendix A.3
is followed. In particular, the first-generation of aftershocks for all the earth-
quakes in the training period are generated. Each earthquake with magnitude
m; triggers aftershocks according to a Poisson process with rate k(m;) (Equa-
tion A.2). The times of those aftershocks are generated from the Omori law
distribution (Equation A.3). The magnitudes are independent from the events
temporal distribution and follow the GR law truncated from the left at the
completeness magnitude, myy,.. The functional form of their distribution is
given by Equation A.7, and the b-value of the GR law is estimated from the
training data set. For next generation aftershocks, the triggering step is re-
peated until there are no more generated events. Events that exceed the time
of the testing period are neglected.

In step 2 we generate the background earthquakes that are expected to oc-
cur during the testing period as well as the cascade of aftershocks that are trig-

gered by these background events. We produce independent events according

152



CHAPTER 4. MARKOVIAN ARRIVAL PROCESS FOR FORECASTING
LARGE EARTHQUAKES NUMBER

to a Poisson distribution with mean value equal to the estimated background
rate, u, of the ETAS model. Therefore, inter-event times are simulated from an
Exponential distribution Exp(1/u), until they exceed the ending time of the
testing period, t.,q. We then simulate the triggered aftershocks corresponding
to all the background events as described at step 1 and store them along with

the ones produced during step 1.

4.4 Application in circum-Pacific belt

In this section we show that the temporal behavior of the large earthquakes
in circum-Pacific belt cannot be captured well by the MAP model due to the
presence of short inter-event times and the brevity of the earthquake catalog.
Subsequently, we proceed with the application of the MAP model with the
idle state. We investigate the non-stationary features of the data sets with
M > 7.0, 7.6, 7.7, 7.8, and we perform pseudo-prospective experiments to
evaluate its performance in forecasting the full distribution of earthquakes
number. We compare its efficiency to renewal models and the temporal ETAS

model.

4.4.1 Application of MAP

For the data sets with M > 7.6, 7.7, 7.8, MAP models with 2 and 3 states
are fitted to the data, whereas for the data set with M > 7.0 an additional
MAP with 4 states is considered. The temporal evolution of seismicity is more
complex for the last data set as short-term clustering is more intense, so more
states might be needed. We estimate the parameters through the maximization
of the log-likelihood function given in Equation 2.6 with the use of the M
algorithm and a grid-based procedure for the determination of the algorithm’s
initial input described in Section 4.3.1. In all cases a MAP model with 3 states

seems sufficient for the description of the earthquake temporal distribution
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according to the AIC values.

In Appendix C.2 we give the supplementary

results concerning the LL and AIC values of the fitted models as well as the

goodness of fit results.
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Figure 4.5: The most probable path of the hidden states along with the earth-
quake magnitudes (grey vertical lines) as a function of time for the data sets

with M > 7.0 (), M > 7.6 (b), M > 7.7 (c) and M > 7.8 (d).

Red color

corresponds to state 1, yellow color to state 2 and orange color to state 3 for

all the panels, respectively.

Figure 4.5 shows the most probable sequence of transitions among the
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latent states of the MAP model for the four data sets based on the evalu-
ation of the state probabilities, p;(t), i = 1,..., K, (Equation 2.14). In all
cases, the estimated hidden path is dominated by the lowest seismicity rate,
AL = 7.94, 2.08, 1.52, 1.18 events/yr (red color), for My, = 7.0, 7.6, 7.7, 7.8,
respectively. This is either an indicator of stationarity for the background
seismicity or the inadequacy of the model to capture the long-term seismic-
ity changes. The estimated rates of state 1 are higher than the empiri-
cal occurrence rates in the upper part of the inter-event times distribution,
A= 3.38, 0.9, 0.66, 0.51, i.e., the events corresponding to the fourth quantile
(Figure 4.3). Finally, the other two states seem to correspond to the apparent
short-term clustering.

To verify the influence of the short-term clustering to the fitting results
of the MAP model, we proceeded to the separation of the clustered from the
background seismicity based on the implementation of the Nearest-Neighbor
algorithm ( , ) to the data sets with My, = 7.0 and
My, = 7.6. This is a clustering algorithm that is based on the space-time-
magnitude distance metric among two earthquakes given by Equation B.4 by

( ). The details of the method are given in Appendix
B.3. There are only two free parameters, the spatial fractal dimension d; and
the b value, which are considered equal to b = 1.05, 1.28 for earthquakes with
M > 7.0 and M > 7.6, respectively, and d;y = 1.29, for both thresholds. The
logarithm of the separation distance is equal to logny = —5.80 (Figure 4.6a)
and logny = —7.67 (Figure 4.6¢), respectively, based on the intersection of the
two modes in the 1D density distribution of distances.

The resulted declustered earthquake catalogs comprise 697 events with
M > 7.0 and 195 events with M > 7.6, respectively. Then, MAP models
with 2 and 3 states are fitted to the data, and the two-state MAP models are
considered optimal based on the AIC values. Figure 4.7a,c illustrate the transi-
tions among the two states of the MAP models for the data sets with M > 7.0

and M > 7.6, respectively. After the removal of the short-term clustering ef-
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Figure 4.6: 1D density distribution of log n, with estimated Gaussian densities
for clustered (yellow) and background (orange) components for the earthquakes
with M > 7.0 a) and M > 7.6 ¢), respectively. 2D joint distribution of re-
scaled space and time distances among all pair of events for the earthquakes
with M > 7.0 b) and M > 7.6 d), respectively.

fect with the NN algorithm, two main observations can be made. Firstly, the
background seismicity seems to be characterized by non-stationarity as the two
states are alternating for both data sets in contrast with the initial data sets
where a single state (state 1) is associated to the background seismicity (red
color in Figure 4.5). The intense short periods with the high seismicity rates
(yellow and orange colors in Figure 4.5) are replaced by a state with a low
seismicity rate, Ay = 5.06, 1.58, for M > 7.0 and M > 7.6, respectively (red
color in Figure 4.7a,c) that is closer to the empirical rates of the long inter-
event times distribution. This can also be seen from the estimated intensity
function of the two models, A(t) (Equation 2.15), in Figures 4.7b,d. Long-term
variations are observed, with three common periods of seismic quiescence for
the two data sets, during 1948-1963, 1978-1992 and 2002-2004, respectively.

So, the constant background rate is not a feature of the data. Secondly, we can
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Figure 4.7: The most probable path of the hidden states along with the earth-
quake magnitudes as a function of time for the data sets with M > 7.0 (a)
and M > 7.6 (c). Red color corresponds to state 1 and yellow color to state
2. The expected seismicity rate is denoted by the blue continuous line and the
cumulative number of events with the maroon line, as a function of time for
the data sets with M > 7.0 (b) and M > 7.6 (d).

conclude that the MAP models fitted to the initial earthquake catalogs cannot

capture the long-term changes in seismicity due to the existence of short-term

events.
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4.4.2 Application of MAP with idle state
4.4.2.1 Evaluation

Firstly, we investigated whether a stationary Poisson model can adequately
describe the earthquake occurrence patterns in each data set. We know that
statistical tests cannot always reveal the non—stationarity of large earthquake
catalogs due to data shortage ( , ). We believe, however, that
it is important to investigate the goodness of fit to the data of the simplest
model before proceeding to more refined models. We tested whether the inter-
event times follow the Exponential distribution with the Lilliefors goodness
of fit test ( ) ), which is an analog of the KS test when the pa-
rameters of the null hypothesis distribution, Fy(x), need to be estimated from
the sample and the p values are computed through Monte Carlo simulations
(Section 2.8). Next, the Runs test is applied to decide if correlations exist
among them and the resulted p values are given in Table 4.1. We note that
this is a common procedure to detect non Poissonian behavior (

, ; , ). Concerning, the data set with M > 7.6
even though, we cannot reject the hypothesis of randomness (p = 0.08), its
value is relatively low providing evidence against the null hypothesis. The
Exponential distribution does not adequately fit the observations (p = 0.003).
Similar results are obtained for earthquakes with M > 7.0, M > 7.7 and
M > 7.8. A common feature for all data sets is that the Poissonian behav-
ior is rejected with very low p-values (Table 4.1). This implies that a renewal
process with non—exponential times might be more appropriate than a station-
ary Poisson process for the approximation of the temporal distribution of the
earthquakes. Therefore, Weibull and Gamma distributions which are widely
used to study quasi—periodic earthquake occurrences are also tested as null
hypothesis. Again, the p values (p = 1E —5,2F —5) for M > 7.6 suggest that
the null hypothesis cannot be accepted for both distributions. Very low values

are also derived for the other 3 data sets.
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Table 4.1: Statistics and MAP fitting evaluation for the earthquakes with
M>70, M >76, M >77and M > 7.8. The p values of the Runs test for
the inter-event times are given in column 4 and the p values of the Lilliefors
test under the null hypothesis of the Exponential, Weibull and Gamma distri-
butions are given in columns five, seven and nine, respectively.

M N Rate Runs Exponential Weibull Gamma
thr 280 yr=l Test  Lillyeyy  AAIC Lilly AAIC Lillyey, AAIC
7.0 909 884 0.80 0 145.6 1E-4 29.0 5.5E-3 0
76 239 232 0.08 3.1E-3 50.4 1E-5 17.7 2E-5 2.4

7.7 178 1.73 0.36  2.0E-4 49.83 14E-3  11.77  1.9E-2 0
7.8 138 1.34 0.86 3.8E-3 44.46 42E-3 9.85 1.9E-2 0

MAP;
Nidle A1 Ao AAIC Runs Test KS
70 290 8.54 1889 4.9 0.39 0.12
76 1.13 259 1080 0 1.00 0.76
7.7 078 193 257 15.91 0.48 0.30
78 061 1.62 818 14.07 0.90 0.36

Moving to the MAPs fitting, we considered different values for the free

parameter of Algorithm 1, r, = {7,..., 7%

T}, with corresponding Ajge =
A(Tinr) values. The optimal threshold corresponds to the maximum log-likelihood
following the procedure described in Section 4.3.1. MAPs of two and three
states are fitted to the data and the three states model with S = 0, 1, 2,
is selected based on the minimum value of the Akaike Information Criterion
(Equation 2.16). State 0 will be expressed as “idle” state henceforth.
According to the occurrence rates (Age, A1, A2) shown in Table 4.1, idle
state implies the existence of relative seismic quiescence periods with seismicity
rate equal to \ige = 1.13 (yr~!) and corresponding expected sojourn time equal
to 6.08 years for M > 7.6, whereas the middle state, state 1, indicates the
presence of periods of relatively higher seismicity rates, with value A\; = 2.59
(yr~1) and sojourn time 4.42 years, again for M > 7.6. The state 2 might be
related to regional triggering due to the very short sojourn periods (12.3 hours)
of intense seismicity rate with value equal to Ay = 1080 (yr~1!) for M > 7.6.
The occurrence rates given in Table 4.1 (non—negative diagonal elements of
rate matrix D), act as an index for the seismicity evolution for each data

set, however, the elements of matrix ID; determine the sequence of transitions
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among the states. A thorough analysis based on the hidden paths will be given
below.

We conduct a residual analysis for the MAP model fitting and apply the
Runs and KS tests to the transformed successive inter-event times. The trans-
formed times along with the 95% KS confidence bounds are presented in Fig-
ures 4.8a,b,e.f, along with the auto-correlation function which is computed and
illustrated for a visual inspection in Figures 4.8c,d,g,h. The transformed times
pass the randomness and goodness of fit tests with high p-values (p > 0.05
shown in Table 4.1 for all data sets) and the residuals do not show significant
discrepancies from the bisector that corresponds to the stationary unit Poisson
process.

Next, we proceed to a quantitative comparison of the MAPs with the fitted
renewal processes based on their LL values and their complexity (considering
the number of their parameters). Table 4.1 shows for each model the difference
between its AIC value from the minimum one, AAIC = AIC — AIC,,;,. Zero
value is assigned to the one with the minimum AIC value. We observe that the
Gamma distribution returns similar or better values from the MAP model. For
My, = 7.6 the difference is equal to AAIC' = 2.4 in favor of the MAP model
(Table 4.1), whereas for the other data sets the differences are in favor of the
Gamma and Weibull distributions. Gamma distribution suggests the existence
of short—term clustering due to the factor z2! (higher probabilities for short
inter-event times than the Poisson distribution) with an exponential decay for
the long—term behavior of independent events. MAP is anticipated to be a
more complex model due to the comparatively large number of parameters in
relation with the limited data set. However, the embedded hidden states allow
us to reveal additional details of the temporal patterns. Knowing the state
probabilities, p;(t), and therefore the seismicity rate at time ¢, we can infer if
there are systematic periods of seismic quiescence or short-term clustering and
their expected duration. In Section 4.4.3 we show that this information might

contribute to the forecasting skill of the MAP compared to the other models.
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Figure 4.8: Comparison between the cumulative number of residuals (blue step
function) and the stationary Poisson process with unit rate (brown line) (a)
for threshold M, = 7.0, (b) M, = 7.6, (¢) My, = 7.7 and (d) M, = 7.8.
The pink dashed lines indicate the 95% confidence bounds. Auto-correlation
function of the Ar; values (red vertical lines) and the blue horizontal lines
indicate the corresponding confidence bounds for threshold (c¢) My, = 7.0, (d)
My = 7.6, (g) My, = 7.7 and (h) My, = 7.8, respectively.

4.4.2.2 Existence of non-stationarity

In what follows, the transitions among the three states with rates, (Aige, A1, A2)
are evaluated through the state probabilities which are given by Equation 2.14.
In addition, the expected seismicity rate at each time, namely the intensity
function A(t), is estimated through Equation 2.15, and can be used as one more

indicator for temporal changes in the seismicity. Figure 4.9 visualizes the evo-
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Figure 4.9: (a) The most probable path of the latent states along with the
earthquake magnitudes of the events as a function of time with M > 7.6. Inset
magnifies the transitions among states 1 and 2, which are otherwise difficult to
visualize due to the short sojourn time in state 2. (b) The expected seismicity
rate is denoted by the blue continuous line and the cumulative number of events
with the maroon line, as a function of time. The highest peaks of the intensity
rate correspond in most cases to events that occurred during the sojourn of the
process in state 2. The black vertical arrows on panel (b) show two peaks of
the intensity function that do not correspond to state 2, nevertheless, they are
associated with regional earthquake interactions after the investigation of their
spatial distribution. The first one corresponds to the 1919 Tonga earthquake
with M,8.1 and the second one to the 2014 Iquique, Chile earthquake with
M,8.1.

lution of the seismicity for the earthquakes with M > 7.6. In this way, we
can explicitly depict the estimated seismicity rate during the entire period and
reveal intervals of relative quiescence, as well as periods of excessive activity

and of possible triggering.

For earthquakes with My, = 7.6 we observe that the transitions between
periods of relative seismic quiescence (red color in Figure 4.9a, A\;g = 1.13) and
the ones of relatively high seismicity rate (yellow color Figure 4.9a, A\; = 2.59)
occur in a non-regular time scale varying from a couple of years to a couple of

decades. Although there can be slight differences in the corresponding state
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sequences of the higher magnitude thresholds (M > 7.7, M > 7.8 Figure
4.10), there are some persistent temporal intervals with increased seismicity
rate (state 1, yellow color) such as between 1935-1947, 1958-1960, 1963-1978
and 1993-1997 (Figures 4.9 and 4.10). Common periods of relative seismic
quiescence like during 1924-1928, 1953-1957 and 1980-1990 for all data sets
are observed (Figure 4.9), increasing in number with the magnitude threshold
(Figure 4.10), especially between 1977 and 2000, which is a period that coin-
cides with an observed decreased moment rate (Figure 4.2b) mentioned also
by Zaliapin and Kreemer (2017). The apparent increase in great (M > 8.0)
earthquakes occurrence since 2004 is also recognized as a period of relatively
high seismicity in all cases (sojourn of the process in state 1-yellow color in

Figures 4.9 and 4.10).
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Figure 4.10: The most probable path of the latent states along with the mag-
nitude distribution in time of the events with M > 7.7 (a) and with M > 7.8
(b). Red color corresponds to Ajge = 0.79, 0.61, yellow color to A; = 1.94, 1.62
and orange color to Ay = 257.08, 818.69 for the panel (a) and panel (b), re-
spectively. (c), (d) The expected seismicity rate is denoted by the blue color
and the cumulative moment of the events with the maroon.

Concerning the dataset with My, = 7.0, state 1 (yellow color in Figure 4.11,
A1 = 8.54) is dominant during the entire period, with short seismic quiescence

periods during 1956-1957 and 1982-1985 (red color in Figure 4.11, ;g = 2.91)
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Figure 4.11: The most probable path of the latent states along with the mag-
nitude distribution in time of the events with M > 7.0. Red color corresponds
to Aige = 2.91, yellow color to A\; = 8.54 and orange color to Ay = 1889.66 for
the panel (a). (b) The expected seismicity rate is denoted by the blue color
and the cumulative number of the events with the maroon.

In Section 4.4.1 we show that after neglecting the clustered events from the
initial dataset with M > 7.0, long-term changes in the remained seismicity
are revealed by the MAP model (Figure 4.7), and two long seismic quiescence
periods exist during 1948-1966 and 1981-1991 (red color in Figure 4.7a and blue
step-function in Figure 4.7b). The abundance of smaller magnitude events
compared to the dataset with M > 7.6 increases the short-term clustering
effect so that the MAP model cannot capture the long-term changes in the
occurrence rate. Considering the existence of the idle state and implementing
the two-step estimation procedure might not be appropriate for data sets with
smaller magnitude cutoffs.

Clear evidence is provided from state 2 (yellow color in Figure 4.9a), which
is the state with the highest corresponding Poisson rates. Events that occurred
during the sojourn of the hidden process in state 2 seem to express the short-

term localized clustering, which is visible in Figure 4.12 where we plot the
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Figure 4.12: Epicentral distribution of the events with M > 7.6 that occurred
in the state with the highest seismicity rate, A\ and two cases with high in-
tensity values (black vertical arrows in Figure 4.9b). All cases correspond to
regional spatiotemporal clustering. Blue stars correspond to the events with
the largest magnitude, cyan and red circles to prior and subsequent events,
respectively. The date at each panel represents the duration of each group of
events.

epicenters of earthquakes with M > 7.6 for each subset of consecutive events
that occurred in this state. All cases correspond to large (M > 7.8) main
shocks (blue stars) and their triggered subsequent events (red circles), except
the 1960 Chilean and 2009 Vanuatu earthquakes, where prior (cyan circles)
events are also observed. In all eleven cases spatiotemporal clusters of known
main shock-aftershock pairs are formed, evidencing that state 2 is related to
the existence of spatiotemporal clustering. Considering the expected seismic-
ity rate, A(t), (Figure 4.9b, blue step—function), we observe some peaks with
A(t) > Aq, that correspond to regional earthquake interactions, however, with-

out belonging to state 2. The two black vertical arrows in Figure 4.9b show
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the 1919 Tonga earthquake (in Figure 4.12) with M,,8.1 and \, = 8.28 (yr?)
and the April 2014 Iquique, Chile earthquake (in Figure 4.12) with M,,8.1 and
A = 399.99 (yr—1).

4.4.3 Pseudo-prospective experiments

In this section we perform a comparison among the proposed MAP model
with the idle state and the Exponential, Gamma and Weibull renewal models
in terms of their forecasting skills. Additionally, we implement a sensitivity
analysis on the forecasting interval and on different versions of the MAP model.
We investigate whether the MAP model with the three embedded occurrence
rates is efficient to forecast the large subduction earthquakes number and if
it performs better than renewal processes with the Exponential, Gamma and
Weibull distributed inter-event times. Firstly, the learning and testing periods
are defined and then the MAP model along with the Poisson, Gamma and
Weibull distributions are fitted to the observations of the learning period. We
set the ending time of the learning period, Ty, equal to 31 December 2003, and
the testing period from the beginning of 2004 until the end of 2020, lasting 17
years (Table 4.2).

Table 4.2: Details on the setup of the forecasting experiment for the data sets
with M > 7.0, M >7.6, M >7.7and M > 7.8.

Learning period Testing period

M [1918, Ty (Tp, 2020] To K
7.0 748 161

7.6 190 49

77 135 35 31/12/2003 100000
7.8 86 20

Next, we proceed to the implementation of K = 100000 simulations with
each forecasting model and we evaluate their performance based on the score
function defined in Equation 4.1. Figure 4.13 shows the score of the four models

as a function of time obtained from 6-months, 1-year, 2-year, and 3-year long
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experiments for earthquakes with M > 7.6.
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Figure 4.13: Scores of the forecasting models defined by Equation 4.1 for
(a) 6-months, (b) 1-year, (c) 2-year and (d) 3-year long testing periods over
the 17-year testing interval for events with M > 7.6. Different colors and
shapes correspond to different testing models. Orange vertical bars show the
observed number of events during each testing period at the starting time of
each interval. Values closer to zero indicate better performance.

For the MAP model, all the simulations are initiated at the starting time
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of each testing period based on the evaluated state probability, following the
procedure described in Section 2.5. In this way, we use the full potential of the
model, as it has been illustrated in Figure 4.9. The forecasting probabilities,
PDik, are estimated for each interval T; = [tf,tf +0), d = 0.5, 1, 2, 3 years, and
each forecasting model. If the MAP model provides more accurate forecasts
for the number of earthquakes in the testing period, then the difference in
the logarithmic scores, S;, should be positive. We observe in Figure 4.13 that
the MAP model achieves higher scores than the other models for most of
the testing bins, T;, independently of their duration. Especially in periods
with high frequency the differences are larger, like during 2007-2008 and 2009-
2010 in Figure 4.13b or 2006-2008 and 2009-2011 in Figure 4.13c. This is
probably due to the large variance that characterizes the counting process
of the MAP model. Conversely, in periods with low frequencies the renewal
models are superior, especially in testing periods with zero observed events.
The information that the renewal models consider for the elapsed time since the
last event is more critical for testing periods with few events, however, they
produce less significant results as the number of observed events increases.
The Weibull and Gamma scores for consecutive periods with zero observed
events are increasing like in Ty = (2008,2008.5] and T}y = (2008.5,2009] in
Figure 4.13a with Sy = —1.02, —1.00 and 57y = —0.85, —0.88 for Weibull and
Gamma models, respectively. Increasing the duration of the testing interval 9,

the differences between the MAP and the renewal models are getting higher.

We expand the comparison using the differences among the total forecasting
scores of each model. This is essentially the difference in the sum of the scores
over all the testing periods for each model given in Equation 4.2. As it can
be seen in Table 4.3, the superiority of the MAP model is increasing with
longer testing intervals for earthquakes with M > 7.6. It is also clear that
MAP model performs better than the Poisson process for all testing intervals,
with D = 1.34, 1.68, 2.61,3.96, respectively. The differences with Weibull
(D = 1.44, 1.25, 2.45,3.24) and Gamma (D = 1.27, 0.98, 2.43,2.88) models
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are also in favor of the MAP model for all testing intervals (Table 4.3). The
Poisson model exhibits the worst performance among the compared models.
Table 4.3: Logarithmic scores of the MAP, Weibull, Gamma and Poisson mod-

els for the data sets with M > 7.0, 7.7 and M > 7.8, respectively. The differ-
ences, D, are given in parenthesis.

Model b My, = 7.0 My, = 7.6 My, =77 My, =78
6 month -79.24 -53.33 -47.63 4455
s 1 year -49.19 -34.78 -31.11 -29.02
MAP 9 vears -53.07 -36.72 -35.12 -34.79
3 years -55.21 -38.58 -37.98 -38.89
6 month -80.50 (1.26) -54.6753 (1.34) -48.80 (1.16) -46.15 (1.60)
g 1 year  -50.80 (1.61) -36.4761 (1.68) -32.55 (1.43) -31.02 (1.99)
Pois 9 yvears  -55.37 (2.29) -39.3415 (2.61) -36.88 (1.75) -37.43 (2.63)
3years -58.55 (3.33) -42.5438 (3.96) -40.51 (2.53) -41.99 (3.09)
6 month -80.40 (1.15) -54.7816 (1.44) -49.16 (1.52) -45.68 (1.12)
g 1 year -48.95 (-0.24) -36.0391 (1.25) -32.58 (1.46) -30.81 (1.79)
w9 years  -52.99 (-0.08) -39.1832 (2.45) -37.08 (1.95) -36.55 (1.75)
3years -55.12 (-0.09) -41.8295 (3.24) -39.64 (1.66) -39.72 (0.82)
6 month -79.93 (0.68) -54.6078 (1.27) -49.14 (1.50) -45.78 (1.23)
s 1 year -48.96 (-0.22) -35.7732 (0.98) -32.39 (1.28) -30.76 (1.73)
gam 9 years  -53.08 (0.01) -39.1589 (2.43) -36.83 (1.70) -36.52 (1.73)
3years -55.01 (-0.20) -41.4690 (2.88) -39.31 (1.33) -39.75 (0.85)

Similar results are derived for the data sets with M > 7.7 and M >
7.8 that are shown in Table 4.3. For the data set with the lowest magni-
tude cutoff, My, = 7.0, we observe that the differences in Gamma (D =
0.68, —0.22, 0.01,—0.20) and Weibull (D = 1.15, —0.24, —0.08, —0.09) mod-
els fluctuate around zero, without permitting us to make an inference on the
superiority of one model from the other. The decrease of the magnitude thresh-
old might lead to the dominance of the short-term clustering, so more compli-
cated MAP models might be needed, i.e., more states or different assumptions
for the existence of the idle state.

Next, we check whether the difference in the scores between the MAP and
the Poisson, Gamma, and Weibull, models, D = Syrap — Sy, is statistically
significant. Therefore, we generate 10,000 simulated catalogs, namely 10,000

testing periods, assuming that these events are generated according to a ref-
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Figure 4.14: Cumulative distribution of the 10,000 D, values calculated from
Equation 4.2 and from simulated samples assuming that the earthquakes are
generated according to a Poisson a-d), Gamma e-h) and Weibull i-1) distribu-
tion, for events with M, = 7.6 and 6-month, 1-year, 2-year and 3-year testing
periods, respectively.
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erence model, in our case the ones mentioned above, for the data set with
My, = 7.6. For each sample we calculate the two logarithmic scores as be-
fore and then their corresponding differences, D;, with ¢ = 1,...,10.000. The
observed D is indicative of a statistically better performance of the model
with respect to the reference model if the associated p-value is low enough.
Figure 4.14 shows the cumulative distribution of the differences D; between
the MAP model and the Poisson, Gamma and Weibull models according to
which 10,000 samples were generated. The p-values indicate that the scor-
ing differences are statistically significant, except from few cases where the
p-values are larger than 0.05 but still less than 0.1 which provide evidence
against the null hypothesis. When Gamma is used as a reference model the
p-values are p = 0.066 and p = 0.097 for § = 6 months and § = 1 year (Figures
4.14e,f), respectively, indicating that the probability to observe the differences
D =1.27 and D = 0.98 (red vertical lines in Figures 4.14e,f and Table 3) when
data is generated from a Gamma renewal model are still relatively low. For
longer testing intervals the probability to observe the differences D = 2.43 and
D = 288 for § = 2 and § = 3 years, respectively, are even lower (p = 0.045
and p = 0.052 in Figures 4.14g,h, respectively). For Poisson as a reference
model the observed differences (D = 1.34, 1.68, 2.61, 3.96 given in Table
4.13) are statistically significant for all testing intervals with corresponding
p-values equal to p = 0.039, 0.023, 0.032, 0.022 (Figures 4.14a,b,c,d). Fi-
nally, when we consider Weibull as a reference model the observed differences
between MAP and Weibull (D = 1.44, 1.25, 2.45, 3.24 given in Table 4.13)
seem to be significant as indicated by the low p-values almost in all cases
(p = 0.052, 0.070, 0.046, 0.039 for 6 = 6 months and 6 = 1, 2, 3 years,
respectively in Figures 4.14i,jk.1).

Same observations are made for the two data sets with M > 7.7, 7.8.
In particular, Figure 4.15 shows the the cumulative distribution of the differ-
ences, D;, between the MAP and Gamma models, which exhibit the small-

est differences among the tested models (see Table 4.13). Apart from Figure
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4.15h for 0 = 3 years testing interval, in all other cases, the probability to
observe the initial differences (D = 1.50,1.28,1.70,1.33 for M. = 7.7 and
D = 1.23,1.73,1.73,0.85 for My, = 7.8) is very low, in particular, p < 0.1.

The same or even lower p-values are derived for the other models.
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Figure 4.15: Cumulative distribution of the 10,000 D; values calculated from
Equation (4.2) and from simulated samples assuming that the earthquakes are
generated according to a Gamma distribution, for events with My, = 7.7 a-d)
and M, = 7.8 e-h), respectively.
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4.4.3.1 Comparison with the ETAS model

Gamma and Weibull renewal processes proved insufficient especially for cap-
turing the short-term clustering of seismicity. For this reason, the temporal
ETAS model is also fitted to the learning period, which is a model known
for its efficiency in representing aftershock sequences. Figure 4.16 shows the
logarithmic scores of ETAS and MAP models for earthquakes with M > 7.6
following the procedure described in Section 4.3.2. We find that the scores
of the MAP model are higher than the ETAS ones in most of the intervals,
with some exceptions again in testing intervals with few events. Similar re-
sults are obtained for thresholds M,;,, = 7.7, 7.8, where the total scores over
all the testing periods shown in Table 4.4 indicate the superiority of the MAP
model. An additional background rate applied to the intensity function of the
ETAS model might be necessary for increasing its forecasting skill. Only for
the dataset with My, = 7.0, the ETAS model seems to perform better, where
MAP yields similar results when compared to the Gamma and Weibull models
(Table 4.13). The effect of aftershocks and foreshocks is enhanced when we
consider this magnitude cutoff, so it might be more appropriate to consider the
initial MAP model or increase the states of the current modified MAP model
that is used in the study.

Table 4.4: Logarithmic scores of the MAP and ETAS models. The differences,
D, are given in parenthesis.

Model ) My, =70 My, =76 My, =77 My, =78
6 month -79.24 -53.33 -47.63 -44.55
S 1 year -49.19 -34.78 -31.11 -29.02
MAP 9 vears -53.07 -36.72 -35.12 -34.79
3 years -55.21 -38.58 -37.98 -38.89

6 month -79.31 (0.07) -54.72 (1.38) -48.69 (1.05) -46.32 (1.77)

5 1 year -48.61 (-0.57) -36.19 (1.40) -32.14 (1.03) -31.14 (2.11)

s 9 years  -51.45 (-1.62) -39.42 (2.69) -36.66 (1.54) -37.69 (2.90)

3 years -52.44 (-2.76) -42.62 (4.04) -39.51 (1.53) -42.27 (3.38)
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Figure 4.16: Scores of the forecasting models for (a) 6-months, (b) 1-year,
(c) 2-year and (d) 3-year long testing periods over the 17-year testing interval
for earthquakes with M > 7.6. Different colors and shapes correspond to
different testing models. Orange vertical bars show the observed number of
events during each of the testing periods at the starting time of each interval.
Values closer to zero indicate better performance.
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4.4.3.2 Comparison with the initial MAP

We showed in Section 4.4.1 that when we consider the initial MAP, i.e., without
implementing the two-step procedure, the estimated seismicity rates cannot
discriminate the long periods of seismic quiescence from periods of moderate
seismicity. State 2 and state 3 (yellow and orange color in Figure 4.5) cor-
respond to high seismicity rates for all data sets and are associated with the
occurrence of events in temporal proximity, whereas the main seismic activity
is approximated by a stable rate associated with state 1 (red color in Figure
4.5). Nevertheless, we computed the forecasting efficiency of the initial MAP
and the one proposed in this study with the idle state. Figure 4.17 shows
that the initial MAP yields a worse performance in terms of the forecasting
scores over almost all testing intervals for earthquakes with M > 7.6. Same
behavior is observed for the other large magnitude thresholds (Table 4.5). Our
proposed two-step estimation procedure for the MAP model contributes sub-
stantially to the forecasting of the earthquake occurrences, especially for the
higher magnitude thresholds (M, = 7.6, 7.7, 7.8). Worth mentioning is the
slight superiority of the initial MAP compared to the MAP with the idle state
for earthquakes with M > 7.0. As we mentioned earlier, short-term clustering
effect seems to dominate as we decrease the magnitude cutoff, so it might not

be appropriate to consider the two-step procedure for lower thresholds.

Table 4.5: Logarithmic scores of the modified MAP, M AP, 4., and the initial
one, M AP;,;. The differences, D, are given in parenthesis.

Model ) My, = 7.0 My, = 7.6 My, = 7.7 My, = 7.8
6 month -79.24 53.33 47.63 “44.55
1 year -49.19 -34.78 -31.11 -29.02
MAPiae years -53.07 -36.72 -35.12 -34.79
3 years -55.21 -38.58 -37.98 -38.89

6 month -78.35 (-0.88)  -54.7970 (1.46) -49.0052 (1.36) -46.02 (1.47)
1year -48.74 (-0.44)  -35.94 (1.15)  -32.20 (1.08)  -30.78 (1.75)
2 years  -53.06 (-0.008)  -39.18 (2.45)  -36.81 (1.68) -37.07 (2.28)
3years -55.13 (-0.08)  -42.14 (3.56)  -39.97 (1.99)  -41.06 (2.16)

MAant
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Figure 4.17: Scores of the forecasting models for (a) 6-months, (b) 1-year,
(c) 2-year and (d) 3-year long testing periods over the 17-year testing interval
for earthquakes with M > 7.6. Different colors and shapes correspond to
different testing models. Orange vertical bars show the observed number of
events during each of the testing periods at the starting time of each interval.
Values closer to zero indicate better performance.
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4.5 Discussion

In this study, we provided an advancement towards the long-term modeling
of large earthquake occurrences by contributing to the forecasting of their
occurrence number. Towards this direction, we followed the

( ) suggestion that “...the idea of embracing the full distribution of earth-
quake numbers should be extended to earthquake forecasting models of other
types, such that their true forecasting potential is revealed.” We introduced
a two—step modeling procedure for the MAP model, that reveals the non-
stationary characteristics of the temporal distribution of the large earthquakes
(M >7.6, M >77and M > 7.8) in circum-Pacific belt taking advantage of
our empirical observations on the data sets and we conducted a catalog-based

pseudo-prospective experiment considering the full earthquakes distribution.

There are some efforts to create a link between a plausible physical mecha-
nism and the worldwide temporal clustering of large events under the concept
of seismic cycles synchronization. Dynamic stress interactions between dis-
tant faults can advance or delay their respective seismic cycles, leading to
synchronization, or in other words to the production of temporal clusters of
events ( : ). ( ) statistically
quantified the worldwide synchronization of earthquakes with M > 7.0 since
1900 through topological networks and time series analyses and

( ) underpinned the occurrence of large events as a time-dependent
process that depends on previous seismicity with similar recurrence intervals
and occurrence times and therefore a degree of predictability might exist. Our
speculation is that earthquake occurrences close in time among different re-
gions can be superimposed producing elevated levels of seismic activity for
the large earthquakes (M > 7.6,7.7,7.8) in a global scale for irregular periods
varying among them from a couple of years to a couple of decades. In this
case, state 1 of the MAP model might capture long-term periods of increased

seismicity that could comprise independent synchronizations, different groups
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of faults with aligned seismic cycles, associated to the occurrence of some of
the largest instrumentally recorded events, since 12 out of the 15 events with
M > 8.5 occurred in periods of increased seismicity for all magnitude thresh-
olds. Hence, non-stationarity might characterize their temporal distribution,
where persistent periods of increased seismic activity alternate with long ir-
regular intervals of seismic quiescence. Finally, the regional spatiotemporal
clustering is expressed through state 2 of the model for great events along the
Sumatra, Japan, Kuril, Tonga, Solomon Islands and New Hebrides subduction
zones (Figure 4.12).

The investigation of the temporal patterns of large earthquake occurrences
in circum—Pacific belt revealed the existence of non—regular periods of increased
seismicity, including short—term seismicity clusters, and long-term changes of
the seismicity rate. The short—term earthquake clustering in close distances
can be to a degree attributed to fault interactions due to static stress (

, ; , ) and even though it can be related to the
existence of large aftershocks or foreshocks, they should not be removed by
a declustering algorithm since they are as important as main shocks in terms
of seismic hazard. We believe that the incorporation of non-stationarity for
the forecasting of the large earthquakes number is significant for earthquake
hazard assessment because estimates for future occurrence probabilities are
based on whether it is considered a period of increased seismicity or a relative

quiescence according to the earthquake history.

4.6 Conclusions

In this Chapter, we established a two-step estimation procedure via a Marko-
vian Arrival Process to approximate the temporal distribution of large earth-
quakes in circum-Pacific belt. Long inter-event times are considered extreme
events due to their rarity and they are modeled separately from the rest of

the seismicity. In this way, non-stationary characteristics are revealed for
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large earthquake occurrences that are persistent for magnitude thresholds
M, = 7.6, My, = 7.7 and My, = 7.8.

Our findings imply that: (1) there is evidence for non—stationarity in the
observed seismicity with M,,, = 7.6, 7.7 and M,,, = 7.8, although less pro-
nounced for M > 7.0, that due to the presence of short-time events the
MAP model cannot approximate well. After removing the short-term clus-
tered events from the initial data sets with M > 7.0 and M > 7.6, long-term
changes in the background seismicity rate are revealed by the MAP model
(see Section 4.4.1), and two common, for both data sets, long seismic quies-
cence periods exist during 1948-1966 and 1981-1991 (red color in Figure 4.5).
(2) Incorporating an idle state to the parameter set of the MAP model that
approximates separately the long inter-event times we revealed two distinct
patterns that are preserved with small variations for the data sets with the
higher magnitude thresholds (M, = 7.6, My, = 7.7 and M, = 7.8), i.e.
long—term interactions varying from a couple of years to a couple of decades
and intense spatiotemporal clustering (Figures, 4.9, 4.10 and 4.12). (3) The
pseudo—prospective forecasting experiments indicate that the modified MAP
model outperforms the Poisson, Weibull and Gamma models during all test-
ing intervals and for the three higher magnitude cutoffs (M, = 7.6, 7.7 and
My, = 7.8) of the data sets (Tables 4.3 and Figures 4.13, 4.14, 4.15). It yields
also better performance over the temporal ETAS model during all testing in-
tervals. However, the two-step procedure might not be appropriate for lower
magnitude thresholds since the MAP model returns comparable or slightly
worse results against the Gamma and ETAS models for My, = 7.0 (Figure
4.16 and Tables 4.3, 4.4) and the initial MAP yields better scores compared
to the MAP with the idle state for earthquakes with A > 7.0 (Table 4.5).
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Chapter 5

Concluding Remarks

Earthquake clustering is an essential feature of seismicity that contributes
to the understanding of the long-term trends of seismicity and to reveal its
short-scale dynamics. In the present thesis, we have studied the short and
long-term properties of the temporal distribution of seismicity through the use
of stochastic modeling and explored the difficulties in addressing both types

of clustering.

Our first contribution, is the proposal of the Markovian Arrival Process
for the approximation of the earthquakes temporal distribution. Towards this
direction, we constructed a grid-based procedure for the selection of the initial
values of the KM algorithm and developed a parallel framework for its imple-
mentation. In this way, we improved the chances to converge to the maximum
value of the log-likelihood function and reduced the required computation time.
We also proposed the use of a local decoding algorithm for the evaluation of
the most probable path of hidden states for the model. Its stability is verified
on simulated data sets where the sequence of the hidden states is known. This
is extremely important, because it provides us with the seismicity rate of the
counting process of the model at each time of the study period. In this way,
the MAP model can be used a change point tool for the detection of changes

in seismicity rate.
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In Chapter 3 we verified the efficiency of the MAP model to detect seismic-
ity rate changes on well studied seismic sequences of the Corinth Gulf earth-
quake catalog during 1964-2017 for events with M > 4.5. We showed that
that the identified seismicity rate changes are mainly related either to main
shock-aftershock sequences or earthquake swarms. Based on this observation,
we established a new clustering procedure, which we called MAP-DBSCAN.
The method proved efficient on detecting the clusters of a simulated ETAS cat-
alog where the links among the events are known. We used the Jaccard index
as a validation metric, which we believe is an appropriate tool in performance
studies for earthquake clustering. Moreover, we showed the competitiveness of
the MAP-DBSCAN procedure against well-known clustering algorithms, as in
most cases, exhibits better results.

We applied the method to three major seismic zones of Greece and investi-
gated their clustering properties. The detected seismic clusters in the Corinth
Gulf, Central Ionian Islands and North Aegean Sea during 2012-2019 for events
with M > 1.5, M > 2.2 and M > 2.1, respectively, are concentrated to the
main seismotectonic structures of the areas. We examined the regional vari-
ability among the three areas by inverting the generic ETAS parameters with
a stacking procedure. The aftershock productivity is extremely high in Central
[onian Islands, where main shock-aftershocks are dominant, whereas Corinth
Gulf is characterized by low productivity values and high background rates due
to the existence of swarm activity. We also inferred sequence-specific parame-
ters of the temporal ETAS model for clusters with N > 30. Low productivity
values and high background rates are related to sequences that occurred in
areas with high pore-pressure due to fluids migration.

In Chapter 4, we proposed the use of the Markovian Arrival Process for
the modeling of the long-term properties of large earthquakes in circum-Pacific
belt. To confront the difficulties in modeling both the short-time values and
long quiescence periods we established a two-step estimation procedure. In

this way, non-stationary characteristics are revealed for large earthquake oc-
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currences that are persistent for high magnitude thresholds (M, > 7.6).

We showed that the existence of short-term seismicity complicates the study
of the long-term variations in the temporal distribution of large earthquakes.
After removing the short-term clustered events from the initial data sets, we
provided evidence for long-term changes in the background seismicity rate. In-
corporating an idle state to the parameter set of the MAP model that approx-
imates separately the long inter-event times we revealed two distinct patterns
that are preserved with small variations for the all the data sets with high
magnitude thresholds (M. > 7.6), i.e. long—term interactions varying from
a couple of years to a couple of decades and intense spatiotemporal cluster-
ing. The pseudo-—prospective forecasting experiments that we performed with
the modified MAP model show better results than the Poisson, Weibull and
Gamma models and the temporal ETAS model for multiple testing intervals
and My, > 7.6. For lower magnitude thresholds the modified MAP model
returns comparable or slightly worse results against the Gamma and ETAS

models for My, = 7.0.
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Appendix A

A.1 ETAS formulation

The ETAS model is a stochastic point process that incorporates the basic
empirical laws of seismicity in space and time. ( ) has established

the temporal ETAS model, that is essentially a self-exciting Hawkes process

(see ( )) that is defined by the conditional intensity function,
B Pdt(t/ Hy)
A(t) = A(t/Hy) = lim —=-—= +J;th (t —t;) (A1)

where Py gives the probability of an earthquake to occur at an infinitesi-
mal time interval (¢,t 4 dt), conditional on the history of the process, H; =
{(tj,m;) : t; < t}, with ¢; the occurrence times up to time ¢ and corresponding

magnitudes m;.

The first part of Equation A.1, p, is the background rate (migration rate)
that is stationary in time and is based on the constant tectonic loading that
produces independent earthquakes (mother events). The second part is the
triggering function, that expresses the contribution of past events with ¢; <t
to the occurrence rate of a new event at time t. This is based on the main

assumption of ETAS model that each event is possible to trigger a future
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event or in terms of epidemic models that both mother events and daughters
can generate their own daughters.

( ) adopted the two following main empirical laws that express
the time-dependent seismicity in the triggering function, h(t—t;) = k(m;)g(t—
t;):

e the productivity law ( ( ) pp 420-427),
k(m;) = Kemi—me), (A.2)

which gives the number of aftershocks with M > m, triggered by a

mother event with magnitude m;

e the modified Omori law,
gt —1;) = (p— V"Dt = t; 4+ ¢) 7, (A.3)

with p > 1, that describes the temporal decay of aftershocks.

The a parameter of the productivity law, given by Equation A.2, scales
the effect of an event with magnitude m; to the triggering of first generation
aftershocks. A large value of @ means that the proportion of triggered events
from large earthquakes is higher than from small ones. This is easily under-
stood from the equation k(M;)/k(M;) = e*™M=M2) hetween two events with
magnitudes M; and My, respectively. For instance, when a = 2.0 then the
fraction between the produced aftershocks of the events with M; = 7.5 and
Ms = 5.5, respectively, is almost 55 (the first event will produce 55 times more
aftershocks than the second), whereas when a = 1.0 the ratio of the same
events would be almost 8. It has been observed that small a values charac-
terize swarm type sequences where secondary bursts of seismic activity occur,
whereas higher a values are usually observed in earthquake catalogs that are
dominated by main shock-aftershock sequences ( , ). Pa-

rameter K gives the expected aftershock productivity independently of the
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main shock magnitude and is depending on the magnitude cutoff when a #

( : ), where 8 =b-1n10.

The modifed Omori law is a power-law function that gives the decay of af-
tershocks with time. Some studies suggest that parameter c reflects the incom-
pleteness in the early stage of the aftershock sequences ( ,

) and is also depending on the cutoff magnitude ( , ). More
interpretations can be derived for exponent p that describes the decay rate of
the aftershock sequence. Higher p values indicate fast diminishing sequences

whereas as p decreases the duration of an aftershock sequence is elongating.

Due to normalization of function, g(¢), p should always be p > 1.

Following the formulation of the temporal ETAS model, ( ) ex-
tended the functional form of the conditional intensity function, A(t), embed-

ding the space component of seismicity. It takes the following form,

Pt g ay (t/ Hy)

At x = (v,y)/H;) = dt,dlzl,rdrgl/—m dtdzdy

= p(x)+ > h(t -t —x;),
jitj<t

(A.4)
where Py a4z 4y gives the probability of an earthquake occurrence at an infinites-
imal time interval (¢,¢+ dt) and in a small region [z, z +dx) X [y, y +dy). The
background rate, p(x), is stationary in time and heterogeneous in space due
to the concentration of events around the faults and the triggering function
consists of three terms, h(t —t;,x — x;,y — y;) = k(m;) - g(t — t;) - f(x — ;).
The last component of the equation is the spatial distribution of aftershocks,

a1
wd(m; )i

flx —x;/m;) = [l — 13 + d(m)] ™, (A.5)
with ¢ > 1, and d(m;) = dp107m=me) considering an isotropic distribution of
aftershocks around the main shock. Parameter ¢ is the power law exponent of
the spatial distribution and gives the decay of aftershocks in space, whereas
dy expresses the spatial spreading of aftershocks. Small values of dy indicate

high concentration and vice versa. Parameter ~ scales the aftershock spreading
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with the main shock magnitude m;.

A.2 Estimation procedure

The parameter set of the space-time ETAS model consists of 8 variables, 8 =
{a,K,p,c,d,7,q,p}. The most common estimation method is the maximiza-
tion of the log-likelihood function, L = L(0/T'r), with Tr = {(t;, z;, yi;, m;), 1 =
1,..., N} the events that occurred in the spatio-temporal region A = ¥ x

[tin, ] with M > m, and is given by

LL = log\(t,x) - // /T/\(t,zc) dt d3. (A.6)
icA 2 Jtin

Concerning the evaluation of A(¢, ), it is shown that the missing links between

events inside the target region A and below the magnitude threshold, before the

start and outside the spatial boundaries of the data set influence the final LL

value and as a consequence the inverted estimated parameters ( ,

). So, events in the broader region X, and time interval [to, T, with

to < t;n should be included in the evaluation of, A(t, x).

For the maximization of the LL function we implement an iterative proce-
dure following ( ). An initial parameter set, 6, is chosen
based on the seismic features of the corresponding study area. Then, at each
iteration step, (r), we update the model parameters by adding a random factor
SO 9,(;) = 0,(;_1) +u, for k =1,...,8. We compute the new log-likelihood value,
LL") and store the new parameters under the condition LL" > LL"=Y . After
some iterations, the logarithm converges and the algorithm stops. Essentially,

this is a grid-based procedure, since we use a large number of iterations.
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A.3 Simulation

The simulation procedure that we use here is based on the branching structure
of the ETAS model ( , ). In particular, each mother event
generates its daughters (first generation), the daughters generate their own

descendants (second generation), and so on.

For the simulation of an ETAS earthquake catalog, first, we need to gen-
erate the mother events based on the non-stationary in space background rate
p(x,y). The heterogeneity in space can be preserved from the spatial coordi-
nates of the seismicity in the study area. We identify the background events
in the original earthquake catalog using a declustering algorithm and then we
generate N,,.i, mother events from a Poisson distribution with mean value
equal to the number of the identified background events. Their coordinates
are sampled with replacement from the declustered catalog by adding a ran-
dom factor. The occurrence times are simulated from a uniform distribution
U(to,ts), where ty and t; are the starting and ending time of the simulated

earthquake catalog, respectively.

The magnitudes are independent from the earthquakes’ spatial and tempo-
ral distribution and follow the Gutenberg—Richter law truncated from the left
at the completeness magnitude, m., and from the right at a maximum upper

threshold, m,,.,. The functional form of their distribution is the following,

Be=Pm)
s(m) = . AT
( ) (efﬁme J— efﬁmmaz) ( )
Next, for each mother event ¢ with ¢ = 1,..., Npain, we simulate their

aftershocks number from a Poisson distribution with expected rate equal to
the productivity of the model, k(m;) = Ke®™ ™) Their occurrence times
are sampled from the modified Omori law, g(t), given by Equation (A.3), and
the locations from the isotropic spatial distribution function, f(x), given by

Equation (A.5). Events outside the region 3, time period (to,ts) and below
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the magnitude threshold, m., are neglected. For next-generation daughters
the triggering step is repeated considering each daughter a mother event until
there are no more generated events.

To avoid the boundary issue, i.e. triggering effect of events outside the tar-
get region and from an earlier period, we implement a simulation in a broader
spatial and temporal area ¥, X [to, 7] and then consider events in the smaller

target area ¥ X [t;,, 7] with ¥ C 3y and t;, >t for our study.
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Appendix B

B.1 Gardner and Knopoff algorithm

The procedure introduced by ( ) for the detection
of aftershocks is based on specific magnitude dependent space-time windows.
It is known as the window-based method, and it is one of the simplest forms
of aftershock identification. For each earthquake with magnitude M, the sub-
sequent events are assigned as aftershocks if they occur within a temporal
window (M) and a spatial interval d(M ), respectively. Foreshocks are treated
as aftershocks when a larger earthquake occurs later in the sequence. The
event is considered as an aftershock and the algorithm is repeated based on
the largest magnitude.

We give in Equation (B.1) the functional form of the spatial and temporal
windows suggested in ( ), which are denoted as GK1.
Additionally, in Equations (B.2) and (B.3) we present alternative window pa-
rameter settings that can be found in ( ). We denote

them as GK2 and GK3, respectively.

100.032*M+2.7389 M > 6.5
d = 1001238MT0983 (o)) and ¢ = ~ days p (B.1)

100.5409*M—0.547 M < 6.5
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102.8+0.024*M M 2 6.5
days

d = 61.77+\/0.037+1.02*M (km) and t =
e—3.95+\/0.62+17.32*M M < 6.5

(B.2)
d = ¢~ LO2HOBOM (Y ] f — o 28THLZIM 0 (B.3)

B.2 Reasenberg Linked-Based algorithm
In the Reasenberg method ( , ), an interaction zone among

earthquakes is assumed that is modeled based on estimates of the stress re-
distribution for the spatial extent and on a probabilistic model, the Omori
law, for the temporal extent, respectively. Any earthquake that occurs within
the interaction zone of a prior earthquake is considered an aftershock and is
included in the cluster. The parameters 7,,;, and 7,,,, correspond to the min-
imum and maximum elapsed time since the last event, in order to observe the
next correlated earthquake at a certain probability, p;. Additionally, Zp.ry
denotes the minimum magnitude threshold for the earthquake catalog, whose
value in the clusters is raised by a factor z, of the largest earthquake, M,
within, and is given by Tperr = Tmessr + x5 * M. Finally, the parameter 74
corresponds to the radii we adopt to consider linking a new event with the

cluster. Overlapping clusters are merged.

B.3 Nearest-Neighbor algorithm

The Nearest-Neighbor approach is based on the space-time-magnitude distance

metric among two earthquakes given by ( E

df 1 n—bm;
My = (t; — ti)ry 10707, (B.4)
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where r;; is the epicentral distance between events ¢ and j, d; is the spatial
fractal dimension and b is the component of the Gutenberg—Richter distribu-
tion. Each event j is connected to its nearest neighbor i = argmin;. ¢ n;; it
their distance, n;, is lower than a predefined threshold 7. The earthquake cat-
alog is then partitioned on distinct clusters, each containing at least one event.
The space and time distances between two events are normalized considering

the logarithm of metric 7,; and they are given by
Tij = (t; — £;)1070%™ - Ry = pf/10700m:,

SO

logn;; = log T;; + log R;;. (B.5)

( ) showed that seismicity follows a bimodal distribution in
relation to (7}, R;j). One mode corresponds to the background seismicity and
the other one is located in short space and time distances and is related to the
correlated seismicity.

For the selection of the threshold value, 7, the distribution of the logarithm
of the nearest neighbor distance n* = {7,};=1,. ~ is investigated, where N
denotes the events number. It follows an 1D Gaussian distribution with two
components, which is essentially a mixture model of two Gaussian densities
with parameters N(uy,01), N(uo,09) and a1, as weights, respectively. The

threshold value is defined as the intersection of the two modes.
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Appendix C

C.1 Additional figures
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Figure C.1: a) Epicentral map of the main seismic clusters during the first
semester of 2012. Three major clusters are occurred, the C1, C2 and C3
and eight smaller clusters with N > 10 events. b) Space-time evolution of
seismicity. Colours correspond to different clusters and the size of circles is
proportional to the earthquakes magnitude.

193



C. APPENDIX C

38.3°

38.25°

Latitude

38.2°

5 km
2mi

® (6, 22/5/2013-28/6/2013,N=310
® (C8,7/7/2013-27/7/2013,N=128
O (10, 29/10/2013-6/11/2013,N=68

22.05°

22.1° 2215° 22.2° 22.25°
Longitude

22.18 T T T T T :
b)
°
2216 o o ¢ 1
—eee
22141 = 69 2 °3
() "o. o
2 23 . g
H22.12f ol 1
2 (R °
<} o &o
- 00
21+ &= g o A
oo ° o= 8o
2208+ eee -l © 1
22.06 — S —
May Ju Jul Aug Sep Oct Nov Dec

Time 2013

Figure C.2: a) Epicentral map of the 2013 Aigion swarm and subsequent se-
quences in the area with N > 10 events. b) Space-time evolution of seismicity.
Colours correspond to different clusters and the size of circles is proportional
to the earthquakes magnitude.
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Figure C.3: a) Epicentral map of the seismic activity between November,
2013 and June, 2014. Twelve clusters with N > are occurred, including the
C11, C12 and C14 clusters. b) Space-time evolution of seismicity. Colours
correspond to different clusters and the size of circles is proportional to the
earthquakes magnitude.
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Figure C.4: a) Epicentral map of the intense seismic activity during the second
half of 2014. Five major clusters are occurred, the C'15, C'16, C'18, C'19 and
C20 and four smaller clusters with N > 10 events. b) Space-time evolution
of seismicity. Colours correspond to different clusters and the size of circles is
proportional to the earthquakes magnitude.
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Figure C.5: a) Epicentral map of the seismic sequence Offshore Perachora.
One major cluster, C'4, including two sub sequences, the first initiated on 22
September and the second on 30 September 2012. b) Space-time evolution of
seismicity. Colours correspond to different clusters and the size of circles is
proportional to the earthquakes magnitude.
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Figure C.6: a) Epicentral map of the seismic activity near Itea Gulf during
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with N > 10 events. b) Space-time evolution of seismicity. Colours correspond
to different clusters and the size of circles is proportional to the earthquakes

magnitude.
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Figure C.7: a) Epicentral map of the 2014 Kefalonia earthquake sequence, I1,
and a sub-cluster, 12, that occurred offshore the southern part of Kefalonia
Island. b) Space-time evolution of seismicity. Colours correspond to different
clusters and the size of circles is proportional to the earthquakes magnitude.
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Figure C.10: a) Epicentral map of cluster 19 located on the area between
Lefkada and Kefalonia. b) Space-time evolution of seismicity. Colours corre-
spond to different clusters and the size of circles is proportional to the earth-

quakes magnitude.
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Figure C.11: a) Epicentral map of cluster N1 comprised by two sub-sequences.
b) Space-time evolution of seismicity. Colours correspond to different clusters
and the size of circles is proportional to the earthquakes magnitude.
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Figure C.12: a) Epicentral map of the 2013 North Aegean sequence, denoted
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clusters and the size of circles is proportional to the earthquakes magnitude.
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Figure C.13: a) Epicentral map of the 2013 North Aegean sequence, denoted
N3. b) Space-time evolution of seismicity. Colours correspond to different
clusters and the size of circles is proportional to the earthquakes magnitude.
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Figure C.14: a) Epicentral map of the seismic activity near the Aegean coast of
NW Turkey during January—October 2017 confined into three clusters, N10,
N11 and N12. b) Space-time evolution of seismicity. Colours correspond
to different clusters and the size of circles is proportional to the earthquakes

magnitude.
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Figure C.15: a) Epicentral map of the seismic activity near the Aegean coast of
NW Turkey during January—October 2017 confined into three clusters, N10,
N11 and N12. b) Space-time evolution of seismicity. Colours correspond
to different clusters and the size of circles is proportional to the earthquakes

magnitude.
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C.2 Additional fitting results in circum-Pacific
belt

Table C.1: The log-likelihood and AIC values of the fitted MAP models to the
events with M > 7.0, 7.6, 7.7, 7.8 in circum-Pacific belt during 1918-2020.

Mt}”«?.o Mthr - 76 Mthr7-7 Mthr - 78
#of S LL AIC #of S LL AIC LL AIC LL AIC
3 1166 -2309.1 2 -3.8 19.6 -53.5 119.0 -73.5 159.1
4 1172 -2304.8 3 6.6 106 -454 1149 -65.8 155.7
1 a) /, / b) ///
08 /// ,// /// ///
(] // /’/ // ,/
= 0.6 Dy S e e
o Y P -,
=] /’ ’ // //
£ 0.4 > L . .
®) ,/ ,’ ,/ ,/
0.2 ,’, P //, //,
0 -7
g ' - d) e
0.8 Xt L7 ol o
o /, ,’/ // ,/
= 0.6 e L7 .7 L7
L 4 , , ,
3 e , , >
§O4 Pid g .7 .,
(©] L7 L7 L7 L7
02} -” . L e
0 P ‘ e ‘ .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure C.16: Comparison between the cumulative number of residuals (blue
step function) and the stationary Poisson process with unit rate (brown line)
(a) for threshold My, = 7.0, (b) My, = 7.6, (¢) My, = 7.7 and (d) My, = 7.8.
The pink dashed lines indicate the 95% confidence bounds.
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Table C.2: P-values of the Runs and Kolmogorov-Smirnov tests implemented
to the inter-event times of the residuals, E;, for the three-states MAPs of the
events with M > 7.0, 7.6, 7.7, 7.8 in circum-Pacific belt during 1918-2020.

Statistical tests My, = 7.0 My, =7.6 My, 7.7 My, =7.8

Runs test 0.442 0.804 0.819 0.947
KS test 0 2.025-107*  0.003 0.054
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