Δημιουργία ενός Γ.Σ.Π. και αξιοποίηση των δεδομένων για τον αυτόματο υπολογισμό του μέσου υψομέτρου και της μέσης κλίσης

Κ. Νικολακόπουλος και Δ. Βαϊόπουλος Τομέας Γεωγραφίας-Κλιματολογίας, Πανεπιστήμιο Αθηνών, 15784 Αθήνα

Περίληψη

Η υπό μελέτη περιοχή βρίσκεται στο Νομό Ηλείας, στην ευρύτερη περιοχή της Ανδρίτσαινας. Αρκετές κοινότητες της περιοχής τελούν υπό μετακίνηση μετά το μεγάλο σεισμό των 6,1 R του Απριλίου 1965. Απώτερος σκοπός μας είναι η δημιουργία μιας ολοκληρωμένης βάσης δεδομένων για την περιοχή, η οποία να μπορεί να χρησιμοποιηθει είτε σε θέματα τεχνικών κατασκευών, είτε για την ευρύτερη οικονομική ανάπτυξη της περιοχής. Γι' αυτό το λόγο η μελέτη μας αποτελείται από δύο μέρη:

Στο πρώτο δημιουργήσαμε ένα Γεωγραφικό Σύστημα Πληροφοριών για την περιοχή της μελέτης. Γι' αυτό το σκοπό προχωρήσαμε στην ψηφιοποίηση οχτώ (8) χαρτών: (τοπογραφικού, γεωλογικού, τεκτονικού, εδαφολογικού, χάρτη χρήσεων γης, χάρτη φυτοκάλυψης, χάρτη διοικητικών ορίων και χάρτη οδικού δικτύου).

Στο δεύτερο μέρος της μελέτης παρουσιάζουμε ένα παράδειγμα χρήσης της παραπάνω βάσης δεδομένων για τον υπολογισμό δύο χρήσιμων για την αγροτική και οικοδομική ανάπτυξη παραμέτρων. Δημιουργήσαμε ένα πρόγραμμα γραμμένο στη γλώσσα προγραμματισμού ARC/INFO, SML, το οποίο μπορεί να κάνει επικάλυψη διαφόρων χαρτών στο τοπογραφικό υπόβαθρο και για τις εκάστοτε οριοθετούμενες περιοχές να υπολογίζει τη μέση κλίση και το μέσο υψόμετρο.

Abstract

The area under study is situated in the prefecture of Ileia, in the vicinity of Andritsena. Some of the communities of the region are being displaced after the 6,1R earthquake, of April 1965. Our purpose was the creation of a complete data base for the region. This data base could be used for a better planning of the constructions or for the agricultural development.

This study is divided in two parts. In the first part we creatred a G.I.S. for the respective area. For this purpose we digitized eight maps: (topographical, geological, tectonic, ground map, map of landuse, vegetation cover map, map of administrative bounds and map of road networks).

In the second part we present an example of using this data base for the calculation of two useful parameters for agriculture and constructions. We wrote a program in the ARC/INFO programming language SML. Using this program one or more maps can be overlayed on the topographical map and then average dip and altitude of the selected basins can be calculated.

Εισαγωγή

Η περιοχή μελέτης βρίσκεται στη Δυτική Πελοπόννησο, στο νομό Ηλείας, στην ευρύτερη περιοχή της Ανδρίτσαινας. Καλύπτει μία έκταση εικοσιπέντε (25) περίπου Km². Το μεγαλύτερο μέρος της εξεταζόμενης περιοχής βρίσκεται μέσα στα διοικητικά όρια του συνοικισμού Συκεών.

Η ευρύτερη περιοχή του νομού έχει αποτελέσει και παλαιότερα αντικείμενο μελέτης λόγω του γεγονότος ότι παρουσιάζει προβλήματα στη θεμελίωση τεχνικών κατασκευών αφού είναι συχνά, τόσο τα κατολισθητικά φαινόμενα, όσο και η σεισμική δραστηριότητα.

Την 1η Απριλίου 1965 εκδηλώθηκε στην περιοχή σεισμός μεγέθους 6,1 βαθμών της κλίμακας Richter. Αρκετές κοινότητες υπέστησαν ζημιές και κάποιες απ' αυτές χαρακτηρίστηκαν απ' τις αρμόδιες υπηρεσίες του ΙΓΜΕ μεταφερόμενες για εγκατάσταση σε άλλες ασφαλέστερες περιοχές. Μία από αυτές ήταν και η κοινότητα Συκεών. Η μετακίνηση του οικισμού δεν υλοποιήθηκε πλήρως και αρκετές οικογένειες παρέμειναν στον ίδιο χώρο.

Γεωλογία της περιοχής

Η περιοχή καλύπτεται από δύο τεκτονικές ζώνες:

- α) Τη ζώνη Πίνδου και
- β) Τη ζώνη Γαβρόβου-Τρίπολης.

Επίσης σημαντικό μέρος της περιοχής καλύπτεται από μεταλπικές αποθέσεις πλειοκαινικής ηλικίας.

Σχηματισμοί που συναντώνται είναι:

- α) Φλύσχης (Γαβρόβου-Τρίπολης),
- β) Ασβεστόλιθοι Πίνδου,
- γ) Κρητιδικά κλαστικά ιζήματα,
- δ) Σχιστόλιθοι Πλατάνου Ασβεστόλιθοι με Calpionellae,
- ε) Σχιστόλιθοι Βουτύρου Πυριτικοί σχιστόλιθοι,
- στ) Τριαδικά κλαστικά ιζήματα.

Ειδικότερα στα όρια του συνοικισμού Συκεών, εμφανίζονται:

- α) Φλύσχης (Γαβρόβου-Τρίπολης) με επικράτηση της ψαμμιτικής λιθολογικής φάσης. Στο μεγαλύτερο μέρος του από εδαφικό μανδύα πάχους ενός περίπου μέτρου,
- β) Λεπτοπλακώδεις ασβεστόλιθοι λευκότεφρου χρώματος έντονα τεκτονισμένοι,
- γ) Σύνθετη μεταβατική σειρά με εναλλαγές ασβεστολίθων και κερατολίθων,
- δ) Λεπτοπλακώδεις κερατόλιθοι με παρεμβολές αργιλικών σχιστολίθων.

Μορφολογία

Ο συνοικισμός Συκεών βρίσκεται στα βόρεια της Ανδρίτσαινας. Αναπτύσσεται σε αντέρεισμα της βόρειας πλευράς του όρους Μίνθη και το μέσο υψόμετρο είναι περίπου 500 m.

Το μορφολογικό ανάγλυφο είναι σχετικά ομαλό και το πρανές που αναπτύσσεται έχει κλίσεις της τάξεως των 20°-25°.

Το υδρογραφικό δίκτυο δεν είναι ιδιαίτερα πυκνό και ακολουθεί δύο κύριες διευθύνσεις, περίπου B-N και BΔ-NA.

Σκοπός - Μεθοδολογία

Σκοπός αυτής της εργασίας ήταν η δημιουργία μίας ψηφιακής βάσης δεδομένων η οποία θα μπορεί να χρησιμοποιηθεί στο μέλλον τόσο σε θέματα τεχνικών κατασκευών όσο και για τη αγροτική ανάπτυξη της περιοχής. Προς αυτήν την κατεύθυνση προχωρήσαμε στην ψηφιοποίηση οχτώ χαρτών που προμηθευτήκαμε από διάφορες πηγές. Πιο συγκεκριμένα:

- 1. Τοπογραφικοί χάρτες 1:5000 (φύλλα 62966, 62988 ΓΥΣ),
- 2. Γεωλογικός χάρτης 1:50000 (απόσπασμα φύλλου Τρόπαια, ΙΓΜΕ),
- 3. Τεκτονικός χάρτης 1:50000 (απόσπασμα φύλλου Τρόπαια, ΙΓΜΕ),

Ψηφιακή Βιβλιοθήκη Θεόφραστος - Τμήμα Γεωλογίας. Α.Π.Θ.

628

- 4. Εδαφολογικός χάρτης 1:5000 (απόσπασμα φύλλου Τρόπαια, Υπουργείο Γεωργίας),
- 5. Χάρτης φυτοκάλυψης 1:20000 (απόσπασμα φύλλου Καλλιθέα, Υπουργείο Γεωργίας, ΙΔΕ),
- 6. Χάρτης χρήσεων γης (καλλιεργήσιμες εκτάσεις),
- 7. Χάρτες διοικητικών ορίων 1:5000 (φύλλα 62966, 62988, ΓΥΣ),
- Χάρτες οδικού δικτύου (επαρχιακό δίκτυο και δασικοί δρόμοι)
 1:5000 (στοιχεία από τα φύλλα 62966, 62988, ΓΥΣ και άλλες πηγές).

Στη συνέχεια δημιουργήσαμε ένα πρόγραμμα γραμμένο στη γλώσσα προγραμματισμού του ARC/INFO, SML, στο οποίο παρουσιάζουμε το πως μπορεί να χρησιμοποιηθεί αυτή η βάση δεδομένων.

Με το πρόγραμμα αυτό γίνεται επικάλυψη διαφόρων χαρτών στο τοπογραφικό υπόβαθρο και για τις εκάστοτε οριοθετούμενες περιοχές, υπολογίζουμε τη μέση κλίση και το μέσο υψόμετρο. Η γνώση των δύο αυτών παραμέτρων είναι ιδιαίτερα χρήσιμη τόσο στην υδρογεωλογική μελέτη μιας περιοχής όσο και στην ανάπτυξη γεωργικών καλλιεργιών.

Στάδια εργασίας

Στο Σχ. 1 βλέπουμε το διάγραμμα ροής των διαφόρων σταδίων της εργασίας. Στα σημεία που υπάρχει το σύμβολο * είναι αναγκαία η επέμβαση του χρήση και η πληκτρολόγηση κάποιων εντολών σύμφωνα με τις οδηγίες του προγράμματος. Στη συνέχεια παρουσιάζουμε τα διάφορα στάδια του προγράμματος όπως εμφανίζονται στην οθόνη του υπολογιστή:

Σ' αυτό το αρχικό μενού έχουμε τέσσερις επιλογές. Η πρώτη απ' αυτές είναι προεπιλεγμένη και αν επιθυμούμε να περάσουμε σε κάποια άλλη μπορούμε να μετακινηθούμε με τη βοήθεια του δρομέα ή του ποντικιού (Σχ. 2). Παντώντας το enter περνάμε στο επόμενο μενού (Σχ. 3).

Εδώ μας δίνεται η ευκαιρία να επιλέξουμε έναν από τους οκτώ ψηφιοποιημένους χάρτες για να παρουσιαστεί στην οθόνη του υπολογιστή. Έχουμε τη δυνατότητα να πάρουμε οδηγίες (επιλογή HELP1) ή να εγκαταλείψουμε το πρόγραμμα (EXIT TO DOS).

Επιλέγοντας κάποιον από τους χάρτες παίρνουμε οδηγίες (Σχ. 4) και ακολουθώντας αυτές τις οδηγίες εμφανίζεται ο επιλεγμένος χάρτης. Μπορούμε εδώ να δούμε κάποιους από τους ψηφιοποιημένους χάρτες όπως τον τοπογραφικό (Σχ. 5) το χάρτη χρήσεων γης (Σχ. 6) κ.ά.

Σχ. 1. Διάγραμμα ροής των σταδίων εργασίας.

Σχ. 2

ΧΑΡΤΗΣ	ΤΟΠΟΓΡΑΦΙΚΟΣ
	ΓΕΩΛΟΓΙΚΟΣ
	ΤΕΚΤΟΝΙΚΟΣ
	ΕΔΑΦΟΛΟΓΙΚΟΣ
	ΧΡΗΣΕΩΝ ΓΗΣ
	ΦΥΤΟΚΑΛΥΨΗΣ
	ΔΙΟΙΚΗΤΙΚΩΝ ΟΡΙΩΝ
	ΟΔΙΚΟΥ ΔΙΚΤΥΟΥ
HELP1	
EXIT TO DOS	

Σχ. 3.

ΠΗΓΑΙΝΕΤΕ ΣΕ ΠΕΡΙΒΑΛΛΟΝ ARCPLOT ΚΑΙ ΠΛΗΚΤΡΟΛΟΓΗΣΤΕ: &RUN MAKE1

Σχ. 4.

Αν στο αρχικό μενού (Σχ. 2) είχαμε επιλέξει την επιλογή μέση κλίση στην οθόνη μας θα παρουσιαζόταν το ακόλουθο μενού (Σχ. 7):

Παρατηρούμε ότι οι επιλογές μας έχουν μειωθεί. Ο τοπογραφικός χάρτης θεωρείται πλέον ως υπόβαθρο και ο χάρτης του οδικού δικτύου δεν κρίθηκε αναγκαίο να είναι ανάμεσα στις επιλογές μας. Εδώ μας ζητάει το πρόγραμμα και πληκτρολογούμε ένα από τα νούμερα που είναι μπροστά από τους χάρτες. Έστω ότι επιλέγουμε το χάρτη χρήσεων γης (νούμερο 4) για να επικαλύψει το τοπογραφικό υπόβαθρο και να υπολογιστεί η μέση κλίση. Πληκτρολογούμε το νούμερο 4 και παίρνουμε τις παρακάτω οδηγίες (Σχ. 8).

Σχ. 5. Τοπογραφικός χάρτης της περιοχής.

Σχ. 6. Χάρτης χρήσεων Γης της περιοχής.

ΕΠΙΛΕΞΤΕ ΕΝΑΝ ΑΠΟ ΤΟΥΣ ΠΑΡΑΚΑΤΩ ΧΑΡΤΕΣ ΓΙΑ ΝΑ ΕΠΙΚΑΛΥΨΕΙ ΤΟ ΤΟΠΟΓΡΑΦΙΚΟ ΥΠΟΒΑΘΡΟ ΚΑΙ ΝΑ ΥΠΟΛΟΓΙΣΤΕΙ Η ΜΕΣΗ ΚΛΙΣΗ 1 ΓΕΩΛΟΓΙΚΟ 2 ΤΕΚΤΟΝΙΚΟ 3 ΕΔΑΦΟΛΟΓΙΚΟ 4 ΧΡΗΣΕΩΝ ΓΗΣ 5 ΦΥΤΟΚΑΛΥΨΗΣ 6 ΔΙΟΙΚΗΤΙΚΩΝ ΟΡΙΩΝ 7 ΕΞΟΔΟΣ ΒΑΛΤΕ ΤΟ ΝΟΥΜΕΡΟ ΤΗΣ ΕΠΙΛΟΓΗΣ ΣΑΣ:

Σχ. 7.

ΠΗΓΑΙΝΕΤΕ ΣΕ ΠΕΡΙΒΑΛΛΟΝ TABLES ΚΑΙ ΠΛΗΚΤΡΟΛΟΓΗΣΤΕ:

Σχ. 8.

Στην οθόνη μας εμφανίζεται το παρακάτω μήνυμα (Σχ. 9).

ΒΑΛΤΕ ΤΟ ΝΟΥΜΕΡΟ ΤΟΥ ΠΟΛΥΓΩΝΟΥ ΠΟΥ ΣΑΣ ΕΝΔΙΑΦΕΡΕΙ:

Σχ. 9.

Το νούμερο που μας ζητείται αναφέρεται στην αρίθμηση των πολυγώνων του χάρτη χρήσεων γης (Σχ. 6). Ας δούμε εδώ τι έχει κάνει μέχρι τώρα το πρόγραμμα (Σχ. 10).

Σχ. 10. Χάρτης Υπολογισμου Μέσης Κλισης. Προεκυψε απο την επικαλυψη του χάρτη Χρήσεων Γης στο Τοπογραφικό Υπόβαθρο.

Βλέπουμε τα πολύγωνα του χάρτη χρήσεων γης που έχουν επικαλύψει το τοπογραφικό υπόβαθρο και τις περικλειόμενες μέσα σ' αυτά ισοϋψείς. Έστω ότι επιλέγουμε να υπολογίσουμε τη μέση κλίση για το πολύγωνο Νο 5. Ο υπολογισμός θα γίνει με βάση τον τύπο:

$$A = \frac{D * L}{E}$$

Ψηφιακή Βιβλιοθήκη Θεόφραστος - Τμήμα Γεωλογίας. Α.Π.Θ.

634

όπου:

Α: η ζητούμενη μέση κλίση

D: η ισοδιάσταση

L: το συνολικό μήκος των ισοϋψών που περικλείονται στην περιοχή

Ε: το εμβαδόν της περιοχής

Σ' αυτόν τον τύπο εμείς γνωρίζουμε την ισοδιάσταση (από τον τοπογραφικό χάρτη) και πρέπει να υπολογίσουμε το συνολικό μήκος των ισοϋψών (L) και το εμβαδό της περιοχής (Ε). Αυτά τα υπολογίζει αυτόματα το πρόγραμμα. Αν πληκτρολογήσουμε το νούμερο (5), όπως είχαμε αποφασίσει, στην οθόνη μας εμφανίζονται τα παρακάτω στοιχεία που αφορούν στο μήκος των ισοϋψών (length), στο εμβαδό της περιοχής (area) και στην περίμετρο (perimeter) του πολυγώνου Νο 5:

Enter co	mmand: sta	itistics length			
Partial st	atistics for	length			
CASE	COUNT	MINIMUM	MAXIMUM	SUM	MEAN
тот	157	0.874738	1510.506000	29852.474600	190.143150
Enter co	mmand: sta	itistics area			
Partial st	tatistics for	area			
CASE	COUNT	MINIMUM	MAXIMUM	SUM	MEAN
тот	157	1099461.000000	1099461.000000	172615377.000000	1099461.000000
Enter co	mmand: sta	itistics perimeter			
Partial st	tatistics for	perimeter			
CASE	COUNT	MINIMUM	MAXIMUM	SUM	MEAN
TOT	157	8542.420000	8542.420000	1341159.940000	8542.420000
Enter co	mmand:				

Τα νούμερα που μας ενδιαφέρουν είναι από την κατηγορία length το SUM και από την κατηγορία area to MEAN. Οι μονάδες είναι σε m και m² οπότε με μία απλή εφαρμογή του τύπου:

$$A = \frac{D * L}{E} \rightarrow A = \frac{D * SUM}{MEAN}$$

έχουμε τη ζητούμενη μέση κλίση.

Αν θέλουμε να υπολογίσουμε τη μέση κλίση κάποιου άλλου πολυγώνου μπορούμε να επαναλάβουμε την τελευταία εντολή και να εμφανιστούν νέα στοιχεία.

Έστω ότι στο αρχικό μενού είχαμε επιλέξει τον υπολογισμό του μέσου υψομέτρου. Στην οθόνη μας θα παρουσιαζόταν το παρακάτω μενού (Σχ. 11):

636

ΕΠΙΛΕΞΤΕ ΕΝΑΝ ΑΠΟ ΤΟΥΣ ΠΑΡΑΚΑΤΩ ΧΑΡΤΕΣ ΓΙΑ ΝΑ ΕΠΙΚΑΛΥΨΕΙ ΤΟ ΤΟΠΟΓΡΑΦΙΚΟ ΥΠΟΒΑΘΡΟ ΚΑΙ ΝΑ ΥΠΟΛΟΓΙΣΤΕΙ ΤΟ ΜΕΣΟ ΥΨΟΜΕΤΡΟ 1 ΓΕΩΛΟΓΙΚΟ 2 ΤΕΚΤΟΝΙΚΟ 3 ΕΔΑΦΟΛΟΓΙΚΟ 4 ΧΡΗΣΕΩΝ ΓΗΣ 5 ΦΥΤΟΚΑΛΥΨΗΣ 6 ΔΙΟΙΚΗΤΙΚΩΝ ΟΡΙΩΝ 7 ΕΞΟΔΟΣ ΒΑΛΤΕ ΤΟ ΝΟΥΜΕΡΟ ΤΗΣ ΕΠΙΛΟΓΗΣ ΣΑΣ:

Σχ. 11.

Έστω ότι επιλέγουμε το χάρτη Νο 4 για να επικαλύψει το τοπογραφικό υπόβαθρο και να υπολογιστεί το μέσο υψόμετρο. Πληκτρολογώντας το Νο 4 παίρνουμε μια σειρά από οδηγίες όπως φαίνονται στο παρακάτω Σχήμα (Σχ. 12):

ΠΗΓΑΙΝΤΕ ΣΕ ΠΕΡΙΒΑΛΛΟΝ ARCEDIT ΚΑΙ ΠΛΗΚΤΡΟΛΟΓΗΣΤΕ
&RUN YPS4
ΜΕΤΑ ΤΟ ΤΕΛΟΣ ΤΩΝ ΕΡΓΑΣΙΩΝ ΠΛΗΚΤΡΟΛΟΓΗΣΤΕ:
&RUN YPS40
ΜΕΤΑ ΤΟ ΤΕΛΟΣ ΤΩΝ ΕΡΓΑΣΙΩΝ ΠΛΗΚΤΡΟΛΟΓΗΣΤΕ:
LIST K117.PAT

Σχ. 12.

Ακολουθώντας τις οδηγίες εκτελούνται τρία προγράμμα. Εδώ θα πρέπει να αναφερθούμε στον τρόπο υπολογισμού του μέσου υψομέτρου. Ο υπολογισμός γίνεται με βάση τον τύπο:

$$H = \frac{\sum_{i=1}^{n} (a * e)}{E}$$

όπου:

Η: το μέσο υψόμετρο

α : το ημιάθροισμα των τιμών δύο διαδοχικών ισοϋψών

- ε : το εμβαδό της επιφανείας μεταξύ δύο διαδοχικών ισοϋψών
- Ε : το συνολικό εμβαδό της λεκάνης
- n :ο συνολικός αριθμός των πολυγώνων που δημιουργούνται μεταξύ των ισοϋψών.

Ας δούμε τι έχει κάνει ο υπολογιστής μέχρι τώρα. Στο Σχήμα Νο 10 βλέπουμε τα πολύγωνα του χάρτη χρήσεων γης που έχουν επικαλύψει το τοπογραφικό υπόβαθρο και τις περικλειόμενες μέσα σ' αυτά ισοϋψείς. Έστω ότι επιλέγουμε να υπολογίσουμε το μέσο υψόμετρο για το

Σχ. 13. Χάρτης Υπολογισμού Μέσου Υψομέτρου. Προέκυψε από την επικάλυψη του χάρτη Χρήσεων Γης στο Τοπογραφικό Υπόβαθρο. Τα νούμερα αντιστοιχούν στα μικρά πολύγωνα.

πολύγωνο No 5. Χρειάζεται να υπολογίσουμε το εμβαδό κάθε ενός μικρού πολυγώνου που περικλείεται στην περιοχή No 5. Στη συνέχεια αθροίζοντας τα επιμέρους εμβαδά, υπολογίζουμε το συνολικό εμβαδό της λεκάνης (Ε). Το (α) δηλ. το ημιάθροισμα των τιμών δύο διαδοχικών ισοϋψών μπορούμε να το βλέπουμε κάθε φορά απ' τον τοπογραφικό χάρτη. Θεωρώντας ότι η επιο επίπονη δουλειά είναι η εμβαδομέτρηση των μικρών πολυγώνων που σχηματίζονται απ' τις διαδοχικές ισοϋψείς δώσαμε στον υπολογιστή την εντολή να κτίσει τοπολογία πολυγώνων όπως φαίνεται στο προηγούμενο Σχήμα (No 13) και να υπολογίσει τα εμβαδά. Με την τελευταία εντολή στην οθόνη μας εμφανίζεται αυτόματα ο παρακάτω πίνακας όπου στην πέμπτη στήλη έχουμε τον αριθμό του πολυγώνου και στη δεύτερη το αντίστοιχο εμβαδό. Με απλή εφαρμογή του τύπου μπορούμε να υπολογίσουμε το ζητούμενο μέσο υψόμετρο.

\$RECNO	AREA	PERIMETER	K117	K117 ID
1	- 1206890.0000	11487.7400	1	0
2	2853.8290	241.6903	2	1
3	3465.2670	275.5995	3	2
4	1482.1500	162.7051	4	3
5	302.2235	73.8782	5	4
6	1.8542	6.4956	6	5
7	22428.7000	1045.3780	7	6
8	380.4253	145.5687	8	7
9	12200.7800	712.1750	9	8
10	13510.1500	517.9407	10	9
11	14782.0300	797.3042	11	10
12	12155.5200	673.7958	12	- 11
13	34871.8100	1423.1580	13	12
14	97.2654	53.0163	14	13
15	474.1002	80.2735	15	14
16	97921.2100	3859.6870	16	15
17	13826.2200	645.6676	17	16
18	10426.7800	432.9394	18	17
19	5061.8450	282.4425	19	18
20	291.2657	81.6672	20	19
21	4.0113	18.5004	21	20
22	3.3288	17.4115	22	. 21
23	101442.1000	2822.2960	23	22
Continue?				
24	15843.4300	1168.9300	24	23
25	46795.4100	2113.5220	25	24
26	15326.1300	848.8539	26	25
27	108658.4000	3760.8460	27	26
28	5570.8810	367.0889	28	27
29	41550.3300	1847.4470	29	28
30	41476.2400	1832.7650	30	29
31	53670.3900	2091.2310	- 31	30

32	11807.7100	605.9255	32	31
33	2145.6700	430.0472	33	32
34	11292.4400	881.3434	34	33
35	20657.9200	1358.4350	35	34
36	14110.5700	1266.8850	36	35
37	3978.9250	304.9201	37	36
38	28847.2000	2209.9270	38	37
39	9221.3690	1075.9870	39	38
40	9562.6020	1069.1570	40	39
41	25911.0700	1994.6850	41	40
42	14892.3300	1048.2180	42	41
43	5902.9110	598.7861	43	42
44	282.6163	233.8680	44	43
45	5025.8960	284.4965	45	44
46	13380.9200	948.3088	46	45
47	1.3882	9.0912	47	46
Continue?				
48	516.7207	182.0854	48	47
49	16198.8900	983.4799	49	48
50	20232.5700	1452.8120	50	49
51	8091.8040	665.9603	51	50
52	21531.7100	710.7187	52	51
53	13638.4600	894.2596	53	52
54	11454.3700	837.6398	54	53
55	44337.9600	2214.3320	55	54
56	33602.4800	1564.5680	56	55
57	26718.4900	1485.2050	57	56
58	25377.6300	1303.6410	58	57
59	28555.2900	1680.2550	59	58
60	27306.0000	1308.6120	60	59
61	40456.6800	1677.1600	61	60
62	910.6907	238.8358	62	61
63	1599.2800	130.0048	63	62
64	1412.7610	209.6832	64	63
65	3364.6500	238.4967	65	64
66	2253.0170	206.9509	66	65
67	12763.1400	705.4639	67	66
68	4724.0640	328.9355	68	67
69	1848.6230	275.0544	69	68
70	22.1520	26.8624	70	69
71	6077.0110	325.0313	71	70

Enter command:

Συμπεράσματα

Η γνώση της μορφολογικής κλίσης μίας περιοχής κρίνεται απαραίτητη για το γεωλόγο, τόσο όσον αφορά στη μελέτη τεχνικών κατασκευών

Ψηφιακή Βιβλιοθήκη Θεόφραστος - Τμήμα Γεωλογίας. Α.Π.Θ.

639

69

70

όσο και στην υδρολογική μελέτη. Όπως είναι γνωστό αυξανομένης της μορφολογικής κλίσης αυξάνει η πιθανότητα κατολισθήσεων, καθιζήσεων ή άλλων κινήσεων υλικών λόγω βαρύτητας. Είναι επίσης γνωστό ότι όσο αυξάνει η μορφολογική κλίση αυξάνει και ο συντελεστής επιφανειακής απορροής, ενώ όσο η μορφολογική κλίση μειώνεται αυξάνει ο συντελεστής κατείσδυσης (όταν πρόκειται για τον ίδιο λιθολογικό σχηματισμό).

Επίσης η γνώση του μέσου υψομέτρου μίας περιοχής χρησιμοποιείται, σε συνδυασμό με τη βροχοβαθμίδα, στον υπολογισμό του όγκου των ατμοσφαιρικών κατακρημνισμάτων που δέχεται αυτή η περιοχή. Η γνώση του όγκου των ατμοσφαιρικών κατακρημνισμάτων είναι απαραίτητη τόσο για τη γεωλογία όσο και για τη γεωργία.

Η γνώση των δύο παραπάνω μεγεθών σε συνδυασμό με τα άλλα στοιχεία της βάσης δεδομένων, όπως π.χ. το είδος των εδαφών, το είδος των πετρωμάτων και το υπάρχον οδικό δίκτυο, μπορούν να αποτελέσουν ουσιαστικό βοήθημα για τη σύνταξη μελετών σχετικών με τη γεωργική αλλά και την ευρύτερη ανάπτυξη της περιοχής.

Βι6λιογραφία

- Aronoff, S. (1989). "Geographic Information Systems. A Management Perspective". WDL Publications, Ottawa, Canada.
- Βαϊόπουλος, Δ.Α. (1995). «Γεωγραφικά Συστήματα Πληροφοριών». Υπό δημοσίευση.
- Βετούλης, Δ. (1972). «Εκθέσεις γεωλογικής επανεξετάσεως των οικισμών του νομού Ηλείας Πεύκης, -Βρεστού, Ροβίων, Αλιφείρας - Συκεών και των συνοικισμών Καστρούγκαινας, Πλατειάς» (Βιβλιοθήκη ΙΓΜΕ).

E.S.R.I. (1989).

PC ARC/INFO Starter Kit (Users' Guide-ber. 3, 4d).

PC ARC/INFO Arcedit (ver. 3, 4d).

PC ARC/INFO Arcplot (ver. 3, 4d).

Environmental Systems Research Institute, Inc. 380 New York Street, Redlands, California, U.S.A.

Καρτέρης, Μιχ. Α. (1992). «Τηλεπισκόπηση Φυσικών Πόρων και Γεωγραφικά Συστήματα Πληροφοριών. (Πανεπιστημιακές Παραδόσεις)». Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης.

Κατσιαβρίας, Α.Ν. (1991). «Γεωλογική δομή της περιοχής Λευκοχωρίου-Μύλων Κεντροδυτικής Πελοποννήσου», Διδακτορική Διατριβή.

- Μουτσούλας, Μιχ. & Δ. Α. Βαϊόπουλος, (1989). «Σημειώσεις Ειδικών Θεμάτων της Μαθηματικής Γεωγραφίας». Πανεπιστήμιο Αθηνών, Γεωλογικό Τμήμα, Τομέας Γεωγραφίας-Κλιματολογίας.
- Μουτσούλας, Μιχ. & Δ.Α. Βαϊόπουλος, (1994). «Εισαγωγή στην Πληροφορική». Πανεπιστήμιο Αθηνών, Γεωλογικό Τμήμα, Τομέας Γεωγραφίας-Κλιματολογίας.
- Τσαλαμπούνης, Αντ. (1991). «Γεωγραφικά Συστήματα Πληροφοριών (G.I.S.)». Διπλωματική εργασία. Σχολή Ικάρων, Σμηναρχία Ακαδημαϊκής Εκπαίδευσης.
- «Γεωτεχνική έρευνα των συνθηκών θεμελίωσης σε κοινοτικές περιοχές του νομού Ηλείας». Από ομάδα γεωλόγων του ΙΓΜΕ (Βιβλιοθήκη ΙΓΜΕ).