f \mummxmxxxx\\\\\mxmmxm\&\m\\\\\\\\\\\\\\\\\\w

8° MaveAARvio Femypa@ikd ZuveEdpio r.Z.n. TnAsniokonnon Xaproypagia

YAONMOIQNTAZ THN EMOMENH FENIA YNMHPEZIQN OEZHZ

®pévtlog H., Mpataiag K., Ogodwpidng I.
Mavermornuio Meipaiwg, Tunua MAnpo@opikng kai
EpeuvnTiko Akadnuaiko IvoTitouto TexvoAoyiac YnoAoyiotwv (EA ITY)

NepiAnyn

O1 unnpeoieg B€ong anoteAoUv éva avaduopevo nedio epapuoywv, To onoio Bpiokel OAo
Kal MEPICOOTEPEC EPAPHOYEC O MOAAEG dpaaTnploTNTEG TNG oUyxpovng {wng. Mapdio nou
€xouv NoN HePIKA Xpovia gunopiknig {wng, To oUVOAO TWV UNNPECIOV BEONG Kal TwV AUCEWV
nou e@apuolovTal o auTéG Mnopolv va BewpnBoUv anAoikég, Kabwg dev eKPeTAAAEUOVTAl TIG
duvaTotTnTeGg oUTE TOU OUYXPOVOU AOYIOHIKOU, aAAd oUTe Ta npdo@arta epeuvnTika
anoTeAéopaTa aTo nedio TWV BACEWV XWPIKWV Kdl XWPOXPOVIKWV dedopévwyv. O okonog Tng
napoloag epyaociag €ival va oupnAnpwaoel autd To KEVO, NapoucialovTag apxika Tnv enNopevn
YEVIA TWV UNnpeciwv B€0NG, KAl OTnN OUVEXEID, ENEENYWVTAG TOV TPOMO UAOMOINCNG TOUG HE
Tnv a&onoinon oUYXPOVWV EUMOPIKOV AOYIOHIKOV KABWG KAl npdo@ATwV €PEUVNTIKWV
epyaciov. O npoTelivOUeveG unnpecieg dev €ival NpooavaToAlOPEVEG MOVO MNpPoG TN
KaTelBuvon Twv Napadooiak®wV UMNnNpeciov BEoNG, oI OMoieg NapExXovTal Os €vav KIVOUHPEVO
XPNOTN HECWw acUpuaTwVv JIKTUWV. TN MNPaAypdTIKOTNTA, MOAAEG and auTég pnopolv va
Bpouv e@apuoyn oTo kabopiopd - oxediaon BEATIOTwV diadpopwv (Npiv TNV €vapén Tng
MeTakivnong), Miag epyaciag n onoia npaypartonolgital ouviBwg MHECW JIAdIKTUAKWV
epappoywv. EmnAéov, and Tn oTiydn nou n uAonoinon TwV UnNnpeciwv €ival Baciouévn oe
NAQTPOPHEG AOYIOMIKOU WE UWNAEG duvaToTNTEG KAIMAKWONG, MnopoUv va €EunnpeTrioouV
ouyXpOvVWG aITioeig and €va noAU peydlo apiBud XpnoT®wv. Mnopouv eNOPEVWG MOAU €UKOAQ
va oupnepIAn@BoUv oTo nAaioio pia d1adIKTUaKNG EQApuUoynG nou Ba napexel oToug XPROTEG
TNG NponyHEVN AEITOUPYIKOTNTA O OXEON WE TN B€0n TOUG Kal TIG TA&IdIWTIKEG TOUG AVAYKEG.

IMPLEMENTING THE NEXT GENERATION OF LOCATION
BASED SERVICES

Frentzos E., Gratsias K. and Theodoridis Y.

University of Piraeus, Department of Informatics and
Research Academic Computer Technology Institute (RA CTI)

Abstract

Location-based services (LBS) constitute an emerging application domain rapidly
introduced in modern life habits. However, given that LBS already have a few years of
commercial life, the services provided are rather naive, not exploiting the current software
capabilities and the recent research advances in the fields of spatial and spatio-temporal
databases. The goal of this paper therefore is to fill this gap by, presenting the next
generation of location-based services and, then, demonstrating their implementation which
takes advantage of both modern commercial software and recent advances in the research
field of spatial and spatio-temporal databases. The solutions provided are not only focused
on LBS; actually, many of them are easily applicable in the context of route planning, which
is a task usually performed via web applications. Moreover, since the implementation is
based on highly scalable platforms it can support requests from numerous users at the same
time. Therefore, they can be easily employed in the framework of a web-based application
providing users with advanced functionality regarding their location and travelling needs.

WYnoeiakn BiBAI0BAKN Oed@pacTog - TuAua MewAoyiag. A.lNM.O. 257

;\E\X\\\\K\\\\\\\\\\\\\\W\Wx\\\\\\\\mﬁmﬂhm e

r.Z.Mn. TnAsniokénnon Xaproypagia 8° MaveAAnvio Fewypa@ikd ZuvEdpio
AEEEIG KAEIB1A: Ynnpeoieg Bong, BAoeig XwpIk®V Kal XwpoXpovikov Asdopévwv, AAyopIdpol.
Key words: Location-based Services, Spatial and Spatiotemporal Databases, Algorithms.

1. Introduction

The rapid growth of mobile devices, such as mobile phones and Personal Digital
Assistants (PDAs) has contributed to the development of an emerging class of e-services,
the so-called Location-Based Services (LBS), which provide information relevant to the
spatial location of a receiver. LBS constitute an innovative technological field, rapidly
introduced in modern life habits, influencing the way that people organize their activities,
promising great business opportunities for telecommunications, advertising, tourism, etc.
(Open Geospatial Consortium, 2007). On the other hand, although LBS already have a few
years of commercial life, the services provided are rather naive, not exploiting the current
software capabilities and the recent advances in the research fields of spatial and spatio-
temporal databases. The goal thus of this paper is to fill this gap by presenting the next
generation of location-based services and, then, to demonstrate their implementation taking
advantage of both modern commercial software and recent advances in the research field of
spatial and spatio-temporal databases.

More specifically, in this paper we present a set of LBS and then sketch up the respective
algorithms along with a description of their implementation. The majority of the presented
services are not currently supported by commercial LBS providers. The developed software
is based on the Microsoft. NET (Microsoft Corp., 2007a) and SQL Server platforms (Microsoft
Corp., 2007b), while it employs two Maplnfo components, the first enabling SQL Server to
support spatial objects and R-tree indexing (i.e., the MapInfo SpatialWare (Maplnfo Corp.,
2007)), and the other implementing the routing algorithm between two nodes along a given
road network graph (i.e., MapInfo Routing J Server (Maplinfo Corp., 2007b)). Exploiting the
functionality provided by these components, we expand it towards many directions. Among
others, the developed software supports nearest neighbor queries using network (rather
than Euclidean) distance, optimal route finding between a set of user-defined landmarks,
and in-route nearest neighbor queries.

The solutions provided are not only focused on LBS; actually, many of them are directly
applicable in the context of route planning, which is a task usually performed via web
applications. Moreover, since our implementation is based on highly scalable platforms (e.g.,
SQL Server) it can support requests from numerous users at the same time. Therefore, they
can be easily employed in the framework of a web-based application providing users with
advanced functionality regarding their location and travelling needs.

QOutlining the rest of the paper, Section 2 presents two sets of LBS (i.e., one with
services currently supported by commercial LBS provider, and one with novel services,
constituting our proposal regarding the next generation of LBS). Section 3 presents
implementation issues (presenting the development platforms, and exemplifying the
implemented algorithms used to support the proposed services). Finally, Section 4 closes
the paper providing the conclusions and some interesting research directions. Table 1
summarizes the notation used in the rest of the paper.

258 WYneoiakn BiBAI0BAkN ©edppacTog - Tunua Mewloyiag. A.M.0.

£ \\H\““x.xxxxxxxkxkk\\\\M\WW\\\\\\\\\\\\\\\w

8° MaveAARvio Femypa@ikd ZuveEdpio r.Z.n. TnAsniokonnon Xaproypagia

Table 1. Table of notations

V={V}, the set of vertices corresponding to road network junctions on a road
i=1..n4 network.

E={E}, the set of edges connecting vertices V;, corresponding to road segments on
i=1.. n a road network.

G, B the directed graph that represents the underlying road network on which

objects are moving.

L={L}, . .

i=1..n5 the set of all points of interest (POls) or Landmarks.

17-:1{77,}74 the set of all mobile users

T, the spatio-temporal point (i.e., time-stamped spatial point) of user T; at
i timestamp ¢;
ELé;i_g;St the Euclidean distance between points P and Q
Net_g’)St G the network distance on the graph G between the points P and Q

Buffer(X, D) | builds a buffer of width D around a path X

retrieves a set of bi-connected line segments {E;} of the network graph
Route(P, Q) | forming a single path between points P and Q; usually, the result of a
routing operation

2. The Next Generation of LBS

In this section we describe a set of novel services constituting our proposal regarding the
next generation of LBS; obviously, these services are not currently supported by commercial
LBS providers. We also include in our discussion a set of already implemented services
since: (a) they are fundamental and thus used as a basis for the (more advanced) novel LBS
set, and, (b) existing solutions on these services (i.e., algorithms and implementation
details) are rather naive and based on approaches usually resulting in false results. The
services were designed and developed on behalf of the Telenavis S.A. (Telenavis, 2007) in
the context of the Next Generation Location Based Services (NGLBS) project funded by the
General Secretarial of Research and Technology. Telenavis S.A. is a commercial LBS
provider providing both GSM-based and web-based private and corporate solutions (see for
example http://www.navigation.gr).

2.1. A set of LBS

The first set of LBS which is already implemented by commercial service providers
contains three fundamental services, named, What-is-around, Routing, and Find-the-
Nearest. All services (and the respective algorithms) assume the presence of graph G and/or
a set of POIs L. Moreover, all services involving graph operations (e.g., routing between two
points), can be evaluated with any of the two optimization criteria (length and time); in the
following sections, for clarity reasons, we restrict our discussion in the distance (rather than
time) optimization, while the second criterion can be easily applied, by simply involving a
maximum speed which converts any time period to a maximum distance. The following
paragraphs describe the functionality of each LBS:

e What-is-around: The simplest service is the one that retrieves and displays the
location of every POl being located in a rectangular area (Q, d), where Q is the

WYnoeiakn BiBAI0BAKN Oed@pacTog - TuAua MewAoyiag. A.lNM.O. 259

;\E\X\\\\K\\\\\\\\\\\\\\W\Wx\\\\\\\\mﬁmﬂhm e

r.Z.Mn. TnAsniokénnon Xaproypagia 8° MaveAAnvio Fewypa@ikd ZuvEdpio

location of the user (or simply a user-defined point) and d is a selected distance
(i.e., the half-side of the query rectangle). The input of the corresponding algorithm
for “what-is-around” consists of the point Q and the distance d, while it returns the
set L' cL containing all POls inside the rectangular area (Q, d).

e Routing: This service provides the optimal route between a departure and a
destination point, P and Q, respectively.

e Find-the-Nearest: This service retrieves the k nearest landmarks (POls). For
example, “find the two restaurants that are closest to my current location” or “find
the nearest café to the railway station”. The underlying algorithm takes as input the
query point Q (for example, calling user’s current location), and returns the set of
points L' cL, which are the k nearest to Q members of L.

2.2. A set of Novel LBS

The second set of LBS contains a number of advanced services which can be considered
as extensions of the above three fundamental services. Among the ones that were designed
and implemented during the NGLBS development, we will focus on three services, named
Guide-me (or Dynamic Routing), Advanced Routing and In-Route-Find-the-Nearest. The
functionality of these services is described in the following paragraphs. For a more detailed
description regarding all services, along with an interesting LBS taxonomy the interested
reader is cited to Gratsias et al., 2005. Once again, all services (and the respective
algorithms) assume the presence of graph G
and/or a set of POls L:

e Guide-me (Dynamic Routing): A first
extension of the (static) Routing
described above is the so-called
Guide-me service (Fig. 1): Likewise,
the system determines the best route
between the calling user’s current) .
location (point P) and a destination Figure 1. Guide-me example
point Q, and then it keeps track of
the user’s movement (by simply updating its position) towards the destination
point, allowing him/her to deviate from the ‘optimal’ route, as long as the user’s
location does not fall out of a predefined safe area (buffer) built around this route.
The user is notified of his/her deviation every time he/she crosses out of the
buffer’s border and he/she is given the option of re-routing from that current
location (point R). The input of Guide-me algorithm is the id of the calling user, the
destination point Q, and the distance D, which defines the buffer width.

e Advanced Routing: The Routing service provided above can also be extended
towards its “advanced” version, by requesting from the system to retrieve the best
route between a departure and a destination point, P and Q respectively, requesting
also to travel through a set of intermediate points C={C}. The input of the
respective algorithm is the departure and destination points, P and Q respectively
and the set of intermediate points C.

e In-Route-Find-the-Nearest: It is a combination of the Routing and Find-the-Nearest
services which given a departure and a destination point P and Q respectively, finds
the best route between them, constrained also to pass through one among the
specified set of candidate points (e.g. one of the points contained in Landmarks).
For example, a request for this service is, “provide me the best route from my
current location to the city A constrained to pass from a gas station”. Once again,
the input of the respective algorithm is the departure and destination points, P and

260 WYneoiakn BiBAI0BAkN ©edppacTog - Tunua Mewloyiag. A.M.0.

£ \\H\““x.xxxxxxxkxkk\\\\M\WW\\\\\\\\\\\\\\\w

8° MaveAARvio Femypa@ikd ZuveEdpio r.Z.n. TnAsniokonnon Xaproypagia

Q respectively. This problem can also be seen as a special case of the so-called Trip
Planning Query (TPQ) (Li et al., 2005), with the number of different classes
requested set to one.

3. Implementing the Services

In this section we describe the implementation of the proposed LBS suite. We will firstly
introduce the development platforms, while we will subsequently illustrate the respective
algorithms along with some interesting details on each service’s implementation.

3.1 Development Platforms

All the services are implemented on
top of three basic components. The | NET LBS Suite |

first one is the Microsoft SQL Server
2000 (Microsoft Corp., 2007b), which
‘l.

is a relational database management
system (RDBMS) produced by Microsoft
including standard RDBMS functionality

(i.e., stored procedures, triggers etc.). DBMS SQL Server Routing J Server
SQL Server is commonly used in small SpatialWare Extension

to large enterprise databases. Here, we

have to point out that Microsoft SQL Figure 2. System Architecture

Server does not natively support

spatial objects such as points, lines etc.; consequently, the employment of a middle-ware
component which enables SQL Server to support spatial data is an obligatory action, in
order for the LBS suite to be properly developed.

This middle-ware component is the MapInfo SpatialWare (Maplnfo Corp., 2007a), which
enables the RDBMS (in our case, SQL Server) to store, manage, and manipulate location-
based data. It allows therefore spatial data to be stored in the same place as traditional
data, ensuring data accessibility, integrity, reliability and security through the mechanisms
of the SQL Server. SpatialWare includes a variety of non-traditional data types, such as
points, lines, polyline, regions (polygons), supports numerous spatial functions (such as
ST_Buffer generating buffers around spatial objects within a given tolerance etc.), and it is
compliant with the Open Geospatial Consortium (OGC), 2007. However, the most important
SpatialWare feature is its support for R-tree indexing (Guttman, 1984), making it able to
support substantial quantities of spatial data; R-tree indexing allows pruning the search
space when a spatial query is executed. Otherwise (i.e., in the case where no spatial index
is present), the execution of each spatial query would lead to linear scans over the entire
dataset, which is a very expensive operation.

The third component used in the implementation of the LBS suite is the MapInfo Routing
J Server (RJS) (Maplnfo Corp., 2007b) which is a street network analysis tool for finding a
route between two points, the optimal or ordered path between many points, the creation of
drive time matrices, and the creation of drive time polygons. RJS calculates either the
shortest distance or quickest timed route between any two points, returning text-based
driving directions and spatial points to the parent application. This functionality is achieved
by xml requests over a continuously running server: the client (i.e., the LBS suite) queries
the RJS with an xml file containing information such as, the departure and the destination
point, and after processing the request, RJS returns another xml file containing the optimal
route in terms of its lines segments (i.e., edges of the respective directed graph). In our
implementation we used the RJS .NET client middleware, developed by Telenavis S.A.
(Telenavis, 2007), which undertakes the tasks of composing the xml file used for making the
request, and subsequently, interpreting the server’'s answer to a set of comprehensive
objects implemented in the form of .NET objects. However, this comes for a cost, since this

WYnoeiakn BiBAI0BAKN Oed@pacTog - TuAua MewAoyiag. A.lNM.O. 261

;\E\X\\\\K\\\\\\\\\\\\\\W\Wx\\\\\\\\mﬁmﬂhm e

r.Z.Mn. TnAsniokénnon Xaproypagia 8° MaveAAnvio Fewypa@ikd ZuvEdpio

client only supports the simple operation of finding a route between two points, and not the
more sophisticated ones that native RJS does (i.e., finding optimal or ordered path between
many points).

In top of all the above components, the LBS suite, is implemented using Microsoft Visual
Studio .NET 2003 (Microsoft Corp., 2007a), while the connection to the DBMS is realized by
an OLE DB connection (Microsoft Corp., 2007a) to the SQL Server. Figure 2 summarizes the
system architecture used for the developed LBS suite.

3.2 Implementation Details

In this section we will examine the implementation details of the above services. As
previously discussed, since the first three services (i.e., What-is-around, Routing and Find-
the-Nearest) are already included in the commercial - publicly available - Telenavis LBS
suite, we will briefly describe both the existing solution along with our (more sophisticated)
implementation. Then, we will proceed with the novel services, describing the algorithms
and providing details about their implementation. In the rest of the paper we will refer to
the existing LBS implementation as TNLBS, while ours will be called as NGLBS. Here, we
have to point out that one of the core differences between TNLBS and NGLBS is that the
former relies only on the SQL Server, without employing the SpatialWare component.

What-is-around

The first service on the TNLBS basically relies on the SQL Server DBMS, which contains,
among others, a table of Landmarks (e.g., gas stations) in the form of [object id,
object_name, x, y]. Obviously, the spatial components of the landmark objects are
represented in terms of their Cartesian coordinates in different table fields, resulting in a
non-efficient scheme. We have to point out again however, that since the SQL Server does
not natively support spatial objects, the above scheme is the only one suitable. The core of
the service implementation is the following query (providing that the query point Q is given
in terms of its coordinates Qx and Qy and d is a selected distance, that is, the half-side of
the query rectangle):

SELECT * FROM Landmarks WHERE x>=Qx-d AND x<=Qx+d AND y>=Qy-d AND
y<=Qy+d

On the other hand, exploiting the fact that NGLBS is based on a scheme which includes
the SpatialWare component, the x and y fields can be substituted by a single Geometry
field; as a result, the Landmarks table is reformulated in the structure [object id,
object_name, object_geometry], while the above query can be rewritten in terms of spatial
database operations, employing the HG_Box function which returns a rectangle with the
given coordinates:

SELECT * FROM Landmarks WHERE
ST_Overlaps(object_geometry,HG_Box(Qx-d,Qy-d,Qx+d,Qy+d)

Routing

The second service also included in the TNLBS, requires only querying the .NET RJS
client with the appropriate inputs, i.e., the departure and destination points P and Q; the
network graph G(V, E) is already contained inside RJS. The results are provided in terms of
text-based driving directions and spatial objects following the application model (i.e., points,
lines, poly-lines). Regarding the algorithm used inside RJS in order to calculate the shortest
path between the two points, RJS documentation does not provide any information about it.
However, the problem of calculating shortest paths in graphs is well-known; therefore it can
be solved by employing a variety of algorithms (see for example the Dijkstra (Dijkstra,

262 WYneoiakn BiBAI0BAkN ©edppacTog - Tunua Mewloyiag. A.M.0.

£ \\H\““x.xxxxxxxkxkk\\\\M\WW\\\\\\\\\\\\\\\w

8° MaveAARvio Femypa@ikd ZuveEdpio r.Z.n. TnAsniokonnon Xaproypagia

1959) algorithm). There is strong evidence however that the implementation of RJS in based
on a variation of the A* algorithm (Hart et al, 1968) which is the one that is usually
employed in real-world applications involving network graphs due to its computational
optimality and straightforward implementation. This service is the only one that is
implemented following exactly the same manner in both TNLBS and NGLBS
implementations.

Find-the-Nearest

The third service, which retrieves the k nearest landmarks to the caller’s location, is
currently implemented in TNLBS based on the Landmarks stored in the SQL Server DBMS
(using the (x, y) representation), and the RJS. The respective algorithm initially retrieves
the 3-k nearest landmarks to the query location, which are subsequently treated as
candidate nearest points. The task of retrieving the 3-k nearest landmarks is achieved by
performing a SQL query calculating the Euclidean distance between the query point Q and
all points contained inside the Landmarks table, and then, sorting the results according to
the calculated distance:

SELECT TOP 3*k object_id,((Qx-x)"2+(Qy-y)2) AS Dist FROM Landmarks
ORDER BY Dist DESC

The algorithm subsequently performs routing operations (using the .NET RJS client) to all
candidate object retrieved by the previous query, sorts them according to the resulted
network distance from the query point and finally reports the first 3-k objects.

However, there is strong controversy regarding this algorithm’s performance and quality
of output. For example, there is no concrete background behind the choice of retrieving the
3-k nearest points in order to treat them as candidates. As such, the approach of multiplying
the number of k requested by 3 (or any other arbitrarily selected coefficient) may lead to
false outputs; a case which is clearly illustrated in Fig.3(a), where the three nearest objects
according to their Euclidean distance from the query point Q are points P;, P, and P;, while
point P, is the actual nearest neighbor.

Moreover, the performance of this algorithm is far from being optimal, since it requires
calculating the distance between the query and all POls in the database during the execution
of the above SQL statement. This happens due to the fact that there is no spatial index
present, leading the database to perform a linear scan over Landmarks (calculating at the
same time the requested distance expression); then the database performance deteriorates
when the number of POls exceeds a few hundreds of thousands.

On the other hand, in our implementation, we employed recent technological advances in
the field of Spatial Network Databases (SNDB), and implemented the “Euclidean Restriction”
algorithm described in (Papadias et al., 2003) in order to retrieve the nearest to a query
point. This algorithm is illustrated in the following pseudo-code:

Algorithm Find_the_Net_Nearest(point Q)

1 Find the Euclidean nearest object P to the query object Q

Calculate Net_Dist(Q,P)

Retrieve all POls P; with Eucl_Dist(Q,P)<Net_Dist(Q,P)

For each P; calculate Net_Dist(Q,P;)

Return as nearest neighbor the object with the smaller Net_Dist(Q,P))

a b wnN

The algorithm is further exemplified in Fig,3(b) to Fig.3(d). Specifically, Fig.3(b)
illustrates the first step (i.e., the algorithm retrieves object P; which is the nearest object to

WYnoeiakn BiBAI0BAKN Oed@pacTog - TuAua MewAoyiag. A.lNM.O. 263

r.Z.Mn. TnAsniokénnon Xaproypagia

;\kxi\\\\\{\\\\\\\\\\\\\mw\ww\\m\m\mmm“i e

Q according to the Euclidean distance), then, its network distance D; is calculated (i.e., step
2), and finally object P; is retrieved since its Euclidean distance from Q is smaller than D,
(i.e., step 3), and further examined as possible nearest neighbour in steps 4-5. This
algorithm is based on the fact that Eucl_Dist(Q,P)<Net_Dist(Q,P),V Q,P; as such, every
object P' with Euclidean distance from Q greater than the respective network distance of
another object P can be safely rejected (pruned) without further considering its network
distance; formally, given that Eucl_Dist(Q,P)>Net_Dist(Q,P), then also
Net_Dist(Q,P)>Net_Dist(Q,P’) stands. It is proved therefore that the nearest neighbor must
be found among the objects retrieved in the third step. For each network distance
calculation requested, a routing operation is performed via the .NET RJS client, and the
respective distance is calculated accordingly. Regarding the first algorithm’s step which
retrieves the Euclidean nearest object P to the query object Q, rather than using an
approach similar to the one of TNLBS, we exploit the R-tree-based nearest neighbor
operator provided from the SpatialWare, which improves the algorithm’s performance:

SP_Nearest Landmarks, object_geometry, object_id, ST_Point(Qx,Qy),k

P2 N Py

Dist(Q,P;

Py

@ (b) (© (d)

Figure 3. The Find-the-net-nearest service

The SP_Nearest operator retrieves the nearest to the point ST_Point(Qx,Qy) among
those that are contained inside the Landmarks table. Concluding, by employing the
previously presented approach (followed in the NGLBS implementation), the Find-The-
Nearest service, not only retrieves exact solutions, but since it employs spatial indexes, is
much more efficient than TNLBS.

Guide-me (Dynamic Routing)

This service requires the DBMS to keep track of the user’s current position. As such, the
SQL Server contains, among others, a relational table with each user’s T; current positions,
which are updated from outside the developed suite. This table is named Current_Positions
and has the form of [User_id, last_position_geometry]. The algorithm developed to support
the Dynamic Routing service is illustrated in the following pseudo-code:

Algorithm Dynamic_Routing(User Id T, destination point Q, distance D, time period At)

8° MaveAAnvio Fewypa@ikd ZuvEdpio

Retrieve current position T;; of T;

Retrieve route R=Route(T;;,Q)

DO until T;; reaches Q

Wait At: j=j+At: Update T;;

IF NOT T;; lies on the buffer Buffer(R,D) go to Step 1
LOOP

O g h WNPR

264 WYneoiakn BiBAI0BAkN ©edppacTog - Tunua Mewloyiag. A.M.0.

£ \mmm.\mmxxa\\\\\m\xmmx\\\\\m\\\\\\\\\\\\\\\\\\w

8° MaveAARvio Femypa@ikd ZuveEdpio r.Z.n. TnAsniokonnon Xaproypagia

Regarding the first step, it is performed by a simple request to the .NET RJS client.
Probably, the most interesting operation of the algorithm is revealed in step 5, where it is
requested to check whether the object’s current location T;; lies on a buffer of the route R
with distance D; this operation is performed via the Spatialware by checking whether the
following SQL statement returns any records:

SELECT * FROM CurentPosition WHERE User_id=Uld AND
ST_Contains(HG_Buffer(ST_Spatial(R_String),D),last_position_geometry)

The ST_Contains(A,B) function returns true when the spatial object A contains the
spatial object B, while the HG_Buffer(A,D) function constructs a spatial object representing
the buffer of the A with distance D. Finally, the ST_Spatial(string) function converts a
properly composed string (e.g., the route string) to a spatial object.

Advanced Routing

The Advanced Routing service, involving a departure and destination point, P and Q
respectively, along with a set of predefined intermediate points P;, can be seen as a variation
of the well known travelling salesman problem (TSP); however in our case there are two
special requirements:

e the distance between P, Q and P; is not Euclidean, thought it satisfies the triangle
inequality, and

e the distances between points P; (i.e., Net_Distance(P;, P;)) are not known in
advance, rather than they are calculated during the algorithm’s execution.

L,=Net_Dist(P,N L,=Net_Dist(N,Q)

(@ (®) ©

Figure 4. The In-route-find-the-net-nearest service

As such, the algorithm recursively examines alternative solutions, until all possible
routes have been checked. The algorithm prunes candidate routes by using the minimum
network distance calculated so far; pruning is also performed using the Euclidean distance
as a first approximation, and then, if the solution is not pruned by its Euclidean Distance,
the network distance is calculated and the algorithm recursively proceeds with the remained
objects until all alternative solution have been examined or pruned. The details of this
algorithm are beyond the scope and this paper, and for this reason are omitted. It is
however important to note that this algorithm utilizes only the .NET RJS client, without
querying at all the DBMS.

In-Route-Find-the-Nearest

This service retrieves the best route one has to follow in order to travel from a departure
to a destination point P and Q respectively, constrained also to pass through a POl among
the ones contained in the Landmarks table. The developed algorithm is illustrated in the
following pseudo-code:

WYnoeiakn BiBAI0BAKN Oed@pacTog - TuAua MewAoyiag. A.lNM.O. 265

;\E\X\\\\K\\\\\\\\\\\\\\W\Wx\\\\\\\\mﬁmﬂhm e

r.Z.Mn. TnAsniokénnon Xaproypagia 8° MaveAAnvio Fewypa@ikd ZuvEdpio

Algorithm In_Route_Find_the_Nearest(departure point P, destination point Q)

Retrieve route R=Route(P,Q)

Find the Euclidean nearest object N to the route object R

Calculate Net_Dist(P,N) and Net_Dist(N,Q)

Retrieve all POls N; with Eucl_Dist(P,N;)+Eucl_Dist(/N;, Q)<Net_Dist(P,N)+Net_Dist(N,Q)
For each N; calculate Net_Dist(P,N;) and Net_Dist(N;,Q)

Return as nearest neighbor the object N; with the smallest
Net_Dist(P,N))+Net_Dist(N;,Q)

o g b~ WN PR

This algorithm is based on the same principle with the Find_the_Net_Nearest algorithm,
that is, the network distance between two points is greater or equal to their Euclidean
distance. As such, the algorithm initially produces the optimal route R between P and Q by
performing request to the .NET RJS client, while subsequently, uses R as a query object on
the SP_Nearest operator in order to retrieve the Euclidean nearest neighbor N among the
records contained in the Landmarks table (Lines 1-2 in pseudo-code and Fig.4(a)). Then it
also performs requests to the .NET RJS client on order to calculate the network distance
between P, N and Q (Line 3 in pseudo-code and Fig.4(b)), while afterwards uses their sum
in order to retrieve candidate objects with total distance from both P and Q less than it (Line
4 in pseudo-code and Fig.4(c)). It is also important to note that these objects are contained
inside an elliptical region with P and Q as foci. In its last step, the algorithm calculates the
network distances between P, Q and all candidate points N, finally, reporting as answer the
one that has the smallest sum of network distances.

4. Conclusions

In this paper we present the next generation of location based services, sketch up the
respective algorithms and provide some interesting details on their implementation. The
majority of the presented services are not currently supported by commercial LBS providers,
or are available in an inefficient and inaccurate manner. Our implementation is based on the
Microsoft.NET and Microsoft SQL Server platforms, employing two additional components,
namely, the Maplnfo SpatialWare and Maplinfo Routing J Server in order to efficiently
support spatial and graph-based operations. Among others, the software developed for the
Next Generation Location Based Services, includes nearest neighbor queries using network
(rather than Euclidean) distance, optimal route finding between a set of user-defined
landmarks, and in-route nearest neighbor queries. The developed services are supported by
recent advances in the field of SNDB (Papadias et al., 2003, Li et al., 2005, Kolahdouzan
and Shahabi, 2004, Sankaranarayanan et al., 2005).

The solutions provided are not only focused on LBS; actually, many of them are directly
applicable in the context of route planning, which is a task usually performed via web
applications (while the Advanced Routing and In-route-find-the-nearest are much more
meaningful in the framework of route planning, rather than the GSM-based LBS). Moreover,
since our implementation is based on highly scalable platforms (SQL Server along with the
SpatialWare and RJS) it can support numerous concurrent requests. Therefore, our plan is to
employ it in the framework of a web-based application providing users with advanced
functionality regarding their travelling needs.

References

Dijkstra, E. W., 1959: A note on two problems in connexion with graphs, Numerische
Mathematik, vol 1, pp. 269-271, 1959.

Gratsias, K., Frentzos, E., Delis, V. and Theodoridis, Y., 2005: Towards a Taxonomy of
Location-Based Services. Proceedings of Web and Wireless GIS (W2GIS), 2005

266 WYneoiakn BiBAI0BAkN ©edppacTog - Tunua Mewloyiag. A.M.0.

£ \mmm.\mmxxa\\\\\m\xmmx\\\\\m\\\\\\\\\\\\\\\\\\w

8° MaveAARvio Femypa@ikd ZuveEdpio r.Z.n. TnAsniokonnon Xaproypagia

Guttman, A., 1984: R-Trees: a dynamic index structure for spatial searching.
Proceedings of ACM SIGMOD Conference, 1984.

Kolahdouzan, M., Shahabi, C.: Voronoi-Based K Nearest Neighbor Search for Spatial
Network Databases. Proceedings of VLDB Conference, 2004

Hart, P. E., Nilsson, N. J., Raphael, B., 1968: A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and
Cybernetics SSC4 (2): pp. 100-107.

Li, F., Cheng, D., Hadjieleftheriou, M., Kollios, G. and Teng, S.-H., 2005: On Trip
Planning Queries in Spatial Databases. Proceedings of SSTD, 2005

MapInfo Corporation, 2007a: MaplInfo SpatialWare, Available at
http://extranet.mapinfo.com/products/ Overview.cfm?productid=1141, (accessed 18 May
2007)

Maplinfo Corporation, 2007b: MapInfo Routing J Server, Available at
http://extranet.mapinfo.com/ products/Overview.cfm?productid=1144, (accessed 18 May
2007)

Microsoft Corporation, 2007a: Microsoft Visual Studio .NET, Available at http://
msdn.microsoft.com/ vstudio/, accessed 18 May 2007.

Microsoft Corporation, 2007b: Microsoft SQL Server, Available at
http://www.microsoft.com/sql/, accessed 18 May 2007.

Open Geospatial Consortium, 2007: OpenGIS® Location Services (OpenlLS): Core
Services. Available at http://www.opengis.org, accessed 18 May 2007

Papadias, D., Zhang, J., Mamoulis, N., and Tao, Y., 2003: Query Processing in Spatial
Network Databases. Proceedings of VLDB Conference, 2003.

Sankaranarayanan, J., Alborzi, H., and Samet, H., 2005, Efficient Query Processing on
Spatial Networks. Proceedings of ACM-GIS Workshop, 2005.

Telenavis S.A., 2007: http://www.telenavis.gr/, accessed 18 May 2007.

WYnoeiakn BiBAI0BAKN Oed@pacTog - TuAua MewAoyiag. A.lNM.O. 267

