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Abstract 
In the majority of rapidly developing economies, significant land use changes are being 
witnessed. In such cases there is an increase in the rate of the migration from the countryside 
to the city, while higher income groups move to newer residential areas leaving the center of 
the cities to be populated by lower status residents and the newest immigrants. The newer 
residential areas are situated farther away from the center of the cities causing an expansion of 
the suburban areas. Urbanization and suburbanization imply the physical growth of a city and 
the expansion of the built-up suburban areas. In order to monitor the urban extent constantly, 
the mapping community has resolved into using Remote Sensing data which covers the 
surface of the Earth on a regular base. Very high spatial resolution imagery (e.g. Ikonos, 
Quickbird, Worlview) has made possible the track of changes on a higher level of detail that 
is necessary to urban planners. However classification of urban areas still remains challenging 
due to the high heterogeneity of materials and urban objects in terms of size, shape and 
texture. In the present work we propose a multi- temporal classification approach for 
monitoring and mapping urbanization based on Hidden Markov Models (HMMs). Multi-
temporal satellite images enable the monitoring of the rate of urbanization by inferring 
thematic information from frequent image acquisitions. Our approach exploits the spectral 
and temporal information content on high resolution satellite data in order to minimize 
classification errors. It uses HMMs for representing the evolution of urban sprawl and 
determines the most probable sequence of classes over time by estimating class transition 
possibilities. The performance of our approach is tested by using a set of six very high 
resolution images over a suburban area of Greece covering a period of 13 years (2001-2013). 
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1. Introduction 

Cities in developing countries worldwide are undergoing constant change due to the high 
concentration of population and the rapid expansion of urban settlements at the expense of 
open air spaces, agricultural land or even forests. Urban planning is necessary to take 
measures towards water and land resource management, transportation, human activities 
management, pollution, etc. Thus monitoring the urban extent is a critical matter considering 
the issues that may arise from a non-regulatory growth of urban areas and the direct impact 
that may have on the quality of life. To this end, urban authorities and policy makers need 
accurate and frequently updated maps on regional scales, for long-term planning studies, 
covering the expanding residential areas. 

In this regard, Remote Sensing offers a powerful source of spatial information by monitoring 
the Earth’s surface for the past 20 years with Medium Resolution satellites (e.g. Landsat, 
SPOT) and for the last decade with the advent of Very High Resolution satellite sensors (e.g. 
Ikonos, Quickbird, Worlview) allowing mapping in higher thematic and geometric scales 
(Taubenböck et al. 2011). VHR refers to 3 - 0.5 m pixel size, which in practice enables the 
identification not only of urban blocks but also of individual elements (houses, trees, roads, 
etc.) (Tran et al. 2011). Traditional methods of creating or updating urban maps are based on 
manual delineation of urban objects and are subject to the individual’s interpretation 
capabilities of aerial or remote sensing images. Such approaches are time consuming and are 
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based on the knowledge of the image analyst, which poses the question of the reliability and 
the lack of uniform results. The increasing availability of VHR remotely sensed observations 
requires the development of new automated classification methods which map the temporal 
changes with high degree of accuracy. 

Although VHR data offers great potential towards the analysis of the urban fabric, some 
points need to be taken under consideration on the processing of multitemporal images. In 
general, errors may stem from the changing solar elevation, atmospheric conditions, and 
satellite sensor incidence angles. In the case of building detection, their complex structures 
and height discontinuities create occlusions and shadows which provide a false representation 
of their shape (Pacifici et al. 2007; Hermosilla et al. 2011). In such large scales, the presence 
of temporary objects, such as cars, trucks, or open markets reduce the accuracy of the 
classification or change detection results. 

In order to discriminate land cover types various techniques are applied in the fields of urban 
mapping. Image classifiers may incorporate different type of information: spectral, spatial and 
temporal (Mota et al. 2007). Spectral classifiers are the most commonly used and rely only on 
the spectral features of a pixel or object. Spatial knowledge can be exploited only in the case 
of object- based classification and refers to the spatial relations between objects produced by 
segmentation algorithms. Segments are regions which are generated by criteria of 
homogeneity in one or more dimensions (of a feature space) respectively. Thus segments 
have additional spectral information compared to single pixels (e.g. mean values per band, 
minimum and maximum values, mean ratios, variance etc.), but of even greater advantage is 
the additional spatial information for objects (Blaschke, 2010). Recently many studies focus 
on object-based classification techniques by including information on the spectral response, 
the texture, or the shape of the objects. Other researchers (Bouziani et al. 2010; Doxani et al. 
2014) employed multispectral images and vector information, regarding the geographic 
position of urban objects (buildings, roads, etc.), and they built a knowledge-base with the 
spectral, spatial and contextual features of the existing building objects. The new buildings 
are detected by defining proper rules to compare the image objects with the created 
knowledge-base. Moreover, some studies combine the information of imagery and three-
dimensional data (Hermosilla et al. 2011; Haala 1999). They create image-objects by using 
automatic segmentation techniques and then apply a threshold value to the nDSM to 
discriminate objects with similar spectral features but different heights, such as buildings and 
roads. Despite the promising results of the object-based classification schemes and the 
excessive trend to applications ‘beyond pixels’, one must consider the critical role of the 
segmentation level. Under-segmentation directly results in classification errors and must 
therefore be avoided. Ideally the objects resulting from the segmentation process should 
correspond to real-world objects but this can be quite difficult in an environment of very 
complex and heterogeneous buildings (Roeck et al. 2009). 

Temporal classifiers were introduced due to the disposal of multi-temporal remote sensing 
observations and the need to process more than two temporal images. These classifiers 
process the information content on various dates taking into account the evolution of a 
phenomenon over time and the dynamics of the classes of the target area. The temporal 
knowledge usually is combined with other knowledge forms to create an adequate 
multitemporal classifier (Mota et al. 2007). In 2002, Bruzzone and Prieto presented a partially 
unsupervised approach to the classification of multitemporal remote-sensing images. Such an 
approach allows the classification of a remote-sensing image in the cases where training data 
are not available by estimating the temporal correlation between successive scenes. Neural 
networks (NNs) have also been used to combine spectral, spatial and temporal information to 
produce classification and change detection maps of increased accuracy (Melgani 2003; 
Pacifici et al. 2007). Moreover the HMMs approach has been proposed as an effective tool to 
incorporate temporal knowledge to model the evolution of environmental phenomena such as 
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the growth of crop types or wetland dynamics (Viovy et al. 1994; Aurdal et al. 2005; Leite et 
al. 2011; Siachalou et al. 2014). 
This paper presents a multi- temporal classification approach for monitoring urbanization 
based on the potential of HMMs to process simultaneously multitemporal remotely sensed 
data. To this end, previous work has implemented HMMs (Mithal 2013) aiming to enhance 
the results of urban change detection by using a time series of Landsat-7 images (of 30 m 
resolution). The objective of the developed methodology is to face the challenges and explore 
the level of detail of multitemporal VHR satellite data (of about 1 m resolution) over a 
suburban area in Greece. The outcome of the multi- temporal classification scheme is the 
production of land cover classification maps on each date of interest. The performance of the 
methodology is evaluated against a traditional single-date spectral classification by using the 
same set of images and the same training samples. Finally some conclusions are drawn over 
the advantages and disadvantages of the methodology and possible improvements are 
discussed.  
2. Materials and Study Area 

Our proposed approach uses as input data a set of 6 VHR pan-sharpened satellite images 
acquired from Ikonos, Worldview 2 and Quickbird (Tab. 1). Before the processing of the 
images, they were all co-registered with sub-pixel accuracy and resampled to 1 m pixel size. 
The dates of acquisition covered the period from 2001 to 2013 and therefore made it possible 
to monitor the changes in the urban fabric before and after the beginning of the financial crisis 
of 2009.  

Table 1. Description of the satellite data used in the study 

Satellite  
Date of 

acquisition  
Spatial 

Resolution  
Spectral 

Resolution  
Ikonos 23/05/2001 1 m 

Blue, 
Green, Red, 

NIR  

Ikonos 19/08/2003 1 m 

Ikonos 01/09/2007 1 m 

Ikonos 05/04/2010 1 m 

Quickbird 23/07/2011 0,6 m 

Worldview 2 10/03/2013 0,5 m 
 

For this study we selected the suburban area of Triadi, located near the city of Thessaloniki, 
northern Greece. Thessaloniki is the second largest city of Greece and its suburbs had a high 
expansion rate before 2009. Three years prior to crisis, the construction activity in Greece was 
increasing with a mean annual percentage change of 8.5%, whereas during the next three 
consecutive years there was a big decline by -10.4% approximately (Eriotis et al. 2013). The 
study area is a typical example of a Greek suburban area with a residential form, occupied by 
detached and semi-detached houses, with rapidly changing land cover classes, which made it 
a proper example to evaluate our classification model.  

 
3. Proposed multitemporal classification model 

3.1.  Definitions and observations  
According to the theory of HMMs we observe a system assumed to change through a series of 
states (Aurdal et al. 2005). In each state the system will produce observations with certain 
probabilities and the transitions between states can be described statistically by probabilities. 
Therefore in an HHM, every state is not directly linked to an observation but to a probability 
distribution of observations and every state is “hidden” in the sense that it is not directly 
observable. In the present study, the set of observations O = {O1, O2...On} is composed by a 
stack of the six multispectral images and the states S = {S1, S2… Sj}, are the land cover types 
which may change over time. The aim of the proposed approach is to assign in every pixel of 
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each temporal image a land cover type. To define an HMM we need to estimate the following 
parameters based on a representative set of training data: 

1. the emission matrix, which corresponds to the probability that observation Ot is produced 
while being in state Sj, i.e., bj(Ot) = P[Ot | qt = Sj ], 

2. the transition matrix, which describes the probability of a pixel belonging to state Si  at 
time t-1 to change to state Sj at time t, i.e., aij= P[qt  = Sj |qt-1 = Si] and, 

3. the initial probability of  being in state Si at the initial time instant t1, i.e., πi = P[qt1 = Si].  
In order to estimate the emission matrix we assumed that the set of multispectral data 

being used as observations in our problem, have a multivariate Gaussian distribution. The 
covariance matrix and the mean vector of each state, in each image is computed from the 
training data. Through the transition matrix, the proposed classifier incorporates temporal 
knowledge about the statistical relationship between the states, derived both by the training 
data and prior knowledge on the area of interest. It was decided to use the concept of “soft” 
transitions, which means that the transition probabilities range between 0 and 1. The 
alternative of using a “crisp” transition would limit the classifier to either being possible or 
not (“1” or “0”) and degrade the role of the emission matrix.  

Before proceeding to the application of the methodology we need to clarify some key 
points that were taken into account on the design of the classification model: 

I. A common denominator for the effectiveness of the classifier is using a correct training 
set to estimate the emission and the transition matrix. Training the classifier involves 
selecting a representative set of samples for which the state Si at time t-1 and the state Sj 
at time t are known and all possible transitions are included (Mota et al. 2007). 

II. Some states-classes have a higher risk of being misclassified due to their spectral 
similarity. For example in the study area, buildings have tile roofs with spectral 
characteristics common to bare soil (Fig. 1). Their evolution through time is what could 
assist their discrimination (the different possibility of changing from on state to 
another). 

III. The transition probabilities between certain states are higher than others; such is the 
case of changing from bare soil to building, which is more likely than changing from 
building to vegetation, in the particular area. The majority of pixels tend to remain to 
the same state through time, which means that the transition probability to a different 
state is lower than self-transition. The transition probabilities are equal only when 
referring to shadows which may be present even if they were previously recognized as 
bare land, or building or vegetation. 

The different cover types identified in the specific area formulate the following five 
state- classes: 1) buildings 2) man-made surfaces composed from concrete, asphalt or gravel 
3) vegetation 4) bare soil (including dry vegetation) and 5) shadows.  

 
Figure 1. Examples of areas containing tile roofs and bare soil in the study area. Top row refers to 
false-color composite (R: IN Red, G: Red, B: Green) and bottom row refers to true-color (R: Red, G: 
Green, B: Blue). 

3.2.  HMMs classification algorithm 
The basic steps of the developed methodology are illustrated in a flowchart in figure 2. In this 
paper, HMMs enable us to determine the state sequence that is most likely to have emitted the 
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observed sequence of observations (i.e. the land cover class of each pixel on each time 
instant).  The best state sequence Sb = {s1, s2… sn} is defined by equation 1 which is 
computational intensive: 

    (1) 

In this equation, P(St|St-1) corresponds to the transition probability from state St to state St-1 
and  P(Ot|St) refers to the emission probability of observation Ot while being in state St. To 
reduce the computational complexity of the problem the Viterbi algorithm is most commonly 
used (Trier et al. 2011). 

 

Figure 2. Schematic workflow of the developed classification methodology. 

 

4. Results and Discussion 
The method is applied on a set of 6 VHR images and 6 corresponding classified images are 
produced. Since the purpose of the study was to monitor the expansion of residential areas, 
the evaluation of our approach will focus on the validity of building detection. Hence, the 
classes of the produced classified images were grouped into two classes; “Buildings” and 
“Non-buildings”. To assess the contribution of our temporal classification scheme, the same 
set of images with the same training samples were also classified by the Maximum 
Likelihood (ML) algorithm.  

The evaluation of the proposed methodology and the comparison with the ML algorithm was 
performed, with the help of appropriate ancillary ground truth data. The ground truth maps 
were produced by manual digitization of the boundaries of buildings in each image by an 
experienced image-interpreter. The evaluation measures of Completeness, Correctness and 
Overall accuracy were computed as they are usually used on building detection studies (Jin et 
al. 2005; Champion et al. 2009): 

  (2) 
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      (3) 

 (4) 

In this context, True Positives (TP) are pixels that are correctly classified as “buildings”, 
False Positives (FP) are the pixels that have been classified erroneously as “buildings” by the 
model and False Negatives (FN) are the pixels that have been classified as “non-buildings” 
while they were actually “buildings”. The Completeness was computed by dividing the 
number of pixels that were True Positives by the correct number of pixels that were found as 
“buildings” from the image-interpretation. The Correctness was computed by dividing the 
True Positive pixels by the pixels that were classified as “buildings”. The results of the 
accuracy assessment are illustrated in figures 3, 4 and 5.  

 

Figure 3. Diagram of the Correctness measure of 
each image classified by HMMs and ML. 

 

Figure 4. Diagram of the Completeness measure 
of each image classified by HMMs and ML. 

 

Figure 5. Diagram of the Overall accuracy of each image classified by HMMs and ML. 

 

As we can observe the measure of Correctness in the case of the HMMs is higher than ML 
which means that in our method the pixels classified as buildings actually represented that 
class. This is actually the case in the examples of figure 6, where ML over-estimated the area 
of buildings in areas of bare soil. By a quick visual check on both classification maps some 
remarks can be made in favor of the temporal classifier. In cases of pixels which belong to 
class “Bare soil” at time t, but also have a spectral similarity to class “Buildings” the ML 
algorithm is likely to classify them as “Buildings”. However, if at time t-1 those pixels belong 
to class “Bare soil” the temporal classifier is more likely to classify them as “Bare soil”. This 
happens because the transition probability is higher from “Bare soil” to “Bare soil” than from 
“Bare soil” to “Buildings. Those pixels were correctly classified due to their increased 
transition probability of remaining at the same class.  
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Figure 6. Two examples of the classified images produced by HMMs and ML algorithm, of areas 
whose true class was “Bare soil” in 2007 and 2010. In the classified images class “Buildings” is 
marked with yellow color and class “Non-buildings” is marked with black. 

However the Completeness estimation proved that ML was superior in the sense that it did 
not omit to classify a pixel in its correct class compared to HMMs. This can be explained by 
the collection of multitemporal images; the look angle and Sun angle are critical factors 
affecting the reflectance of geographic objects. When the remote sensing images are not 
acquired at nadir both the building roofs and their sides are recorded and may be mapped at a 
different location in two images of different look angles (Chen et al. 2012) (Fig. 7). In figure 
8 a building appears to be falsely underestimated by HMMs method compared to the ML 
algorithm. This is because those pixels in 2010 also resemble “bare soil” and were not 
“buildings” in the previous image of 2007 due to the different look angles of those images. To 
sum up, we conclude than in our approach the areas prone to errors are located in the 
perimeter of the true location of buildings. Hence, the use of multitemporal images can 
generate a number of erroneous “building” indications in those areas which can be either 
roofs or ground according to the look angle and are likely to be hidden by shadows in some 
images. Nevertheless the assessment of the Overall accuracy of each image (Fig. 5) showed 
that the HMMs approach prevails over ML in most images ranging between 95,7% and 
98,7%. 

 

Figure 7. Sub-scenes of images displaying roofs in acquisitions of 2010, 2011 and 2013 in different 
locations due to the different look angle of satellites. 
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Figure 8. Sub-scenes of the classified images produced by HMMs and ML algorithm, and the 
corresponding image of 2010. Red color refers to the boundaries of buildings produced by image-
interpretation of image 2007 and blue refers to buildings produced by image-interpretation of image 
2010. 

5. Conclusions 
The goal of the present study was to develop a methodology to process multitemporal images 
simultaneously to produce improved classification maps. A HMMs classification approach 
was implemented on a time-series of 6 VHR images of a suburban area to monitor the 
expansion of urban sprawl and was compared to a ML single-image classification. The main 
advantage of the HMMs method is that it incorporates temporal knowledge apart from 
spectral. This benefit improves classification results when pixels resemble two classes but can 
be discriminated in previous images of the time-series set. Misclassification due to the 
resemblance of classes can be avoided if in the other images pixels can be correctly identified. 
The estimation of the overall accuracy of the proposed method has proven that the temporal 
classifier is superior to the single-date spectral classifier. However mapping buildings using 
multitemporal VHR imagery presents many difficulties due to imperfect image co-registration 
and to different image acquisition angles. The experimental results have shown that most of 
the errors refer to areas in the perimeter of buildings and occur frequently at the expense of 
the final multitemporal classification accuracy. 

In future work many of the above limitations could be overcome by the use of true-ortho 
images. If the roofs of buildings are geometrically corrected and their location coincides in all 
images, multitemporal classification will not provide misleading information and will 
improve significantly the final classification maps. 
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