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The possibility of misundertandings regarding the geometry of a
rotating disc shows the need for a consistent definition of time and space in
the General Theory of Relativity. We define proper time and length by
means of atomic elocks and rigid rods on the ftangent euclidean spaee. Then
the possible definitions of coordinate time and space are discussed and some
evenfual errors are pointed out. As an example we discuss the case of a
rotating dise. It is found necessary, in general, to define guy and the coordi-
nate time a priori; then we can check these definitions by observations,
namely by red - shift measurements, It is shown that the coordinate timc
caunot be takcn arbitrarily; in fact it has the important physical property
of being transmitted without change. This property is used for the synchro-
nization of two distant clocks. The problem is more difficult in the case of
an expanding Universe., It is scen that the Doppler and the gravitational
red-shifts act together; they may be used as a general check of our
hypotheses. Further the velocity is defined in threc different ways; it is
seen that in no case velocities greater than that of light exist. Finally an
application of our difinitions on a rofating disc shows: 1) that the light rays
are hot 3-dimensional geodesics and 2) no shortening of the radius occurs,

1. INTRODUCTION

The great success of the mathematical treatment of the General
Theory of Relativity has led to a tendency to avoid much discussion
of the physical meaning of its contents. It is not even made always
quite clear what is meant by the most elementary notions of time
and space. According to Einstein (b, p. 81) in a gravitational field
«it is not possible to obtain a reasonable definition of time with the
aid of clocks which are arranged at rest with respect to the body of
reference». Therefore «The scale and clock to some extent lose their
preeminence» (Eddington a, p. 36). But clocks and scales are used, in
connection with the Special Theory of Relativity, as an introduction
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to the General Theory. The most usual example of such a procedure
is the case of a rotating disc (Einstein a, p. 58, Einstein b, p. 80-82,
Méller p. 222 - 226, Gamow p. 67 - 70, Davidson p. 181, Couderc
p. 107 - 110).

By this example it can be proved that the space on a rotating
disc is not euclidean. However the usual proofs may give rise to
misunderstandings. Is is mentioned e.g. that the measurements are
considered «from the point of view of an observer in the system of
inertia», But if we measure a number of rods laid down along the
moving periphery, each of them will appear contracted to the obser-
vers at rest, «therefore» the whole periphery will appear shorter
than 2ar. If on the other hand we measure the length of the moving
periphery with unit rods lying along it, we shall find it equal to
2ntr, «because» the number of rods needed to complete the circumie-
rence does not change by its rotation.

The usual version of the problem is that the moving periphery
is greater than 2ar, because the measuring rods on it will be
contracted, «therefore» a greater number of them than zxr will be
needed to complete the circumference.

Eddington (b, p. 75) attributed the paradox of the rotating
disc to the fact that the moving rods experience acceleration. It is
not clear, however, how accelerations influence the behaviour of the
moving rods. Moller and others (Méller p. 223, Einstein a, p. 59)
assume that «the lengths of the rods are independent of the accele-
rations», It is necessary therefore, in order to give a correct answer to
the problem of the rotating disc to make clear what is meant by
length and time in the General Theory of Relativity.

2. PROPER TIME AND LENGTH

The whole Relativity is based on the invariance of the four-
dimensional line element ds? = g, dx* dx*. In order to define ds, it
is supposed that we have a system of space coordinates x!, x?, x?* and

L]
a time coordinate t == XT The coefficients g, must fulfil the condi-
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negative for dx! = dx? = dx* = 0. Such conditions are necessary if
a basic distinction between space and time is to be assumed.

In a given model g,. are given functions of x'; but ds? remains
invariant by any change of coordinates x!= xi(x¥), i.e. ds? =
Euy dx¥ dxV == g,.* dx*" dx*". In this model the motions of the material
particles and of the light rays are represented by geodesics in the
four-dimensional space (not in the three-dimensional space in general).
The form of these geodesics does not depend on the choice of
coordinates. L,et us take geodetic coordinates at a given point - event
P (x1, x?, x%, x%. Then the derivatives of g, at this point are zero
(von Laue p. 73).

Therefore we have in first approximation an euclidean space.
By a suitable transformation of coordinates the line element assumes
the form ds? = do? — c¥dt? where do? = dx'? + dx*? 4- dx*? in the new
system. This euclidean space may be called tangent to the given
space at the point-event P, in the same sense as a plane is tangent
to a given surface at one of its points. But this eunclidean space
contains an infinity of inertial systems* : every two such systems are
connected by a Lorentz transformation, but for all of them we have
ds? = do? — c¥dt? = dg'? — cidt"?. If M represents a material point

which at the given time t = X is at the point (x!, x?, x3), then
[

there is one system S with axes going permanently through M, i.e.
having as time axis the world line of M. It is evident that omly
one such system exists ; the velocity of M with respect to S is zero.

In this system it is again ds? = dI? — c*d+? and now dr is the
proper time and dl the proper length in the neigbbourhood of M. If
dl =0, then ds = icdr ; dtr measures the proper time in M, i.e. the
time that shows an atomic clock there, e.g. an ammonia clock, {the
second isthen defined as a given number of vibrations), or else a
radioactive clock, with constant half - life,

It is said sometimes that such clocks are not influenced by
acceleration. Papapetrou (p. 116) e.g. introduces the «hypothesis»
that there exist «normal» clocks, whose proper period is not changed
by a gravitational field, and that the atoms are such «normal» clocks.
It is easily seen however that this is not an hypothesis at all; in
fact the proper time is defined as that given by atomic clocks.

* By ¢system» we mean a thrce-dimensional body of reference; the
space axes may have any directions in it.
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Further it is usually assumed that in order that a clock should
show the proper time, it should fall freely in a gravitational field,
describing a geodesic, This is a consequence of the principle of equi-
valence, because for a system moving along with the clock no
strain or acceleration is present. However such is not the case e.g.
for the clocks on a rotating disc. Further, as Papapetrou (ibid.) has
noticed, a pendulum clock does not give any time at all, if it
falls freely, because then it does not oscillate. The only escape from
such dilemmas is again to define proper time as the time that is
given by atomic clocks, in all cases.

If we set dr=0 in the equation above, then ds==dl; ds
measures the proper length in the neighbourhood of the point M.
It is supposed that rigid rods do not change their length; or better,
that they give, by definition the proper length. Now it is verified
experimentally that light rays are represented by the null

geodesics ds = 0, des = 0. Hence % = ¢, i.e. the proper velo-
city of light is constant.

This is to be taken as an experimental fact*, which has been
verified in connection with the Special ‘T'heory of Relativity. It is
assumed to be wvalid in every tangent euclidean space; i.e it is
assumed that in every tangent euclidean space Special Relativity
holds.

3. COORDINATE SPACE AND TIME

We come now to the problem how the form of ds is found and
what are the physical meanings of the coordinates x!, x?, x3, x*.
The space coordinates x!, x?, x* can be easily defined. They corre-
spond to arbitary markings in a three-dimensional space. If we have
rigid rods laid down along definite directions, whatever markings on
these rods may give a system of coordinates x!, %%, x3. T'he difficult
point is to define t, which is called the «coordinate time», At first
sight t may be taken arbitrarily (Finstein b, p. 99) e.g. it is given
by the readings of any physical phenomenon, which is used as a
clock (Contopoulos a, p. 202 - 204). The law of the physical pheno-

* On the contrary Milne {p. 27-28) defines the length by this equation,
i.e. he does not accept the rigid rod asa primary notion or as a necessary tool.
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menon is supposed to be known, therefore t can be deduced from the
proper time t by an arbitrary, but given transformation of coordi-
nates, involving eventually the space coordinates x!', x%, x3 also,
Sometimes t is defined by the readings of a clock in another system
(e.g. for a rotating disc, the readings of a non rotating clock); then
again there is a special (but arbitrary) transformation which connects
our readings of proper time v with the readings of this clock, which
gives the coordinate time t., However, as we shall see, t has a
certain physical meaning, therefore it cannot be taken arbitrarily.

When the x!' are defined, the form of ds® may be found in the
following two ways : a) It is supposed that the form of ds is known
in a given system and from it we derive its form in another system,
moving inany given way with respect to the first, by a suitable
transformation of coordinates. We note that the world-line of M is
defined by dx! = dx® = dx3 == 0; the time axis is not changed when
we move from the (x', x2, x3, x') to the (l,1) system. Therefore dl is a
function of (x'; x2, x% only ; in other words dl is vertical to the time-
axis (von Laue p. 142) Then it follows {either from the condition that
dl is independent from x*, or from the verticality condition) that :

- 3
cdt = V—g,, (dx* + gl 3 gudxt )
41 =]
Bu
— Eu
edr = (cJ— g4 dt — y. dx% and

If we set y, = and yw = guw + 7v¥», we find :

i 3
d =—73 (gug,.,—g.8x) dx'dx* = y,dx‘dx*, where i, x, vary from
1

1 to 3*. It is then verified that d1? — c?d«? = ds? = g,,, dx*dx" .

As an example, let us take the case of the rotating disc. In the
inertial system of the center of the disc we have ds® = dX? + dX* +
+ dX*? — ¢3dT?, i.e. our four-dimensional space is euclidean. We

* The same conclusion is found by Mbller by another method. But his

X

L
formulae are derived for the special case when Agp = - = 0, Modller
X

uses tbese formulae in the case of a rotating disc (p. 240-241); but there

w
his proof is not valid, because A, = — I gjn (#+wt) and
c

o T L. (" Y
Al = = cos (O4-ot) ie. in general A,' 50, A2 50,
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assume that these coordinates are connected to the cylindrical coordi-

nates (r,#,z) on the moving disc by the usual non-relativistic

equations x' =1 cos {#+ wt), x? = r sin (§ + wt),

x‘

-~

Then it is found that ds? = dr? + r2d9? + dz® + 2wridddt —
—{—re) dttie. gy =1, ge=12 gu=1,

x¥¥=z, T=t=

wr? r*w?
B12=8i3=gn==8a—8u=~0, By — g"*":_(li ¢ )

From this we find for the proper time and length the expressions

d'[ = V‘_" B (dt +g“dﬁ) —_—-V]. —_ Cw? dt — & and dIQ =
C g c? Vl *we?
c? — T
c?

2192 .
= dr? 4 r—m,r, + dz?. We come to the same formulae if we take a
1

c'i,‘

system moving with the velocity of a given point {ry, 0, 7)) at a
given moment t, in its rotational motion around the center ; in this
system the length and time are evidently proper length and

proper time*,
The above space element dl, defined in polar coordinates r, 9, z
is evidently not euclidean. From this it follows that the length of the
2nr
The same conclusion can be drawn from the following considera-
tions. If dl, is the length of a rod on the moving periphery, its

length measured by an observer at rest will be dl, = d10|/1_ riw?

periphery is , l.e.it is greater than 2ar.

c!
Hence dl, = dl, — and as the integral of dl; is 1y = 2ar, itis
w
-3
found 1, = i—.
Vl_ riw?
C’

* Although there is a general agreement on the nou-euclidean character
of the space of a rotating disc, some aiuthors have expressed diffcrent
views. Glaser (p. 7D} e.g. stresses the fact that the four-dimensional space
is euclidean. This is true, but it is mnevertheless possible that a carved
three-dimensional space belongs to a flat four-dimensional space.
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Imy?
We cannot assume that 1, = 2ar, so that 1, = 2ar VI— rc(f .

because 1 is not known a priori ; therefore the possibilities that the
periphery should be smaller or equal to 2ar are excluded. The only
difficulty arises from the fact that we cannot visualise how a greater
number of measuring rods is needed to cover the moving periphery
than the non moving one. But when we measure dl; from outside,
we have everywhere the same time t, while the proper time t on the
moving periphery is different from point to poiut. However, t must
be the same for the cbservers on the rotating disc when they measure

a length dl,. In fact, for dt =10 it is di = — _ redd and

1 _ r*m?
c VI pr
dl,? = dly>—c?d1?, and as dl,=rd8, we find dl ¢ = dI,#+ % =
ct{l— —;
d,? y

as it was expected. In other words 1, is greater than l;;

rm?

(1_ c? )

it should be equal to it only if dt=0, which is not the case if
dt =0,

Iu the above example it is to be noted that although the space
of the disc is not euclidean, the four - dimensional space - time is
etclidean : this cau be proved by returuing to the initial coordinates
X1, X2, X3, T, This remark has some important consequeuces, as we
shall see later.

b) Another method by which we can find the form of ds? is
proposed by Méller (p. 237 - 240) ; it is based on a straightforward
experimental determination of the g,,.

If we have coordinate clocks at rest in every point of the
space, giving the coordinate time t, we can find g,; from the equation

dv=Y-—g,, dt, if a proper (atomic) clock is also given. Further
v. and y,. are found by smeasuring the velocity of light in different
directions (in t-time). But, as we shall see, t cannot be taken arbitra-
rily ; g,; is given from red- shift measurements, hence t is also
defined. Therefore we cannot find g,; by the above method. However
the space coordinates are arbitrary, i.e. the coefficients y,, y.x may be
found, in principle, by Méller’s method.

Another difficulty of this method is that it is impossible to
make measurements of the coordinates in all the points of the space.
Not only our measurements are discontinuous, but they do not cover,
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even sparsely, but a small part of the whole space. In cases of cosmo-
logical siguificance our measurements cannot give us anything about
the form of the world - geometry, as they are coufined only to the
earth. Therefore some a priori assumption concerning the values of
guv 15 necessary, We shall see this method presently.

4. A PRIOR! SOLUTIONS

In all the applications of the General Theory of Relativity the
g are defined a priori, by general considerations regarding the
potential fields pervading the space. E.g. gu, are found by solving
the Einstein equation of gravitation G., = 0. Iu other cases, as in
the case of the rotating disc, the form of the space time is supposed
known for a special system, by general considerations also, or just
by an a priori assumption ; then the form of g., in another system
is found by a simple change of coordinates.

The coordinates are supposed to be given by special readings
of measuring rods and specially graduated clocks. Mc Vittie (p. 35)
uses a method of defining the coordinate readings of the clocks and
the space coordinates, by using proper time and lengths. It is fouud
{by changing Mc Vittie’s notations in order to conform to ours):

8

t,
Sy = fds = (:f‘VgHb 0,0,0,t) dt =icry, where x!==x*=x%=1(.
o o

This equation gives the increase of coordinate time t from the increase
of proper time t, if the clock is at rest in the system x!, x?, x3.

Further for two events (0,0,0, t) and (x';, 0,0, t;) we have:
x'y

1=J‘V g (x',0,0,t;) dx'. Now 1 is the proper length along the
0

coordinate line x'; it is supposed that this line has been defined
in some way {e.g. by the track of a light ray) but it is not graduated).
Then our equation gives the values of x' for different points of this

line. By similar equations
x%

1=J‘Vggg (x';, x%, 0, ty) dx?® e.t.c. the other two coordinates are

o
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defined. Mc Vittie’s method is right, but not quite general. In the
case that the g,, are not all zero, the first equation gives again the
time t, for a stationary clock. In the other equations we must use

x!

yw instead of g.. E. g. 1=fV7.,(x',0, 0,t;) dx' e.t.c.
[¢]

By this method 'x!, x?, x* are defined, when the g, are known. In
practice, however, x', x% x3 are somehow defined a priori, so that
the above equations can only check this definition:; i.e. our ex-
periments give simply a verification or a disproof of our assum-
ptions regarding the nature of x!, x%, x* and the forms of the g,..

A more difficult problem arises, when the g, are not completely
defined. E.g. in the case of a gravitational field in a non void space

itis G, — 7} guwG=kT,,. In order to find T,, we must know the

distribution of matter in space; but this is not known until some
space frame is laid down, i.e. until g,, is known. This difficulty is a
basic one (Mc Vittie p. 42) and does not permit a definition of g,
exclusively a priori. However, we can use an approximate form of
guv in determining T,, and then we may find better values of g., by
a method of successive approximations. In practice, we use a model
of the Universe where T, is known (e.g. the Universe is supposed
homogeneous) and our conclusions are then compared with the
observations.

5, SYNCHROMIZATION AT A DISTANCE

When we measure the time t needed by a particle ot a light
tay to describe a certain distance (in a given system), it is tacitly
assumed that we have a means of synchronizing the clocks along
the path, so that they measnre the same time everywhere. Of
course a proper clock moving together with the particle gives some
proper time intervals. E.g. in the case of a light ray, these time
intervals are always zero. However, proper time is not suitable for
synchronizing distant clocks. This is because synchronization by
proper time is not consistent, i.e. two distant proper clocks which
are once found to be synchronous are no more synchronous,
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in general, after some time*.. In other words if two light rays start
from a given place with proper time difference dt, they do not arrive,
in general, with the same proper time difference at another place. In
a static field {i.e. when g,, are independant of t) only the coordinate
time t possesses, in fact, this important property. The coordinate
time intervals dt are transmitted unchanged by the light rays (von
I.ane p. 144 and 188, Tolman p. 222). Actually, t is defined
in such a way, so as to be transmitted inva-
riable (Eddingten a, p. 92).

This difference between propet and coordinate time can be best
illustrated in the case of the Einstein red-shift of the light rays from
the sun. The proper time interval (proper period) of a vibration of

an atom in the sun (at rest relatively to the snn}) is dv = I/ 1— % dt.

It is known that dt remains unchanged as the light is transmitted,
while dr changes. At the distance of the earth (practically r—infinite)
dt is the same, therefore dr becomes : dr,==dt, while the proper time
on earth is di.=dt.. The intervals dr of the vibrations of two
similar atoms on the sun and on the earth are equal by definition
(i.e. two atoms are regarded as similar, if the dr of their vibrations

are equal). Therefore dr = dx, Vl— 21,—}" or dr. = dry VL—-— 27”', 1.e.

the proper period of the arriving light dr, is longer than the proper
period of the corresponding light of the earth. One could perhaps
think that the same should happen if instead of t another coordinate
time t° and a corresponding form of g,, were used. But then the
red - shift should be different. Therefore, the red-shift observed in
the light coming from a point where g, has a different value than
on earth defines the coordinate t to be used, thus defining
also g;;. In general, the period of a light pulse dr at the starting
point P, is given by ds? = —cdt? = —c?g,, (P,)dt? ; on arrival of the
light pulse to the point Py, ds? becomes ds;?== —c2dr 2= —cig,,(P,)dt?,
while the light pulse of an atom at the point P, gives again ds?

Therefore ds = ds, V%&%ﬂ) or di=dy V%‘%"; and the red-shift is
4d ] 44 2

* Mec Vittie (p. 37-38) thinks that we can synchronize two distant
proper c¢locks by moving the first with infinitesimal velocity up to the
place of the other. We shall see, however, that proper time intervals are not
preserved. Mc Vittie assumes that when v —+0, then vt tends also to zero;
in fact, then t-+co, so that vt remains finite (=x").

WYnoeiak BiBAI0BAKN Oed@pacTog - TuAua MewAoyiag. A.MNM.O.



b5

given bY 1 ‘|; dl — gu(Px).

Eul(Py)’
In general, however, g, is known a priori and the law of red-shift

gives only a verification of the general considerations which lead to
the given value of gy, (g;; is given as a function of the coordinates
x', x%, x3, which are supposed to be defined in some arbitrary way,
so that every emission and reception point should have definite
coordinates xi;, xi;). In the case where only the f o r m of g;, is known
a priori, x!, x? x3 must be defined in such a way so that
gy, should have at the points P, and P, values that are consistent
with the red-shift measurements.

However, x!, x?, %3 are in practice assumed to be known a priori
(e.g. the value of the sun”s radius r in the case of the Finstein red-
shift is known), so that the red-shift measurements give again only a
verification or disproof of our a priori assumptions.

A more difficult case occurs when g, are variable with time, e.g.
in an expanding Universe. Then dt is not transmitted invariable,
in general, and the change of ds is not always the same for all t. In
the general case when g,, are functions of the space coordinates and
of the time t, it is not generally possible to find experimentally
the g,, by using arbitrary coordinates or inversely to define the
coordinates by using arbitrary g,,. Therefore, we use a priori forms
of ds?, refering to known coordinates, and try to verify through
experiments the consequences of these assumptions.

For a light ray we have ds =0 and 6fds=0. Thérefore,

we can find x!, x%, x? along the path as functions of t and of the
initial conditions x', x%,, x%, t,;. Hence we find xl; = x!; (%}, t;, ta).
From these equations we can find t, by giving to x!, x?, x* some
special values, i.e. for specific points x!; of the space. In the case
of the line element of an isotropic Universe (Tolman p. 364 - 389:
a small change in the notations is used) we have :

from this equation g,, can be derived.

eglt)

()

Then we have the following equation for a radial light ray
ts

r
1
fe_Tgm dt=f—dr—r?—,which defines ty when r is
°(1+4R.,')
0

&

ds? (dr? 4 13d9? 4 zsin?Bdg?) — cidt?.
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given. In all cases where x'j, x¥%, x% (i==1,2) are kept constant,

ty is a function of t,, i.e. ty = (t;) and dt, = % dt,. Therefore, if
]

the coordinate period of a light pulse in coordinate time at a given
point xY is dt,, the corresponding coordinate period at x!; is dtg; the
corresponding proper time intervals for clocks at rest on the points x!;
and xi; are dyy = V— g(Py) dty and drg = Y g,;(Py) dt,. However
the proper period of the vibration of an atom at x% is equal by
definition to the proper period of a similar atom at x';. Therefore
the proper periods of the arriving and local light pulses have

;. dva _ 1/8aiPs}) (& H
a ratio dve = VguiP)) dt and the wave lengths have a ratio
1 di P . ve . . e .
Tl /&P dts This red-shift is called the relativistic Doppler
! galPy) dt, ;

shift. Tt is evident that it is of the same nature as the Einstein
red-shift discussed above, Both are due to the form of the g,, with
tbe only difference that in the usual Einstein red-shift the gy, is
supposed independent of the time.
144l
1
t, and ty are connected by the formula t, = f(tg), which contains also,
in general, x*; and xi\,. Further, the equations of the light ray

In the above formula is a function of xi,, xi; and t, or ty;

ds =0, af ds =0 give two more relations between x'; and xi,.

Therefore, we have four equations which define xi;and t, as
functions of xi,, t,. Conversely, we may find the values of t; and
xiy from the known values of t, and x'; at the point of observation
(x!; may be taken arbitrarily}. But in practice x!,, xi, are supposed
known, so that the observed red-shift is used only to verify our
assumptions concerning the form of g,..

Tolman {p. 289) used a more general formula assuming that
both the source and the observer are moving with respect to the
coordinate system x!, x%, x3.

1 dl_ dift) v(g“ (% e +F‘“)._
T (5 )

special case of an isotropic Universe and an observer permanently
located at the origin of coordinatesit is found (T'olman p. 390}

Then it is found
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1
) (gr — g0
1-{l-d1 = ¢ — (1 + JC'—’) where u is the velocity of the source
Vi--g
with respect to the system of coordinates r,d,q (u. is the radial
velocity). If u =0, the red-shift is not zero; there is again a Doppler
shift due to the expansion of the space. It is evident that the red-
shift changes with time. But its change is insignificant for small
time intervals (small in the cosmic time -scale of course); thus no
such effect has yet been observed, because our observations cover only
time intervals of the order of a few decades at most. It is to be noted

14 dl
1

nal red-shift % is the same over the whole spectrum. This conclu-

that in all cases the ratio is independent of I, i.e. the fractio-

sion has recently received an important verification by radio astrono-
mical observations of the red-shift of the Cygnus A radio-source
(Lilley and McClain, Minkowski and Wilson). These observations
show that the fractional red-shift is constant for a wave length
range from 500,000 to 1, thus supporting the view that the observed
red-shift of the distant galaxies is really a relativistic Doppler shift.

Tolman claims further (p. 289g) that the fractional red-shiit %

is an absolute quantity in the sense that it is independent of the
particular coordinates used to describe the effect. We know, however,
that this is not the case. Suppose that we have the simple case of a
light ray in the field of the sun, which has been discussed above.

For a radial ray we have : ds?t = dr;u —c? (1 - _‘:_)%) Aat? = 0,
o
or A c (1 _ 2y, thus dr is independent of t. Therefore dt is
dt cir/ dt
: . 14 dl 1 .
transmitted unchanged ; i.e. dt, = dt;. Then = = if
Vl — o

the distance of the earth is supposed very great. But if we use,
instead of the above coordinate time, a new coordinate time t" equal
to the proper time t, the line element for a radial ray becomes

ds? =

, dr 2 ..
2342, ar .
) c2dt’?; hence ar — ¢ VI o which is again inde

cir
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pendent of t'. Therefore, it should be: dt," = dt,’ and ! -l; a_ 1.

This result, which is not compatible with the observations, is
different from the above, because the proper time <t is not transmitted

nnchanged like the coordinate time t. In general the calculated ! _‘1 dl

depends on the time coordinate used. But as -H;dl is found by

observations, the red-shift law may be nsed as a check of our
hypotheses concerning the form of gy and the time that is used as
a coordinate time,

6. VELOCITY

The most natural way to define the wvelocity of a moving
particle shonld be to divide the proper length by the proper time
needed to describe this length. This method may he used only for
infinitesimal distances, because the proper time is not transmitted
invariable, Therefore snch a velocity cammot be nsed in integrations;
e.g. if v is constant we cannot deduce that 1= vt. (On the other
hand, we cannot use the time of a proper clock moving along with
the moving body, becanse such a time is always zero in the case of
a light ray). .

A better definition of velocity is given by the coordinate velo-

city, which is the ratio of space and time coordinates, with projections
1 2 ]
ddit, dd‘xt, ddit Such a velocity is nsed in most cases of integration. But

with such a definition the velocity of light is not constant. In the case
S gy T 79 + risintdde? —
(1-2
cr
— ¢? (1 - g?-r—)dtg, tlie velocity of light is given by the equation
(&)
dt

ae\2 . de\ 2 N . .
o g =Y - oY) i — 2 LA
(1 _ ?&) +r (dt ) + r’sin’9 (dt) c (1 ; 1.e. the velocity of

of the field of the snn, where dst =

cor
c’r

light can be represented by a vector forming an oblate ellipsoid with
radial and tranverse axes ¢ (1 - _92&) and ¢ V(1 _ _‘*’h) respectively
cr

cir

(Eddington a, p. 93).
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More often a third definition of velocity is used, which is the
ratio of the proper length and the coordinate time (von Lane p. 144).
With this definition, the velocity of light is again variable. It may

be given as V = % —=cV=g,,. This velocity may also be used in

integration, because proper lengths can be added. It is necessary,
however, in order to avoid mistakes and misunderstandings, to determine
in every case what kind of velocity is used. E.g. it is said sometimes
that in General Relativity there are velocities greater than the
velocity of light. This is wrong, except in the sense that the number
giving the velocity may be greater than ¢, which is trivial, If the

velocity is defined by v =%, it is always v<V, where V is the
velocity of the light. This is because for a moving particle
ds? = dI? 4 g, dt? = — c?d12<0, where dr is the proper time of a
clock moving with the particle, i.e. v¥<— c?g,,, while for a light
ray ds*=10, ie V?=—¢¥g,,. The same is the case for the

coordinate wvelocity, If dx?=—=dx*=0, it is ds? =g dx"® |
+ 2¢gydx'dt 4 c2g,,dt?<0 for a particle, while for a light ray it is
ds? = gyydx*® 4 2cgy,dx'dt 1 c?g,dt? —= 0. This last equation has two

1 - .
roots for di , the one positive and the other negative, because gy >0
and g,,<{0. The positive root is the velocity of the light. In the

1 »
case of the particle ds®<{0, therefore in this c:aseddit lies between

dx! '
* 4t
We may thus say that in every case and by all definitions

of velocity, the velocity of light is always the greatest possible one.

the two roots of ds? =0, i.e is smaller than the velocity of light.

7. APPLICATION TO THE ROTATING DISC

Let us apply our general considerations to a special
problem. We shall discuss the form of the orbits of the light
rays on a rotating disc. These are defined as straight lines
in the four -dimensional space ds? = dX'? + dX* + dX*2 —
— c2dT% If we use polar coordinates, ds?= dr?+ r2d§+ dz?+
+ 20r?3dddt — (2 — re?)dt2. For a light ray we  have

(g—;)’ +r (‘%})’ + (‘;—;)' + 201® % g_; — {c® — r'o?) (g—;)’ =0, and

WnoeiakA BiBAI0BAKN Ogd@pacTog - TuAua MewAoyiag. A.MN.O.



60

o (4o () () oo 23— 0 (8 |1

The Euler equations for & and t give then :

a9 at a a
20 g b 2ert g =2, 2er' g — 2 (¢ — r'w?) = 2eew
h c? dt dt
ence : —- 5 =0y — Cg, Of a=u=const.
dé c, .
Theu & = — ue. It is also dk —q and for a plane motion q=0,

Finally : (di)g +r* (:—; — um) + 201 u (— — um) —{c® - o) =0

dr C,?
or: (dA) For e =0.
—
o s VC“’u" — L
dr Vow —Cand® =y -~ 7
Thereforea * Vouw —pand =t (¢, — uar?)

The orbits are similar in form with the geodesics of the three-
dimensional space of the rotating disc (Mdller p. 241), but they do not
coincide with them, as thinks wrongly Gamow (p. 69). In fact, the
light rays are straight lines relatively to an inertial system; relatively
to the rotating disc they are bent so that their ends lag always
behind, opposite to the sense of rotation. This should be attributed,
from the point of view of a rotating observer, to a combination of
centrifugal and Coriolis forces on the moving ray. The corresponding
calculations should take Coriolis forces into account. In particular
they should take into account the motion of the ray (or particle) with

respect to the disk in deriving ds, while the proper space calculated

above dI* = dr® +%
1

cﬂ

4+ dz* has been found only for a point

non-moving with respect to the disc.

We shall mention finally another example of a questionable
applicatiou of general considerations to a special problem. Eddington
{(a, p. 112 - 113) claims that the radius of a rotating disc is subject to
a contraction which is <one quarter of that predicted by a crude
application of the FitzGerald formula to the circumierences. But all
our calculations concerning the geometry of a rotating disc are based
on the invariance of the length of the radius : this is cshown clearly
in the form of the line element of the rotating disc. Eddington’s
statement derives from the assumptiou that the particle density in

WYnoeiakn BiBAI0BAKN Oed@pacTog - TuAua MNewAoyiag. A.lNM.O.



61

the rotating disc is equal to that of a non-rotating disc. Then in order
that the total number of particles on the disc should be constant,
the radius must shrink, as the circumference is greater than 2ar.
But the particle - density changes by just the amount needed to
counteract the change of the periphery ; in fact the number of parti-
cles on a given space-element, limited by some definite boundary, is
the same whether the disc is rotating or not (the boundary is the same
materially, but eventually deformed by rotation). Therefore the number
of particles remains the same without any contraction of the radius.

These examples show the possibility of deriving wrong results
from the General Theory of Relativity. This theory, however, if
correctly applied gives valuable information about the behaviour of
clocks and scales and the motion of particles or light, Such an example
is the celebrated clock paradox, which is fully accounted for by
the General Relativity (Moller p. 258 - 263, Contopoulos b, p. 33 - 36).
But in order to draw right conclusions it is necessary to clarify, as
far as possible, the meanings of tinie and space in General Relativity.

I wish to thank Prof. O. Pylarinos for useful
discussions and suggestions in preparing this paper.
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