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Abstraet: A generalized expression of the state dependent radial distribution funecti-
ons Giry) for infinitely exiended fermi sysiems are given by employing a cluster ex-
pansion formalism. A comparison is also made between the derived second cluster term
and the corresponding term in the usual Iwamoto-Yamada formalism.

The obtained results are mainly uscful in compuling the three-body terms inthe
energy expression of fermi systems in their ground state, when state dependent two-body
potentials are employed.

1. INTRODUCTION

The state independent radial distribution function for a uniform
many particle system is generally defined by :

AR p(rp’;“) N1 s [y iz, dTy (1)

p i
spin -
isospin

where p is the density of the system, ¥y its normalized wavefunction

and p (TF,, ¥,) the pair distribution function which gives the probability

of finding any two particles of the system at positions T, and T7,. If the
probability for a particular two body spin-isospin state is needed, appro-
priate projection operators Oy are introduced between the wavefuncti-

ons and the state dependent pair distribution functions p; (¥, 7,) and
radial distribution functions gi(r,, T,) are obtained :

giF, 7 = GOt NN 5y o gy, vy @)

spin -
isespin
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The evaluation of g(7,, ¥,) and gi(¥,, F,), which are taken to depend u-

pon|r,— T, ==ry is not in general possible. If, however, a Jastrow-
type wavefunction is assumed, the radial distribution functions can be
clustered up using several formalisms ¢, reviewed in a recent mono-
graph . Provided that good convergence of the cluster series can be
achieved, the first few terms of them may approximate the correspond-
ing g or gi’s quite satisfactorily. It is the purpose of this paper to give
a generalized expression of the state dependent radial distribution
functions in which the three body terms are included. This expression
is derived in the next section. In the final section a comparison is made
with the corresponding Iwamoto-Yamada expression and a discussion
is given about the usefulness of the obtained results.

2. DERIVATION OF THE EXPRESSION FOR THE STATE DEPENDENT RADIAL
DISTRIBUTION FUNGCTIONS

As it was stated in the introduction, we deal with the derivation
of gi's for a fermion system in its ground state, described by the follow-
ing trial wavefunction :

II f(l‘lj)

gy i<j (3)

N
{ H idxbtl)"‘ I r= (1)@ }‘/2

where x represents spatial, spin-isospin coordinates, f(rj;) is the two-
body correlation function and @ is the Slater determinant of N single
particle wavefunctions ¢ (x), defined by

iKr
e
Pi{x) = ——= e

() is the volume occupied by the system and X; is the spin-isospin wave-
function. Following Aviles * we consider the corresponding G-distri-
bution functions given by :

X1 (4)

G(rm)—%lf,—_-l-’f?' ¥ed7, ... dFy (5a)

or equivalentlv
Glri) = gty [ T X, { 330,73 —F) [ ¥x Gb)
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and -
Gylr ) = Pa[a f H dx W {ng(?l—-_r’p’)S( — T IDIp, g W} (

where Di(p’, q') represent projection operators to the i-spin-isospin
state. In the case of nuclear matter, for example, we have the following
states as i runs from 1 to 4 : singlet odd, singlet even, triplet odd and
triplet even. The Dy’s are expressed in terms of the spin and isospin

-~ - .
operators o and T respectively as :

1

D, = (1--7).1—73.3),D,= % (3 4791 — 5.9)

(7)
D,=—= 3+70)@ + 5.0), D= 7 (1 —=0)(3 + 5.6)
The cluster expansion for G{ry) is given in ref. (1)
G(r,)=GW{r )+ GO (r )+ ... (8)
where
_ 12{kprsa)
GO )=1——T2 (9a)
2 - 2 =
GO(r,y) = — 22 Iy [0 (r (kg YT 22 [ e Jla(hegr, )T +

+ 2 ke, J h(r J(kgr Nlkgr, ) d s + of h(r Jh(r,). [ 1— 2 @ker) + (9b)

+ Takyr ) + Blkgr, ) + = I(k £ Nkgr Jl(kgr, ) ] dr,

3{sinx- x),
= Lx’ms’— h(r,) = P{ry) —Lkg
the fermi momentum and s the degeneracy of each orbital state.

The cluster expansion of Gi’s in the FAHT formalism (*) is

In the above formulae 1(x)

N
Gy = Eo (10)
1) = o 3(r,y)
N .
where xCy stands for ( k )and Ryx(rys) is given by :
12
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k kl{-1)k-D -~ - ,
Rylry) = k—on 2. . 2 | Ay dry P
1 12) 2 pi(k —p)! (e JD)ISSPOI:})IH o)

(11

{ > 8(F, - T )3(F, — 7) Dy’ 1)}%:)
m?f:l {v Jp)

The {j,...jp) represents the arrangements of N objects into p
and ¥ <, ... ip > (x) is the {pxp) Slater determinant of @3,’s multipli-
ed by an appropriate produet of f’s, The corresponding cluster expansi-
on in AHT method, in which we are interested, will be obtained from
the above expressions by letting N— | (and Q — o, keeping p con-
stant) since the two formalisms are identical for a uniform, infinitely
extended, system.

The first cluster term has been calculated elsewhere explicitly -
We are interested in calculating the second cluster term which is ob-
tained from (10) for k =3. We have:

o 3G Ria(1h,)
GO = iy (12)
with
Rysiryy) = (—1)3 2, —fdxl'dxu'S *(17,2'}10(172)
Cale?
"
‘23?121‘.:.%')3(79 — T7} Dy (wy, 1)} o(1,2')
m'ﬁél' +
(th) o f dx, dx,/12(172) [So(17,2' 1]
+ 3 f dx ‘dx,/dx 'S *(1',2' 31" HEQ'3). (13)
(h]z]n)
3 3
_Z“Zﬁ BV, — T (T, —7)D(m’,1") 1 .5(1,2",3")
m.;r%-—.i
<jlj,zj,>s‘1t Jax rax dx ' [S,(17,2°, 31 (12)0(1'3)1(23)
where
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e5,(1) 2, (2) 95,3
, So(1,2,3) = | 95,(1)  @3,(27)  95,(3)
Pi (1) 23(27)  95,(3)

For convenience, the numerator and denominator of the first and

g5, (1) @y, (27)
95, {1 1,(27)

Se(17,2) =

second term have been multiplied by i.a\nd L respectively and the

f(rjy) and y,(x;) have been denoted by f(1]) and @j;(1). Suitably trans-
forming the denominators of these expressions by taking into account
that {jyja) = Cn2! and {j1sjs) = Cx3! we obtain:

agi (—1)3 2 f dx 'dx,’S S(1,2017(1°2)
R (r.) — -1 2 (i)
13 12 WON 21

N o LAY LR VN A

= Z S(rl—-l‘m)é‘(r —?1’)Di(m’,l’)}[Sa(‘l’,T)] +
m%l

i ] xS 230 2)R(8)2'3),

3 ]
{m-% 3T, =TT — 7)) Iy (m:l')} -8, (11,2,3)
mectl” ’

1 N =1w

= fdxl'dxﬂ dx,'[8,(17,2,3) ]2 - [*(1 )f=(1 3)f8{2'3) —1]
(i ] iy &

The numerators Ny (ry,), Ni(ry) and denominators DNy, DNj, of
the first and second term will be considered separately.

By inserting the form (4) for ¢j, performing the sum over (j,j.)
and simplifying the sum over &s by some symmetry arguments, the
expression of the first numerator takes the form:

Ny =~ 3 f A7, d7 (1 2(F, - 703, —T).
Ky Kl 1y = 1

X1, (2)|Di(Y K (¥ — TG Ty — T (15
(X1, (1)X1,(2) D27} |X], (17X1,(2)) — e ¢ Mkga (s ~ 5)
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K (Ty—T) Ky (Ty—Ty)

iK,
(X1, @)X (1) D2 1)X (XL @)y —e e
X1, (1)K @)[D )X, (2)X1,, (1) +
(X1, 2)X1, (1D, 1) X1, 2)X1, (1]

<kr ik; T,
Using the formula:y o T 1l(kFr o), this reduces to:
k_l S 1

Ny(r,) = — (N —2) & £2012) {AD — ARG r N} (16)

where the statistical factors A'Y and A'Q are defined as follows :

AP = 3 (X1 ()X (2)[D,(12) XL, (1)X1;,(2)) (172)

jbl]Z

AQ = 3 (X1 (1)X1,2){D,(12)|X,,(1)X1,2))

J1'j2

(17b)

The values of AY and AY for s — 4 and s — 2 are given in Tables 1
and 2 respectively. It can be realized from expression (10), that the
above evaluated quantity (16) divided by f3(12) is equal apart from a
multiplicative constant to the first cluster term Gi M (ry,) :

6Pr,) = S {AD — API(kyr )} (18)

By analyzing the sum in parentheses in the second numerator :

El

12 18(?1 - _I:m')s(?a - —Fl')Dl(mrﬁll) = 2! {8(?1 ““—;1’)8(_1'.2 - ?2')])1(1’2’) +

m i =
m'ael‘

+ 8(?1 - ?1’)8(_1'.3 - T"-11’):|)1({I"3')'+" 8(?1 - Fz')S(Fz - _Fu')Dl(2‘3’)}

and performing calculations only for the first term in the sum Ny, in
a way similar to that of the derivation of Ny (ry,) one obtains :

N, () = & (A7 A7 A7y PUDIG, — TR, — 7)) - [L + B3) +

(19)
()

+ h(23) + h(1'DHh@'3)] - A — AT’ ) — —Ho(kyr’ )

8
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A 2A($)
— 5 Pkgr',) + — I(kgr’ ) - Niepr” Ikgr’, )]

The two other terms in the sum can be deduced from the above formula
by symmetry considerations and we are left with the same function

of r;g. Using the formulae f dr, 1 (kgr

o) —1 and
Ls [ dr l(kgr N(kgr,) = 1(kgr, )
we obtain for Nijy(r,s)

N () = SR (N — DAY — 1y JAD)+ o[ 47, (60,) + by +

A(d)
+ b, hir,) 1 [AT — A Mkgr, ) — —- kgr,) + Blkgr, ) + (90)

244
+ I(I{Frm)l(kF 1a)l(l-:Frz!)]}

The first denominator DNj, can be expanded in powers of (—Nl—,)

o 2 g 13(kprys) 1
R N LEXEATR [1 — —sl—} +0 () @b

The second denominator DNy, is also evaluated similarly to Niy(ry,)
and yields:

DN, =1 — —N(T_g}—(N_T) [dF,d7,d¥, [h(r,y) + hir,) + hir,) +

h(r,hr,) + br,)h(r,) + hr,h(r,) + h(rhrhir,)] - [1-- "5 (29)

B{kpry)  1(kpre
_ L ) Iy fr ) 1(1{F g Nk, 3)] + 00/

By combining formulae (16), (20), (21), (22) and using the fact
that for infinitely extended systems

iy e rdrie) (1) o fa i, (1 — P

+ 0C/y)

WnoeiakA BiBAI0BAKN Oed@pacTog - TuAua MewAoyiag. A.MN.O.

=




182 !

we finally get for Gy®(ry;), neglecting terms O(1/x) : P

Gl(z)(rm) — % { 2A(e) 1® (kFﬁz) f d—]: h( I‘ )1 (kF 13)

Le)

Ald) .
— 2% %Id?’ I‘ )lz(kF 23) + 49 l 1(kF 2 fdr,,h(t‘ l(kFrls)l( kFrga) +

(23)

4 A(d)
+of d7,h(r, )h(r,) [A‘i’ AT (e ) — 7 (kg ) + 1kgr )]+

F13

2A%®)
+ — ( F 12)1( ) 13) (kFr%)

Substitution of the values of AY and A® from Tables 1 and 2
yields the explicit forms of G4 for different systems. Expression (23)
is a generalization of the corresponding expression of ref. 4. As expec-
ted, the sum of Gy’s equals the second term of the state independent
radial distribution function G*®(ry,) as given by (9h):

3 6,0(r,) = GO(r,) = — 2 1%kpe, ) Sh(r N(lge, )F, — 2 (e, ) (kpr, )F, +

F12

+ 28k yr,) h(r,) l(kF Mg AT, + ¢ [h(r h(r) [1— S Q(kgr,) + Plkgr,,) +

+ Pkt ) + e Wkgr (gr, N(kgr, )| dr, ' (24) 1

3. COMPARISON AND DISCUSSION-

It is useful to compare the derived expression (23} for G;®(ry)
with the second cluster term of gi(ry,) in 1Y cluster expansion ™9,
which can be obtained either by a truncation of a cluster series for
gy(ry,) generated by IY’s procedure or by isolation of the terms invol-
ving the potential Vi(ry,)in the energy series. Using this latter method in
the energy expansion given by ref. (8) we get:

g®(r,) = el & AD (AT h(r, W kr,) + £ AP gr,) A N kgr, Ny )
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+ of dEh(r h(r ) {A® — AP ) — [l(kFr )+ P(lkgr, )] +

(e

2 (e Mg Mkgr )3 (25)

We realize, comparing expressions (23) and (25), that although the

first cluster terms of the above expansions are identical, the second
term in AHT expansion includes three more terms :

(e)
2045
——PST— 1% )fdrhr N (kgpr),)

— A9 f drh(r  )P(kgr,) (26)
3 e e
Ak, [ drb(r Mer kgr,)
The most direct use of the derived expressions for G(%) s 18 1n the

calculation of the second cluster term of the energy per particle, in
certain cases. Assuming a Jastrow type correlation factor, the energy
per particle for uniform and infinitely extended fermion systems inte-
racting with two-body state dependent potentials can be expressed in
Aviles formalism ® as:

& = Fet o o153 [(VHr))? — () 9(r,) | Glrg) + Tr2Vi(r,)Gy(r,)

1 2% P o— @ @
_va _F(rlz)}drm;EF—{—E. + EY + ...
:/ where Ey is the Fermi energy, and ¥ (7,) is :
N ) fﬂ £(ry)) Vo[ @*@)dT, . . Ary
Ty N—1) Ji<j
F(rlg) = oR(ry,) o (28)
fi 1L £2(ry;) O*QdF, . . .dry
i< j

The sum of the zeroth, first and second cluster terms may be quite
a good approximation to the energy per particle. When this condition
] is satisfied, the derived expressions for the Gy’s can be used reliably in
a variety of calculations. This sort of calculation is in progress,

i WYneiakni BiBAI0BRKkn ©gdppacTog - TuAua MewAoyiag. A.lN.0.
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TABLE 1, Statistical factors for s = 4 systems

: d

i A(:) A(ie)
1 (singlet odd) 1 1
2 (singlet even) 3 —3
3 (triplet odd) 9 9
4 (triplet even) 3 —3

TABLE 2. Statistical factors for s = 2 systems

; a

i A(i) A(tif)
1 (singlet even) 1 —1
2 {triplet odd) 3 3
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IDNEPIAHYIZ

AKTINIKALl XYNAPTHZEIY KATANOMHZE
EZEHPTHMENAI EK THZ KATAXTAYEQE AIA XYETHMATA
OEPMIONION ANEPIOPIZTOY EKTAXZEQZ

Und
E. MATPOMMATH
[A fvow Duowde, KITE Anubupirog, "Avie Tlapacxeud) *Arnixds)

Eis thv noapoloay Zpyasiov, AepPdvovrer yewxsupévar iugpaasic TéHv
EEnpmuévav &x TG XaTaoTasEms AxTivikGY ouvapThoewy xatavoufis Gi(ry,),
ele mepimtwoy cuoThpatos Qeputoviwy dmeptoplotou dxtasewe, 3id yphoews
avamtiypnatog xare «clustersn, O ofte mpoxbnrovteg Spor B tdfews ouy-
xpivovron pd Tolg dvtiatoiyous dpoug B Tdfews tlg Tov ouvih popuatiopdy
tév Iwamoto-Yamada. Ta rapfavépeve dmoteréopata elvar xuptos yph-
ara el Tov dmokoyiopdy tav Spwy TpLEv cwudtev THe évepyslag T Ospe-
MOSoUg XaTACTACENS CUSTIRATOS QEpUloviey GTav Ypnouomotolvrar Suva-
pixd EEnprrudva Ex TG xaTacTdoEwC.
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