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Abstract; An atternpt is made lo synthesize an antenna array by usc of the othogonal
method. The array factor is expressed as a power series of e, resulting in the determinalion
of the amplitudes and phases of the elernents’ feedings with the help of simple formulas.
Two applications are carried out.

1. IsTRODUCTION

The problem of synthesizing general nonuniform arrays has been
studied |1} recently by orthonormalization of the base in which the
array factor, {(9,0), is referred.

The application of this method in definite problems presents some
difficulties ansing from the inappropriate expression of (¢,0). In spe-
cial, though, cases of planar or linear arrays the problem can be consi-
derably simplified, and the synthesis has been done by use of olher
methods.

2. ForRMULATION

In the case of a general nonuniform array of N discrete identical ele-
ments (Fig. 1) the radiation pattern is given by:

N
F(¢,9) = g{e,0) Z Ajexp{jkr,;|sinfsinf;cos(p -— ¢;) 4 cosBeosh;|} (1)
1=1

where the A, ’'s represent complex amplitudes, k = 2= /A and g(,0) is
the radiation pattern of one element.
The array factor

F(g.9)

Hed) = g(e,0)
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hag a base of the form

{®, = exp{jkr;|sinBsinf,cos{p — p;) + cosbeosh,;}} ) (2)
It would be tiresome, if not tedious, 10 repcat here the procedures of
orthonormalizing this base and arriving at the formulas that give the

complex amplitudes. One can refer to |1|— [3| for the intermediate
steps. It is sufficient to recall that

42

£

Fig. 1. Geometry of the general nonuniform array discussed
n y =l y

~
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i=1

where

i

(‘ 3} ZC(JJS

¢, M= — ‘[”t E

n i=
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n-1 1
D, = |4r — 4*r? 2 ( zci‘” Sui)?
=1 =

B; = [, §2 {(9,0)'F*,(p,0)sinfdpdo
| (4)

i

Z CiUD,(5,0)

and Sp =

As we can sce, B is the starting point of the synthesis. But a suitable
representation of the array factor as a series is a way of solving the pro-
blem numerically. Now {{.0) is a vector ol the vector space thal has
the set {®;(¢,0)} as a base. The property of {(y,0) is that its absolule
value changes in gencral. Its phase in the vector space {®,} is a vector.
Thus f{,0) can be expressed as

[{5.0) = Di(p,0) . expliS{e,0)| {

iy |
——

The unit vector exp|jS{g,8)" can be expressed as a function of the ®; 's
(since the set {®;} fills the space), by a linear relation of the form

N
expiiS{g,0)]| :_:lei(l)i(cp,ﬁ) (6)

Now Lhe ®; ’s are of the form exp,jS°(9,0)(, so we can accept that
S, has a form similar to that of $'{¢9), 1.e.,

S(p,0) = kr,. sinf . sin0,cos(p — p,) + cosbeost,| {7a)
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Moreover, [f{p,0)] must represent some properties—loci and values of
maxima, beamwidths ete. Given that periodic functions of the form

ee:8 can define a locus of maximum and a beamwidth, a sum of the
form

M S_(p.,0 M o
f{0,0)] = ll. T, e (#:) = = T,e Pcos(p — 9y, )sind + q,cos6
m=] m=1

could represent the argument of the array factor.
We thus, by use of (4), (2}, (7a,b} get, for B, {see Appendix)

M -
B,—4r¥ ¥ gror, fn 8)
1 i21 m=1 i mn Z

m

where Z,, 1s a known coefficient.

Formula (8) gives, in a simple form, the B;’s, which, together with the
;s can generate the complex amplitudes.

3. BREMARKS ON THE ARRAY FACTOR.

When the argument of the array factor is expressed in the form

M
[(e.8)] = Z T, explPrcos(p — gn)sind + queos0|  (9)
m=]

one can write

M
fl= X T,exp'R,cosa,] (10)
m=x=]
where
R, = VP2, + %,

cosa, = cos{p — ¢, )sin® . sinf,, + cosfcosh,,
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sinf Pa and cosf_ = m

BT Vain + P2,

Local maxima appear when cosa, = 1, or

cos{p — ¢, )8inf . 8inf, 4 cosfcosh, =1 (11)
(11) implies
P = Pm and 6 =0,

leading to the conclusion that the series (10) will have as many terms as
the maxima sought.

Another useful informalion are the half power angles. Now, if the
exp(R,}'s are set equal to X, one can have, [rom (10), 2M equations
of an equal number of unknowns, as follows:

cosal, cosal

X, + ToX, o e + T Xn =k,
cosa?; cosa“,

Xy 4+ X, + o + T X, =k,
cosa™ cosa™,

T, X, 4 T,X, 4+ 4+ ToXa =k,
coshly cosht, cosh!

T.X, + T,X, 4o T X, =21k

...................................................... (12)
cosb™, cosb™, cosb™

T, X, + T,X, o + T X, = 2°% k,

where a'; are the angles where the maxima occur, b'; are the half-power
angles, and k; the values of [ at the maxima.
The solution of (12) will give the values of T, and R; that are neces-

sary to determine f(p,0). The phase of the array factor must be of the
form (7a).

WYnoeiakh BiBAI0BAKN Ocd@paaTog - TuAua MewAoyiag. A.lM.O.



240

4, APPLICATION IN THE CASE OF A SINGLE-LOBE RABIATION PATTERN,

In such a case one has, according to the previons discussion,

T,X, =k,
cosbl, "
X, =2"7k, (13)

Dividing egs. {13) by parts we get

1
2(1 — cosbl,)
X, =2

Then

In 2 k,

R =+ +————-~ and T, =
17 2(1 — cosbty) t

In the special case of uniform arrays the phase can be considered as a
constant, independent of ¢ and 6.

Numerial application was carried out for two array forms, to get a
single main lobe with a beamwidth of 20e.

For a linear array we can produce only a planar pattern with the
above property, because of the axial symmetry of the array.

Putting the elements on the x-axis for a uniform linear array with
twelve A /4 - spaced elements we have a max at ¢ = 0, 6 = 90 (Fig. 2).
For a circular uniform array of 12 elements, having a radius of 0.62 and
amax atp = 90,0 = 90 (Fig. 3), we put the elements on the xy plane
(Fig. 4).

The ampilitudes are

WYnoeiakA BiBAI0BAKN Oed@pacTos - TuAua MewAoyiag. A.l.O.



ERERRNEEERRREY
\ ¥ =12 P =0 257 /
\ | Tl(f 1 /
i e e i
e
= /

flg,nia r \ | I

N N SN ;o

Fig. 3. Planar radiation pattern for the circular array
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Fig, 4. Space geometry of the linear
and circular arrays discussed
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LINEAR ARRAY CRCULAR ARRAY

Amplitude Phase, deg.

1 008 127.9 1,0 970 -—168.4
2 060 —35.1 2,4 924 18.9
3 213 154.7 3 907 —158.6
4 483 —16.6 6,12 1.00 0.0
5 795 171.8 711 97 168.4
6 1.0 0.0 810 924 —18.6
7 984 —171.7 9 907 158.9
8 .76 16.7
9 R/ —154.5

10 .202 35.0

11 061 —134.5

12 .01 58.1

APPENDIX

Recalling that |4]

27
fo exp(acosx -+ bsina)cos{icosx - usinx)dx = =I(JC -+ D) -+

+ (JT—jD)| (14)
and

f?rfaxp(acosx -+ bsinx )sin(heosx + usinx)dx = — ix|[,(JC + jD) —
—IL({C—iD)| (15)
we have

M
Z T,expiP,cos{p — g, )8in8 4- q,c088]
m=1

1
I C*Wexp |
1=1

5= [1 [T

| — jk(Z,cos8) |H exp( — jkR,, . cos(p — cpio)sin0)| sinfdpdd
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where i, = r3inb; — r,cosh, , Cio = i — Do »
R, = (B% + R%, — 2R, R, cosp,;,) "e, R; = r;sin; and
R, = r_sinf,

From (14), (15) the integral

2
M :f exp |P cos(g — @, )sin0|. exp| — jkRcos{e — ¢ )esind] . de

o

becomes
M == 2=I (YT —jD)
where
C = sin%0|P2_ — k2RZ, |
D= — 2Sinzepmkﬂiocos(@m _— cPio)
and

V(T_j—‘[)i - Si[lo P2 - kgR2io “t 2ijkRiuCOS((’Pm —(Pin) j‘é =
= ja;,sind

im*

(a;

m

1s a complex number)
Now M takes on the form

M == 27J {0;,%in0) (17)

im*

(J, ts the zeroth Bessel funclion)

o

and (16) becomes

B, _21-:,[ = E T Ci*Pexp | {qq — jkZ;,)cos0 | J,(a;,8in8) .

i=1 m=1

. sinfdb (18}
Placing

G~ 1kZjo == ]b;

m
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we get

Y

—

!
B, = 4n X

i=1m

—

or, snbslituling

22 = a2 +h?

im im im

I M
B,=4r & T C*UT,

1=1 m=1 Z[m

sinZ;
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TIEPIARYIXE

ITEPT THZ ZYNOEXZEQE TENIKON XTOIXEIOKEPAIQN

“Trd
[ ZTAXAAOY, K. MEATAH «xi BE. TTATTAAHMHTPAKH - XAIXATA
(I" "Edgx Quoawmfs Izvemornuion Pzooaioviuns)

Piveran pio mpoonalaa suvbésswe orolystonzpriag Sk ypvoewg THe pe-
878 3 B ! [ 1A -~ 3> ! e b A N
48ou Sphovwvorufissweg, ‘O wapayov osipic exgpaletar Hmd poppiy Suva-
poostpig Toh €. Tobto EyaL g drotéhesua THV RPOoSGPoUSY TGy TARTEV ®al
<6V grosov e Toopedooiae Thy atoiystey T Bonlely drhddv Timwv. TAve-
gépovtan Slo Eoapusyal.
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