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Abstract : The mobilitv of the cavviers in sewnconduciovs is effected by scatiering
processes. In thes paper the theories on the effect of the different scalleving mecha-
nisins on the mobriity that have been developed so fav and explain the experimental
resuits ave reviewed.

The mobility u, is defined as the magnitude of the drift velocity
per unit electric field L,

_ 1Y
HTTE

The conductivity s of a medium n terms of the mobility is given by
¢ = new .

In the classical kinetlc treatment, the conductivity 18 given by the
expression
G = ne2i
m

where < is the mean free time between the collisions ol the carriers
with other particles. The above expressions yield the expression [or
the mobility

The mobility 1s thus a statistical guantily.
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In modern physice the electrons are described by wave functions
which, under many experiments will actually be wave packets. These
wave packets behave like particles 1f the phenomena considered do
not involve distances smaller than the size of the wave packet. The
simplest way to study the statistical behaviour of such wave - particles
under the effect of external fields 18 by the Boltzmann equation, thal
is, to study the rate of change of the local concentration of the carriers
fx(r) in the state k in the neighbourheod of the point r in the k space.
The Boltzmann equation says that at any point and for any value of
k the net rate of change of fi(r) i1s zerc. For a homogeneous medium
under the influence only of the electric field we have:

R
ot

o

scaliering o1

0

field
The Boltzmanan equation deseribes a steady state. But we assume

that the steady state distribution does not depart very far from equi-
librium, and write that

qr = Ik — fg

where fp is the equilibrium distribution. Tt can be easily shown then
that the équation yields

or

scatt.

where vg is the velocity of the particle in the k slate, neglecting the
term

which corresponds te deviations from Ohm’s law. The mobility uuder
such conditions will be briefly discussed at the end of this presenta-
tion.
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Assuming that the distribution function returns to its unpertur-
bed form exponentially we introduce the relaxation time © and write that

(— afk) Vk.e.E:&

de T

To define the conductivity we need the electrical current density,
: _ afo
J=2Tevfudk =2 w-vi- B [ —— ] dk

where e denotes the magnitude of the carrier’s charge.
L
The mobility of the carviers in Semaconductors defined from the
Boltzmann equation.

So far everything that has been said holds equally well for metals,
degenerate and non degerate semiconductors. The treatment however
of the last equation will be different for each of these materials, since
their carriers obey different distribution functions. The carriers in me-
tals obey the fermi stalistics

(VY
ale—0k, T | |

In degenerate semiconductors the electrons in the conduction band
are numerous, the fermi energy lies in the conduction band, and the
glectrons obey the Fermi statistics. Thus the solution of the Boltzmann
equation, and consenquenily the properties of the mobility of the car-
riers In such materials, will follow a similar pattern as that for the me-
tals. For this reason the mobility of degenerate semiconductors won’t be
discussed here.

In nondegenerate semiconductors the electron concentration in the
conduetion band is so small, that only a small fraction of the band
i3 oceupied and electron distribution becomes a classical one:

fg A ek T
The fermi level lies below the conduction band edge in the energy gap.

On the top of the valence band the «holesn, which also contribu-

te to the electric current, also obey a Boltzmann distribution,
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f?, _ (1 . fg} _ e(E—LTh Weg T e-(se + Lp Mk T

if their energy 1s measured downwards from the top of the valence
band.

We can return now to the expression of the current density. It
is not difficult {from this expression to show that the conduetivity is
given by the simple expression of

ne? <t>

o

m*

where the electon density for the semiconductor is given by:

—£y kg T

—Le kg T [°
n=¢ ° 8 fac Nizye dz

1

where N(g) is the density of states, and defining the average relaxa-
tion time <z> by the expression

<r>:§é—(—f fsf(g)e‘g”‘ﬂ N{e)de/ fe’e“‘BT N(e)de .

Thus the mobility is now given by:
w=|ef<>/m*

For the general case where bolh eleclrons and holes contribute
separately to the current, the conductivity should be given by the ex-
pression

6 =1 |e| Le + Ny e un

and hole and electron mobilities should be defined by the expression

ef <ty > e| < Te > :
Uy = lel <> . e = U-—:—- respectively.
¥t Mg

The mobility is expressed in cm?/statvolt - sec in C.G.S. and it
1s 300 times higher than the mobility in practical units. It can be obtai-
ned from measurements of the conductivity or of the Hall effect. The
theory of the Hall effect vields the expression
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g<T> (T <1
. OF py = U ———
m* < <1>?

wg =¢ |Rplox~

where pyg is the so called Hall mobility.

If the relaxation time is independent of energy, or if electrons
of one energy participate in the scattering process then py = p. More
generally, the two mobilities are related through a numerical factor.

It is obvious from the above formula that the mobility depends
upon the effective mage. There is a tendency for cryslals with small
energy gaps to have high values of eleciron mobilities. Small gaps lead
to small effective masses which favour high mobilities. But the mo-
bility ol a carrier is mainly determined by the scattering effecis which
define the relaxation time. Thus the mobility will be discussed sepa-
rately for each type of scattering.

Inter - and intra - valley scattering.

Most of the basic calculations, such as the transition probabilities,
that will be given in the following chapters are made on the assumption
that the carriers are distributed in spherical energy surfaces and thus
the variation of energy with k from the center of the zone is parabo-
lie. The band structure of many semiconductors is however rather
more complicated. The valence bands of 81 and Ge show a maximum
at k = 0. These could be approximated by spherical surfaces and their
properties could be approximately described by the effective mass of
the holes m*. But the conduction bands show minima lying at some
distance from k =0 along the 111 direction for Ge and along the 100
direction for Si. These minima are ellipsoids with ratios of the principal
axes of the order of 10. Thus the deviation from the spherical form
is great. There has been a method, however, proposed by Herring (1955)
to take account of the energy bands having multiple minima. The method
18 like this:

Let us suppose that the minima in the conduction band are di-
stributed as shown in figure (1). Around each center the energy is given
approximately by

Bk | (Bky)® | (Bky)?
2m*, 2m*, 2m™,

gx — h?

where k = ki-+8%. I'rom symmetry, ki must provide one priucipal axis
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of the it ellipsoid, with m,*=m, and the other two principal masses
m*, and m*, must be equal say to m,.

The method consists of evaluating the conductivity separately for
each valley by transfering the origin of our coordinate system at the
center of the ellipsoid. Because m, == m; the mobility associated with
a simple ellipsoid may be very anisotropic. However when we come to

Intervalley

Intravalley

Fig. 1

study the mobility of the whole electron system, we musl take the
average over & cubically symmetric distribution of valleys. We ob-
viously return to an apparently isotropic mobility except that

Lot N it
m¥, 3 m* m*, m¥, 3 my my

Thus for a better agreement of the experimental results of the
mobilify with the theory the effective mass of the electron that appears
in the formulas of the mobility should be replaced by the above expre-
88107,

Another effect of this kind of band structure is the possibility
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that a scattered electron will not remain in the same valley that i1t was
before scattering but will go in another valley. The change of the e-
lectron wave wvector k; — kj = qy; 18 large, approximating the distance
between Lhe valleys. This is quite a large distance in the k space. The
caclulations given below for the different cases of scattering assume
a small change in the electron wave vector; thal is they describe the
so called intravalley scattering. The intervalley scattering could be ap-
proximated by the scattering of optical modes, discussed below, be-
cause it involves phonons of large wave vectors. Thus the mobility for
such a scattering will be expected to follow a T-%2 law for T » @ and
an exponential form for T< ®.

Impurity Scaitering.

A lattice imperfection acts as a scattering center because of its
charge. All calculations are made on the assumption that the scattered
electron is effectively [ree and the scattering power depends on the
range and form of the potential associated with the imperfection. Con-
well and Weisskopf (1950) gave a formula for scattering of electrons by
impurities. They assumed a Coulomb potential aszociated with the im-
perfection to cause a Rutherford scattering of the carriers. They cut off
the scattering at small angles on the basis that it 1s then referred to
carriers that passed at a distance from the scaftering center grealer
than the mean spacing of the impurities. A better theory which ta
kes into account the screening of the charged impurilies was given by
Brooks and Herring. The scatfering potential is treated ag a pertnrbation
on the carriers and the differential cross section 1s found by the Born ap-
proximation. The matrix element is, for scattering from a k to a k' state:

2 2
My'x = f Wy V¥g dr = [ eilk—kr Ee__ ot dp e Q@Ze

T ka‘kl LR

where the screening parameter x iz given by Brooks (1955) for the se-
miconductors as
) = ome n(2 _L)
kaT ND

and takes account of the dielectric constanl » and the difference he
tween the number of free carriers n and the number of ionized donors
Np.
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From the matrix element one could easily calcucate the differen-
tial cross section per unit solid angle* to find

o(8) — (3@33)2 11/ (K — k)
h*

2

and from this formula the relaxation time can be evaluated:

2% 2 1 3
L Nm [ (1—cos8)o(0)sin6ds — 2r Niu(z—e) f RYZRAR A
T () ws o (Z3+Ath?/8Bm¥e)?

where use has been made of the geometry of scattering

K — k= 2ke (sinf/2) = 2,7 and k® — % t -

Evaluation of the intergal gives:

e i F(e) where Fley s

—~1

8m*e \ AR
14
) 8m*e

The function F(¢) does not vary much with ¢ and can be replaced
by its value at the typical energy e= 3k T which is where the ma-
ximum of the integral cccurs. Thus it can be taken out of the inte-
gral when we evaluate the average <t>. So we find

7z 2 * Tys/2
coy 2 e mt (s T gy 1y
2 el m*e Ni

Thus the mobility will be like:

o Telz m*ife / Ni

* In the pertubation theory of guantum mechanics the transmition proba-
bility is related to the differential cross section. See for example Schifl’s Quantum
Mechanics.
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The variation of the mobility with impurities is in agreement with
the experimental results generally.

The physical explanation of the above formula 1s that, at high
temperatures the carriers have more energy and thus ihe average carrier
goes faster, and it 1s less easily scattered by the impurity. The Born
approximation overestimates the scattering cross section, and the ex-
perimental values ol the mobility do not agree with tbe T dependance
very well. Anolher analysis was made by Blatt (1957) using partial

i
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Fig. 2 A', the normalized scatiering cross scclion for scallering of churge carriers
by ionized impurities as a funciion of k2, for value of fhe screening parameter
R = 500

waves. In this method the cross section is different for scattering by
a repulsive and by an attractive potential while in the Born appro-
ximation it is the same. This difference indicates that the minority
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impurities are less eflective than the majority impurilies in scatlering
carriers.

Fig. (2) shows the total scattering cross section for scallering of
charge carriers by ionized impurities as calculated by Blatt (1957) in
the Born approximation, curve labeled B, and the total scatlering
cross section in the partial wave method, curves labeled+and - for an
attractive and a repulvive potential respectively. The curve is given
in parametric form suitable lor arbitrary choices of effective mass m¥,
dielectric constant x and charge Z. The scaling [aclor is

0 = 2.8 (x/Zm*).

The calculations were made on the assumption of spheroidal energy
surlaces and corrections of the elfective mass In case ol ellipsoid sur-
faces should be applied.

100
50

20
1B

Arbitrary Units

4| g 3/2
T A8/

Hall and Drift Mohilities

10 20 56 100 200

Temperature,Degrees K

Fig. 3. Hall and drift mobilities as functions of temperature.

Fig. (3) shows the dependence ol the mobility on the {emperature
calculated by Blatt on the basis of these cross sections, The B curves
were obtained using the Born approximation and the P ones using the
partial wave method. The linear T dependence and the T%2 dependence
are also shown in this figure. The departure from the T%2 law arises
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mainly from the temperature dependence of the sereening parameter
in the case of the Born approximation. The screening radius inereases
with inereasing temperature and produces increasing cross sections. The-
refore the average relaxation time increases less rapidly with the tem-
perature than it would if 3 were independent of ternperature. The additio-
nal reduction in the temperature dependence in the case of the partial
waves 1s because the energy dependence of the cross section 13 now
less rapid than in the Born approximation.

As for the agresment of the observed values of mobility with theory,
Debye and Conwell (1924) found that for impurity scattering in N type
Ge [rom 20 - 300 K the exponent of T starfs from 1 and increases to
reach the value of 1.5 asymptotically al higher temperatures.

The experiments of Morin and Maita (1954) in Si and Ge are also
in favor of an exponent nearer to unity than 4.5 for the temperature
dependence. Thus 1t seems that the mohility s given correctiy by the
Born. approximation at higher temperatures (higher than 100 K).

As the temperature is lowered more and more of the impurities beco-
me unionized and the case of scattering by neutral impurities should be
taken into account. This case was studied by Erginsoy (1950) who as-
sumed thal seatiering of carriers In semicondusctors by neutral impu-
rities s equivalent Lo hydrogen - atom scattering. He gave the [ormula
of the mobility for such a scattering as:

1 m* ef

% Nx xh”v

E‘L:

which is independent of the temperature. Al though this formula was
found to agree with the experimental results of Debye and Conwell
(1954) at ligunid hellum temperature it was pointed out by Temkin
and Lemkin (1961), Temkin (1962} and Drnkarev (1963} that it ne-
eded to he corrected. This was done by Blagosklonskaya ef al (1970)
who took accouni of the polarization of a hydrogen atom by the elec-
tric field of a scattered electron. Their experimental results agreed with
their theory.

The inhomogeneous impurity distributions can greatly affect Lhe
observed mobility in semiconductors. This is due Lo the formation ol
large space - charge regions surrounding local inhomogeneities. The scat-
tering cross section of Coulombic centers can be increased by over
an order of magnitude when inhomogeneously distributed. Assuming
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that inhomogeneities can occur frequently, various anomalous mobi-
lity effects cau be explained such as wmobility killers» in GaAs InAs,
glant scattering cross sections in GaAs, InP, Cds and CdSe.

Electron - Electron Scattering.

At first it would seem thal electron - electron scattering could not
affect the mobility since the total momentum is unaltered. Howe-
ver, this process influences the mobility indirectly. In determining the
mobility of electrons and holes scattered by impurities we have seen
that electrons of high energy are scattered less effectively by the im-
purilies than those of low energy. Thus these electrong Lend to acguire
large momentum from the field. If, however, the mean free path for
an electron - electron collision is smaller than the mean [ree path of
these fast electron - impurity collisions then the mobility will tend to
decrease because the electron - electron collision tends to equalize ther
momenta. It has been pointed oul that in the region where impurity
scattering is dominant the mobility should decrease by a factor of 0.6
while in the region where the lattice scattering is important the mo-
bility should deerease by a factor of 0.88, (Spitrer and Harm, 1953).

Electron - Hole scattering also reduces the mobility. However, as
peinted out by Morin and Maita, (1954) is negligible in Si below 1200 K
and in Ge below 1000 K.

Dislocation scattering,

Dislocations in Ge and in Si can scatter electrons in two ways.
The first is due to elastic properties of dislocations. They give rise to e-
lastic strains,; thus there is dilatation and the deformation potential can
be determined (Dexter and Seitz). This kind of scattering is expecled to
be small and uniportant in good guality crystals. The termperature
dependence of mohility is linear with T.

The other mechanism is due to the fact that dislocations act as
electron acceptors, thus reducing the electron concentration in n type
specimens, and even converting it to p type (Read 1954, 1955). Thus
the dislocation becomes negatively charged. This negative line should
be surrounded by an extensive cylindrical region of equal positive space
charge. Thus, the dislocation line can give rise to a strong, perturbing
potential, and can scatter electrons quite effectively. However, this
scattering should not appear in p - type specimens which iz in fact
in agreement with the experimental observations.
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In Fig. 4 the triangles present the 1" dependence of the mobility
due to lattice scattering and the dotted line the T dependence due to
dislocation scattering. When the two are added in the form

R

H

[ e
the so calculated mobihity (solid line) fits the ohbserved one {dotts)
(Logan et al, 1959),

Lattice scatiering.

The carriers in semiconductiors are thought as being concentrated
near an energy rminimum in the k space. This makes the calculations
of electrons scattered by phonons easier in a semiconductor than in

ol

IRy P "

0 20 40 10 400

TK

Fig. 4. Temperature vartebion of mobiily in germanium with and withow!
wilded dislocations.

metals, becaunse the change of the wavevector of electrons is small
and the phonon vector g, has to be near a center of a zone. Thus
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we can assume that the occupaney of the phonon is given by
g = kD T/th .

where v, is the phonon frequency.

Another characteristic of this interaction is that the energy change
of the electron is very small and can be neglected which in classical
scattering corresponds to scattering by an ion of infinite mass.

In the lattice vibrations the ions move about their latlice sites,
so that the potential energy in the latlice is changed by the amount
3V from its value in the undistorted crystal. This change ol the po-
tentialis seen by the electrons as a pertubation and has the effect of scat-
tering them info new states. Admitting that the extra potential is a
linear function of the displacement we can say that

sV — 5 Y
La dUgg

. eq

where 1,4 = Uge~" &, is the lattice vihration and &, is the unit ve-
ctor for the displacement. '

This potential 3V is treated by time dependent pertubation theory
to give the matrix element for the (ransition probability for an ele-
ctron from the k to k', by the phononjn, >

Myt == < Dg,p | fH(r) (3v) Fulr)dr | ngp—1>

=-—1 % uge i WY (1) (§y) Wi(r)dr

1
=-—1ug ' —k—qg [P {r) (3v) Yi(v)dr

The phonon | ny >> 1s described by its amplitude v, and oceu-
pancy ng.

The electron wave functions are thought as Bloch functions:
¥k 4+ 1) = Wik) ekl

The simplest way to evaluate the integrals of those malrices is
to think that the potential field surrounding each ion is rigidly at-
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tached to it and moves with it. Thus we can assume that the potential
is a sum of atomic potentials

V{r) =X V(I‘ _Rl ) )
1

The detailed calculation of the integral was done by Mott and
Jones who also used the Wigner Seitz model to take for it:

£k k) = —i| eq (K'—k) | {u{r) —eo} § ¥'* Y dr

where z, i1s the enery of the bottom ol the hand and u is the potential
energy of the electron on the cell boundary.

The factor ey (k' —k) =8,-q tells us that the electrons are scattered
by longitutinal phonons only. However, this would be true only in the
case of N process. The factor {u(r)—=o} can be evaluated by a method
proposed by Hunder and Nabaro of the so called deformational poten-
tial. They said that when a crystal is uniformaly expanded or compres-

sed; Lhe radius of each cell changes from r to r(1+ % A), where A is the

dilatation. Then the wave function for the bottom of the band ¥, must
satisfy new boundary conditions and thus it 1s changed to W,. By sub-
straction of the Schrédinger equations for W, and ¥, we can get:

he
21 | Wo v2 Wy — Wiyt | = Yo, e
m

This equation is integrated over the volume of the unexpanded cell,
and saymg that the product ¥, W, is approximately integrated to
unity we have

h

— W)y W) ds
2m

Bep =

But ¢¥, vanishes at the boundary of the expanded Winger
Seitz cell. By Taylor expansion we have

v 1) ds =—%rAv“‘P‘o ds

On the boundary of the Wigner Seitz cell we have that:
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A, — fute) — e} Ve (1)
2m

Thus we come to have that:
dzo == { ulr) —eo } A .

In other words wu(r) -z, is the rate of change with dilatation
of the energy of the bottom of the conduction band. It 1s called the
deformation potential, The method of deformation potential has been
proved by Overhauser (1953) and Gibson and Keller (1957).

The integral

r (k" ~ k)reosd

[ Ti*%Vx dr = 2= [ e r*sinfdodr |
L]

at—y

when evaluated, is a function of the form

XC08X — 8inx

Gx) =3 where x=(k'—k)-r

X_E

,} B(x}

10

05

0 0 ) 0 [
30" 60" 90" 120 180
Fig. 5
The value of this function is shown in figure 5 from which it is detected
that large angle scattering is rather avoided.

It should be mentioned that there have been other ways of evalua-
ting the integrals £(k"—k) such as that of the deformable ion hy
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Blogh or the Bardeen’s sell consistent calculations, but the discussion
of them would go out of the scope of this work. It seems that this
method is suitable for application to semiconductors having the ad-
vantage that the deformation potential can be detected by independent
measurements, such as changes in the energy gap with pressure and
temperature. It has been the most used method when we come to
determine a scattering cross section of electrons scattered by phonons
and explain the chserved mobility of the electrons in many semicon-
ductors. '

The calculalions presented ended with a matrix [orm, (il we sub-
stitute the value of v,)

2

My ntky T )1/'
M — ——= - e .
Kk (Zquth [+

The square of 1t is

, kg T
M = Sps e

From this rmatrix element we can evaluate =y (¢)

‘hDs_2 {

ety T ‘N(s)

T (e) =

But N(g) e 42 | thus =p(z) o« T-32

Now we have to evaluate the mean value <7y {g) > . For a sphe-
rical band with eflective mass m* we obtain a temperature dependent
mobility:

237 Ds*ht (!

3 sjzm*sf-; (kB T)ajz

My, =

Since the calculations are hased on a simple model 16 is obvious
that deviations from this simple formula should he expected, when
we come o explain experimental results.

So far the case of scattering electrons by optical modes has not
been considered. The energy of an optical quantum is much larger
than that ol an acoustical mode, corresponds Lo a temperature of se-
veral hundred degrees and hence the change of the energy of the car-
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rier during such a collision should be taken into acecunt. The problem
is studied by the variational method and it is divided into two parts
according to whether we have to deal with a polar or covalent semi-
conductor. The latter was studied by Seitz (1948) who gave, for high
temperatures, a temperature dependent mobility of the form

oot (kBT)—S}Z m*—s/t

At lower temperatures the occupancy of phonons iz given by the
Plank distribution which makes the calculations still more complica-
ted. However, in explaining the experimental results we could say that,
if a proportion of the scattering which governs the mobility at high
temperatures is by optical modes, then we expect this scattering to
disappear more rapidly than the acoustic phonon scattering al lower
temperatures and hence the mobility is expected to rise more rapidly
than T-st .

In an actual sample both impurilies and lattice scattering will
be present since no actual sample is absolutely free from impurities
and not at zero temperature. Even more the samples of semiconductors
have to be dopped for special purposes. Combining the two different
relaxation times is roughly done by Mathiessen’s law. A more accurate
combination will be like this. The relaxation time because of lattice
and impurity scattering is:

i 1 1
= +

w(e)  mle)  mile)

when the effect of dislocation and electron - electron seattering 1s ne-
glected. For spherical surfaces of constant energy the mobility de-
pends on relaxation time

e Lvit(e) >

po=— e

m* <Jut>»

The substitution of t{e) in the above fotmula and the evaluation of
the mean values, results in a rather complicated integral of e which
has heen solved by approximate methods (Johnson et al (1951}, De-
bye and Conwell (1954). Conwell (1952) has also published a graph of
p/ug as a funetionof ug fu, where p, is the maximum observed mobility
when both lattice and impurity scattering is present. (See fig. 6).
For more quantitative comparison of experiment and theory, the
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data taken is usefully divided into the following parts.

1) Data for the range of temperatures and impurity concentra-
tions for which impurity scattering is neglibigle. These will give a
check on the theory of lattice scattering.

2) Data for the range of temperatures where impurity concentra-
tion is known and neutral impurity will be negligible. From such a
data check of the impurity scattering can be made. Such a discussion
has already been made.

A number of experiments have been conducted measuring the tem-
perature dependence of mobility of electrons in Ge and Si. In n-type

3'][' T 7 T f T

H(C'IHZ/VOZt- sec)

|

200 -0, 0 300 T00%

Fig. 6. Mobility in specimens of St containing various amounts of B impurity.

10

51, in the lattice scattering region, the temperalure dependence of
mobility is T-%%. The deviation from T-* law is great and can not
be attributed to intervalley scatering. However, this deviation was at-
tributed to scattering by optical modes. The optical mode tempera-
fure © was computed by Herring to be 1200 K. Since the experiments
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that gave Lhe above results were performed at the Lemperature regions
below 700 K, the part of the lattice scattering due to optical modes
has to obey an exponential from.

For n-type Ge the experimental law 18 T-v%. The devialion
can be attributed to intervalley scattering, although the change of the
effective mass with temperature could also provide a temperature de-
pendence.

The mobilities of holes in Ge and 51 exhibit a T-*% dependence.
Intervalley scattering can occur in Lhis case. The deviation has heen
attributed to scattering by optical modes as well as by shear modes,
Shokley found that Lhe aconstic mode temperature for Ge is ©® = 520 K.
The observed deviation from T-%® law for Ge can he explained by
the scattering by acoustical modes np to the temperature of 500 K. In
the experiment done up to 1000 K the observed deviation was explai-
ned by electron - hole scattering using the Brooks and Herring for-
mula.

Scattering by optical modes in polar crystals has been studied
more explicitly theoretically. Because of the strong dipole moment set
up by the oplical modes in polar crystals the coupling between an e-
lectron and an optical mode is likely to be stronger than in non polar
erystals. The matrix elements for the transition of an electron from
the state k Lo k" by an optical mode q has heen studied and the Boltz-
mann equation is solved by the variational theory. The temperalure
dependence of the mobility 15 of the form:

w ot m*=32 (kg T)=%2 for high temperatures,
wo m¥—¥e (ehofkeT 1) for lower temperatures.

The above relations were found using pertubation theory to find
the matrix elements for the transition. In order for pertubation theory
to be applicable the coupling constant

. 12 /3
P L K—Ho my
h o\ 2By Ho¥ e

should be smaller than unily. Thus it would be expected for the re-
sulls of pertubation theory not {o be applicable to all types of polar
crystals. For such cases, the polaron theory of mobility has been de-
veloped (Law and Pines, 1955) to replase the perturbation theory.
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This theory for law temperatures (T<®) gives a temperature dependent
mobility of the form

where my iz the polaron mass.

The perturbation method was applied by Rozhdestveskaya et al
(1970} in the observed mobility in Strodium titanite and found 1o he
in agreement with ® =600 K. The slight disagreement was altribu-
ted to lattice distortion.
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- - 2
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= ] ' ' 2
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= 'y “)*’///M._ Low field extrapclation .
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5 ‘/,)?y ) ines =
= ---- F" lines
£ /- : 108
10 10 10 104

Electric Field, Volts/cm

Fig. 7 Current denelty in n lype Ge as a function of clectric field,

On the other hand the polaron theory was used by Frederikse
and Hosler (1967) to explain the observed mobility in SrTiO, in the
femperature region from 1 - 1000 K.

Concluding the discussion on the comparison of the theoretical
mobility and observed mobility it should be mentioned that part of
the observed disagreement should be attributed to the mischoises of
proper coustants such as dielectric constant, effective mass, polaron
mass, elce.
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Hot Electron. For a complete discussion of the topic the scattering mee-
hanisms in the case of «Hot electronsn will be briefly discussed.

In solving the Boltzmann equation a basic assumption was made,
that the energy that a charge carrier gains from the applied field is
sufficiently small that collision processes bring the carrier distribution
into thermal equilibrium with the lattice. This is why only terms li-
near to the applied field were retained. At sufficiently high fields ho-
wever this won’t be true and the current density will no longer be
proportional to the electric field. The current density versus the
electric field are shown in figure 7. It appears that the curves could be
divided into 3 regions {(Ryder 1953).

At low fields Ohm’s law is obeyed. Beyond a fairly well-defined
field strength which is a function of temperature the current is pro-
portional to EY* and at wvery high fields it becomes independend
of the field. This behavior can be explained in the following way.
As the field increases, the electrons gain more and more energy
between collisions with phonons. The rate at which this energy can
be transfered to the lattice is determined by the relaxation time
for electron — phonon collisions, and by the maximum energy of the
phonon which can be created in such a collision and which i1s very small
compared to the energy of the electron. Thus at a critical electic field
the transfer of energy to the latrice becames too slow to establish ther-
mal equilibrium and the electron distribution becomes hot. However,
as the electron energy increases the probability of electron-phonon scat-
tering Increases until the electron - phonon interaction is again sul-
ficiently strong to establish a steady state. The situation is very si-
milar to that of gas discharges. Through that theory one can easily
show that the mobility is like

(4 o E—IIZ

The current saturation at very high fields is interpreted in terms
of the interaction of electrons with optical phonons. Because the energy
of the optical phonon is orders of magnitude greater than of the a-
eoustical phonon, once optical phonons can be emitted the energy of
the electrons is limited and saturation arises.
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[NEPIAHYIZ

DAINOMENA ZKEAASMOY TON HAEKTPIKQN OOPEQN
KAT ETKINHEIA AYTON EIX TOYE HMIATI'OQTOTE

‘Tro
ZEMIPAMIAOY AIONYZIOY - KOY - T'MTZIL

(" Eoyactigor I "Edpas Puoovedjz, Movemarnuiov Qecaaloriny;)

‘H eduwvnola 1dv gopéav ele Tobg Autaymyods emnpedletoal dmd tédv
povopévwy oxeddozwg. Exl vol Bépwtoc Todtov dvacxomolvrar al Deapio
ol dmolat dvemtiyfnaay Terevtaing inl Tob Tpdmou EmBpdocswg ExdaTou py-
yoopob oxeddoswe nl tHg sdwavnolac wal Sdvovron vi Epunveboouy Td -

poporTind Sedopéval
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