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Abstract. Computed profiles of edge dislocalion images are given. Suiface rela-
zation and stacking-foulf displacements were taken inlo aceount in constructing
the programme. Results show that il is, under cerfoin conditions, possible fo di-
stinguish among o Shockley pariial, a Frank parbial ond a perfect dislocation.

1. INTRODUCTION

The equations which describe the dynamical theory of electron
dillraction contain a term for the displacement [ield around a defect.
The form ol this term for a dislocation, derived on the basisof linear
isotropic elasticity Lheory, depends on the products g-b and g-bxu (where
g is the dillracting vector, b the Burgers vector and u a unit vector
along the dislecation line), in such a way that il a value of g making
these factors zero can be [ound the whole displacement term is zero
and the dislocation is invisible®*#, These two products are known as
the winvigibility criterian and for most cases are sufficient to identify
a dislocation. In the cases where this is not so, computer calculations
are needed®'. There are two methods of identifying delects by com-
puting. The most commaon method is to do intensity profiles in which a
graph of the electron intensity as a lunction of the pesition along a line
perpendi-ular to the dislocation is constructed. The second method is
to form a complete two-dimensional image, that js to make a theore-
Lical micrograph using the calenlated intensities.

The appearance of a delect lying close to one ol the surlaces of
the crystal is affected by the so-called surlace relaxation elfect, ard
the invi<ibility criteria do not always hold® The aim of this paper is
to present computed intensity profliles for edge dislocations which le
very close to the surface and are parallel to it. When the dislocation

WnoeiakA BiBAI0BAKN Ogd@pacTog - TuAua MewAoyiag. A.MN.O.



282

is & parlial one, the existence of stacking fault 1s taken into account.
The results were obtained using a new subroutine for the displacement
field for a usual otherwise intensity-computing programme and indica-
ted that a distinction among a Shockley partial, a Frank partial and
a perfect dislocation shound be possible.

2. THEORY.
The general equations describing the stale of stress at a poinl of

an elastic medinm ares?:*

Oxx = Uii8xx + Cia€yy —+ C3€37 + C14Zvz + Crs€nx + Clasxy
Oyy = Caifxx 1 CasSyy T Cup€zz T Caalyz T Casax 1 Cogluy

Ozz = CyExx T Cazfyy T CaaZrx T Cosfys + Cus8zx + Cagxy

(1)
Oyz == Cp€xx T CasByy T Caafzz 1 Caafyz T CasZux + Cueliy
Gax == CsSxx + Csofyy 1 Cualzn T Opabyz + Css€ex 1 Ciglxy
Cxy = Gﬁlsxx + ngayy + ‘353337_. "{' 0545}‘1 + 0(555?.)( "‘_ CGGEX.\'
The strains = are given by
oy oy U,
T x Ty o 3z
(2)
. |
_ ol n aUy 2U, n cUx AUy Uy
Ty x0T T o U oy

” i

where Uy, Uy, U, are the displacements along the x,v,z axes. There are

36 elastic constants oy (i, j=1,2,...,6). In an 1sotropic f.c.c. material these
are reduced to only two, the Lame’s constants % and w, and equalions
(1) become

oxx = (A + 2u)exx + heyy + ke
Gyy = Afex + (k4 2u)eyy + Aews
Oz = Aexx 1 Agyy + (A + 2plew
Oys = LEyz
Gzx = WEix

Tzy = UExy
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If the plane x, v at 2z=0 is a free surface, then the conditions

e =0 for z < 0
° (4)

and Tz == Tgg — Gzy = O at 7 = 0

should be satisfied. These are the conditions for complete surface rela-
xation.

/ T X

Fig. 1.

Suppose that a dislocation parallel o the y axis and with Bur-
gers vector at an arbitrary angle o with the z axis lies ata distance d
from the free surface {Fig. 1). To satisfy the conditions (4) an image
dislocation with opposite Burgers vector is introduced at the irmage
point z=—d. To simplify the problem the ocriginal dislocation is
resolved into two component dislocations: one with Burgers vector
b, =bcosx, parallel to the z axis, and the other with Burgers vector
bp = bsinm, parallel to the x axis. Then each component dislocation is
treated separately and the total stress field is obtained by suitable
superposition of the two solutions. Head® has solved this problem for
the case of edge dislocations. Using his equations for the stress field,
the fellowing component displacements were derived

by . L x o x (z —d)x
Uiy = [Hm [2(1—;) {tan (zfd) —tan (z—ﬁ-d)] + —dF+ =

(3—4d]  4dzx(z + d}
R S (R
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NI 2 P Eedydxe (24 0P L x (Z—d)F 1
Ca{z+3d) 4dzx?
{z +d)p+x? [(d+ 2} + x*]
U L hp 1* 2\,‘ .l o (Z* 151)2+ pidd o (Z b d):___ . 4_Z(_'Z_':_dl_n_
IR | 2 e dire T —dp Lt (24 A+
@B =bdd{z+dy | 4dzx*
O e TR R o

b o (=AY L fzd)] | (E—d)x
U)gp = 4—7'._;-(*’1—_—:)‘) ‘—* 2( t- »‘) {tan (-;('“) —tan ( % —)] (Z:_Cl_)zij— =

(3 — 4vdx 7x bdxz(z + d) ]

(z + d)? + x? {z 4 d)? 4 x? |(z + d)* 4 x*)°

where v is Poisson’s ralio.” Therefore, the lotal displacements are

Uy =Uxy + Usx, _
U, = Uy & Usy )
Equatioas (5) lormed the basis of the subroutine used to calculate the
displacements.

3. CONSTRUCTION OF THE PROCRAMME.

The programme makes uce of the equations of the dynamical theory
of image contrast’. The miin programme enables caleulalions Lo be
carried oul bolh with or without Lhe collumn approximation®®, using
up to four beams.

The subroutine DISP, which has been constructed for the displace-
menl field, is based on equations®. Then the stacking fault of the
partial dislocalions is taken into account. This is done not by intro-
ducing a“phase factor in the Fowler translorm for the crystal poten-
tial in the main programme, but by removing (in DISP) a vertical dis-
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continuity and placing il on the stacking fault plane. This last opera-
tion is achieved hy adding or substracting the corresponding disloca-
tion Burgers vector. The relevant part of the programme is shown in
Appendix A.

The DISP is wiilten in such a way thal prolifes of [live possible
edge dislocations are printed oul in one run of the programme, saving
computing time. The geometry of the co-ordination system used and
the five Burgers vectors are shown in Fig. 2. There is only one perfect

W (0017

Fig. 2. The coordinalion system used to construci the DISP subrouline, Also shown
are fhe Burgers vector of the five possible edge dislocations with their lines along
[70] direction

dislocatinn among them, the one with Burgers vector «/2 [110.]1 To
di.tinguil.h each ci l:calion two paromeles are used; the iniegral va-
riable M_=1, 2,..., 5 and the angle A belwezen the vectors w and b.
Fig. 3 illustrates the Jive cases. The [aulted regions, where a Burgers
vector is added or substracted to the displacement {icld, are shown as
shaded areas. A sim»lified axes transformation is employed, which al-
lows rotation of the only specimen around the y axig, that is arcund
the dislocation Jine itsell. Rotation around any arbit ary axis would
make the transfoimation very complex.
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Fig. 3. The five considered dislocalions, each shown separately. Thick lines repre-
sent the stacking foult planes. The plane of the paper is the (7:0) and the disloca-
tion lines are coming out of the paper. Parameters ML and A are also shown.

4. RESULTE AND DISCUSSION

The UNIVAC 1106 computer of the University of Thessaloniki was
used to carry oub computations. The programme was applied to a theo-
relical situation where the dislocations are situated in different depths
from the surface of a copper single crystal. The anomalous absorption
parameters and Smith-Burge’s constanls were taken from the litera-
turet*?2, and the column approximation was always used. Most of the
profiles were calculated for the weak-heam case®, in which the diffra-
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ction spot 3g is strongly excited and the spet g is used to form the i-
mage.

Figure 4 shows computed profiles of bright field images for dislo-
calions well below the free surface (Fig. 4a) anf close to it (Fig. 4h).
Computations were carried out using two beams, with g = 220 stron-

11
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Fig. 4. Computed bright-field profiles of o Shockley partial (solid lines, gb==2/3)

and a perfect dislocation (broken Lines, gb=2) with g=[220] strongly cxcited

and wy =0. Dislocations are situated at o depth of 7.35 in a forl 3.0&, thick in [a)
<

and af o depth of 0.06 in a foil 2.08, thick in (). (5 = 419 A).

gly excited (wye=0), and ignoring the stacking fault. In Fig. 4a the
dislocations are at a depth of 1.3 £;in a foil 3.0 g thick. The Shockiey
partial (z-bh=2/3) appears as a dark line, whereas the perfect disloca-
tion {g-h=2) appears as two dark lines in accordance with the theory™
In Fig. 4b the dislecations are al a depth of 0.06 £ in a foil 2.0 E4 thick.
The profiles here are significantly different from {hosein Fig. 4a, show-
ing pronounced black-white contrast, due to the surface relaxation
effect. This result agrees with other compuled imagesss.

In Fig. 5 the effect of the stacking fault is shown. The profiles are
for a weak-heam situation when the diglocations are at a depth of 0.25
Ey in a foil 2.0 £, thick, and with wee = +1. Fig. 5a is a profile of
the Shockley partial with b = /6 [112] (see fig. 2b) and Fig. 5b of the
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Frank partial with b=2x/3 [111] (see fig. 2d). Broken lines are the dislo-
cation proliles when the stacking [aull is nol taken into account. The
difference in the proliles and the appearance of [ringes in Lhe regicns
where the stacking fault is considered are obvious.

X
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"ﬂl
0007 ¢
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] o =] o4 WE, 3 ) o [ [ Kk,
fe) (B}

Fig. 3. The effect of the introduction of a stacking faull discontinuily {solid lines)
on the orviginal profile of the dislocation {broken lines). Profiles ave for weak beam
images of dislocations al a depth 6.25 &g in a foil 2.08, thick. g=[220] and 1wy = +7.

@
a) %[772} Shackley pariial D) 3 [114] Frank partial.

In Fig. 6 the [ive dislocations are siluated at a depth of 0.06 &,
n a crystal 2.0 £ thick. Prefiles are for the weak reflection g = [220)]
with wyg ==+ 1.0. 1t is clear that a) The intensity ol Lhe Shockley dis-
location o [6 [112]1s about three limes higher than the intensity of the
other Shockley dislocation «/6 [112], bnt it is about one half of the in-
tensity of the perfect dislocation «/2 [110]. b) The intensity ol the Frank
dislocation o/3 [1117, is about two times higher than the intensity of
the other Frank dislocation «/3 [111], but almost the same compared
to the intensity of the perfect dislocation «/2 [110]. These differences
could be used as a criterion to dislinguish a Shockley partial [rem a
Frank partial, when a perfect dislocation is also present. The perfect
dislocation could be traced using two opposite rellections as shown in
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Fig. 7, where profiles of Lhe dislocations o /2[1107, «/3[111] and «/6[112]
in the weak reflection g =[220] ave plolted, the other conditions heing
as in Fig. 6. Comparing the profiles ol Figures 6 and 7. 1t is clear that
by changing [rom +g to —g the image of the perfect dislocation simply
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Fig, 6. Weak-beam image profiles for dislocations at a deplh 0.06f; in a foil 2.05
fhick.g =[220] and 1wy = L7,

changes position relatively to the real position of the dislocalion {at x
=(0), the intensily remaining unchanged. [n the case of partial dislo-
cations the images change not only position but also intensities; Lhe
Shoekley «/G[112], which is strong in Fig. 6a, becomes weak in Fig, 7
and the Frank «/3[111], which is weak in Fig. 6b, becomes strong in
Fig. 7. This could then be taken as a criterion for dinslinguishing a
perfect from a partial dislocation.

Finally, Fig. & 13 a computled bright [lield profile [or a Shockley
partial dislocation with b==x/6[112], lying parallel ta the (001} foil
surface, along the [110] direction at a depth ol 0.103 £; in a crystal
4.2 E; thick. The dilfraction vector iz g=[111] with wy =-+0.1. For
this partial gbh = —1/3 and m =1 /8 gbx w = —0.029 and therefore it
shouid not show any contrast’. However, it is clear that a relatively
sharp black-white contrast is present due tlo the surlace relaxation
eflfect, which renders the invisibility criteria ipvalid.
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Fig. 7. Weak-beam image profiles as those in Fig. 6, except that now g=[2Z0].
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Fig. 8. Compuied bright-field profile of a Schockley parfial with b= % [7712], lying
(=4

at a depth of 0.7103&, (&g =243.3 A) along [170] direction.g=[TTT] with wg = -+ 0.7
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APPENDIX A

UZ=UZV+UZP
UX=UXV+UXP
IF{(ML-3) 50, 26, 51

50 IF,BUDTW) 29, 26, 31

20 XAM=-DEP*SNA/CONA
GO TO 93

31 XM=DEP*3NA/CNA
GO TO 34

51 IF'BUDTW) 27, 26, 33

2 XM=-DEP*CNA /SNA
GO TO 34

33 XM=DEP*CNA /SNA
GO TO 35

34 IF(XTEM) 36, 26, 26

36 IF(XM+XTEM) 26, 40, 40

40 IF(|Z1 (XM-+-XTEM}-(DEP/XM)) 38, 38, 26

35 IF{XTEM) 26, 26, 37

37 IF (XM-XTEM) 26, 41, 41

a1 OF ({Z1/(XM-XTEM))-{DEP /M) 32

32 RA(I=UX*XPi+UZ*WI1-BU1
R )=UX*XP2+ UZ*\W2-BU2
R3(11)=UX*XP3 1+ UZ*W3-BU4
GO TO 12

38 RUI1=UX*XPi+UZ*WI1+BD1
R2 M) —UX*XP2+ UZ*W2 - BU2
Ra{11)=UX*XP3+UZ"W3-+BU3
GO TO 12

26 RIM)=UX*XPI+UZ*W1
R2(1)=UX*X P2+ UZ*W2
R3(T)=UX*XP3+UZ*W3

12 CONTINUE

32, 26

3
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TEPTATIN'TT

KATANOMH THE ENTAZHE KAGETA IE EIKONEZ
EEAPMOZEGN [NOY BPIZKONTAI KONTA TTHN EIITGANEIA
TOT KPYZTAAAOY

“Trd
I T ANTONOIIOYAOYT

Me 1 Bofbelr dvde moovpdULETOS HETUOHEVESTIHOY HOUTUASS HaTE-
vouTe The &vtaove waleta om ypappd he Eidpuocrg. To mpdypeupo
matpver Omddy tou Tiv Enidpwow e dhedlepye dmupdviiag oric uerteromt-
cig mod mpoxahsi wid 2Edpucon o fve mhdype, Smowg énlone wel THv mi-
Do) dnueovpyia apdiuatos dmaroibuons. "Elstdormuay wévie mbavic wat
dnp?) EEuppboes amd tle Omoleg téoosps frev wiaopatixde (2 Shockley
el 2 Frank) wel wple téheta. Adrég ol Efapudoeis Eyovv Sraviopare
Burgers oto 180 émimedo zal érmopévog 10 xpripo g- b =0 8&v umopel
ve epapuootel wd Imtuyla yia 6 Sxyoptopd Touvs. Té dmotshisuate T

=7_ ’ ‘7 o~ ‘!_IS ; 124 7 )_'_\ b4 ! - P 0; - ﬁ'{ N
govaatag adtiic #elfoy 81, wdte &md dolopéves mpoimoléozig, elvar Suve-
795 & Swiyewplondg dvduson oTd Tel
Frank xal tfc téhetug).

a £ldn Efoppbasoy (the Shockley, tFe
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