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Abstract, The observed width of a dislocation ribbon in electron microscopy is
expecied to be different from the true separation of ifs purtial dislocations due to
image shift of dislocations relative Lo their core positions. Calculations of intensily
profiles of dislocation ribbons are performed in order to investigate the effect of
this phenomenon on the stacking fault energy calculations using the ribbon width
method !

The results show thatin the case of SiTe, the observed ribbon widths are about
1% greater than the true ones and this effect is well within the experimental errors
to affect the estimated value of the stacking fault energy.

1. INTRODUCTION

Theoretical calculations of dislocation intensity profiles using the
dynamical theory of electron diffracrion including absorption showed
a shift of the dislocation peak intensity from the true dislocation core
position'. This shift depends on the dislocation character i.e the an-
gle {x) between its dislocation line direction and its Burgers vector
as well as on its depth in the crystal and the imaging conditions. Mo-
reover, a perfect dislocation lying in the main glide plane of a close-
packed struclure can dissociate into a rvibbon of lwo paralle]l partial
dislocations bounding a stacking fault according to the scheme

‘\B —_— 1’\6 - GB

where AB leads from one atom position to the next equivalent one
in a close-packed plane, Fig. (1). Perfect dislocations have Burgers
vectors AB, AC, BC; partials As, Bg, Co:

It is seen from Fig. (1) that the Burgers vectors of partials make
an angle of 60¢. The shift of each partial relative to its core will be dif-
ferent in each case thus affecting the observed ribbon width.
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In the present work this effect is investigated in order to decide for
the error introduced in the caleulated value of the stacking fault energy
based on ribbon width measurements. The results can be applied to
any cubic or hexagonal close packed structure. However, the experi-
mental conditions are chosen to [it S5iTe, erystal which is a hexagonal
layered-structure.

Fig. 1. Durgers vector notalion.

2. TWO-BEAM DYNAMICAL EQUATLONS OF ELECTRON DIFFRACTION

For distorted crystals i.e crystals containing a defect such as a
dislocation, the two-heam dynamical equations? of electron diffraction,
based on the column approximation and inclnding absorption, are a
pair of complex first-order differential equations of the form:

AT /dZ — — NT + (i —A) §
4S/dZ = (i— A)T ~ [—N =+ Zi\\'%Zid—% @ | S M

Where T and S are the amplitudes of the electron waves in the
directions of the indicent and diffracted beams. The parameters N and
2\ are the normal and the anomalous absorplion coefficients, while
w is the deviation parameter fromn the exact Bragg rellecting condi-
tions. The vectors g and R are the reflecting vector and the displace-
ment vector of the defect respectively:

The real variable z in the vertical down direction parallel to ele-

ctron beam has been changed to Z =

z .
" for compuatational purposes
Eg/m r purp

-

i.e the unit of lenght is =8 ,where £ 1s the two heam extinction distance,
™
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The displacement vector R of a dislocation in isotropic crystals
15 given by
= 1= smlcp - = 1—2 oS
R=;- ! - ; Inr +

5m b o i be 41— v) b /A1 501 —v) nr 4l )H {11)
where b, b, are the Burgers vector and its edge component respecti-
vely; the angle ¢ is indicated in Fig. (2) as ¢, or q,; v is the Poisson
ratio and @ is a unit vector in the positive sense ol the dislocation.

3. PROGRAM GEOMETRY

The column approximation is illustrated in Fig. (2) for a crystal
of thickness t. The two partial dislocations lying at depth y are per-
pendicular to the page at points (), and O, and parallel to the crystal
surfaces:

incident wave

top /
’ 1
| e
- = — z
; 02 {3 :Iq)‘k _1
1 T dz
-
bottom AN
TS

Fig. 2. The column approximation.

Both dislocations cause a displacement of an atom [rom its true
position in the shaded slab of the column. The total resulting displa-
cement is

T)lT:-PH*i ﬁz

The angles ¢, and ¢, can be expressed as functions of the coordinates
X, ¥, % The differential equations (I} are integrated numerically star-
ting with T =1 and 5=0 at Z=0 (top surface of the crystal foil) down
a column. The integration procedure uses the fourth-order Runge-
Kutta method as modifiel by Merson® for estimating the truncation
error of the integration and automatically choosing the optimum in-
tegration step size to satisfy a preassigned accuracy. At the exit sur-
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face of the foil TT* and SS* give the intensity of a point in the bright
field and dark field image profile respectively. The column is shifted
to the right and the procedure is repeated.

4. EXPERIMENTAL CONDITIONS

The main glide plane coincides with the basal plane in crystals of
h.c.p structure and it is also the cleavage plane in layered structures,
like SiTe,. A dislocation ribbon lying in the basal plane with its total
Burgers vector b in this plane will satisfy the condition g.bBAUW = 0
when g is parallel to the foil plane i.e the crystal is untilted. This con-
dition is satisfied in the present experiments and it reduces considerably
the displacement vector eliminating the third term in the expression (IT).

Moreover, the hexagonal crystals of layered structures are ani-
sotropic and only the basal plane is isotropict. This isotropicity allows
one to take anisotropy into account for a dislocation lying in the basal
plane and apply the results of the isoiropic elasticity theory i.e to use
equation (11}, where the value of v is given by v =1 — ﬁz
and Ky == (Cy,Cqq) M#

Ke = (_Cn e Cla) (_—J-Af (C“ - Cla) (s
Caa (Cn + C:: + QC“)

E11 = (Cncss) 1z

The Cy are the elastic constants of the material. Unfortunately, these
elastic constants are unknown for SiTe, and an effective value of
v= (143 was determined® using the procedure of Amelinekx?.

. . L. . .
The Poisson ratio takes the value of v = in isotropic crystals,

Fig. 3a, b. Experimental micrographs of different segments of a dislocation ridbon.
Nofe the differenf widths in a} o = O in b) a= 90°
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Fig. {3a,b) shows different segments of the same dislocation ribbon with
both partials visible in 8iTe,. The reflecting vector and the Burgers
vectors of the partials are also indicated: In Fig (3b) the total Burgers
vector of the ribbon and its line direction enclose an angle of a=900,
while in Fig. (3«) o= 0°

The calculated extinction distance of the operating reflection in
Fig. (3a,b) is £; =110 A and the deviation parameter is w = 0.3,

5. RESULTS AND DISCUSSION

The intensity distribution of the experimental micrographs in Fig.

(3) is seen in Fig. (4): Thesc curves are obtained from a microdensito-
meter,

° a
1000 A 10004

Fig. 4a, b. Microdensitometer traces corresponding to the experimental micrographs.

The calculated intensity profiles are shown in Fig. (3). The posi-
tion of the partial dislocation cores are marked 1. It is concluded thal
the ribbon width as determined by the calculaled peak inkesities is
greater than the true width given by the core positions about 1", in
all cases:

Thus, the non-coincidence of the true and the observed width is
well within the experimental errors and will not affect the measured
stacking fault energy of 8iTe, by the ribbon width method.
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Fig. Sa, b. Computed bright-field intensity profiles corresponding to the experi-
mental micrographs; t= 8Ly, w= 03 and y=4&g.
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READ
SEP , ANG ,THICK , Y , W , ANOM
ANOR , POISON , XG , PI , A

I

ox = [szp¢p|)/|z.o-.\-m y

G = A = DX

X = -(2.0«A-0.8)=0x
X1 = (2.0 A-0.5)=DX
I SEP = Baeparation of
partials
compute GB {1),GBE (1) ANG = a
eq . Al
1 THICK =t
0 = a1 = P|
z =o0¢o a y = ¥
21 =DZ
1 w = w
ERROR = 00001
Q= o0 ANOM = A
sat  imtial  values of Y[(L]
®a A2 ANOR = N
1
CALL OR CALL RGKM
compute v stU;E;EDDDSl\|(meumO stegration PQISON = ¥
drg Ri-dz dyll) dz
ea &3 | It = THICK | X6 = &y
CALL DRY CALL RGKM _
eq A3 compute vimal Y.l Pl = n
| ENTASI= v (1)a2 + Y{2)n w2 ] A = desired numbar

ol columns

WRITE
ENTASI

X

Flow chart of a program to determine intensily profiles of a dislocation ribbon.
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GB {1)=gb, = 1
GB (2)=gb, =1
GBE (1 ):EEL: V3 -sina sin (u-l'——)
Al 2(1-v)  3(1-v) 6
gbe, \/5_ . ) n
= s - + ——
GBE (2) vl 30w sina sin {a 5 )

Y{1) = ReT=1
Y(2)=ImT=0

Az Y {(3}=ReS=0
Y{4)=1m§=0
dlgR) _ 1~ 55 o+ Pe x2-(z-y)* ) x,
dz 2n / 20wk x 2e(z-y)? ) x 24 lz-y)?
where X=X = Xg s Xg T X+Xg
A3 dy(1}/dz = - A[Y (1)+Y(3)] - v(4)
dvi2)/dz = - A[Y (2)+Y(4)] + ¥(3)
dy{3)/dz = - A[Y(1)+Y(3)] - Y(2) - BY(4)
dy(4}/dz= - A[Y(2)+v(a)] + Y(1)+BY(3)
where B=2w +2m- ;gz-Ft)

Equations refered to the program flow chart.
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IIEPIAHYIZ

TIIOAOTTIEMOX THE KAMIITAHY KATANOMHYE THX ENTATXHZE
HAEKTPONIKHE AEEMHY AIIO MIA TAINIA EEAPMOZIHEXE

‘Trd
II. TPHI'OPIAAR

(* Eoyaorioovr B’ “Edpac Puowndjs, Hoevemornuiov Ocaaaiovixig)

‘H Bewpla ti¢ Suabhaons tév Hhexrpoviow amd Eva xpbotadro mol me-
préyel pea ypoppued EEdpunoy mpoPhémer &t | watavopd Tig Evracns T
EEepyopbvng amd Tov xpdatadhe HhexTpovxdc Béoune, Snmwg TumaveETI oY
POTOYRaPIXY TAAXX, clvar TETota Gote TO péyioto THe Evrasmg (mapatypou-
pévy Béon tHe Eldppoanc) va pl ovurninTter pt Thy yeopetpuy mpoforn THe
ELdppoons aTv QUTOYpaPLXE, Thdxa. 10 pourvbpeve abdTd THC LETETOTLGNS
eEapriiTal GmO TA yepaxtrptoTixa The EEdppocrs xal omhv mepinTwon WA
Taviag EEdppoans mod elvar weptoyn pE sedipa dmototBaang meparouuéyy
ard o ypopuwmes ebappbosis ut SwxpopeTid yapaxThploTnd, dvaudvetor,
8Tl TO TMELPAUATING TXPATPGUIEVS TARTOS THG THviag, Smmg mpoxdTEL T
hv amdorasy Tov sixdvav TEY 3o asubosny oty puToYpaOKT TAKXA,
Sev Oa ouprminTer e 16 mpayuomind mhdTog TG MOl elvor dyvemaroe. ‘O Oew-
prTinds DmoAoyiopds THe wapmiine xaraveue ThHe Evracye, ud Tio adTic
ouvbixss meptbhaone dmweg clvar mepopamina ud xpdotadro SiTe,, E3sife
811 16 mapatvpobpeve mhdtos The Tawlag slvor peyardrepo wava 1%, TR
npaypatiic dnéortacns thv Eappboswv. Adté anpaiver dtu ) dmoroyilo-
uévy évépyeta TOV opEiudTey Entoroifacns ortv xpbotadro SiTe, mpémer
va. adfnlel wara 1% mpivpa mwobd fpioxerar péow otd Spla TOY GREALATONV
UETPAHGE GV,
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