Sci. Annals, Fac. Phys, & Mathem., Univ. Thessaloniki, 17, 195, (1977)

ON THE BOUNDED SUBSETS OF A TOPOLOGICAL SPACE

By

N. P. OECONOMIDES (Department of Mathematics, Aristotlc University of Thessaloniki) (Received 23.6.77)

Abstract: The notion of boundedness in a topological space, introduced by Sze-Tzen Hu [2], is well-known. A boundedness in a given topological space (X, T) is said to be local if the corresponding universe (see [2], p. 299) is locally bounded. Let $\{B_i : i \in I\}$ be the family of all local boundedness in (X, T) and $B_0(X, T) = \bigcap \{B_i : i \in I\}$; it is known [2] that $B_0(X, T)$ is a boun dedness in (X, T) but it is not necessarily a local boundedness. In this note we give conditions under which $B_0(X, T)$ is a local boundedness.

1. REMARKS ON B_0 (X, T). In 1968, S. Gagola and M. Gemignani [1] introduced the notion of *«absolutely bounded»* subsets of a topological space (X, T). Later (1973), P. Lambrinos [3] gave a more useful definition of *«bounded»* subsets of (X, T). He proved that the notions of *«boundedness»* and of *«absolute boundedness»* are equivalent, and that a subset of (X, T) is *«bounded»* if and only if it belongs to every local boundedness in (X, T). In other words, $B_0(X, T)$ is the family of all *«bounded»* (or *«absolutely bounded»*) subsets of (X, T).

According to this, if C(X, T) is the family of all compact subsets of (X, T), $C_0(X, T) = \{W: W \subseteq C \in C(X, T)\}$ and T° the family of all closed subsets of (X, T), it is known ([1] and [3]) that:

Proposition 1. (a) $C(X, T) \subseteq C_0(X, T) \subseteq B_0(X, T)$

(b) If (X, T) is T_3 then $B_0(X, T) = C_0(X, T)$.

(c) (X, T) is compact if and only if $B_0(X, T) = 2x$.

(d) $T^{\circ} \cap B_{0}(X, T) \subseteq C(X, T).$

(e) If (X, T) is T_s , then $T^{\circ} \cap B_{\circ}(X, T) = C(X, T)$.

In the abstract we said that $B_0(X, T)$ may or may not be a local boundedness in (X, T). We can illustrate this by the following examples.

Ψηφιακή Βιβλιοθήκη Θεόφραστος - Τμήμα Γεωλογίας. Α.Π.Θ.

Example 1. Let N be the set of the natural numbers $T = \{\phi, N, \{1\}, \{1, 2\}, ..., \{1, 2, ..., n\}, ...\}$ and $B = \{W: W \subset V \in T\}$. It is easy to see that B_0 (N, T) = B and that B_0 (N, T) is a local boundedness in (N, T).

Example 2. Let Q be the set of the rational numbers, U the usual topology for the real numbers and $T = \{V \cap Q : V \in U\}$. It is known that (Q, T) is T_s and not locally compact. Hence, according to the theorem 3 of this note, $B_0(Q, T)$ is not a local boundedness in (Q, T).

2. CONDITIONS. We know [2] that a subfamily A of a boundedness B in a topological space (X, T) is called *basis* of B if for every $B \in B$ there exists an $A \in A$ such that $B \subseteq A$ and A is said to be an open (closed, compact) basis of B if $A \subseteq T$ $(A \subseteq T^{\circ}, A \subseteq C(X, T))$.

Theorem 1. $B_0(X, T)$ is a local boundedness in (X, T) if and only if it has an open basis.

Proof. (i) Let the boundedness $B_0(X, T)$ be local, and $B=\{W: W \subset V \in B_0(X, T) \cap T\}$. It is easy to prove that B is a local boundedness in $(X, T), B_0(X, T) \cap T$ is an open basis of B and $B \subset B_0(X, T)$. Since B is a local boundedness in $(X, T), B_0(X, T) \cap T$. Hence $B_0(X, T) = B$ and consequently $B_0(X, T) \cap T$ is an open basis of $B_0(X, T)$.

(ii) Conversely, let A be an open basis of $B_0(X, T)$ and $x \in X$. It is obvious that there exists a $B \in B_0(X, T)$ such that $x \in B$ and, since A is an open basis of $B_0(X, T)$, there exists an $A \in A \subseteq B_0(X, T) \cap T$ such that $B \subseteq A$. Hence for each $x \in X$ there exists an $A \in B_0(X, T) \cap T$ such that $x \in A$, that is, $B_0(X, T)$ is a local boundedenss in (X, T).

Proposition 2. $B_0(X, T)$ need not have a closed basis, even though it may be a local boundedness in (X, T).

We can illustrate this by the example 1 of the previous paragraph. Indeed, since $T^{e} = \{N, \phi, \{2, 3, ...\}, \{3, 4, ...\}, ..., \{n+1, n+2, ...\}$ it is obvious that B_{0} (N, T) has no closed basis, enen though it is a local boundedness in (N, T).

Proposition 3. If (X, T) is locally compact, then $B_0(X, T)$ has a compact basis.

Proof. Since (X, T) is locally compact it is clear that $C_0(X, T)$ is a local boundedness in (X, T). Hence $C_0(X, T) \supset B_0(X, T)$ and in view of proposition 1, $B_0(X, T) = C_0(X, T)$. By definition, C(X, T) is a compact basis of $C_0(X, T)$ and consequently $B_0(X, T)$ has a compact basis.

Theorem 2. If (X, T) is locally compact, then $B_0(X, T)$ is a local boundedness in (X, T).

This theorem follows at once from the proof of the previous proposition.

3. CASE OF T_3 SPACES. We shall prove that:

Proposition 4. If (X, T) is a T_3 space and $B_0(X, T)$ is a local boundedness in (X, T), then (X, T) is necessarily locally compact.

Proof. Since B_0 (X, T) is a local boundedness in (X, T), for each $x \in X$ there is a neighbourhood V of x belonging to B_0 (X, T).

On the other hand, since (X, T) is T_s , there is an $A \in T$ such that $x \in A \subset \overline{A} \subset V$. Hence \overline{A} is a neighbourbood of x belonging to $B_0(X,T)$ and since $\overline{A} \in T^o$, according to proposition 1, \overline{A} is compact. So it has been proved that for each $x \in X$ there is a compact neighbourhood of x, that is (X, T) is locally compact.

Theorem 3. In a T_3 lopological space (X, T), $B_0(X, T)$ is a local boundedness in (X, T) if and only if (X, T) is locally compact.

This theorem follows immediately from theorem 2 and proposition 4.

REFERENCES

- S. GAGOLA, M. GEMIGNANI, : «Absolutely bounded sets», Mathem. Japonicae, Vol. 13, No 2, 1968.
- [2] SZE-TSEN HU, : «Boundedness in a topological space», Journ. de Math. tome XXVIII, Fasc. 4, 1943.
- [3] P. LAMBRINOS, : «A topological notion of boundedness», Manuscripta Math. 10, 289-296, 1973.

ΠΕΡΙΛΗΨΗ

ΠΕΡΙ ΤΩΝ ΦΡΑΓΜΕΝΩΝ ΥΠΟΣΥΝΟΛΩΝ ΤΟΠΟΛΟΓΙΚΟΥ ΧΩΡΟΥ

ϓπδ

N. OIKONOMI Δ H

Είναι γνωστή ή ἕννοια τῆς δομῆς φραγμένων συνόλων (boundedness) είς τοπολογικόν χῶρον, ἡ ὁποία ἔχει εἰσαχθεῖ ἀπὸ τὸν Sze-Tzen Hu [2].

Μία δομή φραγμένων συνόλων B εἰς τοπολογικὸν χῶρον (X, T) λέγεται τοπική ἐἀν δι' ἕκαστον σημεῖον x τοῦ (X, T) ὑπάρχει μία τουλάχιστον περιοχή V τοῦ x, ἀνήκουσα εἰς τὴν B.

'Εάν $\{B_i : i \in I\}$ είναι ή οἰχογένεια όλων τῶν τοπικῶν δομῶν φραγμένων συνόλων εἰς τὸν (X, T) καὶ

$$B_{o}(\mathbf{X},T) = \bigcap \{B_{\mathbf{i}} : \mathbf{i} \in \mathbf{I}\},\$$

είναι γνωστὸν [2] ὅτι ἡ B_0 (X, T) είναι δομὴ φραγμένων συνόλων εἰς τὸν (X, T), δὲν είναι ὅμως πάντοτε τοπιχή.

Εἰς τὴν ἐργασίαν αὐτὴν δίδονται ὡρισμέναι συνθῆκαι, ὑπὸ τὰς ὁποίας ἡ Β₀ (X, T) εἶναι τοπικὴ δομὴ φραγμένων συνόλων.