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Abstract: Wasscher’s modification of Van der Pauw’s method for measuring gal-
vanomagneiic coefficients is generalized in order to become applicaple in materials
of unknown charaeteristics. The possible effect of spacing anomalies on the spatial
distribution is also investigated.

1. INTRODUCTION

The method proposed by Van der Pauw for measuring galvano-
magnetic coefficients [1] is an elegant and sensitive method when ap-
plied to isotropic materials. In the case of anisotropic materials the
method, although applicalbe in its bacic configuration needs readjust-
ment to yield correct results. Wasscher [2] did just that, he extended
the treatment of the data in cases where structural anisotropies deter-
mine the values of the measured quantities. Since Wasscher developed
his method for applying it in a specific case, e.i to measure the aniso-
tropic galvanomagnetic coefficients of MnTe, he did not generalize it
to cover all possible experimental encounters.

The high concentration of carriers in the case of degenerate semi-
conductors, ¢.g. GeTe or SnTe, combined with a slight anisotropy of
the low temperature modification, presented a case where the general
principles of Wasscher’s method were applicable, but required refine-
ment to yield reliable and meaningfull results. The aim of this paper
is to present the way that Wasscher’s method was applied in the case
of GeTe [3] which we believe is quite general and can be used in the
case of unknown materials.
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2. GENERAL PRINCIPLES

Suppose that we are dealing with a material whose resistivities g
lie along three principal, mutually orthogonal axes, xi. A flat circular
sample of this material, of thickness d and radius r, with its surface
plane normal to the principal axis x, would contain the principal resi-
stivities p, and p, in its surface plane. This will be electrically equi-
valent, as proved by Wasscher, to an anisotropic sample with the fol-
lowing characteristies (fig. 1)
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Fig. 1 An anisotropic circular sample is equivalent to an isotropic elliptical one.
The case is for p,> gy
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c. specific resistance o = (prprpa) 3)

To perform measurements two pairs of contacts AC and BD are
formed at the circumference of the sample at the opposite sides of two
mutual perpendicular diameters (fig. 1), forming an angle with the
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principal directions x, and x,. With this arrangemend two resistances,
as defined by Van der Pauw, can be measured

R, — Y»— Vo
[P
(4)
R, = Va—Vo
Tac

These resistances may be used to determine the specific resistance
from the relation

exp(—rcR. %—) —+ exp(—rcR. %) =1 (5)

which leads to the expression

nd’ R,
P = T (Rt R (g) (6)

The parameter f(R,/R,) is a correcting factor derermined experi-
mentally, which Van der Pauw presented graphically using as coordi-
nates f vs R,;/R,. A usefull parametric relation to express Van der
Pauw’s graphical results for f(R,/R,) is given by Wasscher (2)

1 (i) In (}_ x
R1 n 4 R]_ 2 )
R el ™ 71 f R (L. O
1/ max 1n(7+x)+ln(~i——x) 1 ln(—2—+x)
. 1 1 . . .
with — ~2— < x < —2— Now for an anisotropic sample, by substitu-

ting p and d' from (3) and (1) in equation (6) the following relation
is obtained

Y. =d R,
(Prps) ™ = a3 (Ry + Rz)f( R’) (8)
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1f the equivalent ellipse representing the resistance anisotropy of
the circular sample is mapped conformally into a g¢ircle of unit radius,
the expressions for the measured values R, and R, transform to the
following

1
Rl = (PI p.)/2 ln[ 2 }
nd 1 —ksn(2u)

(9)

1
Rz: (plp!)/z ll'l" 2 }
nd 1 4+ ksn(2u)

where u = 2K (k) —_:;and sn{2u) is a complete elliptical integral of the

first kind; k is the parametric argument. The values of R, and R,
as determinded by the relations (9), obey the fundamental equation 5.

In the case that ¢ = 45° the relations (9) are reduced to the fol-
lowing

(Ri)max = M ln[ 2 ]

nd 1—k
(10)
1
_ {p Ps)_/f . 2
(Ri)onm = T d In 1+k
Dividing by terms we obtain the relation
In {-1-(1 —k) ]
R, 2
() e
*“max In [—j)_,_(i_‘_k)}

from which the value of the parameter k is determined. Furthermore
by adding the relations (10) and substituting the result

[(R)max + (R:)min] into equation (8) one obtains the following
relation for the correcting factor
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fKR) ]: NE hl%é)_w (12)

from which it is evident that k lies within limits — 1 <k < 1.

The dependence of the ratio of resistances R;/R,, measured at ar-
bitrary angles, to the angle ¢ was investigated by Wasscher graphically
by plotting In (R,;/R;) {In(R,/Ra)max vs o for three values of (p;/p,)-
He also constructed a diagram plotting the ratio (R,/R.)mex V8 (ps/ p2)
for various geometries of the sample. Thus the treatment of the data
is inherently dependent upon two diagrams.

3. EXTENSION OF THE TREATMENT

From the above it is evident Lhat Wasscher’s method needs fur-
ther refinement to be applicable in a general case.

The first limitation is that it requires the knowledge of the angle
¢. This is possible in materials for which the principle axes are known.
In unknown materials the reference frame may be chosen arbitrarity,
so that ¢ =9 + «, where 0 is the experimental angle of rotation of the
sample in respect to the set of contacts and o is the phase angle. To
obtain « we notice that

for 6 = -—m,(-g——m) ofr {(t—w) In (—RR—:) =0

for 0 = %—m In (%) — max (13)
311.' R1 .
for 6 = 4—-(-) ln(Ba)—mm

from which a set of two orthogonal directions is obtained, the rela-
tive maximum and minimum. Supposing that the above process is
constructed on two samples with surface planes perpendicular to sach
other, it results in a pair of two directions of relative maximun
resistances. Now if we draw on each sample a plane containing the
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direction of its maximum and perpendicular to the surface, on the
crogsing of these two planes will lie the direction of the absolute ma-
ximum of the resistivity ellipsoidal. Reminding that p, > p, > ps the
last defined direction is parallel to p;. So at last, the resulted critical
directions on a sample perpendicular to the determined p,, will give
the other principal directions of p, and p,.

The second point that needs further investigation is the dependence
of the ratio (R;/R.) on ¢ and (p,/p,), which has been presented graphi-
cally by Wasscher. This may be done by investigating separetely the
case for which the anisotropy is small and when it is rather large.

Thus by using values of (R,/R,)max = y< 1.4 the relation of R,/R,
vs @, as obtained by using equations (9), leads to an elliptical spatial
distribution of R. The values of the resistances are given by the fol-
lowing relations

Re — a?h?
Y7 a%in®d + bcos®d
(14)
R . azbs
=

a*cos'd L bisin®

Fig. 2 Polar distribution of resistance R, R, a5 function of the experimenial-arbi-
irary-angle 8 in respect to the set of contacts.
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where a and b are the semi-axis of the ellipse. By defining the ratio
R,/R,, at an arbitrary angle 0, as w, it is easily proved that

Inw — In | T t*(e—55) (15)
1 + y*tan® (p—45)

For values of v > 1.4 the simple elliptical form is not sufficient to
describe the dependence of w on ¢. In order to generalize the method
we used the more general expressions (9). Using values of sn(2u)
for various k as given in tables [4], a parametric relation could be
constructed. Thus for values y<<69 we found that we could express
the following approximate relation

logw = [sin2¢ — 0.02[ | sindg | + 0.145 | sin8 | Nogy]logy (16)

In fig. 3 the plotts of logw vs sn(2u), as obtained from the relations (9),
and logw vs 9, as obtained from (16), are given side by side for com-
parison. From this diagram it is evident that the apporximation
(16) is satisfactory (<0.1%).
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Fig. 3. Diagram showing the dependence of the functions logy and logw upon the
snf2u) and the angle ¢ for various values of the anisotropy parameter y.
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By usmg the approximate expression (16) the values of the resi-
stances are given by the following relations

{1+ y"17)
In(1 + y'77)

R; = mex

(17)
In(1 + y~712)
In(1 + 1)

R, =

w1th v = Inw/Iny. Polar diagrams, using a normalized value of b= 1
is glven in figure 4. From these diagrams the wvarious expected
forms of the spatial distribution of R are evident.

v

A 4

Fig. 4. Set of the polar dispersion of the resistance R, for different vcalues of the
anisoiropic parameier y, refered to a common arbitrary velue of Ryyin.

In addition the dependence of on the ratio of the principle resi-
stances A = p;/p, (which again is given by Wasscher in a graphical
form) was investigated. It was found that a parametric equation
which expressed the results of Wagscher’s plott for a circular sample

was of the form
w—l)
A= e 18
Xp(m r+1 (15)

with ¢ = 02142 and m = 3.2633.
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Equations (18) and (8) form a set of simultaneous equations, the
solution of which leads to the values p, and. p,. Thus the following
relations are obtained upon substitution of (18) in (8)

_ o~ v_+_1) (g— u) :
o = oy R (T5) ) exp (5 i

(19)

. ry+1 m 11—+
o = g Raa (757 1) exp (G 175

To simplify the expression of the experimental results, the spe-
cific conductivity is expressed by the relation

a = Sii(y) (20|)
where . .
m2 I -
S = “md H‘—f—l ) (21“)
and
2y ( m Y"—i)
O (v)=——T g (-2 (22
YO e AT e ’
é.‘I 2
-3
1
I | o] | [ N
0 0 ' 10°

Y—
Fig. 5. Diagram showing the dependence of the «anisotropy termsy @, and &,
upon the veriation -of the amisoiropy parameter y.
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Y m i—y
% 0 = a5 (73 1o =

The parameter ®@; (y) is the expression of the anisotropy, the «ani-
sotropy term», since for y=1 it is equal to 1. In fig. 5 the dependence
of @, and @, upon v is plotted.

4, INFLUENCE OF SPACING ANOMALIES

The method proposed by Van der Pauw, and also Wasscher’s trea-
tment of the data, requires homogeneous samples. In cases that se-
condary effects, as for instance spacing anomalies prevail, these may
influence the spatial distribution of resistances. In cases that the walls
of the spacing anomalies follow a relatively regular pattern, a wavy
character in the spatial distribution is expected. This is actually an
effoct observed in GeTe [3]. Now if we suppose that there is a change
in the specific resistance caused by the secondary effects, this change
is manifested as

B v ay
T e @)
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Fig. 8. Dependence of the method sensitivity, upon the fluctuations of the
anisotropy ratio 4 as a function of .
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For yv>>1 we may approximate the expression (24) by the following
d _o dr
- = 2mey—° - (25)

By defining ‘@ modulation parameter a = dy/y in percentage manner,
we may construct diagrams of dA/A% vs y for various values of a
(fig. 6). The sensitivity of the method is evident, since small changes
in A influence the measured values of vy in an exponential manner.
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TENIKEYZH THZ MEGOAOY WASSCHER TI'IA TH METPHZH
TAABANOMATNHTIKQN ETAGEPQN ANIZOTPOIQN TAIKQN

“Yrh
0. BAAAZZIIAAH »al N. A, OIKONOMOY
{’ Epyactigi B' "Edpgas Puowtis Havemiornpiov Ggooalovixng}

‘H pebodoroyia Wasscher, mol elvon tpomomolnon hg pefddov <ob
Van der Pauw, clvar xatdddomin y1a petphoes yadBavopaywmxdy otale-
pdv ot dwobrpona DAwa yvwotdv yepaxtrpietixdy. "H pédodoc adty éne-
xvetvetar xal mapovardletar pd yevixdrepy poppn, mob pmopel va Epappo-
o ot mepimTdoeg DAy Eyveorne RAextpixie cuumepipopds. “Enlong d-
voddetar f Suvatébtrra perkétng ti¢ émidpacne dwrterapéveyv dvopaiidyv So-
ufig othv moAwd xatavopd thHe TAsxTpuds euumeptpopds.

WYnoeiak BiBAI0BAKN Oed@pacTog - TuAua MewAoyiag. A.MNM.O.





