Bci. Annals, Fac. Phys. & Mathem., Univ. Thessaloniki, 18, 73 (197§)

MINIMISING STORAGE SPACE REQUIREMENTS IN CRITICAL
CASES

by
C. LAZOS and A. VAFIADIS

{Depariment of Mathematies, Aristotelian University of Thessalonthi)
{Received 30.6.78)

Abstract:s Two methods of compacting textual data, to reduce compuler storage requi-
rements. are deseribed. It is shown that where o high degree of homogeneity exists in such
text, substantial storage savings can be realised. A case study of a data-base of Greek
surrames and first names ts used as an example,

1. INTRODUCTION

A significant advantage of any computer systemn is its ability to
store and process vasl volumes of data. While it is readily recognised
that any costing includes processing costs, the cost of actually storing
data in computer readable form is not insignificant, but often over-
looked. It is the storage space required to store large quantilies of data,
that are inevitably associated with computer based systems, that make
such costs important and puts a high premium on minimising the total
storage’ space required, particularly in on-line operations where there
is limited physical storage available. Two tvpes of on-line storage devices
are present in almost all computer systems; the main memory storage,
so called because of its role of serving the central processing unit itself,
with the characteristic of high speed of storing or refrieving data, but
with its associated high cost per unit of storage and consequent limita-
tion in physical capacity —typically thousands 1o hundreds of thousands
of characters {ene character of storage is often referred to as one byte).
In contrast, the second form of storage, secondary storage, has capacity
several orders of magnitude larger and with costs considerably less per
unit of storage. Magnetic discs and magnetic drums are examples of
suuch storage media. Despite such capacity, tens of millions of characters,
typical applications eoften face the problem of saturating the available

Wnoeiakn BiBAI0BAKN Oed@paaTog - TuAua MNewAoyiag. A.lNM.O.

Th

space or are handicapped by a limitalion to the amount of space the
installation is able to allocate for it. Any factors reducing storage space
requirements are therefore important.

Minimising the storage space requirements for a given data-base
has been studied at various levels. For instance, Wagner, in order to
reduce storage used to handle error messages for the PL/C compiler,
has hand selected Lhe most common error messages and compacted them
using a specially wrilten algorithm,,,. Alternatively, Snyderman,, very
intelligently took advantage of the unuged sections of the hexadecimal
EBCDIC codes for characters, to store in one characler many of the
most frequently used pairs of characters found in text data.

2. STORAGE SAVING

Digital computers ultimately store data in some coded form i.e.
data iz coded and stored as a sequence of symbols (ullimately a string
of binary bhits — logically O"s and 1’s). However, it is olten more con-
venient to consider characlers coded in another form. For instance,
octal (base 8) orientated machines permit a combination of up to n = 64
dillerent characters (2 to the power of 6) while hexadecimal (base 16)
orientated computers allow n = 256 character set (2 power of 8. In
both these cases and other representations, it is often possible, depend-
ing on the data, to save storage by encoding the characters in a more
compact way l.e. retain uniqueness of identification while reducing the
length of storing of binary bits required [or representation. Such a tech-
nique s olten possible where the data consists of a subset ol the normal
character set available thus permitting a reduction in the number of
hits of informution necessary to store each of them.

If S is the universal set ol all characters permitted in a given com-
puter system and 5, the subsget of characters used in a given data-hase
then

S, €8

If N is the number of characters in S, then to store any character,
say ¢ (¢ € S) the number of bits n required, must satisfy the relation:

0 2 [logy(N—1)] + 1
with n = [logg(N—1]+ 1 being the minimum.

Wnolakn BiBAI0BAkN @edppacTog - TuAua MNewAoyiag. A.lM.0.

75

Thus if N is reduced from 64 to the range 16« N, .32 then the mini-
mum number of bits is given by

n = logy(Ny 1)+ 1 =441 =5

Thig in turn implies that fot a 6 bit (octal) machine, a saving of 17%
in storage could be achieved while for an 8 bil. (hexadecimal) compuler
1t could be as much as 37.5%. This is the lowest level one could encode
the character subset and although quite feasible, a greater saving could
be realised by encoding not at the character level but ab a higher level
1e. groups of characters (words) or fields. Better still, a combination of
both the techniques. However, it must not be ignored Lhat a large data-
base 1s organised in the form of records where several such records are
grouped together to form a hlock. Each record in any block consists of
one or more fields of data.

Now, if the text data contained in these records has a high degree
of homogeneity in one or more of the record fields, space can be saved by
numerically encoding the text in such fields. The encoding procedure
would consist of storing the actual text frorn the appropriate field in one
ordered list for that field and replacing the text by a corresponding
numerical code, devised for each text e.g. the position of the text in the
list. This numerical value, of course, occupies a certain amount of storage
space. Suppose L represents the number of characters in the uncoded
text for a given field and I the numerical code equivalent. Then the space
saving is given by:

SV=1—-1I/L ----- 1
where if / < L then SV <« 0

il I =1L then SV =10
and if [<« 1. then 8V < 0

This is the simplest and ideal case where all the lext for the field
can be encoded. In general, however, only part of the list of texts for
a field can be encoded, the formula becomes:

SV = (1-/L)P ----- (2)

where P = ratio of texts encoded to total number of texts.

In this latter case, not all text of a field would be encoded leading
to a situation where the data-base would contan variable length records,

Wnoiakn BiBAI0BrKkN ©edppacTtog - TuRua MewAoyiag. A.l.0.

76

3. ENCODING AND DECODING PROCEDURES

Let I be the length of the [ield (in characters) of the numerical code
devised for that particular text. Then the maximum numerical code
value that can be stored in ! and therefore the maximum number of
encoded texts is given by:

N=2m—1 ----- {(3) {where ' = [)
where m = number of bits needed to represent each character in the
computer.

In the simple case, where all the different texts of a particular field
can be encoded Lhen the numerical code would be the position pointer
of the text in the list of texts. Obviously the length of this list need
not be N. In faet, it could well be less than N which would be the case in
a considerable number of applications.

In the more complex case, where some of the texts would be encoded
and some not, Lhe procedure adopted conld be to allocate sufficient space
in the field to not only store the numerical code where appropriate but
also to indicate:

(1) the text has nol been encoded i.e. 15 not in the list.

(11) the size of the text, in characters and that the text is stored
in the record itsell,

Thus assummg that the maximum size of a text is L characters,
then formula (3) becomes:

N=2m_{ - ----- (4)

In other words, the maximum size of the list of texts would be
smaller by L, a fact that does not affecl matters as will be shown in
Section 5. In such a case, then, the following algorithm can be used for
de-coding purposes:

IF numerical code < 2™ —1—L

THEN [the text has been encorded and the numerical code repre-
sents the position of the full text in the text list]

ELSE DO [M = numerical code — (2'™—1 —1)
and the full text is the next M characters in the record]

WYnoeiakA BiBAI0BAKN Ogd@paocTog - TuAua MewAoyiag. A.lM.O.

~]1
~

3.4 Timing

It is clear that savings in space can be realised using character
subsets, text tield encoding or combinations of these methods. However,
such savings are achieved atl the cost of additional processing time neces-
sary to encode and decode.

The time consuming aspect of the encoding process in text field
coding is concerned wilth the reading of all records in the data-base,
matching the text from the parficular field with those stored in the text
list and if & match is found, then to encode the field and write the encoded
(and smaller) record into the data-base. Various methods can be used to
minimise the search of the text list e.g. linear search, binary search,
text transformation addressing. The latter, more famiharly referred to
as Hash coding,, is probably the more appropriate method in the circ-
umstances as it is related to the specific text data being handled, although
it does have the disadvautage of requiring additional storage over and
above that necessary to hold the actual text. However, the overhead
time necessary to encode data-base records can be minimised by efficient
searching and it need only be performed once for each record present
in the data-base.

In contrast the de-coding time is of little consequence in that the
method of encoding suggested permits the numerical code to be used to
locate the full text of the field directly in the text list.

4. A CASE STUDY

In many commercial data processing applications it 1s quite common
to observe data-base records constituted from surnames, [irst names,
married names, elc., together with other information of a numerical as
well as textual nature. In practice the design of such records involve
allocating a fixed number of character storage positions for each text
field in the record e.g. a field capable of storing 20 characters may be
reserved for the surname of the person whose record 18 being constructed.
While this fixed capacity of fields in records leads to a simplicity of
record structure {all records being of the same structure and size) and
processing, it can lead to two drawbacks.

(a) If, say, a surname of any texfual data has more characters than
the field in which it is to be stored has been allocated, then the
gsurname etc., is usually truncated by the necessary number of

WYnoeiakA BiBAI0BAKN OgdppaoTog - TuAua MewAoyiag. A.lM.O.

characters to permit its storage, in the designated field.

(b} A solution to (a) is often to imcrease the number of characters
reserved for a field in order to reduce the frequency of trunation,
but this in turn aggravates the space wasted in a field occupied
by, say a surname containing less characters than the capacity
of its associated record field.

One solution to both these drawbacks is permitting records to vary in
size as textual data does but this leads to increased complexity in pro-
cessing records where each field could be of variable lenglh and may even
be empty. This solntion 1s usually related to the special characterislics
of the data-base e.g. several data items being absent or having a wide
range in character length in a substantial number of the records.

In constrast to such data, there are many applications where there
exists very little variation in the text data stored in each field and often
a substantial portion of the text in a given [ield is exactly the same.
For instance, many Greeks share the same surname or Christian name.
Such similarity can be used to minimise storage requirements.

In order to discover the degree of similarity within Greek surnames
and other names, the Ministry of Edncation was asked to provide a
tape containing the names of all candidates registered for the 1976-77
examinations. The Ministry very kindly agreed and supplied a data-
hase file containing nearly 80,000 records of fixed length. Computer
analysis of this large sample has produced the results show in Table 1.

TABLE 1.
SURNAMES NAMES

No of surnames % No of names %
372 29 20 50
945 30 3 60
2001 40 48 70
3827 50 85 80
6435 60 182 20
9769 70 1893 106

35000 160

For Greek surnames, a 16 to 20 character space field is usually

WYnoeiakA BiBAI0BAkN Ogd@pacTos - TuAua MewAoyiag. A.MN.0.

79

reserved in most applications and a 10 to 14 character field for first
names. Using formula (1) given earlier, the space saving can be investi-
gated as L, is varied from 10 to 20 and [from 1 to 3. The results of this
analysis is shown in Table 2,

TABLE 2,
L =1 f=2 I=3
10 0.900 0.800 0.700
12 0.917 0,833 0.750
14 0.929 0.857 0.786
16 0.938 0.875 0.813
18 0.944 0.889 0.833
20 0.950 0.900 0.850

5, RESULTS

5.1 A consideration of first names

The data contained in Tahle 1 shows that 509 of the sample popu-
fation share just 20 different names, while 1893 different names are
found throughout the total population. The question therefore is how
much space should be allocated to encode first names. An estimate of
this can be obtained by using the results together with formulae (1) and
(2} to derive the results shown in Table 3. This data hag been calculated
for an octal (64 different characters, each requiring 6 bits) orientated

computer.
TABLE 3.
=1 =2

L

G N P BV a N P BV
10 0.900 53 0.72 0.648 0.800 4085 1.00 0.800
12 0.917 51 0.71 0.651 0.833 4083 1.00 0.833
14 0.929 49 0.70 0.650 0.857 4081 1.00 0.857

where: G =1—1[/L
N = Length of text list containing the actual names (2" — 1 — L)
P = Fraction of names stored in the text list
SV = Storage saving (maximum = 1.00)

WnolakA BiBAI0BAkN @edppacTog - TuAua MewAoyiag. A.M.0.

80

o} 1% 20

0

2

LD D 0 ¥o

<

T o () Jo e
== paro (859) o speny

W {E)) wo Eatab]

s

Q0

24

(4]

e

®0

50

g0

£0

g0

WYneiakni BiBAI0BRKkn ©gdppacTog - TuAua MewAoyiag. A.lN.0.

#1

An inspection of the data of Table 3 indicates that L = 12 {the length
more frequently used for Greek first names), a text Iist of Jength 51 can
cover up to 719, of names (P = 0.71) and realise a saving of up to 65.1%,.
Calculations for a hexadeecirnal machine (256 different characters, each
requiring & bits) indicate that with N = 213, encoding could adequately
cover 909%, of the names with a consequent saving of up to 82.6%,. Again
the Table shows that for ! = 2, encoding for octal machines can accom-
modate the entire spectrum of names and gave a total saving of up to
83.3%. Comparable results were also found for hexadecimal machines.
These results are also shown in graphical form in Figure 1.

5.2 The Case ol Surnames

An inspection of the data for surnames shown in Table 1 shows a
considerably larger number of surnames shared by a smaller percentage
of the population sample than found for first names. For example, 20%,
of the population share 372 surnames but only 20 first names. However,
applying the same procedure to surnames as that applied to first names,
data shown in Table 4 has been compiled. The results are also shown in
graphical form in figure 1.

TABLE 4.
i=1 =2 =3
L
C N P 3V c N P 3V G N P 3V
10 .900 53 .068 .06l 800 4085 .51 L408 L7000 262,133 1.0 .700
12 917 51 066 .064 833 4083 .51 425 L7500 262,431 1.0 .750
14 .929 49 065 .060 855 4081 .51 438 .786 262,129 1.0 .786

16 .938 47 .063 .059 875 4079 .51 446 813 262,127 1.0 .813
15 944 45 062 058 889 4077 .51 458 .833 262,125 1.0 .833
200 950 43 059 .056 900 4075 509 458 .850 262,123 (.0 .850

Where: C, N, P and SV are the same as those defined in Table 3

These results indicate that for I = 1 i.e. 1 byte of storage, encoding
of surnames would lead to little saving in space: specifically 5.6 to 6.1%,.
Alternatively, for [=3, a considerable amount of storage is necessary
for the text list of surnames (N = 262133). In practice a value of N =
35000 would be adequate but still unacceptable because actual storage

6

WneiakA BiBAI0BAKN Ocd@pacTog - TuAua MewAoyiag. A.lM.O.

82

requirements would be 35000 X 20 = 700000 bytes of data. The case
of { = 2 appears more promising. For an octal computer, the text list
could accommodate more than 509 of the names and realise a saving
of between 40.80 and 45.80%,. A similar calculation for an hexadecimal
computer shows that more than 50%, could be stored ; N in this case would
be 35000 covering the whole spectrum of surnames. It has, of course,
been pointed out earlier that this is still considered uneconomical. Ho-
wever, if a given computer system permits the allocation of core sto-
rage to allow N = 10000, this could be used {o cover up Lo 70% of the
range of surnames with a net saving in space of between 56 and 63%,.

5.8 Overall Saving

In the more general and more complex case where only parts of the
text of a given field are encoded, the records will clearly be of variable
length as described in Section 2; the encoded text parts would lead to
a storage saving caleulated from formulae (1) or (2). For the non-encoded
text, a further saving can be obtained by analysis of the texts in order
to reduce the fixed maximum space allocated for the field.

Thus if the encoding procedure requires [bytes for the numerical
code, L is the maximum length reserved for the field in characters, while
the average length of the actual text is I, then the overall saving in
storage would be given by:

P
sAL =1 015
Applying this formula to the case of the surnames where [=2,
L =10, L =20 and P =0.50 then; SAL = 0.65 1.e. 659, overall sav-
ing. Compare this with the saving of 45.80%, for those surnames stored
in the text list.

6, CONCLUSIONS

In conjunction with many other design criteria considered in data
processing applications, the question of minimising storage for a data-
base is a balance between saving of space and increased processing time;
minimising storage requirements requires additional processing time
to encode and decode the Lext along with increased complexity of pra-
gram design and the associated development effort. In constrast, the

Wnoeiakn BiBAI0BAKN Oed@paaTog - TuAua MewAoyiag. A.lNM.O.

83

storage space saved can be considerable, leading to more records heing
stored in a given space and thereby leading {0 a reduction in the time
to transfer records to /from the secondary storage. Since a characterislic
of virtually all data processing systems is their computer execution time
being composed almost entirely of time to transfer dala, any saving in
this aspect will be highly beneficial not only to the execution time for
the system but also benelit the multiprogrammed systems in which such
in whigh such jobs are invariably run.

In conclusien, il appears that in systems where space is critical then
the procedures for saving storage outlined above would be beneficial
despite the increase in complexity and processing time that results from
the encoding and decoding procedures.

Acknowledgment

We express our gratitude to the Ministry of Edueation for kindly
supplying the data-base of Greek names used in this project, and to
Dr. J. K. Yandle, of the University of Birmingham, England for his
useful comments.

REFERENCES

1. WAGNER, R. A., (March 1973): Communications of the ACM. «Common phrases
and minimum space text storagen.

2. WAGNER, R. A., (March 1973): Communications of the ACM. «An Algorithm
for exalracting phrases in a space optimal fashion».

3. BNYDERMAN, M, and HANT, B. {December 1970}: Datamation. «The virtues
of text compactionn.

4. HopgooD, F. R. A. (1968): «Compiling techniquess, MeDonald Computsr
Minographs.

WYnoeiakn BiBAI0BAKN Oed@pacTog - TuAua MewAoyiag. A.lNM.O.

ITEPTAHYH

EAAXIETOIOIHEZH TOY XQPOY ENAITIOGHKETEEQY AEAOME-
NON ZE KPIZIMEXZ JIEPIIITOQZEIE

‘Tt
K. AAZOT »ei A, BADETAAH

{ Mabnuaried tufipa, *Apwretedeiov Havemarnpior Gevoalorinng)

‘Ebzralovror tpdmor pedozwg tob ypou fvamolinkeboswe Sedopivay
ot dzutepedouces pvipee “Hhextgovikdy “Tmohoyiotidv
3 / + A A) I i A= € 1
Amodsuvdetor Bt 4y T 3edopdva mapouewdlouy uevdhy Spslopopols
6t fva) meplochrepoug Tousiy THTT pmopsl V& MpoxUuler ompavTind) psiegy
~) 2 e / » A A h) r 3 7 3 A
Tol ympov evarolnkedozwe, “Av xal yie vi yiver ebtd ypeudleran sl xwdi-
OTOINGY, ol dmouteltet TEpLrchtepos Yotvog The revrowdls povades (CPU),
LIS 3> N A} £ ¥ A 1 7 3 3 2 2 -
map Gha adra Ta dpdhn elvor omuovting vt Eéywon dmd Thy EAdTTioy Tob
yopov adTet xad’ fauTol, Hr umepolv ve Pplowovra pEca oTVY xevTplud
pyfipr meptocbtepn dedopéve, pt Gmotirzoua T TaydTeoy Emehzovaciu Tous.
Zoyxexpipbyr pehétn pi S dvdpatoe (wbple xal pixpd) dmédeifs
&1u elvat Suvertd va mpondder anpavtied Spshog ypou.

WYneiakni BiBAI0Brkn ©edppacTog - TuAua MewAoyiag. A.l.0.

