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Abstract: The expression for the elastic electron scattering form foctor of the {Hs nucleus
{derived by means of a simple correlation function}, whick was given originailly by P.
Quarati and A. Watt, is considered. A lest of the validity of their basic approzimation
is made and an approrimale enalytic expression for the charge density distribution of
He and its r.m.s. radius e obiained. Computations are alse performed and comments
are made on the resulls obtained.

1. Introduction

A number of authors have tried to explain the elastic electron scat-
tering form factor behaviour of the *He nucleus by considering the ef-
fects of short-range dynamical correlations® 28 In many cases, these
are included in the nuclear wave function, by using the Jastrow method?,
which consists of replacing a shell-model wave function ®gy by

A ) 1/2
¥ = ['n (1 (ru))} Dpe (1
1

<l
The correlation function { is supposed to have the following properties:

£(0) =1

f{r)~ 0 for large interparticle distances (2)

In order to calculate the charge form factor, in Born approximation®
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{where [,(q?) is the proton form factor and f., is the correction [or the
A
centre of mass motionj, it is usual to expand the product I (1—f(r;,)) in
1<]j
a series of the form
A A A
T (-l ) = 1= B flr)+ B )i — 0%+ ... (4)
1<} 1<) 1<}
k<l

where A is equal to 4, in the case of ‘He.

In most calculations, terms containing products of two or more cor-
relation functions are neglected. If a more detailed study is desirable,
however, correlations involving more than two particles must be ta-
ken into account. This can be done exactly for *He if a simple corre-
lation function is used?*. On the other hand, Quarati and Watt have
proposed a simple approximate scheme for this purpose®. This is discus-
ged 1n the next section.

2. The approzimate expression of Quarait and Watt

Quarali and Watt bave investigated, analytically, correlations of
all orders in *He for the following funclions a)a Gaussian: f(r) = exp
(—r?/b?) and b)a step function: f{r) =1 for r<r, and f(r) = 0 for r>r..

They have made the wsual assumption thal gy is built entirely
from the harmonic-oscillator 1s shell single-particle wave functions.
Furthermore, they have assumed that the function f is much different
from zero only in a region of space much smaller than the nuclear volume.
This means that we may, to a good approximation, separate any integral
of correlation functions and single-particle wave functions into an integral
of correlation functions and an inlegral of single-particle wave functions.

Using the Gausian form for f, Quarati and Watt have obtained the
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following approximate expression for the form factor

1
F(0) = 1,(a%)few g [0 — {3y274e + o=2))
Oy g %Yze-xrz 4 3Ry 2emx)
1 2
i {2Y36_xl4 + @ Yze_xja + ;_7 e-—x}

1 o 3
+ {? J—1zyse—ra _ézYae_xu}
_ {6Y3 (32) —3{26—:&_[4}
¥®
+ {5z &4 ®

where x = q%?/4, vy = (b/2)%, a is the harmonic ascillator parameter
and N is the normalization factor which may be easily obtained
from (5), since F{0)=1. The terms in curly brackets are the con-
tributions from products of 4,2,...6 correlation functions and we

shall refer to them as F®(q), F®{q),... FEXq), and F®*(q) being
the term e (resulting from the unity in (1}), the usunal harmo-
nic-oscillater (h.o.) shell-model form factor in Born approximation.
The corresponding quantities resulting from them if the finite size of
the proton and the centre of mass motion correction are taken intc ac-
count, will be referred to as FM(g), F®(q)...F™(q).

d. Test of the validity of the approzimation

It is possible to make a test of the vahdity of the approximation
of Quarati and Watt, if we compare the results based on it with those
corresponding to the exact calculation of the integrals. This has heen
done for the integrals containing one correlation function, where the
exach caleulation can be easily obtained and is in fact known3. The ap-
proximate expression for the form factor if we consider the contribu-
tion from one correlation function is

1
FA2(q) = folq) ew gy o™ —{3v27 e + o)) (©)

as it is clear from expression (5). The corresponding exact expression
is the following:
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Fig. 1. The two-body form factor {absolute values) computed from the ewact and thelap-
prozimate expression as a function of g2,
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By comparing expressicns (6) and {7) we may easily conclude that
F®.2) (q) is a gocd approximation to F&.2)(q), as long as the following
condition is satisfied:

1 .b.,
5 ()<<l (8)

It 15 interesting to see whether this is indeed the case if the cor-
responding best fit values are used in the computation. The best values
obtained with F® 2 q) are: « = 1.198 fm and b = 0.623 fm, while those
with F.,0-2Xq) are o =1.169 fm and b = 0.734 fm. In the former case
the value of 1/2 {b/x)? is therefore (.135, while in the latier 1/2{b/x)* =
0.197. It 18 seen that the required condition is not fully satisfied, with
the effect of obtaining quile large differences hetween the wvalues of
| FQ2q) | and | F@*{q)| (owing to Lhe exponentials involved in the
formulae), as we observe from takles | and 11, where the quantities F®),
F, @, FO2 F 0.2 together with the experimental vahies and ervors,
are given for various values of the momentum transfer q.

This does not mean, of course, that the Quarati and Watt expression
18 not expected to be appropriate for obtaining a reasonahle approxi-
mation to the exact expression. This is due Lo the fact that when the
corresponding hest fit values are used in comparing the values of F0.2
(q) and F 52 (q), the resulls are very close, as it i clear from columns
5 and 4 of tables 1 and II {see also fig. 1). The change in the functional
form cf the form factor has the effect of leading to different values of
the paramelers (and in particular to the value of b, which arises from
the correlations), when these are determined by the fitling procedure,
with the result that the numerical values of the form factor differ very
little from thwose of the original expression in a wide range of momentum
transfer. It is worth-mentioning that an analegous situation appears
in comparing the form factor in the two-body approximation with that
of the exact expression in all orders?.
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TABLE I.

The values of F(2), F (D, T, F 1.2), (see text), compuied with the best fit values
correspending to L2, together with the experimental values F.., and their errors.

q {Im2) T Fe2) F, (1.2 Fil,2) Feur Error
0.50 —0.28189 036795  0.81754  0.81218  0.79600  0.02500
1.00 —0.24359  —0.31987  0.66749  0.65808  0.62600  0.03000
1.50 —0.21082 —0.27863  0.54418  0.53176  0.49400  0.01500
2.00 —0.18274 —0.24319  (.44292  0.42839  0.39100  (.01200
3.00 —0.13792  —0.18633  0.29172  0.27485  0.22500  0.00800
4.00 010472  —0.1438& 019033  0.17285  0.45850  0.00500
5.00 —0.07996 —0.11183  0.12285  0.10565 0.09650  0.00300
5.00 —0.06138  —0.0875%  0.07776  0.06182  0.05950  0.00300
7.00 —0.04735 0.06892  0.04819  0.03364 0.03190  0.00140
$.00 —0.03671  —0.05457  0.02891  0.01586 0.01840  0.00110
8.10 —0.03579  —0.05333  0.02740  0.01451 0.01750  0.00110
8.50 ~0.03237  —0.04865  0.02200  0.00971  0.01180  0.00110
9.00 —0.02857 —0.04343  0.01648  0.0040% 0.00690  0.00130
9.50 —0.02525 —0.03880  0.01209  0.00427 0.00550  0.00110
10.00 —0.02233  —0.03471  0.00861 —0.00150  0.00310  0.00190
10.50 —0.01977 —0.03108  0,00587 —0.00356 0.00230  0.00230
11.00 ~0.01751  —0.02786  0.00873 -0.00505  0.00430  0.00070
12.00 —0.01378 -~0.02243  0.00081 —0.00677 0.00780  0.00110
13.50 —0.00967 —0.01630 —0.00136 —0.00739  0.00940  0.00080
15.00 —0.00682 —0.01191  —0.00209 —0.0068% 0.00850  0.00110
16.00 —0.00542 —0.00968 —0.00217 —0.00620  0.00980  0.00080
18.00 —0.00343  —0.00843 —0.00190 ——0.00479 0.00820  0.00080
20.00 —0.00219 000429 —0.00147 —0.00352  0.00700  0.00090
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TABLL Il

The values of F(, T (2), FOL.2) T (L2, computed with the best fit values corresponding
1o Foi.2),

g% (fm=?}  Fo( F(2) Tl F(L.2) Few Error
0.50 —0.57900 —0.96390 0.81349 0.79300  0.79600 ¢.02500
1.00 —0.50145 —0.84138 0.66006  0.62410  0.62600 0.03000
1.50 —0.43483 —0.73575 0.53401 0.48664  0.49400 0.01500
2.00 —0.37754  —0.64454 0.43060 0.37508  0,39100 0.01200
5.00 —0.28567 —0.49726  0.27661 0.21215  0.29500 0.00800
£.00 —0.21720 —0.38627 0.17400 010732 0.15850 0.00500
5.00 —0.16593  —0.30200  0.10626 0.06142  0.09650 0.00300
6.00 ~0.12732  —0.23756 0.06206 0.00138  0.05950 0.00300
7.00 —0.09812 _0.1879%4  0.05364 0.09169  0.03190 0,00140
8,00 —0.07592  —0.14945 0.01576 —0.03378  0.01840 0.00110
8.10 —0.07401  —0.14610  0.01440 —0.03456  0.01750 0.00110
8.50 —0,06687 —0.13851 0.00960 —0.03703  0.01180 0.00110
9,00 —0.05896  —0.11941 0.00433  --0,03893  0.00690 0.00150
9.50 —0.05202  —0.10691 0.00118  —0.03978  0.00550 0.00110

10.00 —0.0459%  —0.09581 —0,00157  —0.03982  0.00310 ¢.00190

10.50 —0.04061 —0,08595 —0.00359 —0.03924  0.00230 0.00230

11.00 —0,03592  —0.07717 —0.00504 —0.08821  0.00430 0.00070

12,00 —0.02816 —0.06237 —0.00668 —0.03526  0.00750 0.00110

18.50 —0.01965 —0.04555 —0.00718 —0,02982  0.00940 0.00080

15.00 ~0.01378 —0.03346 —0.00654 --0.02433  0.00890  0.00110

16.00 —0.01090 —0.02730 -0.00587 —0.02095  0.00980 0.00080

18.00 —0.00686 —0.01827 —0.00442 —0.01519 0.00820 0.00080

20,00 —0.00434 —0.01228 —0.00316 —0.01080  0.00700 0.00090
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4. An approximate analytic expression for the charge densiiy distri-
bution and the r.m.s. radius of *He

It may be pointed out that a feature of the Quarati and Watl ex-
pression for the form factor is that it is suitable to obtain from it a
rather simple analytic expression for the charge density distribution
and the r.m.s. radius of *He. The integrals in the sine-Fonrier trans-
form:

1 o .
1) = g | F(@) sin (@) qdg ©)

may be calculated analytically, if in addition a proton form factor of

Gaussian form f(g?) = exp(—u«,2q?/4) is used. The final result is the
following:

| &
panlt’) = 5 T o) (10)
=1

where the functions Ay r’) are given by

r'?
2 &=l
2 2
o 1 ST (1)
J'(r ) (4_)
(r(o? g 2
and
cp=1-dy, + dpy —dyy =1—3 232 y 37V — % e
—_d — . 9—3) 3
Cg=—dy+ dyp=—3"2 2Y+§Y
. 1
g == dy—dyy = (9 37972 — —g—)Yz (12)
1ogap 3 e Loy
Gy = _d31+d41+d42“d51‘|‘d61:(*24“3 PR @*6 {32y TBT)Y

N=rc+c,F+c3+0c,
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The explicit expressions of dj, are

dy; = 3y27302 dyy = 9y237512
d =g I
d 9 Lo
s == 2y doo =y (13)
2 1
Ao = 3= dyy = 374y
3 0oy
d42 = @YS d51 = 6Y3(02) 32
3
dGl = 5—.11;2

The first index of the constants d; denotes «the order of the correla-
tion term» (i.e. that with one f, two s ete) from which it was derived,
while the sccond is simply used to distinguish the various constants
existing in the expression of a correlation term of given order. An ana-
lytic expression of the root-mean-square radius R can also be obtained
through the well-known formula R = <r?>12 where:

o0
' = 41t0f p(r") r'4dr’ (14)

by using expression (10) for o{r"). The reuslt is the following:

M i

<r'Zy =

31 4—)
—5 -N— . 1CJ (apz+ ( 4]]) az) (15)
1= '

It may be finally noted that analytic expressions can also be easily
derived for the charge density distribution and the r.m.s. radius in the
two-body approximation. The corresponding (Quarali-Watt and exact
eXpressions are
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T (gt S (m(o? 4 2-))
r'2
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apz+ O[i
¢ (16)
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T’
Qo — 1 (1—3 (14 2y—23) 312 eN Al
Pex - 1—6(1+2T_2’3)_3’2 3 ZA3
r'a
3(1 | 2y—¥3y—s2 — B2 (17)
— e °
3o ; a? o2
where A? = Otpz + T and B2 = O!DZ -+ Z + Q—(mjm) (18)
For their r.m.s. radii we obtain
2
ROM = [ s ot D 392790202 o) (19)
and
2
R0 = [ sy (8% S 32922t
a-z

+ m)}]m {20)

respectively. In [ig. 2, p@» and ¢, @2 have been plotted against r'.

It may be noted that the expression for the charge density distri-
bution in the two body approximation is a sum of two Gaussian terms
as 1t has also been found in ref. 6, where the same simple correlation fun-
ction was used and the Unitary model-operator [ormalism. The expres-
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r(fm)

Fig. 2. The charge density distribution in the wo-body approximation derived from the
exact and the approzimale form factor, against v'.
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gion of ref. 6 may be written as follows:

2

AR

1 e .
puo™® (1) = A7) {142 (1-4-2)"32) AT —3(1-pn)y82
r'2
e B? ]
Epr (1)

where % = 2y~¥3, By comparing with expressions (16) and (17} it is seen
that the expressions of the coefficients of the volume-normalized (o
unity (zaussians are different.

From the previous analysis 1t is obvious that inclusion of higher or-
der terms in the form factor of *He, through the Quarati and Watt ap-
proximation, with the correlation function considered, has a rather simple
effect on the funetional form of the charge density distribution. Apart
from modifying the two Gaussian terms existing in Lhe two-body ap-
proximation, il leads to the appearance of two additional Gaussian terms.

It is worth mentioning thal appropriate sumns of Gaussian terms for
pen{’} have also been used in analysing the form factor of light nuclel
In these analyses, the form of the densily distribution i1s phenomenolo-
gicalte.

5. Numerical resulls and comments

The form factor was computed in the various orders, treating a
and b as adjustable parameters. We used a least-squares fit program,
which minimizes the quantity

'}{2 =7 (F(qr)_Fexp(ql))Z (22)

1 %

The experimental values of the form factor F.,(q) aud their errors
o, were taken from ref. 5. The w«best fity values of the parameters and
the corresponding r.m.s. radii are given in table IIL. These values cor-
respond to the various expressions of the form factor resulting by in-
cluding successively higher terms in the cluster expansion:
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4~ e ~

FOq) = f(q*MHem N F® (q), FO2 (q) = t,(q%)om NGz (FOXq)-F@
(an, ..., Flq).

The fitting was obtained with the proton form factor f,(q*)=exp(—a,*q?/ 4)
(e, = 0.653) and with the correction for the centre of mass motion
feas = exp(a®q?/16) 12

TABLE III

The best fit values and the r.m.s. radit in the various opprozimations for the form foctor.

Form fastor a {fm) b {(fm) R (fm)
Fi1) (q) 1.43 - 1.65
F1,2) {q) 1.20 0.62 1.83
Fi1,2,3) (q) 1.34 0.83 1.48
F1,2,,8) (q) 116 0.76 1.57
Fi1,2,..5 (q) 1.14 0.80 1.56
F(L.2,..6) {q) 1.14 0.79 1.56
F.2,..7 = Fiq) 1.4 0.80 1.56

It is seen from table IIT that the changes in the best fit values are
extremely small if the correlations of order higher than 4 are included.
It should be noted that the smallest value of %2 is obtained in the two
body approximation.

It is worth mentioning that the best fit values corresponding to the
F(q) with the proton form factor of ref. 1, are: « = 1.24 fm and b = 0.79
fm. It turns out that although the best fit values do not differ very much
frora their corresponding values obtained with the Gaussian proton form
factor, the fitting is considerably improved. A similar improvement also
appears for F (q) where « = 1.28 fm and b = .62 fm.

In figure 3 the F® (q), F0.2) (q) and F {q) have been plotted as
functions of g% The experimental points are also indicated.

In figure 4 we plot ¥ (q), F@ (q), ..., F™ (q), the contributions
to the form factor arising from the shell model and from integrals con-

7
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5 10 15 20

a2i1m-2)

Fig. 3. The charge form factors (absolute values) F(1) (q), F4.2) (¢) and F(1,..7)
= F (q) against ¢
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Fig, 4, The contributions to the form factor arising from. the shell model and from F(1) (g)
F( (g}, ..., F( (q) (absolute values) against ¢*.
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o.e

r'{fm)

Fig. 5. The charge density distribution corresponding to FU) (g), FI.2) (¢) and F(q)
as a function of ¥.
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taining products of 1, 2, ... 6 correlation functions, against g2 The best
fit values corresponding to F(q) have been used.

Finally, the charge density distributions corresponding to F@(q),
FA2 (q) and ¥F(q) are plotted in figure 5 as a function of r'. All the ap-
proximations give about the same results for the higher values of 1’
The second order and the higher approximations give about  similar
results. The maxmmum value of the charge density, in the three appro-
ximations of higher order, appears at a distance slightly different from
zero. However the difference between lhis maximum and the value of
the density at r' = 0 is extremely small. This difference should be larger
if the correlation function were appropriate for a hard-core nucleon-
nucleon potential. - o

One of the authors (M.G.) would like to thank Dr. A, Watt for very
useful correspondence. Wa wonld also like to thank the staff of the
computing centre of the University of Thessaloniki for their kind
cooperation.
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