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Abstract: A calculation is performed for the Coulomb energy of the ¥Ca nucleus by
adopting the harmoric oscillator shell model and using the Talmi Technrique®* 1. The
result obtained by this method agrees exactly with that obtained by A.Dellafiore who used
a Fourier transform technigued.

1. INTRODUCTION

One of the attractive features of the harmonic oscillator shell model
is that one can perform analytically various calculations based on it.
One of the interesting quantities which one might obtain is the Coulomb
energy of closed shell light nuclei. Of course, the obtained results provide
an estimate, which, however, may be compared to more accurate
results.

The expressions for the Coulomb energy of the 4He and 0 nuclei
in the oscillator shell model have been known for a long time. Very
recently the relevant expression for *Ca has been derived? (using a
Fourier transform technique).

The aim of this paper i1s to give some details of the calculation of
the same quantity by the more standard method of the Talmi techniques,
which is more complicated, but it is useful in order to provide an inde-
pendent check of Dellafiore’s result.

In the following section we give an outline of the method and we
use it for the calculation of the Coulomb energy of %0. This result is
useful for the main calculation (section 3} in which the expression for
the Coulomb energy of ¥Ca is derived in detail.
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2. QUTLINE OF THE METHOD

a. Tensor Expansion of the interaction®

The evaluation of the matrx elements of an inferaction
V(| —7%,1|), that depends on the relative distance | F;, — 7, | of the two
particles and not on their spins or isospins, in a given configuration

(1L):
<L LLM [ V(]f—F [) | L LM> = j PR LLM)V | 7 — 75 [ )¢ (L 1,LM)d<

is complicated because V is a function of | 7, — ¥, |, whereas $*} is a
product of a function of ¥, and a function of ¥,. The method consists in
expanding V{ | ¥, — 7, | ) in a series of Legendre polynomials of cosw,=
= ¢os®, (ref. 9, p. 208)

ol

Vil —1,10) z {r1,r3) Py (cos®)

where v (ry,r,) = izti— .[V( 7 — 15 | )Pelcos®)d(cos®)
The result is:

AR = <lLLLM V(|1 ) | LL,EM> = > §,F*

k even

where the summation over k goes from k = 0 to k = 2 min (I,l;), or,
maore generally, for antisymmetric states:

ABg, = <1 LSLIM | V(| #, — %, |) | LLSLIM> =
= DAE 4 (SRS S e

where F¥, G* are the Slater integrals:

F* = F¥(n,lyn,ly) JJ R0, (v B2 1, () up(ryrs)drydry
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Gt = GE(n Ly ly) = ” Rt (r0) By (02) B () R g, (73)

. ug(r7,)dr dr,

which depend on the interaction under consideration, and f,,g, are
geometrical factors, independent of the interaction, given by:

4
fy = <L,LLM | ﬁ— (Y(€)) - Yi(Qp)) | LLLM> =
L1, L
= (— DLFL I || GR 1), || GE ) 1,)
‘ LL k
L1, L
g = (— UL |G [ 1)0; | C* | 1)
L Lk

We have followed the notation of reference®.

For instance, for the simple ls configuration, i.e. l; = 1 (arbitrary)
and 1, = 0, there are two multiplets: 1L, *L with L. = 1. Thus we obtain:

AEQL) =F, + &
AEGCL) =F,— &
here F,=f{,F°, G = aG! .
For the case of the p? configuration, ie. 0y =n,=mn,1, =1, =1,

it is evident that only the k = 0 and k = 2 terms will give nonvanishing
contributions and there are only tbe direct integrals F*:

AB(pHS) = B0 4 o ¥?
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5

293Py — 0 2 Jr2

AE(p:P)=F % T

AE(p“D):F”—I—-ﬁi—F2
! 25

Expressions for other configurations can be derived in a similar
way and have been tabulated (Energies in terms of Slater integrals
for Wigner force in LS-coupling?).

The Slater integrals are expressible in terms of the very simple
Talmi integrals®10.

h. Description of the method in the case of the %0 nucleus.
For the 0 nucleus, the nucleons configurations are:
(1s2)5(1p%)n(18%) {1p%),. The Coulomb energy is given by:

proions

2
B,(000) = B2 =8 = jl}f ~waq
ij

1<]

where ¥ is the normalized to unity wawve function of the system, which
is taken to be a Slater determinant.

We assume for the radial dependence of the single nucleon wave
functions the analytic form of a 3-dimensional harmonic oscillator wave
funetiont, namely:

_1yp2 l+a/2
z 1+, (VI.Z) ,
o+}1+1/2

Ra(r) = Na(ve

o

where the normalisation factor N_; is given by:

21-n+29] 4+ 2n + )11 *9/2
(2] + )P

NZa(v) =

and n,] are the radial and azimuthal quantum numbers respectively,
L} is the associated Laguerre polynomial and v isthe harmonie oscillator
parameter: v = mao /{h/2x).

The calculation of E, may proceed in the following steps':
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1. We calculate the average energy of each abond» in terms of Slater
integrals, using statistical weights®.

2. The energy E, is subsequently expressed as a linear combination of

Slater integrals.

3. The Slater integrals are expressed in terms of Talmi integrals®12.

4. The Talmi integrals are caleulated analytically. The final result is
a constant multiplied by e2 /v (2.

Thusg, in the case E (Z = 8):

1) The average energies of the- «bonds» in terms of Slater integrals
are:

E(isz)AV = FD(O,O,O,O)

1 AE, . 9 AE, - 5« AE,
E(ipz)AV: L 0+ 151.. 1+ L=2 —

— T (0,0,1) + (— %) F2 (0,1,0,1)

E(SP)AV — 3+ AE (singlet i‘gg' AE(triplel) —

A

== [? (0!010!1) - ( 12

)2(}1 (0,0,0,1)
2) The contribution of the 13-8 «bond» is:
Sc(s - S) = [0 (0101050)

of the 15 p—p «bonds» is:

6

Sp —1) = 157 0404) — (5 JFP0.L0,)
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and of the 12 s—p «bonds» is:
S.(s — p) = 12F*(0,0,0,1) — 2G(0,0,0,1)
The expression of the Coulomb energy is then:
E J(Z = 8) = F*{0,0,0,0) + 12F°(0,0,0,1) — 2G(0,0,0,1) +
6

+ 15F9(0,4,0,1) — (—5— )Fﬂ(o,i,o,i)

3) We express now the Slater integrals in terms of Talmi integrals:

Fo(0,0,0,0) = I,

1
F°(0,1,0,1) = T [5(Tp -+ L) 4 21,]
2 2%
F2(0,1,0,1) = T [, + Ip) —21,]

F90,0,0,0) = —— [Ty + 1]

GH(0,00,0) = —— [T, — 1]

&) The Talmi integrals are given by:

-3 vr?
1,(v) = €3Ny /2)J 6 retegy |
thatis: ID=2C,11=_§—C,12=%C,

where: C = e?,/v [2m.
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The result is; E (Z = 8) = 823 C= 823 e? V 2‘; (ref. 1)

3. Calculation of E, for #Ca

For the #Ca nueleus, the nucleons configurations are: (1s%)y (1p®n
(1d19y (25%)y (18%), (1p%), (1d), (25%),. The Coulomb energy is given by:

protons ez
E (9Ca) = B (7 = 20) = jl{f* 2 ydq.
( > Ty 4

1<j

The calculation is made following the steps described previously.

1) The protons configurations: (1s%, (1p®, (1d°), (2s%), contain: 1
-8 «bond», 15 p-p «bonds», 45 d-d «bonds», 1 23-2s «bonds», 12 1s-1p
«bonds», 20 1s-1d «bondse», 4 1s-2s «bonds», 60 1p-1d «bonds», 12 1p-

28 «bondsw, 20 1d-2s «bonds».

We calculate, as an example the average energy of a d-d «bond».
The multiplicity 2L, ++ 1 of the orbital wave-function (L = 0,1,2,3,4) is
multiplied by 14 when L is even and by 3 when L is odd, yielding the
statistical weights 1,9,5,21,9 respectively and the average energy is
then:

, AR+ 9 AR +5 AR, _,+21. AR, _,+9-AE _,
E(id-‘)AV: 45

Substituting the AE; in terms of Slater integrals, as before, we obtain:

1 70
2 — RO — ) —
E(1d) = FY020.2) + 7= ( I3 JF0202) +
L[ 630\,
+ E(— Z!II)F (0,2,0,2)

The contribution of the (1)) = 45 d-d «bonds» to the Coulomb energy
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is then:
S5.(1dW) = 45E{(1d?) vy =

== 45F9%(0,2,0,2) — 273,— F2(0,2,0,2) — fjf

F4(0,2,0,2)

In a gimilar manner, we find the contributions from the other
«bonds», Thus, we obtain:

S,(182) = T9(0,0,0,0)

S.(1p%) = 15F°(0,1,0,1) — —o~ F(0,4,0,)

630

0 -, "
S.(1d%) = 457%(0,2,02) — —o F¥(0,2,0,2) — — 71— F40.2,0,2)
Sc(28%) = F*(1,0,1,0)
S, (158 — 1p%) = 12F°(0,0,0,1) — 2G*(0,0,0,1)
S (152 — 1d19) = 20F%(0,0,0,2) — 2GX(0,0,0,2)
S (188 — 28%) == 4F9(0,0,1,0)

630

S(1p® — 141%) = 60F9(0,1,0,2) — 4G1(0,1,0,2)— —>2— G*(0,4,0,2

S.(1p® — 2s?) = 12F9(1,0,0,1) — 2G1(1,0,0,1)
S (1d10 — 252) = 20F°(1,0,0,2) — 2G2(1,0,0,2)

2) The addition of the Se’s yields:

E(Z=20) = F(0,0,0,0) + 15F%(0,1,0,1) — -g’— F2(0,1,0,1) +

+ 45F0(0,2,0,2) — %g— F2(0,2,0,2) — i‘ﬁ

F4(0,2,0,2) +TF°(1,0,1,0) +
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TTIF0,0,0,1) — 2G1(0,0,0,1) -+ 2089(0,0,0,2) — 2G2(0,0,0,2) +

1 AF0(1,0,0,0) - BOE®(0:1,0,2) —— 4G1(0,1,0,2) —g‘—f’g- (3(0,1,0,2) &

- 12F9(1,0,0,1) — 2G1(1,0,0,1) + 20F°(1,0,0,2) — 2G2(1,0,0,2) .

3) The Slater integrals are expressed in terms of Talmi integrals (follow-
ing references 9 and 12).

4) The Talmi integrals are evaluated using the formula

fe 2]

J‘ x™eTaxd dx = Ao =121
0 m;—l
2a
The [irst five integrals are:
4 16
I,=2C I, = 3 G, 12:—15—0,
32 . 256
L==5 G = =350

The final result 1s:

B (7 — 20) — ’gg"’ ezv =

in agreement with the result ol caleulations made by A. Dellatiore®.

The model parameter v should be determined by obtaining a best
fit to the experimental data of electron secattering®. Using harmonic
oscillalor wave functions, cne finds that the proton density distribulion

of #(a 157:
R i 4 232 | 5~ yrd
Psm () = A ( g ) {1 - 5 {(vr®) ]e v

and <ris = ——
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Using the experimental value of <r?> V2= 3.49 fm, we obtain:

= (3.49)? , —5—4 = 2.045 fm , e |/ —— = 0.2851 MeV.

v 2

3
v

Thus, the formula that we derived yields:
E (4Ca) = E (Z = 20) = 70.43 MeV

Note added in proof: If the finite proton size and the centre of mass
motion are taken into account in determining v,” then: E (Z = 20) =
= 71.83 MeV. It should alse be noted that the values of the Coulomb
energy of ©°Ca are close to the value of 71.74, which one obtains from the
Coulomb term of the Myers and Swiatecki semismpirical mass formula®,
while the Fermi gas model® leads to a larger value (82.36 MeV).

The author would like to thank Professor M, Grypeos for his
comments and some useful discussions.
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IIEPIAHYH

TIIOAOIIZMOXZ THZ ENEPI'EIAY COULOMB TOY IIYPHNA TOY
HCa ZTO MPOTYIIO APMONIKOY TAAANTOQTI ME THN TEXNIKH
TALMI

Hmwd
X, IL. IIANOY

{ Ermovdactiigio Oewonrnxis Pvonfic Hovemotnuiovw Gecoaiovinng}

Hpayperomorzitan Fveg dmohoviouds the evdpyeiag Coulomb zob mupfve
ol ¥Ca ut wd mpdtune QALY dppovikeD TokuyteTh wel Ty teyvech Talmi.
Ts dmotérecpe mod maipvouus pt +Y) wélodo adth cuppuvel axpBds ue b
arotérespe tol A, Dellafiore, 6 émotog ypnoiuomolnoe wid teyviuy ué peto-

aynpattapols Fourier.
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