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Abstract: In this work a brief description of the traditional galvanomagnetic mea-
surenients tn the weak ficld case is presented and also emphasis is given to the im-
portance and the use of the Wasscher’s method for the detection of the anisotropic
electric behaviour which s not caused by the erystal symmeiry of the material.
In continuation it is described how it is possible to distinguish cuble from non-eubie
environments in the case of (001), (110) and (111) oriented thin films and surface
layers. Finally experimental results deduced from the measurements on mechani-
eally deformed (111)-sample of monocrystalline Ge are given. So anisotropy was
obserced on the zero fleld eleetric resistivity with principal directions the axes
[110] and [112]. Also the magnelorcsistanee skewness effect was observed by chan-
ging the direction of the magnetic field parallel to the sample plane. With the ma-
gnetie field perpendicular to the sample plane also an anisotrople magnetoresistance
was observed. Therefore stz different magnetoresistanee ecoeffieients were deter-
mined showing that the “symmetry” of the anisotropy is much lower than the cu-
bre one on the (111) plane.

1. INTRODUCTION

We use to say that the characteristic properties of a material {o-
ptical, electric) depend on its crystalline symmetry. Therefore the cry-
stal class expresses the isotropic or anisotropic behaviour of the ma-
terial. In the case of the galvanomagnetic (GVM) effects the correlation
between the electromagnetic magnitudes and the crystalline symme-
try is expressed by the non-zero tensor elements of the zero-field re-
sistivity py, the weak-field Hall coefficient pix and the weal -field
magnetoresistance (WEMR) coefficients gijer.

Until now it has been assumed that the symmetry of the experi-
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mental results is normally associated with the material under study.
But is that true in the reality? Or are there other factors loo whose
influence changes the situation? And in what way is it possible to di-
stinguish the existence of a such different situation?

The answer is that we rmust determine the most ol the previeus
tensor elements if we want to have a clear picture of the reality. Bul
for the measurement of all the GVM coefficients we need more than
one sample (see for example the case of Bi,Te, [1, 2]), and additionally
the acceptance that there are no alferations from one sample to the
other.

In the case e.g. of cubic crystals, most WFMR measurements
are made on (001) samples with J in the directions [100] or [140]
Samples parallel to (114) plane have been used much less. Algo it has
been traditional to made no more than three different WFMR measu-
rements on a sample because a fourth measurement is impossible or
unnecessary.

Under weak-field conditions the relation between E, J and B is
expressed by the equation

Ei= pudj + piied iBr + pijd iBiba (1)

In the case of cubic symmetry eq. (1) takes the Seitz-Pearson-Suhl
(SPS)Y [3, 4] form

E = o0od -+ a{J x B) -+ bBJ + c(J - B)B + dTJ (2)

where a, b, ¢, d are the SPS coefficients and T the diagonal tensor [Bi2].
Thus we can write the magnetoresistance coefficients M [5] of the
equation

A
—E = M(uaB)? 3)
Po
where pg is the Hall mobility
as
M=b + ¢ 2im)? -+ d, ing (4)
8 5

where 1s and ns are the direction cosines of § and B respectively.
Allgaier et al. [6-9] have shown that eq. (4) can be used to give four

independent magnetoresistance measurements from only one sample.

In this way it is possible to distinguish one crystalline symmetry from
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another one ag in the case of {001} and (111) oriented thin films or
surface layers with cubic or non-cubic symmetry.

It should be noted here that the zero-field resistivity on the plane
of the sample remains isotropic even in the case of lower symmetry
while the magnetoresistance anisotropy s again associated with the
crystalline symmetry of the environment. Also this method can’t give
simple expressions of the eq. (4) in all the cases and so it is impossible
to use it for other planes of samples like in the case of the {110) plane.

Ag the symmetry of the material is lowered expression (1) can no
longer be reduced to a simple SPS5-type formula because the number
of distinct non-zerc coefficients increases considerably, and because
the zero-field resistivity is, in general, no longer isotropic and of course
with this classical configuration we can’t distinguish the situations
which are not caused by crystailine symmetry.

For these reasons we need a more convenient method for measu-
rements and this is achieved by Van der Pauw-Wasscher technique
[10, 11]. In order to get a measurement with this method we use a

p

Fig. 1. Planar amsotrapic circular sample with contacts in the right position for
the determination of g, and g.
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planar, circular sample with four contacts ABCD taken along the cir-
cummference on two perpedicular diamelres (Fig. 1)}, We may then
define the “'resistances’.

— — 7o — ¥
R, = Yo =Vo . R, = Va=Vp and Ry, = Va—=Veo . (5)
Tne Ipp

In the case of an isotropic material with this configuration we
have Ry = R, == R and the zerc field resistivity is given by the
equation

!
L )

where d is the thickness of the sample.
In the case of an anisotropic materiai the maximurm value of the
resistance ratio

(Ri/Rs)mexr = (Rydmax / (Rg)min

is obtained when the contacts are placed at an angle of 45° to the di-
rections of the principal axes of resistivity x; and x,. So for the main
values of resistivity we have the expressions

>\1/2 hd. Pl max —
Py = WM.L (/)
2
In ———
1~k
A~ 1272d (B )min
o = 2 Calmtn ®)
In ———o
14k

where X is the anisotropic ratio p/ps {py >>p) and k the modulus of
an elliptic integral which is related to the ratio A, Thus with this me-
thod we have the two principal resistivities from one measurement
and of course the resistivity in any direction on the plane of the sample
by the well-known equation [12].

p == 0008%0 -+ pysindew )
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where o 1s the angle between the directions of p; and p.
The Hall coefficient 1s determined from the relation

d
Ru = 5 ARy, (10)

where B ig the perpendicular magnetic field and AR,, the change in
Lhe resistance Ry, due to Lhe field B.

1t should be noted here that the raethod is very sensitive for the
ascertaintoent of the electric anisotropy. This is evident from Fig. 2
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Fig. 2. The dependence of the ratio {Ry/Ry)mer upon the main resistance ratio
A=glo, for warious sample confrgurations.

[11] which indicales that at a value », corresponds a greater ratio (R,/
Ry)mas-

The influence of the magnetic field 1s also of a great importance
hecause it causes changes in the direction of motion of the charge car-
riers. Thus the magnetic field introduces an anisotropy in Lhe electric
resistivity which competes the physical one. The final situation is an
anisobropy which in general has principal directions different from those
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of the zero-field resistivity. This phenomenon is called magnetoresi-
stance skewness [13] and it 1s shown in Fig. 3. If the direction cosines

Fig. 3. Polar plots of the anisotropic resistivity in the sample plane with and with-
out the presence of the magnetic field B.

of the magnetic field (in respect to the x; axes) are m, v, o then the
main resistivities in the new system axes xi are [14]

1 B
#u(B) = lon(B) + pa(B)) + 2L (1)

B
9122(}3):%[PII{B)"{'P%(B)]_% (12)
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while the angle of skewness ¢ is given by the equation

2015(B3)

tan2o =
ey o11(B) — pas(B)

(13)

S0 the experimental measurement of the angle ¢ leads to the de-
termination of the WEMR coefficient of the type pyy {(15=]).

Tn the following we shall see how all the above could be applica-
ble to distinguish among different environments or to ascertain ani-
sotropic behaviour independent from the crystal symmetry.

2. MEASUREMENTS 70 DISTINGUISH AMONG DIFFERENT
ENVIRONMENTS

In the case of cubic crystals there are five different GVM coeffi-
clents namely

oy P123> P11y Praza AN pragg (14)

Thus the zero-field resistivity and the weak field Hall effect are isotro-
pic, while there are three WFMR coefficients which are related to the
types of hand structures and scattering anisotropies.

If the direction cosines of J and B are p, g, r and u, v, w respecti-
vely then the zero field resistivity in the direction of J is

E-J _ -
e(0) =—j5 = eolP* T P2 T 12) =0y (15)

while in the presence of the magnetic field B we have

= [pa + (Puual® + p1102V% + p112W? ) B2 1p?
+ [og + (Pr12a1® + ey V2 + pr1a9W?) B2 12
+ [po -+ {P11229® - P1190¥? + 09117W2)B2 12

+ 4p19s B [uvpq + vwgr + wurp]. (16)

WnoeiakA BiBAI0BAkN OedppaocTog - TuAua MewAoyiag. A.MN.O.



In the next we consider (001), (140) and {141} oriented thin films
and surface layers having cubic, tetragonal and trigonal or hexagonal
symmetry [15].

2.1. Sample parallel to the (001) plane

In this case the sample plane contains the two axes x; and x,,
and we have J = (Jeosw, Jsinw, 0) (Fig. 4). To obtain the GVM coef-
ficients we perform measurcments in the [ollowing manner.

A,

Fig. 4. Polar distribution of p on the (z,, x,) plane.

2.1.1 Specific Resistance and Hall Coefficient

The zero-field resistivity is given by oq. (6) while the Hall coef-
ficient Ry = ppgy 15 determind by eq. (10).

2.1.2 WFMR Coefficients

Two conligurations will be treated:
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) B= (B, 0, 0). Using Figure 4 and eq. {16) we obtain
p(B) = (oo + punB?leos?w + (pg + pryaaB?sina {17}

corresponding to a resistivity anisotropy with principal axes lying in
the crystallographic directions x;, and x, (Fig. 5). By measuring the
experimental quantlities pg, g (B) and py, (D) we obtain

X7
D, j
AN 0(6)
p
W

e

Fig. 5. The antsotropy in resistance induced by the magnetic field.

Ap == pp Be0os?e + pyyB3sine

= Apyjcos?w 4 Apyysinie (18)
where
Doy = pu (B) — g, Npgs = paa(B) — pg (19)

Thus we are led to the relations

Bpyy Aoy

2

Pun = "pe and  pyyp = R (20)
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by which g3;; and gy, may be determined from experimental measure-
ments of Apy; and Apy,. Tt is evident that with the above direction of
B, Apy; corresponds to the longitudinal magnetoresistance while Apg,
corresponds to the transverse one. It should be noted here thal in the
case of B= (0, B, 0), the same anisotropy appears with a phase dif-
ference of 900 so that the same two WEMR coefficients, gy and pyigs.
are obtained, but in reverse order. Finally for B = (0, 0, B) the sample
remains isotropic and only the coefficient g, can be determined.

This last case is interesting when we have (001) oriented films or
surface layers. Suppose that the value of gy, as determined from this
configuration is different from that determined by eq. (20). This result
18 an indication of tetragonal, rather than cubic symmetry, with the
tetragonal axis lying along the [001] direction.

b) B = (Bu, By, 0). In this case an anisotropic (skewed) behaviour
is expected, such that the principal axes and the crystallographic axes
lie in different directions (Fig. 6). If these directions are at an angle
¢ to each other then the following equation is valid

Xy

Fig. 8. Determination of Ao for anisotropy that has iis principal axes inclined
by an angle @ to the crystallographic azes.

bprorpBPuv = sin2o[p'); (B) — p'ys(B) ] (21)

where g'(;1(B), ¢'5(B) are the principal resistivities, under the influence
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of the magnetic field. In this way, the coefficient g5, 13 obtained. The
pracedure is to choose first a certain direction of B with respect to the
(%, Xy) set of axzes and then rotale the system of contacts, without
changing the direction of B, until the maximum value of R;/R,; 1s found;
thus the value of the angle s and the resistances ¢, (B) and 5 (B)
are obtained.

2.2. Sample parallel to the (110) plane

In the case that the specimen is parallel to a (110) plane as in the
case of thin films grown on (110) substrates, a new set of axes should
be chosen in lerms of which the measurements may be defined. We
nse the coordinate system [110]=1x,", [110]=x, and [001]=x,’
{Fig. 7). With this set, the plane of the sample contains the x," and

xjﬂ[ﬂﬂﬂ X

T (101
nlane

x,=[100] x;=[110]

Fig. 7. The coordinate system in the case of a sample parallel to the (110} plane.

¥, axes. Axes X, and x,’ exhibit two-fold, and x;" fonr-fold rotational
symmetry. These axes are similar 1o the axes of the tetragonal system
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for the groups D,(422), Cy(4mm), Dy, Va{(42m) and Dpn(4/mmm).
The resistivity and Hali coefficients for these groups involve the
four different nonzero {ensor elements (16).

pr(=em), P, P And  pay (= 9ap0) (22)

while the nonzero WFMR coefficients are presented in table T, using
the following correspondence:

11— 22 —— 3 33— 3
W=32—4 3=13—5 12=21 — b.
TABLE T

The non-zero WFMR coefficients for the groups D, Cpv, Dsa, Va, Do

B B2 B2 B,B, BB, B,E,

E, 4 o 212 Pis 0 0 Y
By Jg Pz P11 C13 0 0 0
By, I, Par Pa1 Paa 0 0 0
BE,, J, 0 0 0 204 0 0
Ea, 'II 0 ( 0 0 2044 0
B, 3, 0 [ 0 G 0 2pge

In the case of cubic symmetry, we are seeking, by the transforma-
tion of the elements from the x; to the new sel, the GVM coefficients
presented in eq. (22) and in table T. Thus we have the fellowing results

o'n = 9’22 =o'y =gy (23)
0129 = 0'am = 0'y12 = Pros (24)
’ s -1 R | r) ()5
Pun = P am =7 (P T Cuse T 2P1e0) (25)
oo = Pun (26)
P’u:aa = 9’2233 = 0531 = P332 = Prz (27)
/ / 1 w 9 9
P wan = Pz = “2“(91_111 T praee — 2opape) (28)
’ 1 2
P 1212 - 'j‘(Pnn + ) (29)
912323 = 9’1313 = Pwmiz (30)
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The difference between the cubic case, eqs. (23) — (30), and tetragonal
symmetry, eq. {22) and table 1, ig obvious. The prohlem is thus redu-
ced to the determination of the py;(B) from measurements of the p'x: (B),
thereby to the deduction of the tetragonal environment in case of redu-
ced symmetry. The procedure 1s as follows:

2.2.1. Specific resistance and Hall coefficient.

Using the method presented in 1, we measure o'y = p's = p,y and
¢'12a = Pieg- 11 case the actual symmetry 1s letragonal, however, p'j 5= p's.
Thus by rotating the four contacts, a maximum in the ratio R /R,
can be found, thus delermining the anisotropy ratio i From egs. (7)
and (8) ¢'y; and p'y are determined and the directions of the x';, %y
axes are delined. In this manner, the reduced symmetry 1s revealed
and evaluated. Tt should also he mentioned that the measurement of
the Hall coefficient with perpendicular magnetic field [B = (0, B, 0)]
vields the coefficient p'yy = 0’5

2.2.2. WEMA Coefficients.

In the case of B = (Bu, Bv, Bw) and J = (Jp, 0, Ir) (referred
to the primed coordinate system), the anisotropy that appears has
principal axes which, in general, are different from the x;" and x3 axes.
For cubic symmetry, the measurement of ¢’ , p'ag (= 'z )y and
¢'ams alows the determination of pyy , eps, 80d g, from the relations

(26), (27) and (28). Thus

a) For B{0, B, 0} (that is, perpendicular to the sample plane)
we have

p(B)=[pnn -+ p'1aB? 1P + [¢'3s + ¢'5em B Ir? (31)
and

Ap = 01102 B?P? + 07550 Br% = Ap’yyp? + Ap'ger?, (32)
where

B¢y =po'u(B) — o', Ap'y3 = p'g3(B) — p'gs. (33)

This leads o
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T4
b) For B(0, 0, B) we have
o(B) = o' + £'1sB?Ip? + [2's — 0535 B2 12 (35)

which leads to

of
P 1138 == ﬁ”‘ and 'y = BE (36)

The case of reduced, tetragonal symmetry is immediately appa-
rent from these measurements if we find that

P'aan 7= Pluuss (37)
2.3. Sample parallel 1o the (111) plane.

In many instances we deal with material that cleaves along the

\xaf[ﬂﬂl]

.

< -[1n]

x2=[[]l[]]

x,=100]

.- [10]
| -[112)

Fig. 8 The coordinaic system in the case of a sample parallel to the (111) plane,
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(111) plane. As in the previous section, we should again choose a sample-
oriented coordinate system in terms of which the tensor elements are
more conveniently defined and measured. As a new frame of reference
we choose the axes [110] = x;" and [112]=x," in the (111) plane and
the [111]=xy" perpendicular to the (114) plane (Fig. 8). The 1/,
x,” and x, directions coincide with the two-fold axis, the disectrix
and the three-fold axis, respectively, of trigonal crystals [Cqv(3m) and
Dga(3m) groups].

The non-zero elements of the resistivity and Hall tensors for this
group are {16, 17].

o1 (= puz), Pag: Pras and Pos1 (= Pa12) (38)

TABLE IT
The non-zero WFEMR coefficients for the groups Cy,v and Dy

B,* B.? Bg? ByB, B,B, B,B,
B, I fu P1e s 2py4 0 0
By I, P12 Piz Fis 2054 0 0
B, J, Pn 231 Pa 0 0 0
Es, Js Pa1 far 0 2044 0 L
E,, Jy 0 0 0 0 204 2pg
By, s 0 0 0 0 201y P11 Pz

while the non-zero WEMR coeificients are given in table I with the
following corespondence:

11 —=1 22—2 33—3 23=32—4%
13=31——5 12=21—6

Returning now to the cubic case. With the transformation from
the xy coordinates we are seeking the GVM coefficients of eq. (38)
and table TI. Thus we have the following results

P = 0 = 0’y = Po (39)

0’18 = Ploa1 = 0z = P (40)
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'y = Pazee = Tz‘(Pnn + fuz + Z01312) {41)
7 1 ’f f i

¢ s333 = 3_(91111 + 201198 + 401219) (42)
’ ‘ 1 /

Prize 7 Poan = 'g(PmJ + Sppem — 201310) {43)

7 . 2 . r . i
O 1133 = Paaiz = Poagss — Poasm

1
= 7(91111 + 203395 20191} (44)
’ l 1 LE
Poges = Faim — 3 (P11 — Puaze T P1mz) (45)
0118 = — P amon = 0 rom = 0'ogn = — '3
, 2
= a2z — ?(91111 — 91198 — 261319) (46)
and
* 1 i ’ 4
Pulzz“g_(i)un—?lm)- (47)

The difference between cubic and trigonal symmetry is obvious
from a comparison of ege. (39)-(47) with eq. (38) and table II. The
problem is again reduced to the determination of the pi(B} by measu-
ring the p'u(B) and, in the case of reduced symmetry, of determining
the trigonal environment. The procedure to be followed is outlined
below.

2.3.1. Specific resistance and Hall coefficient

By using the method presented in 1, we measure the p'y; = ¢'p = ¢y
and p'ips = pres- If there is an environment of irigonal symmetry it
cannot be detected here, since on a specimen with faces parallel to the
(%1, %) [= (111)] plane, the measurements of ¢’y and gy, are impos-
sible.
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2.3.2. WFME Coefficients

II B = (Bu, Bv, Bw) and J = (Jp, Jq, 0) (in the primed system
ol reference), the resislivity anisotropy will appear with the principal
axes dillerent [rom the xy’ and x, directions. For cubic symmetry the
measurement of g'yyy, o', and p'yg allows the determination of
o111y Pusss 80d prae from the relations (41), (43) and (44). Now we
consider the specific cases.

a) B = (B, 0, 0). Then
p(B) = (p'u + p'uuB*IP? + (' + 0'1122B?)0%; (48)
that is, the anisotropy axes are x, and x,, so that

Ap = o'y BPp? + o' 1aaB20 = 8" p? 4 Dpw’ 7, (49)
where

Ap'y = ' (B)—p'n and Aoy = 00 (B) — ¢p'an (50)
Therefore

*AP’]_I AP'ZZ (51)

f I
R T and o'y = —Tpz

b) B= (0, 0, B). Then

o(B) = (¢"is + 0" umB2)p% -+ (p'a - 0 1geB%)a% = 0’1 - Pz, (52)

which means that this case is isotropie {p'y = o's).

p(B) —9’11 (53)

Therefore pliay = iiE

¢) Il the symmelry is cubic, then six different magnitudes are
involved in the WFMR coefficients, eqs. (41) to (46) (only three are
independent), while in the case of trigonal sxmmetry eight become
mdependent, with the new inequalities o'yq 5= o' 8N ¢ o 7 0 1is-
Therefore by calculating a fourth coefficient, e.g. the 5 from the
relation (46), using pp, fee aNd prap, 80d then measuring experimen-
tally the p'ysq, we have a way of distinguishing the two environments.
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To measure the p'i1g, We use B = (Bu, Bv, Bw) As in 2.1.2b the
anisotropy axes form an angle ¢ with x{" and x,’. Thus

Ap = [p"1n(B)eosPo + p"s (B)sin?e — o'y Jp* +
+ [p"n(Blsin®e + ¢4 (B)eos’p — o'y Iq? {64)
+ sin2¢[p" (B) — 0”5 (B) Ipg.
In this case the following equations are valid
(Prn1®® + p'ueV? + o ugW? 4 2p VW) B =
o' 11 (B)eosPo -+ p"p (B)sin?e — p'y, (55)
(p'u2t® + p'1u V% + ¢ nggW? — 2071 v W) B2 =

"1 (B)sinZe 4 0”5 (B)eos?p — o'y, (56)
and
2726 1agWu + (" — o'y JUV B2 =

— sin2o[p" ), (B) — ¢"5(B)1, (57)

where now the ¢"11{B) are along the new axes of anisotropy.

Since we have already determined p'yy1;, ¢y and o'y egs. {55),
{56} and (57) identify three possible methods to measure p'y53. The
experimental procedure is similar to thal presented in 2.1.2b. To sim-
plify mﬁtters, we may choose all the angles 45 so that u=1/2, v = 1/2,
w=1/}2,

3. ANISOTROPIC BEHAVIOUR DUE TO MECHANICAL TENSIONS

This section is referred to experimental results from Ge samples
in {111) plane. Measurements were made on several samples of diffe-
rent sources. The behaviour of all of them was quite the same in re-
spect to their polar distribution of R(B).

If we choose as the system of reference the previous one described
m 2.3, the zero-field resistivity will be anisotropic with axes in the
directions x, = [110] and %, = [112]. This unexpected behaviour seems
to be associated with mechanical tensions introduced probably by sam-
ples formation and hag significant influence on the magnetoresistance
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effect. In Fig. 9 we present the Van der Pauw "' Resistance” R(0) and
R{B} for several directions of the magnetic field B in the plane of the
sample. The phenomenon of the magnetoresistance skewness is evident
from this figure. So for v =1 and u =0 the angle of skewness is ¢ = 09
and o = 909 respectively. This rmeans that when the direction of B
coincides with the x; axis, the anisotropy has principal axes which are
the same as the zero-field resistance ones while when the direction of
B coincides with the x, axis there is an exchange in the maximum and
minimuime divections. Since we don’t know the “symmetry’” of the zero-
field vesistivily we can’t predict the angle of sikewness for values of u
between 1 and 0. But from Fig. 9 we may conclude that the skewness

O mezima

O mipima

Fig. 9. The van der Pauw resistances R(G) and R(B) for B parallel to the (111}
sample plane showing the anisotropy of the resistioity.

seemns to be associated with the succession of similar axes every 609
and the exchange of axes of the form [110] and [112] every 30° on the
plane of the sample. With B perpendicular to the plane of the sample
the magnetoresistance anisotropy has the same axes as the zero-field
resistance. In table TIT the results of the measurements are presented.
As we see with the magnelic field on the plane of the sample the va-
lues py(B) and pyp(B) are not constant and depend on the values of u,
but the mean value of resistivity is almost constant[131.

Using these experimental values we can determine the following
GVM coefficients [18].
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Rz == prpg = — 1.384 % 10-2m3C
oy = 1.801 % 40-3m3C1T-1

Ogon1 = 2.688
Pz = 2.658
Pases = 2.760
Oyiga = 3.815
Daggy = 2.23D

Final the number of carriers is given by the relation

n= ]1:,’18 (58)

e

S0
n= 5329 x 1020m=3 =5.329 % 10" cm™3

The existence of at least six different WFMR coefficients shows that
the “symmetry” of anisotropy is very low and it is probable lower than
the orthorombic one.
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IIEPTAHYH

TAABANOMATNHTIKEY METPHXETEZ I'TA TH ATAKPIXH
ANAMEYA TE ATAGOPETTIKA TIEPIBAAAONTA
"H I'TA THN EEAKPIBQXH ANIZOTPOIITHE XYMIIEPIOOPAX
ANEEAPTHTHE AIIO THN KPYETAAAIKH XTMMETPIA

‘Tmd

A, Z. KYPTAKOTY, O. BE. BAAAYTAAH, K. T ITATTAAFRMHTPIOT KAI
N. A, OIKONOMOT

{"Epyactigio B" “Efpag Quowie Haveruornuion Qecoalovins)

Zehy dpyacie odrh dood Siverar ik olvroun meprypapy Tav Tape-
Soclomddy yahBuvopayvnTinéddy wetovcewy dolzvolg medlov Tovilerws f gmou-
Sarbrtnte wed F ypon the pebodou Wasscher v v #axpifwoy dvigh-
TpoTng NhewTpiniic oupmepipopis mad ddv dgpelietar oTHY xpuoTEAAL) cuyu-
vetpte ol Shiwol. Trh ouvéysuwe meprypdostar whig umopel va yiver Sudxpion
woPudhc i uf wufeefc ovpuetplag ol wepBaihovros oy mEpimTwon ERiToe
Eroeddv dpeviey % mpocovatolaudvey oTpeudrov kete o &nimede {001),
(110) ol (111). Zré téhog Sivovrow melpupaTing dmoTshéopotd &S peTpH-
osig ot Selyua povoxpuotaihined Ge mepdddnio ord Emimede (111) T dmolo
Ernafe unyevoch mapopdppnoy. Hapamenlnie ancotporia Hhextomic dvri-
aracng wydevinod mediov ut wipeg Seuliveels Toldg &Eoveg [110] et [MTZ].
Me peraforhy e Swedluvemg Tol poyvnTivol medlov B wopdddnha otd émi-
medo Tol Jelyparog mapwriphlnxe T gouwvbueve THy EAlxweong THe poryvy-
ToxvtioTaoyg. TAvieéTpomy payvnTomvTioTas mwHpeTNphdnrs wed pd T me-
8to xabero ord émimedo 7ob Selyparog. "Erat suvohika mposdioplorTnxay Lt
Sl popeTinol GUYTERSGTEG PEyYNTOMVTIGTHGYC Tah delyvouv 4Tt # «ouuperplan
s dvicorporing elver mORD yepmnibteen aw advhy The fiudig ord Emimedo

(111).
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