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Abstract: The Faddeev equations are dericed for the wave amplitudes of the bound-
state of three particles in the S-state, in the case when the masses of two of the particles are
equal, by neglecting the spins. The wave amplitudes are classified according to the SU
{3) and momentum representation.

1. INTRODUCTION

The object of this paper is to give the homogeneous and once-ite-
rated exact Faddeev integral equations [1] for three particles when the
masses of two of them are equal by neglecting the spins, which are
derived, to the best of our knowledge, for the first time in the SU (3)
representation. We derive the new equations which in operator form-
alism are nmot obtained by simply taking my=m, in the standard
Faddeev equations {for m,7m,7#m,) as one might have expected, but
through a procedure, the details of which will be given in a forthcoming
paper [2], by using the results of reference [3].

The spatial wave amplitudes for the present system in momentum
variables are classified according [3]to the components of the symmetric
SU (3) state. This type of symmetry of components is used for the clas-
siftcation, in order that the general statement of the Pauli principle holds
when it is applied to the three-body wave amplitudes. The latter are
syminetric, when the particles 1,2 exchange their coordinates in momen-
tum space at the centre of mass system.

The Faddeev kernel in this represtation has only one integrating
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variahle, the three-body momentum [X). The SU(3) harmonics have
been derived by Dragt [4]. They were used first by Hochberg, Lee, and
Sibbel[3] and then, by Sibhel [5] and by Saloupis [6] in their calculations
for the *H and *He, after a modification was made [3] in which the SU
(3) polynomials became useful in practice.

2, THE COORDINATES USED

Lel ki, k, k, be the vectors in momentum space for the particles
1,2 and 3. We use, instead, the vectors 7, £, X©? obtaiued by translorm-
ing the k;, X, k (i, 5 «=1, 2, 3; i#;#,) with the help of the matrix[4]

o cu
- - . 0
dkmi dkmj 1
C:J.,dk C\U,dk C(.Ldk
T -1, m; +-m; my
i 1 1
| — - R
. e? o? et _!
The paramelers o, y, d, are given as follows:
" myIm Ity mi +In;
e — ———— __ | — —_— .
ce=3MN = M , M=m,+m,+m,; and d, = |/ & mom,

The three particles are trealed symmetrically in 1, &, k®=0 (i.e, at
the centre of mass system). 7, is the relative momentum vector of the
particles i, j. £, is the momentum vector for the k-th particle.

The kinetic energy T is now given by

k? k2, k% n? £ h2l
T=h*(—— 4 — & ——) =h?{ ) A — kO
2, 2m,  2m, 2¢ 2M

(MeV). With #?4-E2=k2=v2-+£: for 1=-1,2,3, the energy becomes,

2ety
E =

} T =k*=w+w,+w, (Im™%) with the convention that
R 2
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h 2 CE
~— = 1. The wy are defined by wi=(—)k% fm™. The v%, £% are now
2e%u m;i
given by
My mi+m; m+m;j

7 = ( ) ) Wi ) Ww],

mi—+1Inj M My

M
E% = W (1)

mi+mj

Tt should be noted that we write for our convenience the equation
for 7k as e = Ne{wiewiw;).
3. THE DERIVED EXACT EQUATIONS

The Faddeev equations for the wave function ¢ of a three-body
bound stale are homogeneous and are given [1] as follows:

W= —Gq(z) Ti(z) ("), (2)

_ 3
1,j,k=1.2,3; iz=j 5k, with up:i_ivllgpiiz:the total three-body energy; Gy{z) =

1

. Lhe Green’s function operator and H, is the Hamiltonian of
Hy-z

three free particles. The operator T is expressed as follows:

EITi(2) K =8 Ei- 51') <mifta{z-52)| 71>, where «Kl=<&;, 11| and so on.
After a decomposition of «nsfti{z-E%)|ny> in partial waves is made the
ti' (i, 1y 2-E4'%), for 1=0, satisfies the Lippmann-Schwinger equation [3]

60, z-E:%=

o0

“Jio(‘f}i ni;) _2T_fm"Vi_o(“flimi”)tio(ﬂi”mi’3Z‘ii’2)gﬂii'2 .

702257

0

The Vi%(nini') is the nuclear potential Vi® (r;) in momentum space.

17
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Equations (2) in the SU(3) and the momentum variables (3, v and
k2, respectively) take [3], after one iteration, the following form in
which they are still coupled in the three terms ¢': <k2ivd's =

3
OB A | REERROAR IR 16, i=1,23. (3)
j=1 a2

K3(z) has the form

Kii(z) = kﬁjG‘o(Z)Ti(Z) Go(z)Te(2), 1,1x=1,2,3. (4)

The dilferent terms of the r.h.s. of eq. (4) are six. We may show that eqs.,
{3) anc (4) reduce for the ground state, after we consider m;=m,=m,
to the following exact new equations for the full wave function ¢
<k apllr =

4

— Z f<k2 A | K(z) | k2 n w >dk 2 k20w | D, (5)
3 A, A

where the kernel is now found to be giver by K(z)=[Gy(z)} T((2)Go(z) T,
(2)ass + [Gol2) T1(2) Go(2) Ta(2) o =+ [Goo(2) Ta(2) Go(2) T 2(2) Inov- (6)

The meaning of the subscripts A3, N,u, N,v is given at the end of this
Chapter.

The Faddeev kernel in the SU(3) and momentum representation
[where the SU(3) state for the particles 1,2 is syrnmetric to the transpo-
sition (12)] takes the form <k?% ap|K(z)|k'2AuH=

2 )"s
(ﬁjﬁw&% Va2 v +2) kak'zfd[cos (24%) ]f d[eos( 2¢”]fd<P

= ptbl @t
Jdg &2 4o™ | Kiz) | 1%, 0" scos(uo)eos(24*)eos(20 Jeos(w's”)

Pref1-2c08%(20%)] PHo[1-2c08%247")] X
1 2 1w

— () — (=)
2 2 2 2
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1 0
X*J 3o =0
_ Vi_, for one of w,u'=0.

The letter « has the form
o V Bmam 2m?,
3m2+2m3m-}—m2 ’

with o<l for thé masses ot the particles which form the 3H,. The P's are
the Jacobi polynomials., x, X'=0,2,46.8...; p, '=0,1,2,3,4...

The components of the symmetric SU (3) state used are characteri-
sed [3] as follows: (Au), (V,u)=(0,0), (2,1), (4,2) (4,0), (8,1), {6,3); (8,4),
{8,2), (8,0),... \

For the case where my=m,=m, eqs. (5} and (6) in the completely
symmetric SU(3) state take the same form as that derived ] by HLS,
In that case p(n')=0,3,6,9,... =p4{u’s), AW )=0,4,6,8,..., and =1,

The first term of K(z) on the r.h.s.of eq. (6), taken as a typical
one from all of the terms, is given in the energy variables as follows:

[ b¥e* | Go(z) Ty (2) Go(2) T o(2) [ K247 97 ]ae =

_ [@M} . L R N 7
Tl dmPm, |=A WHLwEbwRez Ywiwo,

2
Zm-+m, 2m-+m
* o B * Q * rs i, Pt YT
ftn](wtlw aWE g, WE W oWy 2 T, ¥ 1) B (W W Wk W W W 7 - M, w,) dw,
b,

(W Wy -2) W,

2
e o IR oot e
=

It should be noted that <k2, Jp|=oww,w,l, as one can see from eq. (8).
For remarks on the t's see the text after eq. (1). The numerator and the
denominator of the integrand as well as the energy variables in the square
root, are found to be, for the remaining terms of the kernel K{z) in eq. {8),
as follows

0 ;0 2m4m, ;e 2M-mmy
§{w* wrawk W wew z- W) t {w W 1w2,w W1 "Wy Z-
1 8 mobm, 8 2m

wy'") dw,
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0 " x " " " 2r+m, LU Y] " oo 21‘[1—}-['[13
t (wH W wh whww jz-———w¥) b (wwFw W owy,w -
3 m E 2 m--my

w,) dwy,

(WH W, -2)+W,,  (W4+Wp-z)+w;

and, ¥w*w*;, Yw*,w,”’ respectively. The A3, N g, N,v used as subscripts
in eq. (6) are given as follows

3.2 3,2 2
A e (_I.nﬂ)_l , N: (In——l—ma)—ZTC and, 8* —_ __niw*l —_l: E‘WHZ ,
m m. m.

4m?m,

= Y| = [ 2 v

The N, and p*, v* take the same place as that of A, and 3™ in
eq. (7), respectively, chosen in accordance with the terms of K(z) to be
caleulated.

The wy, w,, Wy are related as follows to the Dalitz-Fabri[3] coordi-
nates o, ¢:

k2 2= k? 2n
W= [ioFoos(2loostg- ), we = —[1oos(leonlot —)

k2
and wy = — [14-cos(2d)-cose). (8)
3

The present formalism could be used in the case of spinless particles.
Since, however, we are primarily interested in the case of systems like
3H, we plan to extent this formalism in order to take the spin into
account.
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