as belonging to the lower end member concerning the capacity of the existing seismic sources of the area. These faults have not been activated during the 2009 event, but have the capacity to generate significantly stronger events. The deformation pattern of the 6th and 7th of April 2009 Mw=6.3 and Mw=5.6 earthquakes in L'Aquila is revealed by DInSAR analysis and compared with earthquake environmental effects. The DInSAR predicted fault surface ruptures coincide with localities where surface ruptures have been observed in the field, confirming that the ruptures observed near Paganica village are indeed primary. These ruptures are almost one order of magnitude lower than the ruptures that have been produced by other major surrounding faults from historical earthquakes.DInSAR analysis shows that 66% (or 305 km²) of the area deformed has been subsided whereas the remaining 34% (or 155 km^2) has been uplifted. A footwall uplift versus hangingwall subsidence ratio of about 1/3 is extracted from the mainshock. The maximum subsidence (25cm) was recorded about 4.5 km away from the primary surface ruptures and about 9 km away from the epicentre. In the immediate hangingwall, subsidence did not exceeded 15 cm, showing that the maximum subsidence is not recorded near the ruptured fault trace, but closer to the hangingwall centre. The deformation pattern is asymmetrical expanding significantly towards the southeast. A part of this asymmetry can be attributed to contribution of the 7th of April event in the deformation field.

Fault geometry influenced significantly the damage pattern. Villages located on the hangingwall experienced higher intensity values, compared to villages located on the footwall. This is also verified by the DInSAR which shows that the hangingwall area was subjected to higher deformation values. On average, subsidence values were two and a half times up to three times larger than the uplift values, leading to more violent shaking. The large number and extensive spatial distribution of secondary surface ruptures that occurred not only within the recent sediments of the Aterno basin, but also on pre-existing fault planes was another characteristic of this earthquake. These ruptures are usually disregarded in seismic hazard assessment planning and design studies, but can produce significant damage. Finally, basin effects and the bedrock geology played once more a decisive role to the damage pattern, even at short distances. It is interesting to note that villages that were only 1.5km apart, but founded on different bedrock geology recorded up to three intensity values difference.

Environmental assessment of potentially toxic trace elements in sediments of Filippos B port, northern Aegean Sea – a comparison with other national and international coastal regions

Papastergios G.¹, Filippidis A.¹, Fernandez-Turiel J.-L.² and Gimeno D.³

¹Department of Mineralogy-Petrology-Economic Geology, Aristotle University of Thessaloniki, 54124,

Thessaloniki, Greece, gpapaste@geo.auth.gr, anestis@geo.auth.gr

² Institute of Earth Sciences "Jaume Almera", Consejo Superior de Investigaciones Científicas (CSIC), Lluís Solé i Sabarís, s/n – 08028, Barcelona, Spain, jlfernandez@ija.csic.es

³Department of Geochemistry, Petrology and Geological Exploration, University of Barcelona, Zona

Universitària de Pedralbes, Martí i Franquès, s/n – 08028, Barcelona, Spain, domingo.gimeno@ub.edu

Nine sediment samples from Filippos B port, Kavala, northern Greece, were collected, sieved under 200 µm and analyzed for their content in 14 potentially toxic trace elements (Ag, As, Ba, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, U, V and Zn). The results indicate that the majority of the elements are found in concentrations similar to other national and international coastal regions. However, Cd seems to be highly enriched in the sediments of the present study. The samples with the highest concentrations of Cd, as well as for the rest of the elements, are found in front of the local, anthropogenic activities. According to their distribution, the elements of the present study can be divided into two groups; group A includes the elements Ag, As, Cd, Hg, Pb and U, group B the elements Ba, Co, Cr, Cu, Mn, Ni, V and Zn. The former are influenced mainly by the activities of a fertiliser plant, while the latter by all the local anthropogenic activities.