Κλιματική εκτίμηση της εποχιακής πρόγνωσης καιρού στην περιοχή της Ευρώπης = Evaluation of seasonal forecasting over Europe.

Ερρίκος-Μιχαήλ Ανδρέας Μανιός


Η εποχιακή πρόγνωση προσδιορίζεται ανάμεσα στην βραχυπρόθεσμη μετεωρολογική πρόγνωση και στην μακροπρόθεσμη κλιματική εκτίμηση. Η εποχιακή πρόγνωση διεξάγεται για χρονικό διάστημα από 1 έως 6 μηνών από την αρχική συνθήκη. Διαφέρει από την μετεωρολογική πρόγνωση καθώς αυτή παρέχει λεπτομερέστερες πληροφορίες ως προς τον χώρο και τον χρόνο, αλλά διαρκεί λίγες μέρες. Μετά από μικρό χρονικό διάστημα, η χαοτική φύση της ατμόσφαιρας, περιορίζει την ακρίβεια της πρόγνωσης σε τοπική κλίμακα. Αντίστοιχα, η χαοτική ατμόσφαιρα είναι ένας καταλυτικός παράγοντας για την αβεβαιότητα που παρατηρείται στην μακροπρόθεσμη εποχιακή πρόγνωση. Η έγκαιρη πρόγνωση κλιματικών ανωμαλιών συνεισφέρει σημαντικά σε τομείς σχετικούς με την διαδικασία της παραγωγής, όπως ο πρωτογενής τομέας, το περιβάλλον, όπως διαχείριση υδάτινων αποθεμάτων, αλλά και τομείς της οικονομίας, όπως ο τουρισμός. Στην παρούσα διατριβή πραγματοποιείται η αξιολόγηση των συστημάτων εποχιακής πρόγνωσης σε σύγκριση με τα δεδομένα reanalysis ERA5, αλλά και η εκτίμηση της αξιοπιστίας των συστημάτων πρόγνωσης ως προς την ικανότητα προσομοίωσης της εποχιακή κλιματικής μεταβολής, με γνώμονα την κλιματική διάμεσο των παραμέτρων της θερμοκρασίας και της βροχόπτωσης. Σύμφωνα με τα αποτελέσματα, το διαφορετικό lead time των μοντέλων δεν παρουσιάζει σημαντικές διαφορές σε κανένα από τα μοντέλα. Όλα τα συστήματα εποχιακής πρόγνωσης παρουσιάζουν ένα διακριτό σήμα υποεκτίμησης του ετήσιου θερμοκρασιακού εύρους στην Ευρώπη, επίσης παρουσιάζεται ψυχρότερη η άνοιξη και θερμότερο το φθινόπωρο. Οι περιοχές με έντονο ανάγλυφο ή σημαντική εναλλαγή ξηράς και θάλασσας εμφανίζουν στατιστικά σημαντικές διαφορές. Για την παράμετρο της βροχόπτωσης δεν προέκυψε κάποιο καθαρό σήμα, με σωστές προγνώσεις να εναλλάσσονται στο χώρο και στο χρόνο. Η περιοχή της ΝΑ Ευρώπης είναι η περιοχή που εμφανίζει καλύτερα αποτελέσματα τόσο για την θερμοκρασία όσο και για τη βροχόπτωση.

 Seasonal forecasting occurs between short-term weather forecast and long-term climate projection. Seasonal forecasting is carried out for a time period of one to six months from the initial condition. It differs from weather forecast, as the last one gives much more spatial and temporal detail, but for a short period in the future. Beyond a few days, the atmosphere's chaotic nature limits the ability to predict precise changes at local scales. This is one of the reasons that meso-scale forecasts of atmospheric conditions present some uncertainty. Early forecasting of potential climate anomalies contributes significantly to sectors related to the production process and the environment, such as agriculture and the management of water resources and water supplies, but also various sectors of the economy, such as tourism. The present study addresses the evaluation of different seasonal climate models based on the accuracy of their temperature and precipitation projection in Europe. Climate models were evaluated by comparing projections with the most recent reanalysis database, ERA5. Furthermore, this study addresses evaluation of seasonal forecast systems predicting climate variability based on the ensemble members hitting precipitation and temperature variation related to climate median According to the results, the different lead time of the models does not show significant differences in any of the models. All seasonal forecasting systems show a distinct underestimation of the annual temperature range in Europe, moreover the spring temperatures are underestimated, and the autumn temperatures are overestimated. Regions with high altitude or significant land-sea alternation show statistically significant differences. For the rainfall parameter no clear signal was obtained, with correct forecasts alternating in space and time. The SE Europe region is the region with the best results for both temperature and precipitation.

Πλήρες Κείμενο:



Athanasiadis, P. J., Bellucci, A., Scaife, A. A., Hermanson, L., Materia, S., Sanna, A., et al., 2017. A multi‐system view of wintertime NAO seasonal predictions. Journal of Climate, 30, 1461– 1475.

Baehr J., Fröhlich K., Botzet M. et al., 2015. The prediction of surface temperature in the new seasonal prediction system based on the MPI-ESM coupled climate model. Clim Dyn 44, 2723–2735. https://doi.org/10.1007/s00382-014-2399-7

Baker, L. H., Shaffrey, L. C., Sutton, R. T., Weisheimer, A., & Scaife, A. A., 2018. An intercomparison of skill and overconfidence/underconfidence of the wintertime North Atlantic Oscillation in multimodel seasonal forecasts. Geophysical Research Letters, 45(15), 7808-7817.

Barnston, A. G., 1994. Linear short-term climate predictive skill in the northern hemisphere. J. Climate, 7:1513–1564.

Barnston, A. G., Van den Dool, H. M., Zebiak, S. E., Barnett, T. P., Ji, M., Rodenhuis, D. R., ... & Livezey, R. E., 1994. Long-lead seasonal forecasts—where do we stand?. Bulletin of the American Meteorological Society, 75(11), 2097-2114.

Batté L., Dorel L., Ardilouze C., Guérémy J-F., 2019 Documentation of the METEO-FRANCE seasonal forecasting system 7 C3S_D330_3.1.1_201906_System 7 documentation_v1, 2018/C3S_330_Météo-France/SC1

Bauer P., A. Thopre and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525:47–55.

Beverley J.D., Woolnough S.J., Baker L.H. et al., 2019. The northern hemisphere circumglobal teleconnection in a seasonal forecast model and its relationship to European summer forecast skill. Clim Dyn 52, 3759–3771 https://doi.org/10.1007/s00382-018-4371-4

Bjerknes, J., 1966. A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus, 18:820–829.

Bjerknes, J., 1969. Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97:163–172.

Blanford, H.F., 1884. On the connexion of the Himalayan snow with dry winds and seasons of droughts in India. Proceedings of the Royal Society of London, 37:3–22.

Blunden, J., D.S. Arndt, and G. Hartfield (eds.), 2018: State of the Climate in 2017. Bull. Amer. Meteor. Soc., 99:8, Si–S310, doi:10.1175/2018BAMSStateoftheClimate.1

Ceglar, A., Toreti, A., Prodhomme, C. et al, 2018. Land-surface initialisation improves seasonal climate prediction skill for maize yield forecast. Sci Rep 8, 1322. https://doi.org/10.1038/s41598-018-19586-6

Ceglar, A., Toreti, A., 2021. Seasonal climate forecast can inform the European agricultural sector well in advance of harvesting. npj Clim Atmos Sci 4, 42. https://doi.org/10.1038/s41612-021-00198-3

Coumou, D. and S. Rahmstorf, 2012. A decade of weather extremes. Nature Climate Change, 2:491–496.

De Felice, M., Soares, M. B., Alessandri, A., Troccoli, A., 2019. Scoping the potential usefulness of seasonal climate forecasts for solar power management, Renewable Energy, Volume 142, Pages 215-223, ISSN 0960-1481, https://doi.org/10.1016/j.renene.2019.03.134.

Dorel L., Ardilouze C., Déqué M., Batté L., Guérémy J-F., 2017. Documentation of the METEO-FRANCE Pre-Operational seasonal forecasting system SERVICE CONTRACT N° 2015/C3S_433_Lot1- METEO-FRANCE (Deliverable D3.1).

Drosdowksy, W. and L.E. Chambers 2001. Near-Global sea surface temperature anomalies as predictors of Australian seasonal rainfall. J. Climate, 14:1677–1687

Easterling, D.R. and Co-authors, 2000. Climate Extremes: Observations, modeling and impacts. Science, 289:2068-2074

François B., 2016. Influence of winter north-atlantic oscillation on climate-related-energy penetration in Europe. Renew. Energy, 99 (2016), pp. 602-613

Goddard, L., S.J. Mason, S.E. Zebiak, C.F. Ropelewski, R. Basher and M.A. Cane, 2001. Current approaches to seasonal to interannual climate predictions. Int. J. Climato., 9:1111–1152.

Hailu Gebrechorkos S. and Sheffield J., 2020. “Evaluation of the European Seasonal forecast Models for hydrological forecasting for improved water management in Africa”, 2020, EGUGA..2218791H

Harrison, M., A. Troccoli, M. Coughlan and J.B. Williams, 2008. Seasonal Forecasts in Decision Making. In: Seasonal Climate: Forecasting and Managing Risk (A. Troccoli, M. Harrison, D.L.T. Anderson and S.J. Mason, eds.), Dordrecht, Springer

Hersbach H, Bell B, Berrisford P, et al., 2020. The ERA5 global reanalysis. Q J R Meteorol Soc. 2020; 146: 1999– 2049. https://doi.org/10.1002/qj.3803

Huidong J, Ming L., Hopwood G, Hochman Z., Bakar K S., 2022. Improving early-season wheat yield forecasts driven by probabilistic seasonal climate forecasts, Agricultural and Forest Meteorology, Volume 315,108832, ISSN 0168-1923, https://doi.org/10.1016/j.agrformet.2022.108832.

Intergovernmental Panel on Climate Change, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. Ji, M., A. Kumar and A. Leetmaa 1994. A multiseason climate forecast system at the National Meteorological Center. Bull. Amer. Meteo. Soc., 75:569–577.

Johnson, S. J., Stockdale, T. N., Ferranti, L., Balmaseda, M. A., Molteni, F., Magnusson, L., Tietsche, S., Decremer, D., Weisheimer, A., Balsamo, G., Keeley, S. P. E., Mogensen, K., Zuo, H., and Monge-Sanz, B. M., 2019. ECMWF: the new ECMWF seasonal forecast system, Geosci.Model Dev., 12, 1087–1117, https://doi.org/10.5194/gmd-12-1087-2019.

Kang, D., Lee, M.‐I., Im, J., Kim, D., Kim, H.‐M., Kang, H.‐S., et al., 2014. Prediction of the Arctic Oscillation in boreal winter by dynamical seasonal forecasting systems. Geophysical Research Letters, 41, 3577–3585.

Kim, Y., Ratnam, J.V., Doi, T. et al., 2019. Malaria predictions based on seasonal climate forecasts in South Africa: A time series distributed lag nonlinear model. Sci Rep 9, 17882. https://doi.org/10.1038/s41598-019-53838-3

Lawrence, Z. D., Perlwitz, J., Butler, A. H., Manney, G. L., Newman, P. A., Lee, S. H., & Nash, E. R., 2020. The remarkably strong Arctic stratospheric polar vortex of winter 2020: Links to record-breaking Arctic Oscillation and ozone loss. Journal of Geophysical Research: Atmospheres, 125, e2020JD033271. https://doi.org/10.1029/2020JD033271

Lee, D.Y., Doblas-Reyes F.J., Torralba V. et al., 2019. Multi-model seasonal forecasts for the wind energy sector. Clim Dyn 53, 2715–2729. https://doi.org/10.1007/s00382-019-04654-y

Lee, S. H., Lawrence, Z. D., Butler, A. H., & Karpechko, A. Y., 2020. Seasonal forecasts of the exceptional Northern Hemisphere winter of 2020. Geophysical Research Letters, 47, e2020GL090328. https://doi.org/10.1029/2020GL090328

Lledó, L, Torralba, V., Soret, A., Ramon, J., Doblas-Reyes, F.J., 2019. Seasonal forecasts of wind power generation, Renewable Energy, Volume 143, 0ages 91-100,ISSN 0960-1481, https://doi.org/10.1016/j.renene.2019.04.135.

Lusted, L. B., 1971. Signal Detectability and Medical Decision-Making: Signal detectability studies help radiologists evaluate equipment systems and performance of assistants. Science, 171(3977), 1217-1219.

MacLachlan, C., Arribas, A., Peterson, K.A., Maidens, A., Fereday, D., Scaife, A.A., Gordon, M., Vellinga, M., Williams, A., Comer, R.E., Camp, J., Xavier, P., Madec, G. 2015. Global Seasonal forecast system version 5 (UKMet5): a high-resolution seasonal forecast system. Q.J.R. Meteorol. Soc., 141: 1072-1084. https://doi.org/10.1002/qj.2396

Meehl, G.A. and C. Tebaldi, 2004. More intense, more frequent, and longer lasting heat waves in 21st century. Science, 305:994–997

Metz, C. E., 1978. Basic principles of ROC analysis. In Seminars in nuclear medicine (Vol. 8, No. 4, pp. 283-298). WB Saunders.

NOAA, 2020. National Centers for Environmental Information State of the Climate: Global Climate Report for February 2020.

Pai, D.S., A. Suryachandra Rao, S. Senroy, M. Pradhan, P. A. Pillai, and M. Rajeevan, 2017.

Performance of the operational and experimental long-range forecasts for the 2015 southwest monsoon rainfall, Current Science, 112:68–75.

Peterson, W. W. T. G., Birdsall, T., & Fox, W., 1954. The theory of signal detectability. Transactions of the IRE professional group on information theory, 4(4), 171-212.

Porras Ι., Solé, J. M., Marcos, R., Arasa, R., 2021. Meteorological and Climate Modelling Services Tailored to Viticulturists. Atmospheric and Climate Sciences. 11. 148-164. 10.4236/acs.2021.111010.

Pozo-Vázquez, D., 2004. NAO and solar radiation variability in the European North Atlantic region, Geophys. Res. Lett., 31, pp. 1-4

Rajeevan M., D. S. Pai, R. Anil Kumar, and B. Lal, 2007, New statistical models for long-range forecasting of southwest monsoon rainfall over India, Climate Dynamics, 28:813–828.

Rasmussοn, E. M. and T. H. Carpenter, 1983. The relationship between eastern equatorial Pacific sea surface temperatures and rainfall over India and Sri Lanka. Mon. Wea. Rev., 111:517–528

Ropelewski, C. F. and M. Halpert, 1987. Global and regional scale precipitation patterns associated with the El Nino/Southern Oscillation. Mon. Wea. Rev., 110:1606–1626.

Scaife, A. A., Arribas, A., Blockley, E., Brookshaw, A., Clark, R. T., Dunstone, N., ... & Williams, A., 2014. Skillful long‐range prediction of European and North American winters. Geophysical Research Letters, 41(7), 2514-2519.

Stockdale, T.N., D.L.T. Anderson, J.O.S. Alves, and M.A. Balmaseda, 1998. Global seasonal rainfall forecasts using a coupled ocean-atmosphere model. Nature, 392:371–373

Velikou, K., Lazoglou, G., Tolika, K., Anagnostopoulou, C., 2022. Reliability of the ERA5 in Replicating Mean and Extreme Temperatures across Europe. Water.14(4):543. https://doi.org/10.3390/w14040543

Walker, G.T., 1908. Correlation in seasonal variation of climate (Introduction). Mem. India Meteorol, Dept., 20:117–124

Walker, G.T., 1910. Correlation in seasonal variations of weather, II, Mem. India Meteorol. Dept., 21:22–30.

Walker, G.T., 1914. A further study of relationships with Indian monsoon rainfall, II, Mem. India Meteorol. Dept., 23:123–129.

Walker, G.T., 1923. Correlation in seasonal variations of weather, VIII, A preliminary study of world weather, Mem. India Meteorol. Dept., 24:75–131.

Weisheimer, A., Palmer, T.N., 2014. On the reliability of seasonal climate forecasts. J. R. Soc. Interface.112013116220131162 https://doi.org/10.1098/rsif.2013.1162

Weisheimer, A, Doblas-Reyes, FJ, Jung, T, Palmer, TN, 2011a. On the predictability of the extreme summer 2003 over Europe.Geophys. .Res. Lett. 38, L05704. (doi:10.1029/2010GL046455).

World Meteorological Organisation, 1992. Standardized Verification System (SVS) For Long-Range Forecasts (LRF), Attachment II.8

World Meteorological Organisation, 2020. Guidance on Operational Practices for Objective Seasonal Forecasting (WMO – No. 1246). Geneva

Zebiak, S.E. and M.A. Cane, 1987. A model El Nino=Southern Oscillation. Mon. Wea. Rev., 115:2262–2278.

Διαδικτυακές Πηγές

Description of HadGEM3-GC3.2-v20200929 C3S contribution - Copernicus Knowledge Base - ECMWF Confluence Wiki ανακτήθηκε στις 6-12-2021

Seasonal forecasts and the Copernicus Climate Change Service - Copernicus Knowledge Base - ECMWF Confluence Wiki ανακτήθηκε στις 6-12-2021

Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.