Applications of terrestrial laser scanning technology in structural geology

Ioannis Karamitros


An extensive research was made on LIDAR and Terrestrial Laser Scanner (TLS) applications on Geosciences and various point cloud editing methodologies were tested and applied. The methods were applied on data surveyed during the years 2014 and 2015, in the areas of Stavrakia (Crete), Tyrnavos and Gyrtoni (Thessaly), Pidima (Messinia) and Petrified forest of Lesvos. The Stavrakia fault escarpment point data produced results concerning structural analysis and geomorphology. Detailed cross-sections were  made, and its escarpment’s morphology was analyzed intensively throughout the surveyed part. The survey of the palaeoseismological trench in Tyrnavos town offered a high density point cloud of a fault plane with millimeter accuracy. The 3D model could isplay even the smallest morphological anomalies of the plane surface creating a very close to real life representation of the fault plane. The analysis of maximum curvature revealed a zone of low values that requires further investigation. A detailed visual  representation of the Gyrtoni escarpment was created and its maximum height from its base was calculated. In the Pidima area, the palaeoseismological trench 3D model was able to provide a good visual representation of the target improved greatly by the  intensity values. The point classification method was able to effectively clean and edit the point cloud. The structural analysis of the fault plane allowed for a detailed logging of its geometrical characteristics, such as the plane’s dip and dip direction angles, lineament and corrugation size and disposition. Finally, Lesvos scan data was mainly of petrified tree trunks and therefore were used only for methods concerning the creation 3D models. They proved very useful in testing different techniques in order to improve both the accuracy of the representation as well as, visual quality.

Εκτενής βιβλιογραφική έρευνα έγινε πάνω στα συστήματα LIDAR και τους επίγειους σαρωτές laser (TLS) και τις εφαρμογές τους στις γεωεπιστήμες, καθώς και για μεθόδους επεξεργασίας και ανάλυσης νέφους σημείων. Η εφαρμογή των μεθόδων έγινε σε δεδομένα που συλλέχθηκαν τα έτη 2014 και 2015 τις περιοχές των Σταυρακίων (Κρήτη), Τυρνάβου και Γυρτώνης (Θεσσαλία), Πηδήματος (Μεσσηνία) και του Απολιθωμένου δάσους της Λέσβου. Tα τρισδιάστατα μοντέλα του ρηξιγενούς πρανούς στα Σταυράκια, έδωσαν πολλά στοιχεία για τη γεωμορφολογία του πρανούς και για το χαρακτηρισμό του ως προς τις μορφοτεκτονικές του ιδιότητες, μέσω μορφολογικών τομών που έγιναν κάθετα, κατά μήκος του πρανούς. Η σάρωση της κατοπτρικής επιφάνειας στην  παλαιοσεισμολογική τομή του Τυρνάβου πρόσφερε μια λεπτομερή τρισδιάστατη απεικόνιση της με ακρίβεια χιλιοστού. Υπολογίστηκαν τα μορφολογικά στοιχεία και η μέγιστη καμπυλότητα της επιφάνειας, όπου και αποκάλυψαν δομές που χρήζουν περισσότερης  διερεύνησης. Η τρισδιάστατη αναπαράσταση της μορφολογίας του ρηξιγενούς πρανούς της Γυρτώνης έδωσε στοιχεία για το ύψος και τη κλίση του πρανούς που θα ήταν πολύ δύσκολο να αποκτηθούν με άλλες μεθόδους. Στην περιοχή του Πηδήματος, η  παλαιοσεισμολογική τομή απεικονίσθηκε με μεγάλη ευκρίνεια και σε συνδυασμό με τις τιμές ανακλαστικότητας του φωτός των υλικών που την αποτελούν. Η τομή επεξεργάστηκε γρήγορα και αποτελεσματικά με αυτοματοποιημένες μεθόδους. Η κατοπτρική  επιφάνια απεικονίσθηκε και αυτή με τις τιμές της ανακλαστικότητας και εξετάστηκαν οι γεωμετρικές ιδιότητες της, ως προς διάφορες τιμές της καμπυλότητας, τραχύτητας, προσανατολισμού και κλίσης της. Τέλος, από το Απολιθωμένο δάσος της Λέσβου,  δημιουργήθηκε μια σειρά τρισδιάστατων μοντέλων πάνω σε απολιθωμένους κορμούς δέντρων και τομές δρόμων με σκοπό τη ολοκληρωμένη απεικόνισή τους για σκοπούς του γεωπάρκου.

Πλήρες Κείμενο:



Bergbauer, S., Pollard, D.D., 2003. How to calculate normal curvatures of sampled geological surfaces. J. Struct. Geol. 25, 277–289. doi:10.1016/S0191-


Brodu, N., Lague, D., 2012. 3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: Applications in geomorphology. ISPRS J. Photogramm. Remote Sens. 68, 121–134. doi:10.1016/j.isprsjprs.2012.01.006

Bubeck, A., Wilkinson, M., Roberts, G.P., Cowie, P.A., McCaffrey, K.J.W., Phillips, R., Sammonds, P., 2015. The tectonic geomorphology of bedrock scarps on active normal faults in the Italian Apennines mapped using combined ground penetrating radar and terrestrial laser scanning. Geomorphology, Geomorphology of Active Faulting and seismic hazard assessment: New tools and future challenges 237, 38–51. doi:10.1016/j.geomorph.2014.03.011


VISUALISATION OF GEOLOGICAL OUTCROPS. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 37(Part B4).

Bucknam, R.C., Anderson, R.E., 1979. Estimation of fault-scarp ages from a scarp-height–slope-angle relationship. Geology 7, 11–14. doi:10.1130/0091-


Caputo, R., 1995. Inference of a seismic gap from geological data: Thessaly ( Central Greece) as a case study. Ann. Geophys. 38. doi:10.4401/ag-4127

Caputo, R., Catalano, S., Monaco, C., Romagnoli, G., Tortorici, G., Tortorici, L., 2010. Active faulting on the island of Crete (Greece). Geophys. J. Int. 183, 111–126. doi:10.1111/j.1365-246X.2010.04749.x

Caputo, R., Helly, B., Pavlides, S., Papadopoulos, G., 2006. Archaeo- and palaeoseismological investigations in Northern Thessaly (Greece): Insights for the seismic potential of the region. Nat. Hazards 39, 195–212. doi:10.1007/s11069-006-0023-9

Caputo, R., Helly, B., Pavlides, S., Papadopoulos, G., 2004. Palaeoseismological investigation of the Tyrnavos Fault (Thessaly, Central Greece). Tectonophysics 394, 1–20. doi:10.1016/j.tecto.2004.07.047

Caputo, R., Pavlides, S., 1993. Late Cainozoic geodynamic evolution of Thessaly and surroundings (central-northern Greece). Tectonophysics 223, 339–362.


Caputo, R., Piscitelli, S., Oliveto, A., Rizzo, E., Lapenna, V., 2003. The use of electrical resistivity tomographies in active tectonics: examples from the Tyrnavos Basin, Greece. J. Geodyn., Active Faults: Analysis, Processes and Monitoring 36, 19–35. doi:10.1016/S0264-3707(03)00036-X

Chatzipetros, A., 1998. Paleoseismological and morphotectonic study of the active fault systems at Mygdonia basin, eastern Chalkidiki and Kozani-Grevena.

Chatzipetros, A., Michailidou, Α., Tsapanos, Th.Μ., Pavlides, S., 2005. Μορφοτεκτονική - σεισμοτεκτονική μελέτη των ρηγμάτων Στρατωνίου - Βαρβάρας και Γοματίου - Μεγάλης Παναγίας (Ανατολική Χαλκιδική) = Morphotectonics and seismotectonics of th Stratoni - Barbara and Gomati - Megali Panagia active fault (Eastern Chalkidiki, N. Δελτίον Της Ελληνικής Γεωλογικής Εταιρίας 37, 127–142.

Delibasis, N., Ziazia, M., Voulgaris, N., Papadopoulos, T., Stavrakakis, G., Papanastassiou, D., Drakatos, G., 1999. Microseismic activity and seismotectonics of Heraklion Area (central Crete Island, Greece). Tectonophysics 308, 237–248.doi:10.1016/S0040-1951(99)00076-1

Delogkos, E., 2009. Χαρτης Γεωλογίας και ενεργών ρηγμάτων νήσου Λέσβου.

Dewez, T.J.B., Girardeau-Montaut, D., Allanic, C., Rohmer, J., 2016. FACETS : A CLOUDCOMPARE PLUGIN TO EXTRACT GEOLOGICAL PLANES FROM

UNSTRUCTURED 3D POINT CLOUDS. ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLI-B5, 799–804. doi:10.5194/isprs-archives-XLI-B5-799-2016

Enge, H.D., Buckley, S.J., Rotevatn, A., Howell, J.A., 2007. From outcrop to reservoir simulation model: Workflow and procedures. Geosphere 3, 469–490. doi:10.1130/GES00099.1

Fassoulas, C., 2001. The tectonic development of a Neogene basin at the leading edge of the active European margin: the Heraklion basin, Crete, Greece. J. Geodyn. 31, 49–70. doi:10.1016/S0264-3707(00)00017-X

Fassoulas, C., Καγιώργη, Μ., Νικολακάκης, Μ., 2010. Morphotectonic analysis of Stavrakia fault scarp with emphasis on seismicrisk assessment, Heraklion, Crete, Greece. Επιστημονική Επετηρίδα Του Τμήματος Γεωλογίας ΑΠΘ 39, 111.

Fountoulis, I., Mariolakos, I., Ladas, I., 2014. Quaternary basin sedimentation and geodynamics in SW Peloponnese (Greece) and late stage uplift of Taygetos Mt.

Fowler, A., France, J., Truong, O., 2011. Applications of advanced laser scanning technology in geology.


García-Sellés, D., Falivene, O., Arbués, P., Gratacos, O., Tavani, S., Muñoz, J.A., 2011. Supervised identification and reconstruction of near-planar geological surfaces from terrestrial laser scanning. Comput. Geosci. 37, 1584–1594. doi:10.1016/j.cageo.2011.03.007

Hancock, P.L., Barka, A.A., 1987. Shear Criteria in Rocks Kinematic indicators on active normal faults in Western Turkey. J. Struct. Geol. 9, 573–584. doi:10.1016/0191-8141(87)90142-8

Hodgetts, D., 2013. Laser scanning and digital outcrop geology in the petroleum industry: A review. Mar. Pet. Geol. 46, 335–354. doi:10.1016/j.marpetgeo.2013.02.014

Hu, H., Fernandez-Steeger, T.M., Dong, M., Azzam, R., 2012. Numerical modeling of LiDAR-based geological model for landslide analysis. Autom. Constr. 24, 184–193.doi:10.1016/j.autcon.2012.03.001

Jones, R.R., Kokkalas, S., McCaffrey, K.J.W., 2009. Quantitative analysis and visualization of nonplanar fault surfaces using terrestrial laser scanning (LIDAR)—The Arkitsa fault, central Greece, as a case study. Geosphere 5, 465–482. doi:10.1130/GES00216.1

Jones, R.R., Mccaffrey, K.J.W., Imber, J., Wightman, R., Smith, S.A.F., Holdsworth, R.E., Clegg, P., Paola, N.D., Healy, D., Wilson, R.W., 2008. Calibration and validation of reservoir models: the importance of high resolution, quantitative outcrop analogues. Geol. Soc. Lond. Spec. Publ. 309, 87–98. doi:10.1144/SP309.7

Kazdam, M., 2005. Reconstruction of Solid Models from Oriented Point Sets.

Kokinou, E., Skilodimou, D., Bathrellos, D., 2013. MORPHOTECTONIC ANALYSIS OF HERAKLION BASIN (CRETE, GREECE). Bull. Geol. Soc. Greece XLVII 2013, 285–294.

Kondo, H., Toda, S., Okumura, K., Takada, K., Chiba, T., 2008. A fault scarp in an urban area identified by LiDAR survey: A Case study on the Itoigawa–Shizuoka Tectonic Line, central Japan. Geomorphology 101, 731–739. doi:10.1016/j.geomorph.2008.02.012

Koukouvelas, I., Kremastas, E., Tsodoulos, I., Pavlides, S., Chatzipetros, A., Valkaniotis, S., Papathanassiou, G., Caputo, R., 2013. New insights from palaeoseismological trench across the Grytoni Fault (Central Greece). Comparison with other Aegean active faults. Geophys. Res. Abstr., EGU General Assembly 2013 15.

Mariolakos, I., Spyridonos, E., 2010. Remarks on the karstification in the wider area of the Upper Messinia closed hydrogeological basin (SW Peloponnesus, Greece). Δελτίον Της Ελληνικής Γεωλογικής Εταιρίας 43, 1785–1791.

Mountrakis, D.M., 2010. Geology of Greece.

Oliveto, A., Mucciarelli, M., Caputo, R., 2004. HVSR prospecting in multi-layered environments: An example from the Tyrnavos Basin (Greece). J. Seismol. 8, 395–406. doi:10.1023/B:JOSE.0000038452.12593.6f

Pavlides, S., Caputo, R., 2004. Magnitude versus faults’ surface parameters: quantitative relationships from the Aegean Region. Tectonophysics, Active Faults of the Eastern Hemisphere 380, 159–188. doi:10.1016/j.tecto.2003.09.019

Pavlides, S., Caputo, R., Koukouvelas, I., Kokkalas, S., Chatzipetros, A., 2006.Paleoseismological investigations of Aegean-type active faults in mainland Greece and their implications. Geol. Soc. Am. Spec. Pap. 409, 175–188.doi:10.1130/2006.2409(10)

Rosser, N.J., Petley, D.N., Lim, M., Dunning, S.A., Allison, R.J., 2005. Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion. Q. J. Eng.Geol. Hydrogeol. 38, 363–375. doi:10.1144/1470-9236/05-008

Sagy, A., Brodsky, E.E., Axen, G.J., 2007. Evolution of fault-surface roughness with slip. Geology 35, 283–286. doi:10.1130/G23235A.1

Sboras, S., Ganas, A., Pavlides, S., 2010. Morphotectonic analysis of the neotectonic and active faults of Beotia (Central Greece), using G.I.S. techniques. Δελτίον Της Ελληνικής Γεωλογικής Εταιρίας 43, 1607–1618.

Schmid, K., Waters, K., Dingerson, L., Hadley, B., Mataosky, R., Carter, J., Dare, J., 2012.Lidar 101: An introduction to lidar technology, data and applications.

Schumann, A., Arndt, D., Wiatr, T., Götz, A.E., Hoppe, A., 2011. High-resolution terrestrial laser scanning and 3D modelling of a mineral deposit for extraction management optimisation [Hochauflösendes Terrestrisches Laserscanning und 3D-Modellierung einer Kalklagerstätte zur Optimierung des Abbaumanagements]. Z. Dtsch. Ges. Für Geowiss. 162, 435–442. doi:10.1127/1860-1804/2011/0162-0435

Souza, M.K., Veronez, M.R., Tongoli, F.M.W., Silvera Jr., L.G., Inocencio, L.C., Silva,R.M., Modena, R.C.C., 2013. Terrestrial Laser Scanning Application for Measuring of Structures Information in Geological Outcrops. Int. J. Adv. Remote Sens. GIS 2,260–270.

Tsodoulos, I.M., Koukouvelas, I.K., Pavlides, S., 2008. Tectonic geomorphology of the easternmost extension of the Gulf of Corinth (Beotia, Central Greece). Tectonophysics, Earthquake Geology: Methods and Applications 453, 211–232. doi:10.1016/j.tecto.2007.06.015

Tsodoulos, I.M., Stamoulis, K., Caputo, R., Koukouvelas, I., Chatzipetros, A., Pavlides, S., Gallousi, C., Papachristodoulou, C., Ioannides, K., 2016. Middle–Late Holocene earthquake history of the Gyrtoni Fault, Central Greece: Insight from optically stimulated luminescence (OSL) dating and paleoseismology. Tectonophysics 687, 14–27. doi:10.1016/j.tecto.2016.08.015

Valkaniotis, S., Betzelou, K., Zygouri, V., Koukouvelas, I., Ganas, A., 2015. Late Quaternary tectonic activity and paleoseismicity of the Eastern Messinia Fault Zone, SW Peloponessus (Messinia, Greece)., in: EGU General Assembly Conference Abstracts. p. 13215.

Velitzelos, E., Zouros, N., 1998. New results on the petrified forest of Lesvos. Δελτίον Της Ελληνικής Γεωλογικής Εταιρίας 32, 133–142.

Wallace, R.E., 1977. Profiles and ages of young fault scarps, north-central Nevada. Geol. Soc. Am. Bull. 88, 1267–1281. doi:10.1130/0016-


Wiatr, T., Reicherter, K., Papanikolaou, I., Fernandez-Steeger, T., Mason, J., 2013. Slip vector analysis with high resolution t-LiDAR scanning. Elsevier, Tectonophysics 608, 947–957.

Wilkinson, M., 2012. The use of Terrestrial Laser Scanning in characterizing active tectonic processes from postseismic slip to the long term growth of normal faults (Doctoral). Durham University.

Wilkinson, M., McCaffrey, K.J.W., Roberts, G., Cowie, P.A., Phillips, R.J., Michetti, A.M., Vittori, E., Guerrieri, L., Blumetti, A.M., Bubeck, A., Yates, A., Sileo, G., 2010. Partitioned postseismic deformation associated with the 2009 Mw 6.3 L’Aquila earthquake surface rupture measured using a terrestrial laser scanner. Geophys. Res. Lett. 37, L10309. doi:10.1029/2010GL043099

Zouros, N., 2010. Lesvos Petrified Forest geopark, Greece: geoconservation, Geotourism and Local development.

Ζούρος, Ν., Βελιτζέλος, Ε., Βαλιάκος, Η., Λαμπάκη, Ο., 2007. The Plaka petrified forest park in western Lesvos - Grecee. Δελτίον Της Ελληνικής Γεωλογικής Εταιρίας 40, 1880–1891.

Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.