Inversion of love waves from ambient noise arrays: application in the Mygdonia basin area = Αντιστροφή κυμάτων Love από δίκτυα καταγραφής περιβαλλοντικού θορύβου: εφαρμογή στην περιοχή της Μυγδονίας Λεκάνης

Konstantinos Th. Gkogkas


The current master thesis derives a new shallow 3-D Vs model for the EUROSEISTEST area (Mygdonia basin, northern Greece) from high frequency Love wave ambient noise cross-correlation tomography. The recordings were cross-correlated and the Love wave dispersion curve for each cross-correlation path was obtained from manually picking. The computed Love wave group travel-times are in excellent agreement with local geology and the errors of manually picking depict two populations, with the larger error population being spatially distributed mainly in the westernmost part of the study area. The Love wave travel-times for each frequency were inverted using a tomographic approach with the implementation of approximate Fresnel volumes, damping, spatial and inter-frequency smoothing constrains. The Love wave group velocity maps depict the main 2-D basin features and the geometry of the outcropping bedrock is well resolved. Local group slowness dispersion curves were reconstructed for each node of the tomographic grid for solutions satisfying resolution quality cut-off criteria. The local group slowness dispersion curves were inverted using a non-linear Monte Carlo approach and ground profiles with appropriate 1-D Vs variation with depth were generated. The resulting 3-D Vs model, despite its local instabilities, depicts the main basin structure. The derived average bottom layer depths are shallower than the proposed model from Rayleigh waves, with deeper formations exhibiting strong transverse anisotropy. Also, the 3-D Vs model is in good correlation with independent geological, geophysical and geotechnical information. New results for EUROSEISTEST area suggest that the joint inversion of Rayleigh and Love waves would give a better insight in understanding the local 3-D Vs structure.

Η παρούσα μεταπτυχιακή διατριβή ειδίκευσης πραγματεύεται την εφαρμογή της τομογραφικής αντιστροφής κυμάτων Love από ειδικά δίκτυα καταγραφής εδαφικού θορύβου για τη μελέτη της τρισδιάστατης επιφανειακής δομής της βόρειας Μυγδονίας λεκάνης. Αρχικά περιγράφεται η διασυσχέτιση καταγραφών εδαφικού θορύβου από ειδικό δίκτυο σεισμογράφων που είχε εγκατασταθεί στην περιοχή, καθώς και η επιλογή των καμπυλών διασποράς των κυμάτων Love για κάθε συστοιχία σεισμογράφων. Έπειτα, παρουσιάζονται οι χρόνοι διαδρομής των κυμάτων Love και τα σφάλματά τους, καθώς και η χωρική τους διασπορά που βρίσκεται σε εξαιρετική συμφωνία με την επιφανειακή γεωλογία. Στη συνέχεια περιγράφεται η μέθοδος αντιστροφής που χρησιμοποιήθηκε (αρχικό μοντέλο αντιστροφής, προσεγγιστικοί όγκοι Fresnel, παράμετροι απόσβεσης, χωρικής και συχνοτικής εξομάλυνσης) και παρουσιάζονται τα αποτελέσματα της χωρικής μεταβολής των ταχυτήτων ομάδας των κυμάτων Love για κάθε συχνότητα. Επιπλέον, περιγράφεται μία σειρά δοκιμών της αξιοπιστίας της ανάλυσης του τομογραφικού μοντέλου και της αντιστροφής, ενώ περιγράφονται και τα κριτήρια αποκοπής της τελικής λύσης. Από το τομογραφικό μοντέλο, κατασκευάστηκαν τοπικές καμπύλες διασποράς για ~270 κόμβους του καννάβου, οι οποίοι αντιστράφηκαν ανεξάρτητα με μία μη γραμμική αντιστροφή για να προσδιοριστεί η κατανομή των ταχυτήτων των εγκαρσίων κυμάτων με το βάθος. Το τελικό τρισδιάστατο μοντέλο που προέκυψε από την υπέρθεση των μονοδιάστατων κατανομών των ταχυτήτων των εγκαρσίων σεισμικών κυμάτων με το βάθος βρίσκεται σε συμφωνία με τις τεκτονική δομή της λεκάνης, αλλά και ανεξάρτητες γεωλογικές, γεωτεχνικές και γεωφυσικές πληροφορίες. Τα βάθη των σεισμικών ασυνεχειών εντοπίζονται πιο επιφανειακά σε σχέση με τα παλαιώτερα αποτελέσματα για τα κύματα Rayleigh. Συμπερασματικά, προτείνεται ότι η συνδυαστική αντιστροφή των κυμάτων Rayleigh και Love πιθανότατα θα δώσει μία πιο ολοκληρωμένη εικόνα της τρισδιάστατης δομής της περιοχής μελέτης, καθώς και χρήσιμες πληροφορίες για την εγκάρσια ανισοτροπία, ειδικά για τα βαθύτερα ιζήματα, όπως δείχνει η κατανομή των λόγων των ταχυτήτων των S σεισμικών κυμάτων που προσδιορίστηκαν από τα δύο είδη επιφανειακών κυμάτων.

Πλήρες Κείμενο:



Aki, K. (1957). Space and Time Spectra of Stationary Stochastic Waves, with Special Reference to Microtremors. Bull. Earthquake Res. Inst. Tokyo Univ. 25, pp. 415-457.

Aki, K., W., Lee (1976). Determination of three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes: 1. A homogenous initial model, J. Geophys. Res., 81, 4381-4399.

Ashten, M., (1978). Geological Control on the Three-Component Spectra of Rayleigh-Wave Microseism, Bulletin of the Seismological Society of America Vol. 68, 1623-1636.

Ashten, M., J., Henstridge (1984). Array Estimators and Use of Microseisms for Reconnaissance of Sedimentary Basins, Geophysics (49), 1828-1873.

Autio, U., Smirnov, M. Yu., Savvaidis, A., Soupios, P., Bastani, M., Combining electromagnetic measurements in the Mygdonian sedimentary basin, Greece, Journal of Applied Geophysics, Elsevier, Volume: 135 Special Issue, p. 261-269, DEC 2016.

Becker T.W., C.P., Conrad, A.J., Schaeffer, S., Lebedev (2014). Origin of azimuthal seismic anisotropy in oceanic plates and mantle. Earth and Planetary Science Letters 401. 236-250.

Becker, T., J., Kellogg, G., Ekstrom, R., O’ Connell (2003). Comparison of azimuthal seismic anisotropy from surface waves and finite strain from global-mantle circulation models, Geophys. J. Int., 155, 696-714.

Behm, M., G.H., Leahy, R., Snieder (2013). Retrieval of local surface wave velocities from traffic noise – an example from the La Barge basin (Wyoming), Geophysical Prospecting, 1-21, DOI:10.1111/1365-2478.12080.

Bensen, G.D., M.H. Ritzwoller, M.P., Barmin, A.L., Levshin, F., Lin, M.P., Moschetti, N.M., Shapiro, Y., Tang (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements, Geophys. J. Int., 169(3), 1239-1260.

Bonnefoy-Claudet, S., C., Cornou, P., Bard, F., Cotton, P., Moczo, J., Kristek, D. Fah (2006). H/V ratio: a tool for site effects evaluation. Results from 1-D noise simulations, Geophys. J. Int. 167, 827-837.

Bonnefoy-Claudet, S., C., F., Cotton, P., Bard (2006). The nature of noise wavefield and its applications for site effects studies A literature review. Earth Science Reviews 79, 205-227.

Bromirski, P., F. Duennebier (2002). The Near-Coastral Microseism Spectrum: Spatial and Temporal Wave Climate Relationships. Journal of Geophysical Research (107).

Burg J.-P. (2012), Rhodope: From Mesozoic convergence to Cenozoic extension. Review of petro-structural data in the geochronological frame, J. Virtual Explorer, 42 (1), doi:10.3809/jvirtex.2011.00270.

Capon, J. (1969). High-resolution frequency-wavenumber sprectrum analysis. Proc. IEEEE, Vol. 57, pp. 1408-1418.

Cerveny V, Soares EP (1992). Fresnel volume ray tracing, Geophysics, 57(7), 902-915.

Cerveny, P., E.P., Soares (1992). Fresnel volume ray tracing, Geophysics 57(7), 902-915.

Chatzipetros A., Pavlidis S. (1998). A quantitative morphotectonic approach to the study of active faults; Mygdonia basin, northern Greece. Bulletin of the Geological Society of Greece. Vol. 32-1 p. 155-164.

Christofides G., A. Koroneos, A. Liati, J. Kral (2007). The A-type Kerkini granitic complex in North Greece: Geochronology and Geodynamic Implications, Bull. Geol. Soc. Greece XXXX, 700 - 711.

Christofides G., Koroneos A., Soldatos T., Eleftheriadis G., Kilias A. (2001). Eocene magmatism (Sithonia and Elatia plutons) in the Internal Hellenides and implications for Eocene–Miocene geological evolution of the Rhodope massif (Northern Greece), in: Tertiary Magmatism in the Dinarides, Acta Vulcanologica, H. Downes, V. Orlando (eds.), 13, pp. 73–89.

Constable, S., R., Parker, C., Constable (1987). Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data, Geophysics, 52, 289-300.

Cupillard, P., L., Stehly, B., Romanowicz (2011). The one-bit noise correlation: a theory based on the concepts of coherent and incoherent noise, Geophysical Journal International, 184(3), 1397-1414.

Doukas. I., A. Fοtiou, I.M. Ifadis, K. Katsambalos, K. Lakakis, N. Petridou - Chrysohoidou, C. Pikridas, D. Rossikopoulos, P. Savvaidis., K. Tokmakidis and N. Tziavos, 2004. Displacement field estimation from GPS measurements in the Volvi area. TS16 – Deformation Measurements and Analysis I, FIG Working Week May 22-27 Athens, Greece.

Dziewonski, A., S., Bloch, M., Landisman (1969). A technique for the analysis of transient seismic signals, Bull. Seismol. Soc. Am., 59(1), 427-444.

Galanis O. C., Papazachos C. B., Hatzidimitriou P. M., and Scordilis E. M. (2005). Application of 3-d velocity models and ray tracing in double difference earthquake location algorithms: Application to the Mygdonia basin (Northern Greece), Bull. Geol. Soc. Greece, 36, 1396-1405.

Gkarlaouni, C., E. Papadimitriou, V. Karakostas, A. Kilias, S. Lasocki (2015). Fault population recognition through microseismicity in Mygdonia region (nothern Greece), Bollettino di Geofisica Teorica ed Applicata Vol. 56, 367 - 382.

Gkogkas K., Papazachos C, Anthymidis M., Ohrnberger M., Savvaidis A. (2018). Preliminary results on the 3D structure and transverse anisotropy of the EUROSEISTEST area (northern Mygdonia basin, Greece) from Love wave ambient noise tomography, 16ECEE, Thessaloniki, 18-21 June 2018.

Gouedard, P., et al. (2008). Cross-correlation of random fields: Mathematical approach and applications, Geophys Prospect., 56(3), 375-393.

Gurk M., A. S. Savvaidis, M. Bastani (2007). Tufa Deposits in the Mygdonian Basin (Northern Greece) studied with RMT/CSTAMT, VLF & Self-Potential, Kolloquium Elektromagnetische Tiefenforschung, Hotel Maxicky, Decin, Czech Tepublic, 22, 231 - 238.

Gutenberg, P. (1958) Microseisms, Advanced Geophysics (5), 53-92.

Hannemann K., Papazachos C., Ohrnberger M., Savvaidis A., Anthymidis M., and Lontsi, A.M. (2014). Three-dimensional shallow structure from high-frequency ambient noise tomography: New results for the Mygdonia basin-Euroseistest area, northern Greece, J. Geophys. Res. Solid Earth, 119, 4979-4999.

Kilias A., G. Falalakis , A. Sfeikos, E. Papadimitriou, A. Vamvaka, C. Gkarlaouni (2013). The Thrace basin in the Rhodope province of NE Greece - A tertiary supradetachment basin and its geodynamic implications, Tectonophysics 595-596, 90 - 105.

Kilias A., G. Falalakis , D. Mountrakis (1999). Cretaceous-Tertiary structures and kinematics of the Serbomacedonian metamorphic rocks and their relation to the exhumation of the Hellenic hinterland (Macedonia, Greece), Int Journ Earth Sciences 88, 513-531.

Kilias A., G. Falalakis, A. Sfeikos, E. Papadimitriou, C. Gkarlaouni, B. Karakostas (2013). The Mesohellenic trough and the Thrace basin. Two Tertiary molassic basins in Hellenides: Do they really correlate?, Bull. Geol. Soc. Greece XVII, 551 - 562.

Koufos G. D., Syrides G. E., Kostopoulos D. S., and Koliadimou K. K. (1995), Preliminary results about the stratigraphy and the palaeoenvironment of Mygdonia basin Macedonia, Greece, Geobios, 18, 243–249.

Kydonakis K., Brunn J.-P., Poujol M., Monie P., Chatzitheodoridis E. (2015). Inferences on the Mesozoic evolution of the North Aegean from the isotopic record of the Chalkidiki block, Tectonophysics, 682, 65-84. doi:10.1016/j.tecto.2016.06.006.

Lacoss R., Kelly, E., Toksoz, M., (1969). Estimation of seismic noise structure using arrays. Geophysics, Vol. 34, pp. 21-38.

Lay, T., Wallace, T. (1995). Modern Global Seismology. Academic Press.

Li, T., F., Ferguson, E., Herrin, B., Durrham (1984). High-Frequency Seismic Noise at Lajitas, Texas, Bulletin of the Seismological Society of America (Vol. 74), 2015-2033.

Lin, F.C., D., Li, R.W., Clayton, D., Hollis (2013). High-resolution 3D shallow crustal structure in Long Beach, California: Application of ambient noise tomography on a dense seismic array. Geophysics (Vol. 78), No.4, Q45-Q56.

Manakou, M. V., D. G. Raptakis, F. J. Chavez-Garcia, P. I. Apostolidis, K. D. Pitilakis (2010). 3D soil structure of the Mygdonian basin for site response analysis, Soil Dynamics and Earthquake Engineering 30, 1198 - 1211.

Marquardt, D. (1963). An algorithm for least-squares estimation of nonlinear parameters, Soc. Ind. Appl. Math. J. Appl. Math., 11, 431-441.

Menke, W. (1989). Geophysical Data Analysis: Discrete Inverse Theory. Academic Press.

Michail, M., Pipera, K., Koroneos, A., Kilias, A., and Ntaflos, T. (2016). New perspectives on the origin and emplacement of the Late Jurassic Fanos granite, associated with an intra-oceanic subduction within the Neotethyan Axios-Vardar Ocean. International Journal of Earth Sciences, 105(7), 1965–1983. doi:10.1007/s00531-016-1321-4.

Michellini, A., T., McEvilly (1991). Seismological studies at Parkfield: I. Simultaneous inversion for velocity structure and hypocenters using cubic B-splines parameterization, Bull. Seismol. Soc. Am., 81(2), 524-552.

Mountrakis D. (2010) Geology of Greece. University Studio Press; 960-12-0139-4.

Mountrakis D., Kilias A., Zouros N. (1993). Kinematic analysis and Tertiary evolution of the Pindos-Vourinos Ophiolites (Epirus-Western Macedonia Greece). Bulletin of the Geological Society of Greece, Vol. 28 p.111-128.

Mpogiatzis, P. (2010). Contribution to joint tomography of different types of seismic data, Ph.D Thesis, Aristotle University of Thessaloniki, Greece, pp. 228.

Nakamura, Y. (1989). A Method for Dynamic Characteristics Estimation of Subsurface using Microtremor on the Ground Surface, Quarterly Report of Railway Technical Research Institute (Vol. 30), 64-82.

Nogoshi, M., T., Igarashi (1971). On the Amplitude Characteristics f Microtremor (Part 2), Journal of Seismological Society of Japan (Vol. 24), 24-40.

Ohrnberger, M., D., Vollmer, F. Scherbaum (2006). WARAN - A mobile wireless array analysis system for in-field ambient vibration dispersion curve estimation, Abstract-ID 2017, 1st European Conference on Earthquake Engineering and Seismology, ECEES, 3-8 September 2006, Switzerland.

Okada, H. (2003). The Microtremor Survey Method, Society of Exploration Geophysics (SEG), 135.

Papazachos B. C. and Papazachou C. B. (2003). The Earthquakes of Greece, Ziti Editions, Thessaloniki, pp.286.

Papazachos B. C., Comninakis P. E., Deep structure and tectonics of the Eastern Mediterranean, Tectonophysics, Volume 46, Issues 3–4, 1978, Pages 285-296, ISSN 0040-1951, https://doi.org/10.1016/0040-1951(78)90208-1.

Papazachos C. B., D. A. Vamvakaris, G. N. Vargemezis and E. V. Aidona (2001). A study of the active tectonics and deformation in the Mygdonia basin (N. Greece) using seismological and neotectonic data, Bull. Geol. Soc. Greece XXXIV, 303 - 309.

Papazachos, B. C., Mountrakis, D., Psilovikos, A. and Leventakis, G. (1979). Surface fault traces and fault plane solutions of the May-June 1978 major shocks in the Thessaloniki area. Tectonophysics, 53, 171-183.

Paradisopoulou P. M., V. G. Karakostas, E.E. Papadimitriou, M. D. Tranos, C. B. Papazachos, G. F. Karakaisis (2006). Microearthquake study of the broader Thessaloniki area (Northern Greece), Annals of Geophysics Vol. 49, 1081 - 1093.

Pavlidis S., Soulakellis N. (1990). Multifractured seismogenic area of Thessaloniki 1978 earthquake (N. Greece). Proceedings of the International Earth Science Congress on Aegean Regions IESCA – 1990. International Earth Science Congress on Aegean Regions IESCA – 1990. (eds) Savaşçin, M. Y. and Eronat, A. H. Izmir, Turkey. D.E. University, Dept. of Geology. Vol.2 p.64-74.

Poli C., G. Christofides, A. Koroneos, T. Soldatos, D. Perugini, A. Langone (2009). Early Triassic granitic magmatism - Arnea and Kerkini granitic complexes - in the Vertiskos unit (Serbo-Macedonian massif, North-Eastern Greece) and its significance in the geodynamic evolution of the area, Acta Vulcanologica Special Issue, 47 - 70.

Psilovikos A. (1977). Paleogeographic development of the basin and lake of Mygdonian (Lagada - Volvi area, Greece), PhD Thesis, Department of Geology, Aristotle University of Thessaloniki.

Raptakis D. G., Chavez-Garcia F., Makra K. A., Pitilakis K. D. (2000). Site effects at Euroseistest-I. 2D Determination of the valley structure and confrontation of the observations with 1D analysis, Soil Dyn. Earthquake Eng., 19, 1-22.

Rhie, Z., B., Romanowicz (2004). Excitation of Earth’s continuous free oscillations by atmosphere-ocean-seafloor coupling. Nature Vol. 431. 552-556.

Sambridge M (1999a). Geophysical inversion with a neighborhood algorithm-I. Searching a parameter space, Geophys. J. Int., 138(2), 479-494, doi:10.1046/j.1365-246X.1999.00876.x.

Sambridge M (1999b). Geophysical inversion with a neighborhood algorithm-II. Appraising the ensemble, Geophys. J. Int., 138(2), 479-494, doi:10.1046/j.1365-246X.1999.00900.x.

Scherbaum, F. (2007). Of poles and zeros: Fundamentals of Digital Seismology, Springer, Dordrecht, Netherlands, 2nd edn.

Seidl, D. (1980). The simulation problem for broad-band seismograms, J. Geophys. Res., 48, 84-93.

Seo, K. (1997). Comparison of Measured Microtremors with Damage Distribution, In JICA, Research and Development Project on Earthquake Disaster Prevention.

Shapiro, M., M., Campillo (2004). Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise, Geophysical Research Letters (Vol. 31), L07614.

Sotiriadis L., A. Psilovikos, E. Vavliakis and G. Syrides (1983). Some Tertiary and Quaternary basins of Macedonia/Greece. Formation and evolution, Clausthaler Geologische Abhandlungen, pp 21.

Stehly, L., M., Campillo, N., Shapiro (2006). A study of the seismic noise from its long range correlation properties, J. Geophys. Res. 111, B10306.

Stein, S., Wysession, M. (2003). An Introduction to Seismology, Earthquakes and Earth Structure. Blackwell Publishing.

Tokimatsu, K. (1998). Geotechnical site characterizatin using surface waves, Earthquake Geotechnical Engineering, 1333-1368.

Tong, P., D., Zhao, D., Yang, X., Yang, J., Chen, Q., Liu (2014). Wave-equation-based travel-time seismic tomography – Part 2: Application to the 1992 Landers earthquake (Mw 7.3) area, Solid Earth, 5, 1169-1184.

Toomey, D.R., G.R. Foulger (1989). Tomographic inversion of local data from the Hengil-Grensdalur central volcano complex, Iceland, J. Geophys. Res., 94, 17,497-17,510.

Tranos M. D., E. E. Papadimitriou and A. A. Kilias (2003). Thessaloniki-Gerakarou Fault Zone (TGFZ): the western extension of the 1978 Thessaloniki earthquake fault (Northern Greece) and seismic hazard assessment, J. Struct. Geol. 25, 2109 - 2123.

Tranos M., Kilias A., Mountrakis D. (1993). Emplacement and Deformation of the Sithonia Granitoid Pluton (Macedonia, Greece). Bulletin of the Geological Society of Greece, Vol. 28-1 p. 195-210.

Vamvakaris D. A., C. B. Papazachos, E.E. Karagianni, E. M. Scordilis, P. M. Hatzidimitriou (2006). Small-scale spatial variation of the stress field in the back-arc Aegean area: Results from the seismotectonic study of the broader area of Mygdonia basin (N. Greece), Tectonophysics 417, 249-267.

Wathelet M (2008). An improved neighborhood algorithm: Parameter conditions and dynamic scaling, Geophys. Res. Lett., 35, L09301, doi:10.1029/2008GL033256.

Yamamoto, H. (2000). Estimation of Shallow S-Wave Velocity Structures from Phase Velocities of Love and Rayleigh Waves in Microtremors, Proceedings of the 12th World Conference on Earthquake Engineering (Auckland, New Zealand).

Yamanaka, H., M., Takemura, H., Ishida, M., Niwa (1994). Characteristics of Long-Period Microtremors and their Applicability in Exploration of Deep Sediments, Bulletin of the Seismological Society of America (Vol. 84), 1831-1841.

Zhang, H., S. Sarkar, M.N., Toksoz, H.S., Kuleli, F., Al-Kindy (2009). Passive seismic tomography using induced seismicity at a petroleum field in Oman, Geophysics, 74(6), WCB57–WCB69.

Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.