Μελέτη επένδυσης τοιχωμάτων σε σήραγγες με εφαρμογή γεωφυσικών μεθόδων = Study of wall reinforcement in tunnels with the application of geophysical methods.

Γεώργιος Στυλιανός Φιλιππάκος


Η παρούσα μεταπτυχιακή διατριβή αποτελεί μελέτη περίπτωσης με αντικείμενο τη διερεύνηση της  εφαρμοσιμότητας των παρακάτω γεωφυσικών μεθόδων σε περιβάλλον σήραγγας. Συγκεκριμένα, της μεθόδου του γεωραντάρ και της ηλεκτρικής τομογραφίας, σε συνδυασμό με τη μοντελοποίηση δεδομένων γεωραντάρ. Η περιοχή έρευνας όπου έλαβε μέρος η διασκόπηση είναι η σήραγγα που βρίσκεται στην περιοχή των καταρρακτών της Έδεσσας. Από την έρευνα που πραγματοποιήθηκε στο δυτικό τοιχίο της σήραγγας χαρτογραφήθηκε ο μεταλλικός οπλισμός, το πάχος του οπλισμένου σκυροδέματος, η επαφή του σκυροδέματος με την τραβερτινική βραχόμαζα, ζώνες υγρασίας καθώς και πιθανές ασυνέχειες στον τραβερτινικό σχηματισμό. Οι παραπάνω γεωφυσικές μέθοδοι αποδείχτηκαν αποτελεσματικές καθώς συνέβαλαν συνδυαστικά στη χαρτογράφηση πολλαπλών εσωτερικών δομών. Η μοντελοποίηση δεδομένων συνετέλεσε σημαντικά ως προς την ερμηνεία των γεωφυσικών προφίλ και συνείσφερε στην εξαγωγή συμπερασμάτων.

This master's thesis is a case study to investigate the applicability of the following geophysical methods in a tunnel environment. Specifically, the method of geo-radar and electrical tomography, in combination with the modeling of geo-radar data. The research area where the survey took place is the tunnel located in the area of the waterfalls of Edessa. The research carried out on the western wall of the tunnel mapped the metal reinforcement, the thickness of the reinforced concrete, the contact of the concrete with the travertine rock mass, moisture zones as well as possible discontinuities in the travertine formation. The combination of the above geophysical methods proved to be effective as it resulted to the mapping of multiple internal structures. Data modeling contributed significantly to the interpretation of geophysical profiles and contributed to the conclusions.

Πλήρες Κείμενο:



Annan, A.P., 2009. Electromagnetic principles of ground penetrating radar. Ground penetrating radar: theory and applications, 1, pp.1-37.

Annan, A.P., 2005. GPR methods for hydrogeological studies. In Hydrogeophysics (pp. 185-213). Springer, Dordrecht.

Balanis, C.A., 1989. Geometrical theory of diffraction. Advanced Engineering Electromagnetics, pp.743-764.

Bergmann, T., Robertsson, J.O. and Holliger, K., 1998. Finite-difference modeling of electromagnetic wave propagation in dispersive and attenuating media. Geophysics, 63(3), pp.856-867.

Bing, Z., Greenhalgh, S.A. and Sinadinovski, C., 1992. Iterative algorithm for the damped minimum norm, least-squares and constrained problem in seismic tomography. Exploration Geophysics, 23(3), pp.497-505.

Campos, J.R.D.R., Vidal-Torrado, P. and Modolo, A.J., 2019. Use of Ground Penetrating Radar to Study Spatial Variability and Soil Stratigraphy. Engenharia Agrícola, 39(3), pp.358-364.

Cardarelli, E. and Bernabini, M., 1997. Determination of parameters of urban waste dumps, two case histories. J. Appl. Geophys, 36, pp.167-174.

Cardimona, S., 2002. Subsurface investigation using ground penetrating radar. In Geophysics 2002. The 2nd Annual Conference on the Application of Geophysical and NDT Methodologies to Transportation Facilities and Infrastructure Federal Highway Administration (FHWA-WRC-02-001), Transportation Research Board, California Department of Transportation.

Constable, S.C., Parker, R.L. and Constable, C.G., 1987. Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52(3), pp.289-300.

Diamanti, N. and Annan, A.P., 2017, March. Air-launched and ground-coupled GPR data. In 2017 11th European Conference on Antennas and Propagation (EUCAP) (pp. 1694-1698). IEEE.

Diamanti, N., 2008. An efficient ground penetrating radar finite-difference time-domain subgridding scheme and its application to the non-descructive testing of masonry arch bridges (Doctoral dissertation, University of Edinburgh).

Ekinci, Y.L. and Demirci, A., 2008. A damped least-squares inversion program for the interpretation of Schlumberger sounding curves. Journal of Applied Sciences, 8(22), pp.4070-4078.

Fa, W., 2013. Simulation for ground penetrating radar (GPR) study of the subsurface structure of the Moon. Journal of Applied Geophysics, 99, pp.98-108.

Faucher, F., Scherzer, O. and Barucq, H., 2020. Eigenvector models for solving the seismic inverse problem for the Helmholtz equation. Geophysical Journal International, 221(1), pp.394-414.

Furman, A., Ferré, T.P. and Warrick, A.W., 2003. A sensitivity analysis of electrical resistivity tomography array types using analytical element modeling. Vadose Zone Journal, 2(3), pp.416-423.

Giannakis, I., Giannopoulos, A. and Warren, C., 2015. A realistic FDTD numerical modeling framework of ground penetrating radar for landmine detection. IEEE journal of selected topics in applied earth observations and remote sensing, 9(1), pp.37-51.

Giannopoulos, A., 2005. Modelling ground penetrating radar by GprMax. Construction and building materials, 19(10), pp.755-762.

Giannopoulos, A., 1997. The investigation of transmission-line matrix and finite-difference time-domain methods for the forward problem of ground penetrating radar. The University of York.

Heikkinen, E.J. and Saksa, P.J., 1998, June. Integrating geophysical data into bedrock model in site characterization for nuclear waste disposal. In 60th EAGE Conference and Exhibition (pp. cp-110). European Association of Geoscientists & Engineers.

Inan, U.S. and Marshall, R.A., 2011. Numerical electromagnetics: the FDTD method. Cambridge University Press.

Jazayeri, S., Klotzsche, A. and Kruse, S., 2018. Improving estimates of buried pipe diameter and infilling material from ground-penetrating radar profiles with full-waveform inversion. Geophysics, 83(4), pp.H27-H41.

Jol, H.M. ed., 2008. Ground penetrating radar theory and applications. elsevier.

Kim J.H., 2010. DC2DPro – User’s Manual, KIGAM, KOREA

Kim, J.H., 2004. RADPRO/GPR. User’s guide, KIGAM, S. Korea.

Lalagüe, A., 2015. Use of ground penetrating radar for transportation infrastructure maintenance.

Leucci, G., 2008. Ground penetrating radar: the electromagnetic signal attenuation and maximum penetration depth. Scholarly research exchange, 2008.

Lin, Z., Vozoff, K., Smith, G.H., Hatherly, P. and Engels, O.G., 1996. Joint application of seismic and electromagnetic methods to coal characterization at West Cliff Colliery, New South Wales. Exploration Geophysics, 27(4), pp.205-215.

Lines, L.R. and Treitel, S., 1984. A review of least‐squares inversion and its application to geophysical problems. Geophysical prospecting, 32(2), pp.159-186.

Marquardt, D.W., 1963. An algorithm for least-squares estimation of nonlinear parameters. Journal of the society for Industrial and Applied Mathematics, 11(2), pp.431-441.

Min, D.J., Shin, J. and Shin, C., 2015. Application of the least-squares inversion method: Fourier series versus waveform inversion. Journal of Applied Geophysics, 122, pp.62-73.

Monaghan, W. D., Trevits, M. A., & Sapko, M. J., 2005. Evaluation of Mine Seals Using Ground Penetrating Radar. In Symposium on the Application of Geophysics to Engineering and Environmental Problems 2005 (pp. 260-273). Society of Exploration Geophysicists.

Monorchio, A., Bretones, A.R., Mittra, R., Manara, G. and Martín, R.G., 2004. A hybrid time-domain technique that combines the finite element, finite difference and method of moment techniques to solve complex electromagnetic problems. IEEE transactions on antennas and propagation, 52(10), pp.2666-2674.

Mur, G., 1981. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations. IEEE transactions on Electromagnetic Compatibility, (4), pp.377-382.

Santarato, G., Abu-Zeid, N. and Chiara, P., 1998. Prospezioni geofisiche in area urbana. Geologia tecnica & ambientale, (4), pp.43-52.

Sasaki, Y., 1994. 3-D resistivity inversion using the finite-element method. Geophysics, 59(12), pp.1839-1848.

Snieder, R. and Trampert, J., 1999. Inverse problems in geophysics. In Wavefield inversion (pp. 119-190). Springer, Vienna.

Soulios, G., 1978. Nouvelles données sur la geologie et l'hydrogeologie de la region d'Arnissa-vallee et d'Edessaios (Macédoine-Grece). Thbse de

specialitY, Universit~ de Montpellier, Montpellier.

Stratton, J.A., 2007. Electromagnetic theory (Vol. 33). John Wiley & Sons.

Sudakova, M.S. and Vladov, M.L., 2018. Modern Directions of Application of Ground-Penetrating Radar. Moscow University Geology Bulletin, 73(3), pp.219-228.

Travassos, X.L., Avila, S.L., Adriano, R.D.S. and Ida, N., 2018. A review of ground penetrating radar antenna design and optimization. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 17(3), pp.385-402.

Tsourlos, P., 1995. Modelling, interpretation and inversion of multielectrode resistivity survey data (Doctoral dissertation, University of York).

Tsourlos, P. and Ogilvy, R., 1999. An algorithm for the 3-D inversion of tomographic resistivity and induced polarization data: preliminary results. Journal of the Balkan Geophysical Society, 2(2), pp.30-45.

VanDecar, J.C. and Snieder, R., 1994. Obtaining smooth solutions to large, linear, inverse problems. Geophysics, 59(5), pp.818-829.

Vargemezis, G.N., Tsourlos, P., Naxakis, V. and Stampolidis, A., 2009, September. Application of Resistivity Tomography to the Study of the

Travertine Formation of Waterfalls in Edessa, North Greece. In Near Surface 2009-15th EAGE European Meeting of Environmental and Engineering

Geophysics (pp. cp-134). European Association of Geoscientists & Engineers.

Ward, S.H., 1988, January. The resistivity and induced polarization methods. In Symposium on the Application of Geophysics to Engineering and Environmental Problems 1988 (pp. 109-250). Society of Exploration Geophysicists.

Warren, C., Giannopoulos, A. and Giannakis, I., 2016. gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar. Computer Physics Communications, 209, pp.163-170.

Warren, C., 2009. Numerical modelling of high-frequency ground-penetrating radar antennas (Doctoral dissertation, University of Edinburgh).

Yee, K., 1966. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Transactions on antennas and propagation, 14(3), pp.302-307.


Αγγελής, Δ., 2017. Γεωφυσικές μετρήσεις τοίχων και θεμελιώσεων μνημείων. Προ/Μεταπτυχιακές Διατριβές στη Βιβλιοθήκη Θεόφραστος του Τμήματος Γεωλογίας του ΑΠΘ.

Βαβλιάκης, Ε., 1998. Σχηματισμός - εξέλιξη του σπηλαίου της Έδεσσας και η θετική μετατόπιση του μετώπου των καταρρακτών

Μπλάνα, Μ., 2011. Τεχνικογεωλογικές παράμετροι κατά τη διάνοιξη της σιδηροδρομικής σήραγγας Πλατάνου (ΧΘ 68+ 086, 70 έως ΧΘ 68+ 387, 00): παρουσίαση γεωλογικής οριζοντιογραφίας και γεωλογικής μηκοτομής (Doctoral dissertation).

Στρατηγέας, Θ.Ν., 2010. Μελέτη φόρτισης μόνιμης επένδυσης σηράγγων διπλού κλάδου (Master's thesis).

Ι.Γ.Μ.Ε. Γεωλογικός Χάρτης 1:50000 Έδεσσας


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.