Αξιολόγηση των τεχνικογεωλογικών παραμέτρων εκδήλωσης εδαφικής ροής στην περιοχή Περιβόλι Γρεβενών και διερεύνηση του μηχανισμού της = Evaluation of the geotechnical parameters of a mudflow and the investigation of its mechanism in the area Perivoli, Grevena area.

Πηνελόπη Σωτήριος Σωτηρίου


Το αντικείμενο της παρούσας μεταπτυχιακής διπλωματικής εργασίας έχει σκοπό την αποτύπωση και κατανόηση των ροών με επίκεντρο τις λασπορροές. Ειδικότερα ασχολείται με ένα φαινόμενο λασπορροής που εκδηλώθηκε στο Περιβόλι Γρεβενών στις 13/1/2019. Σκοπός είναι η κατανόηση του φαινομένου, η εύρεση των παραγόντων και παραμέτρων που συντέλεσαν στην εκδήλωση της λασπορροής, η παραμετροποίηση των παραγόντων καθώς και η καλύτερη παρακολούθηση της και αποτύπωση της με ψηφιακά μέσα. Πιο συγκεκριμένα για την επίτευξη των στόχων της διπλωματικής, η εργασία χωρίστηκε ουσιαστικά σε τέσσερα (4) μέρη. Στο πρώτο μέρος αναλύεται εκτενώς μέσα από βιβλιογραφική ανασκόπηση η έννοια της λασπορροής ως φαινόμενο, περιγράφοντας τις παραμέτρους αλλά και τους παράγοντες που παίζουν ρόλο στην εκδήλωση του φαινομένου, τα μέτρα προστασίας και τα αναλυτικά μοντέλα που αφορούν την ανάλυση των λασπορροών. Το δεύτερο μέρος της έρευνας σχετίζεται αποκλειστικά με τα αίτια και τον τρόπο εκδήλωσης μιας πραγματικής περίπτωσης λασπορροής στο Περιβόλι Γρεβενών. Η έρευνα επικεντρώνεται α) στη προσωπική χαρτογράφηση και αποτύπωση της ροής από το σημείο αφετηρίας μέχρι και τα σημεία απόθεσης, μέσα από τις άξονες μεταφοράς β) στις συνθήκες που επικρατούσαν εκείνες τις μέρες και οδήγησαν στο έναυσμα της λασπορροής γ) στις παρατηρήσεις και μαρτυρίες των κατοίκων που βίωσαν το φαινόμενο τη μέρα εκδήλωσής του. Το τρίτο μέρος της έρευνας αναφέρεται στις εργαστηριακές αναλύσεις που πραγματοποιήθηκαν στα δείγματα που λήφθηκαν από την περιοχή. Οι αναλύσεις αυτές βοήθησαν στην κατάταξη του εδαφικού υλικού τόσο προς τη παραμετροποίησή του με την εκτίμηση της αντοχής του, ενώ συντέλεσαν στο να αξιολογηθεί η προέλευση και η φύση του υλικού. Τέλος το τέταρτο μέρος ασχολείται με την ψηφιακή αποτύπωσης της λασπορροής με σάρωση της περιοχής με χρήση του LiDAR, καθώς και με την ανάλυση και τη δημιουργία ενός χάρτη επιδεκτικότητας της περιοχής έρευνας με τη βοήθεια του προγράμματος Flow -R (University of Lausanne) , χρησιμοποιώντας παραμέτρους που αξιολογήθηκαν σε άλλα μέρη.

The current master thesis was conducted for the engineering geological interpretation, surveying and analysis of flows, particularly mudflows. Main focus of it was a mudflow phenomenon that occurred in Perivoli, Grevena, on the 13th of January of 2019. The aim of this study was initially to determine the nature of the mudflow and afterwards to identify and quantify the factors and the parameters that related to its occurrence, with the implementation of high-end remote sensing technologies. In order for these goals to be achieved, this study was segmented in four (4) main sections. In the first section, the main characteristic of mudflows was presented in a broader context, based mainly on a detailed literature review. In particular, the parameters and the factors that control their occurrence were specified and the methodology regarding the modeling of mudflow was established. Lastly, the most common mitigation measures for similar flow events were analyzed.
In the second section of this study, the main triggering fators and manifestations of the case study Perivoli’s mudflow were presented. The three (3) main axes of data collection in the current study was: a) the field surveys that were performed from the source areas to the deposition areas through the spreading axes, b) the conditions in the area of interest which triggering the mudflow and c) the testimonies of the residents who witnessed the events. In the third section, the methodology and the results of the laboratory tests of the soil samples that were collected from the area were discussed. These analyses led to the classification of the soil material in terms of; particle size distribution, characteristics and strength. Also, they led to the identification of the material's origin, type and its parameterization. Lastly, the fourth section includes the detailed presentation of the methodology that was followed regarding the mudflow monitoring with the usage of a LiDAR scanner. Final result of this aforementioned analysis was the creation of a susceptibility map of the area via Flow -R (University of Lausanne) software, using parameters that have evaluate in other places.

Πλήρες Κείμενο:



Ancey, C. (2007). Plasticity and geophysical flows: a review. Journal of Non-Newtonian Fluid Mechanics, 142(1-3), 4-35.

Bagnold, R. A. (1954). Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 225(1160), 49-63.

Bagnold, R. A. (1956). The flow of cohesionless grains in fluids. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 249(964), 235-297.

Baumann, V., Wick, E., Horton, P., & Jaboyedoff, M. (2011, October). Debris flow susceptibility mapping at a regional scale along the National Road N7, Argentina. In Proceedings of the 14th Pan-American conference on soil mechanics and geotechnical engineering (pp. 2-6). Canadian Geotechnical Society.

Bisantino, T., Fischer, P., & Gentile, F. (2010). Rheological characteristics of debris-flow material in South-Gargano watersheds. Natural Hazards, 54(2), 209-223.

Blahut, J., Horton, P., Sterlacchini, S., & Jaboyedoff, M. (2010). Debris flow hazard modelling on medium scale: Valtellina di Tirano, Italy. Natural Hazards and Earth System Sciences, 10(11), 2379-2390.

Blight, G. E. (1997). DESTRUCTIVE MUDFLOWS AS A CONSEQUENCE OF TAILINGS DYKE FAILURES. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 125(1), 9-18.

Badoux, H., & Gabus, J. H. (1990). Atlas géologique de la Suisse, feuille n 1285, 1: 25’000, Les Diablerets avec notice explicative.

Bradley, J. B. (1986). Hydraulics and bed material transport at high fine suspended sediment concentrations. Available from University Microfilms International 300 N. Zeeb Road, Ann Arbor, MI 48106, Order, (8618167).

Brown, B. J. (1988). Sediment transport in hyperconcentrated flows in sand-bed streams of volcanic origin. ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG MS HYDRAULICS LAB.

Calligaris, C., Boniello, M. A., & Zini, L. (2008). Debris flow modelling in Julian Alps using FLO-2D. WIT Transactions on Engineering Sciences, 60, 81-88.

CANNON, S.H., MICHAEL, J.A., GARTNER, J.E. and GLEASON, J.A. (2003a). Assessment of potential debris flow peak discharges from basins burned by the 2002 Missionary Ridge Fire, Colorado. U.S. Geological Survey Open-File Report 03-332.

Claessens, L., Heuvelink, G. B. M., Schoorl, J. M., & Veldkamp, A. (2005). DEM resolution effects on shallow landslide hazard and soil redistribution modelling. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 30(4), 461-477.

Comegna, L., Picarelli, L., & Urciuoli, G. (2007). The mechanics of mudslides as a cyclic undrained–drained process. Landslides, 4(3), 217-232.

Coussot, P., & Meunier, M. (1996). Recognition, classification and mechanical description of debris flows. Earth-Science Reviews, 40(3-4), 209-227.

Floyd, I. E., Sanchez, A., Gibson, S., & Savant, G. (2020). A Modular, Non-Newtonian, Model, Library Framework (DebrisLib) for Post-Wildfire Flood Risk Management. Hydrology and Earth System Sciences Discussions, 1-21.

Fontaínhas, A. M. C. (2019). Injection moulding simulation using OpenFOAM® (Doctoral dissertation).

Fischer, L., Rubensdotter, L., Sletten, K., Stalsberg, K., Melchiorre, C., Horton, P., & Jaboyedoff, M. (2012, June). Debris flow modeling for susceptibility mapping at regional to national scale in Norway. In Proceedings of the 11th International and 2nd North American Symposium on Landslides (pp. 3-8).

Gagoshidze, M. S. (1969). "Mudflows and floods and their control." Soviet Hydrology: Selected Papers, 4, 410-422.

Hänsel, P., Kaiser, A., Buchholz, A., Böttcher, F., Langel, S., Schmidt, J., & Schindewolf, M. (2018). Mud flow reconstruction by means of physical erosion modeling, high-resolution radar-based precipitation data, and UAV monitoring. Geosciences, 8(11), 427.

Highland, L., & Bobrowsky, P. (2018). TXT-tool 0.001-2.1 Landslide types: descriptions, illustrations and photos. In Landslide Dynamics: ISDR-ICL Landslide Interactive Teaching Tools (pp. 1-38). Springer, Cham.

Horton, P., Jaboyedoff, M. & Bardou, E. 2008. Debris flow susceptibility mapping at a regional scale. Proceedings of the 4th Canadian Conference on Geohazards, 20–24 mai 2008 Quebec

Horton, P., Jaboyedoff, M., Rudaz, B. E. A., & Zimmermann, M. (2013). Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale. Natural hazards and earth system sciences, 13(4), 869-885.

Horton, P., Jaboyedoff, M., Zimmermann, M., Mazotti, B., & Longchamp, C. (2011). Flow-R, a model for debris flow susceptibility mapping at a regional scale - some case studies. In Proceedings of the 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment - Italian Journal of Engineering Geology and Environment (pp. 875–884). Padova, Italy. doi:10.4408/IJEGE.2011-03.B-095

Iverson, R. M., & Denlinger, R. P. (2001). Flow of variably fluidized granular masses across three‐dimensional terrain: 1. Coulomb mixture theory. Journal of Geophysical Research: Solid Earth, 106(B1), 537-552.

Jaboyedoff, M., Choffet, M., Derron, M. H., Horton, P., Loye, A., Longchamp, C., ... & Pedrazzini, A. (2012). Preliminary slope mass movement susceptibility mapping using DEM and LiDAR DEM. In Terrigenous mass movements (pp. 109-170). Springer, Berlin, Heidelberg.

Jakob, M., Hungr, O., & Jakob, D. M. (2005). Debris-flow hazards and related phenomena (Vol. 739). Berlin: Springer.

Julien, P. Y., & Leon, C. A. (2000). Mud floods, mudflows and debris flows. Classification, rheology and structural design. Jornadas de Investigación JIFI.

Lato, M. (2010). Geotechnical applications of LiDAR pertaining to geomechanical evaluation and hazard identification (Doctoral dissertation, Queen's University).

O'Brien, J. S., Julien, P. Y., & Fullerton, W. T. (1993). Two-dimensional water flood and mudflow simulation. Journal of hydraulic engineering, 119(2), 244-261.

O'Brien, J. S., & Julien, P. Y. (1988). Laboratory analysis of mudflow properties. Journal of hydraulic engineering, 114(8), 877-887.

Perret, J. (2007). Géotypes, une relecture, Tracés. Société des éditions des associations techniques universitaires.

Quinn, P. F., Beven, K. J., & Lamb, R. (1995). The in (a/tan/β) index: How to calculate it and how to use it within the topmodel framework. Hydrological processes, 9(2), 161-182.

Rickenmann, D., & Zimmermann, M. (1993). The 1987 debris flows in Switzerland: documentation and analysis. Geomorphology, 8(2-3), 175-189.

Schamber, D. R., & MacArthur, R. C. (1985). One-dimensional model for mud flows (No. 109). US Army Corps of Engineers, Hydrologic Engineering Center.

TAKAHASHI, T. (1981). Estimation of potential debris flows and their hazardous zones: Soft countermeasures for a disaster. Natural disaster science, 3(1), 57-89.

Varnes, D. J. (1978). repr. 1995, Landslide classification system. Dragovich, JD; Brunengo, MJ, Landslide map and inventory, Tilton River–Mineral Creek area, Lewis County,

Washington: Washington Division of Geology and Earth Resources Open File Report, 95-1.

Varnes, D. J. (1978). Slope movement types and processes. Special report, 176, 11-33.

von Fischer, F., Keiler, M., & Zimmermann, M. (2016). Modelling of individual debris flows using Flow-R: A case study in four Swiss torrents.

Widjaja, B. (2010). Case study of mudflow using Flo2d. Inc. Sustain. Pract. Mech. Struct. Mater, 11, 533-537.

Woo, H. (1985). "Sediment concentration in hyperconcentrated flow," Ph.D. Dissertation, Colorado State University, Fort Collins, Colo

Zhang, W., & Montgomery, D. R. (1994). Digital elevation model grid size, landscape representation, and hydrologic simulations. Water resources research, 30(4), 1019-1028.

Σ. ΠΑΠΑΣΠΥΡΟΥ, 2013, Λασnορροή σε αργιλώδη εδάφη

Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.