[Εξώφυλλο]

Μελέτη της μεταλλοφορίας πορφυριτικού τύπου στην Κορυφή Κιλκίς

Χρήστος Γιαπής

Περίληψη


Στην ευρύτερη περιοχή του οικισμού Κορυφή, εκτείνεται ένα πορφυριτικό σύστημα, το οποίο βρίσκεται σε επαφή με γνεύσιο. Η ευρύτερη περιοχή ανήκει γεωτεκτονικά στην ενότητα του Βερτίσκου, της Σερβομακεδονικής μάζας. Η κρυστάλλωση του υποηφαιστειακού σχηματισμού οδήγησε στη γένεση μιας μεταλλοφορίας που φιλοξενείται τόσο στο μητρικό, όσο και στο γειτονικό πέτρωμα. Ο πορφύρης (μητρικό πέτρωμα) από ορυκτολογική άποψη αποτελείται, από σανίδινο, αλβίτη, χαλαζία, βιοτίτη, φλογοπίτη, μοναζίτη, ρουτίλιο και ζιρκόνιο, ενώ παράλληλα εμφανίζει το χαρακτηριστικό πορφυριτικό ιστό και ονομάζεται ως προφυριτικός γρανίτης-γρανοδιορίτης. Η μεταλλοφορία στον πορφύρη εμφανίζεται με τη μορφή διασπορών ή μικροφλεβιδίων και αποτελείται από σιδηροπυρίτη, χαλκοπυρίτη, μαγνητοπυρίτη και δευτερογενή κοβελλίνη. Το κυρίαρχο ορυκτό είναι ο σιδηροπυρίτης και τα υπόλοιπα μεταλλικά ορυκτά εμφανίζονται ως εγκλείσματα σε αυτόν. Ο κοβελλίνης δημιουργείται από την οξείδωση του χαλκοπυρίτη. Ο γνεύσιος (γειτονικό πέτρωμα) λόγω του τεκτονισμού που έχει υποστεί, αποτελείται από πολυάριθμες διακλάσεις, που λειτούργησαν σαν οδοί και χώροι αποθέσεις του φορτίου των μεταλλικών ρευστών του πορφύρη. Ο γνεύσιος εμφανίζει τη γνευσιακή υφή και αποτελείται ορυκτολογικά από: χαλαζία, ορθόκλαστο, αλβίτη, ανορθόκλαστο, ολιγόκλαστο, πυκνοχλωρίτη, διαβαντίτη, σερικίτη, αιματίτη, ιλμενίτη, βιοτίτη, επίδοτο, τιτανίτη, μοσχοβίτη και ρουτίλιο. Η μεταλλοφορία εμφανίζεται με την μορφή μικροφλεβιδίων και αποτελείται από σιδηροπυρίτη, χαλκοπυρίτη και δευτερογενή κοβελλίνη. Ιδιαίτερο γεωχημικό ενδιαφέρον παρουσιάζουν το ρουτίλιο και ο μοναζίτης που συναντώνται στον πορφύρη. Το ρουτίλιο εμφανίζεται μικροσκοπικά αλλοτριόμορφο και χαρακτηρίζεται από μια ζώνωση, αποτελέσματα μερικού εμπλουτισμού από βολφράμιο (W). Στη χημική του σύσταση παρατηρείται η συμμετοχή μετάλλων, όπως το βανάδιο (V2O5 έως 4,49κ.β.%), το νιόβιο (Nb2O5 έως 4,48κ.β.%), το βολφράμιο (WO3 έως 9,89κ.β.%) και το ταντάλιο (Ta2O5 έως 2,49κ.β.%) Από την άλλη μεριά, ο μοναζίτης εμφανίζεται με μικρούς αποστρογγυλεμένους κρυστάλλους που είναι διακριτοί στο ηλεκτρονικό μικροσκόπιο σάρωσης και περιέχει σημαντική περιεκτικότητα σε σπάνιες γαίες, όπως το λανθάνιο (La2O3 έως 21,21κ.β.%), το δημήτριο (Ce2O3 έως 37,09κ.β.%), το νεοδύμιο (Nd2O3 έως 24,04κ.β.%), το σαμάριο (Sm2O3 έως 4,93κ.β.%), το ύττριο (Y2O3 έως 2,15κ.β.%) και το θόριο (ThO2 έως 26,76κ.β.%), αλλά και μικρή περιεκτικότητα σε ουράνιο (UO3 έως 2,2κ.β.%). Από τη μελέτη των δειγμάτων, προκύπτει ότι η γένεση της μεταλλοφορίας συνδέεται με την κρυστάλλωση του πορφύρη και λόγω της πα-ραγένεσης του μητρικού πετρώματος, το ποσοστό συμμετοχής των μεταλλικών ορυκτών σε αυτό και ότι η δειγματοληψία πραγματοποιήθηκε σε επιφανειακές εμφανίσεις του σχηματισμού, τα δείγματα του πορφύρη αποτελούν τμήματα του συστήματος που έχει επηρρεαστεί από περισσότερες από μία εξαλλοίωση και συγκεκριμένα την ποτασσική, την προπυλιτική και τη φυλλιτική.
 
Λέξεις κλειδιά: πορφύρης, Κορυφή, γνεύσιος, πορφυριτική μεταλλοφορία, ρουτίλιο, σιδη-ροπυρίτης, μοναζίτης, χαλκοπυρίτης, Σερβομακεδονική μάζα, σπάνιες γαίες, θειούχα μεταλλοφορία.
 
 

In the wider area of Korifi settlement, there is a porphyritic system, which is in contact with gneiss. The area belongs geotectonically to the unity of Vertisco, a unit belonging to the Serbo-Macedonian mass. The crystallization of sub-volcanic formation has led to the creation of a mineralization that is housed in both the parent and the neighboring rock. The mineralogy of porphyry (parent rock) consists of sanidine, albite, quartz, biotite, phlogopite, monazite, rutile and zirconium, it also displays the characteristic porphyry tissue and called as porphyrite granite-granodiorite. The mineralization in porphyry occurs in the form of dispersions or microfibers and consists of pyrite, chalcopyrite, magnitopyrite and secondary covellite. Covellite is formatted by the oxidation of chalcopyrite. The gneiss (neighboring rock) due to the tectonism it has suffered, consists of numerous branches, which functioned as roads and spaces of deposits of the cargo of the porphyry metallic fluids. The gneiss shows the genus texture and consists of minerals of: quartz, orthoclast, albite, anorthoclase, oligoclase, pycnochlorite, diabantite, sericite, hematite, ilmenite, biotite, epidote, titanite, muscovite and rutile. The mineralization occurs in the form of microfibers and consists of pyrite, chalcopyrite and secondary covelline. Of particular geochemical interest are the rutile and the monazite that are found in porphyry. The rutile appears tiny al-to-shaped and is characterized by a zoning, results of a partial tungsten (W) enrichment. Its chemical composition is the presence of metals such as: vanadium (V2O5 to 4,49wt%), niobium (Nb2O5 to 4,48wt%), tungsten (WO3 to 9,89wt%) and tantalum (Ta2O5 to 2,49wt%). On the other hand, the monazite appears with small rounded crystals discernible in the scanning electron microscope and contains significant content in rare earths, such as lanthanum (La2O3 to 21,21wt%), cerium (Ce2O3 to 37,09 wt%), neodymium (Nd2O3 to 24,04 wt.%), samarium (Sm2O3 to 4,39 wt%) Yttrium (Y2O3 to 2,15 wt%) and thorium (ThO2 to 28,37 wt%), also found a low uranium content (UO3 to 2,2 wt%). From the study of the samples, it appears that the origin of the mineralization is associated with the crystallization of the porphyry and due to the origin of the parent rock, the percentage of participation of the mineral minerals in it and that the sampling was carried out in surface appearance of the formation, the porphyry samples are parts of the porphyry system affected by more than one alteration (overprint), namely the potassic, the propylitic and  the sericitic-phyllitic alteration zone.
 
 
Key words: porphyry, Korifi, gneiss, porphyry deposit, rutile, pyrite, monazite, chalcopy-rite, Serbo-Macedonian mass, rare elements, sulphurous deposit.


Πλήρες Κείμενο:

PDF

Αναφορές


Θεοδωρίκας Σ., 2014, Γεωχημεία, Θεσσαλονίκη

Θεοδωρίκας Σ., 2013, Ορυκτολογία Πετρολογία, Θεσσαλονίκη

Θυμιάτης Γ., 1995, Μεταλλογένεση στην περιοχή Λαοδικινού-Λειψυδρίου, Ν. Κιλκίς, Μακεδονία, Β. Ελλάδα, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης.

Ι.Γ.Μ.Ε, 1990, Γεωλογικός Χάρτης της Ελλάδας, 1:50.000, Φύλλο Χέρσον.

Κομνηνού Φ., 2006, Δομικός χαρακτηρισμός υλικών με τις τεχνικές της ηλεκτρονικής μικροσκοπίας, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης.

Μουντράκης Δ., 2010, Γεωλογία και Γεωτεκτονική Εξέλιξη της Ελλάδας, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Bonev N., Dilek Y., Hanchar J. M., Bogdanov K., and Klain L., 2012, Nd–Sr–Pb isotopic composition and mantle sources of Triassic rift Units in the Serbo-Macedonian and the western Rhodope Massifs (Bulgaria–Greece), Geological Magazine.

Brun, J.P., and Sokoutis, D., 2007, Kinematics of the southern Rhodope Core Complex (North Greece), International Journal of Earth Sciences, v. 99, p. 109–138

Burg, J.P., 2012, Rhodope: From Mesozoic convergence to Cenozoic extension, Review of petro-structural data in the geochronological frame, Journal of the Virtual Explorer, v. 39, p. 1–44.

Craig J., Vaughan D., 1994, Ore microscopy and ore petrography, United States of America.

Deer, W.A., Howie, R.A., and Zussman, J., 1992, An Introduction to The Rock-Forming Minerals.- 2nd edition, British Library Cataloguing in Publication Date, 549.

Dinter, D.A., and Royden, L., 1993, Late Cenozoic extension in northeastern Greece: Strymon Valley detachment system and Rhodope metamorphic core complex, Geology, v. 21, p. 45-48.

Dixon, J. and Dimitriadis, S., 1985, Metamorphosed ophiolitic rocks from the Serbo – Macedonian Massif, near Lake Volvi, North – East Greee, Journal of Geological Society, Special Publication, v. 17, p. 603-618

Himmerkus, F., Reischmann, T., and Kostopoulos, D., 2006, Late Proterozoic and Silurian basement Units within the Serbo-Macedonian Massif, northern Greece: the significance of terrane accretion in the Hellenides, Special Publications, Geological Society, London.

Himmerkus, F., Reischmann, T., and Kostopoulos, D., 2009a, Serbo-Macedonian revisited: a Silurian basement terrane from northern Gondwana in the Internal Hellenides, Greece, Tectonophysics.

Himmerkus, F., Reischmann, T., and Kostopoulos, D., 2009b, Triassic rift-related meta-granites in the Internal Hellenides, Greece, Geological Magazine.

Kilias, A., Falalakis, G., Mountrakis, D., 1999, Cretaceous–Tertiary structures and kinematics of the Serbomacedonian metamorphic rocks and their relation to the exhumation of the Hellenic hinterland (Macedonia, Greece), International Journal of Earth Sciences.

Kilias, A.D., Vamvaka, A., Falalakis, G., Sfeikos, A., Papadimitriou, E., Gkarlaouni, C.H., and Karakostas, B., 2015, The Mesohellenic Trough and the Paleogene Thrace Basin on the Rhodope Massif, their Structural Evolution and Geotectonic Significance in the Hellenides, Journal of Geology and Geosciences, v.4, p. 198.

Kockel, F., Mollat, H., and Gundlach, H., 1975, Hydrothermally altered and (copper) mineralized porphyritic intrusions in the Serbo-Macedonian Massif (Greece), Mineralium Deposita.

Kydonakis, K., Gallagher, K., Brun, J.-P., Jolivet, M., Gueydan, F., and Kostopoulos, D., 2014, Upper Cretaceous exhumation of the western Rhodope Metamorphic Province (Chalkidiki Peninsula, northern Greece), Tectonics, v. 33.

Lisowiec, K., Budzyn, B., Slaby, E., Renno, D., and Gotze, J., 2013, Fluid-induced magmatic and post-magmatic zircon and monazite granitoid pluton and related rhyolitic bodies, Chemie der Erde.

Lowell, J.D., and Guilbert, J.M., 1970, Lateral and vertical alteration-mineralization zoning in porphyry ore deposits, Economic Geology.

Melfos V., Vavelidis M., Christofides G., Seidel E. (2002). Origin and evolution of the Tertiary Maronia porphyry copper-molybdenum deposit, Thrace, Greece. Mineralium Deposita, 37, 648-668.

Melfos V., Voudouris P.C. (2012). Geological, Mineralogical and Geochemical Aspects for Critical and Rare Metals in Greece. Minerals, 2, 300-317; doi:10.3390/min2040300

Michailidis, Κ., 1997, An EMPA and SEM study of nioban-tungstenian rutile from the Fanos aplitic granite, Central Macedonia, Northen Greece, N. Jb. Minner. Mh. 1996, H. 12, 549-563; Stuttgart 1997.

Mohamend A. Ali, 2012, Mineral chemistry of monazite-(Nd), xenotime-(Y), apatite, fluorite and zircon hosting in lamprophyre dyke in Abu Rusheid area, South Eastern Desert, Egypt, Geologija 55/I,93-106, Ljubljana.

Pracejus B., 2008, The ore minerals under the microscope: An optical guide, Elsevier.

Richards, J.P., 2003, Tectono-magmatic precursors for porphyry Cu–(Mo–Au) deposit formation, Economic Geology.

Richards, J.P., and Mumin, A.H., 2013, Magmatic-hydrothermal processes within an evolving Earth: Iron oxide-copper-gold and porphyry Cu±Mo±Au deposits, Geology.

Sillitoe, R., H., 2010, Porphyry Copper Systems, Economic Geology, v.105, pp. 3-41.

Stergiou C., Melfos V., Voudouris P., Michailidis K., and Spry P., 2016, Mineralogical, geochemical and structural constrains of the Vathi porphyry Cu-Au±U±Mo mineralization, N. Greece, SEG Conference.

Tsirambides A. and Filippidis A., 2012, Metallic Mineral Resources of Greece, Cent. Eur. J. Geosci., 4(4), 641-650. doi:10.2478/s13533-012-01 10-2.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.