Γεωχημικά χαρακτηριστικά γρανιτικών μαγμάτων από τήξη πετρωμάτων του ηπειρωτικού φλοιού
Περίληψη
Η γένεση γρανιτικών μαγμάτων αποτελεί μια πολύπλοκη διαδικασία ιδιαίτερης γεωλογικής και γεωδυναμικής σημασίας. Βασίζεται στη μερική τήξη ιζηματογενών, μεταμορφωμένων και πυριγενών πετρωμάτων, τόσο ηπειρωτικής όσο και ωκεάνιας προέλευσης. Η παρούσα διπλωματική εργασία εστίαζει στη μελέτη πετρωμάτων του ηπειρωτικού φλοιού και πως η σύσταση τους σε συνδυασμό με τη θερμοκρασία και τη πίεση επηρεάζει τα τήγματα που θα δημιουργηθούν από τη τήξη τους. Αρχικά παραθέτονται οι βασικοί παράμετροι που επιδρούν στη διαδικασία της μερικής τήξης και οι τύποι των γρανιτών που θα προκύψουν από τα εξεταζόμενα αρχικά υλικά. Επίσης παρουσιάζεται η πειραματική μελέτη δεδομένων για τη θερμοκρασία, τη πίεση και τη σύσταση των πετρωμάτων πηγών και των αντίστοιχων τηγμάτων τους, καθώς και τα διαγράμματα που κατασκευάστηκαν σύμφωνα με αυτά. Τέλος αναφέρονται τα συμπεράσματα που εξάγονται από τα διαγράμματα, για τη μεταβολή της χημικής σύστασης από τη πηγή στο παραχθέν τήγμα. Λέξεις-κλειδιά: Γρανιτικά μάγματα, μερική τήξη, ηπειρωτικός φλοιός, θερμοκρασία, πίεση, χημική σύσταση
The generation of granitic magmas is a complex process, of particular geological and geodynamic significance. It’s based on the process of partial melting of sedimentary, metamorphic and igneous rocks, both of continental and oceanic origin. This present thesis focuses on the study of sedimentary and metamorphic rocks from the continental crust and how their composition in combination with temperature and pressure affects the granitic melts that will be produced. At first are listed the primary parameters that influence the procedure of partial melting and the types of the granites that will be generated by the different starting materials. The experimental study of data for temperature, pressure and chemical composition, and the diagrams that are made according to those data, are presented. Lastly the conclusions from the mentioned above diagrams, for the variation of the chemical composition from the source to the produced melt, are being discussed. Keywords: Granitic magmas, partial melting, continental crust, temperature, pressure, chemical composition
Πλήρες Κείμενο:
PDFΑναφορές
Bohlen S.R., Boettcher A.L., Wall V.J. & Clemens J.D. (1983). Stability of phlogopite-quartz and sanidine-quartz: a model for melting in the lower crust. Contributions to Mineralogy and Petrology 83, 270-277.
Beard J.S., Lofgen G.E., Sinha K.A. & Tollo R.P. (1994). Partial melting of apatite-bearing charnokite, granulite, diorite. Melt composition vestite mineralogy and petrologic implications. Journal of Geophysical Research 99, 21591-21603.
Chappell B.W. & White A.J.R. (1974). Two contrasting granite types. Pac. Geol. 8, 173 174.
Carmichael I.S.E., Turner J.F. & Verhoogen, J. (1974). Igneous Petrology. McGraw-Hill. London, 737 pp.
Carrington D.P. & Harley S.L. (1995). Partial melting and phase relations in high-grade metapelites: a KFMASH-system petrogenetic grid. Contributions to Mineralogy and Petrology 120, 270-291.
Carrington D.P. & Watt G.R. (1995). A geochemical and experimental study of the role of K-feldspar during water-undersaturated melting of metapelites. Chemical Geology 122, 59-76.
Clemens J.D. & Wall V.J. (1981). Origin and crystallization of some peraluminous granitic magmas. Canadian Mineralogist 19, 111-131.
Douce P.A.E. & Johnston A.D. (1991). Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. Contributions to Mineralogy and Petrology 107, 202-218.
Douce P.A.E. & Harris N. (1998) Experimental constraints on himalayan anatexis. Journal of Petrology 39, 689–710.
Douce P.A.E. & Beard J.S. (1996). Effects of P, f(O2) and Mg/Fe ratio on dehydration melting model metagreywakes. Journal of Petrology 37, 999-1024.
Gardien V., Thompson A.B., Grujic D. & Ulmer P. (1995). Experimental melting of biotite + plagioclase + quartz ± muscovite assemblages and implications for crustal melting. Journal of Geophysical Research 100, 15581-15591.
Griffiths B.J., Peucat J.J., Sheppard S. & Vidal Ph. (1985). Petrogenesis of Hercynian leucogranites from the southern Armoria massif. Earth and Planetary Science Letters 74, 235-250.
Hanson G.N. (1978). The application of trace elements to the petrogenesis of igneous rocks of granitic composition. Earth and Planetary Science Letters 38, 26-43.
Holtz F. & Johannes W. (1991). Genesis of peraluminous granites I. Experimental investigation of melt compositions at 3 and 5 Kbar and various H2O activities. Journal of Petrology 32, 935-958.
Huppert H.E. & Sparks R.S.J. (1988). The generation of granitic magmas by intrusion of basalt into continental crust. Journal of Petrology 29, 599-624.
Kilinc A. (1989). Partial melting of crustal rocks. Engineering Geology 27, 279-299
Koester E., Pawley A.R., Fernandes L.A.D., Porcher C.C. & Soliani E.Jr. (2002). Experimental melting of cordierite gneiss and petrogenesis of Syntranscurrent peraluminous granites in Souther Brazil. Journal of Petrology 43, 1595-1616
Koroneos A. (2010). Petrogenesis of the Upper Jurassic Monopigadon pluton related to the Vardar/Axios ophiolites (Macedonia, northern Greece) and its geotectonic significance. Chemie der Erde 70, 221-241.
Koroneos A., Kilias A. & Avgerinas A. (2010). Hercynian plutonic rocks of Voras Mountain, Macedonia, Northern Greece: their structure, petrogenesis, and tectonic significance. International Geology Review 55, 994-1016.
Lang H.M. & Gilott J.A. (2015). Modeling of partially melted ultrahigh-pressure metapelites, North-East Greenland Caledonides. Lithos 226, 131-146.
LeBreton N. & Thompson A.B. (1988). Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contributions to Mineralogy and Petrology 99, 226-237.
MacGregor I.D. & Basu A.R. (1974). Thermal structure of the lithosphere: a petrological model. Science, 185, 1007-1011.
MacRae N.D. & Nesbitt H.W. (1980). Partial melting of common metasedimentary rocks: a mass balance approach. Contributions to Mineralogy and Petrology 75, 21-26.
Montana A. & Brearley M. (1989). An appraisal of the stability of phlogopite in the crust and in the mantle. American Mineralogist 74, 1-4.
Montel J.M. & Vielzeuf D. (1997). Partial melting of metagraywakes, Part II. Compositions of minerals and melts. Contributions to Mineralogy and Petrology 128, 176-196.
Peterson J.W. & Newton R.C. (1989). Reversed experiments on biotite-quartz-feldspar melting in the system KMASH, implications for crustal anatexis. Journal of Geology 97, 465-486.
Pickering J.M. & Johnston D.A (1998). Fluid-absent melting behavior of a two-mica metapelite: experimental constraints on the origin of black hills granite. Journal of Petrology 39, 1787-1804.
Robertson J.K. & Wyllie P.J. (1971). Rock-water-systems with special reference to the water-deficient region. American Journal of Science 271, 252-277.
Ronov A.B. & Yaroshevsky A.A. (1969). Chemical composition of the earth’s crust. In: The Earth’s Crust and Upper Mantle. Geophysical Monograph Series 13, 37-57.
Ronov, A.B., Girin, Y.P., Kazakov G.A. & Ilyukhin M.N. (1965). Comparative geochemistry of geosynclinal and platform sedimentary rocks. Geochemistry International 2(4), 692-708.
Rushmer T. (2001). Volume change during partial melting reactions: implications for melt extraction, melt geochemistry and crustal rheology. Tectonophysics 342, 389-405.
Schmidt M.W., Vielzeuf D. & Auzanneau E. (2004). Melting and dissolution of subducting crust at high pressures: the key role of white mica. Earth and Planetary Science Letters 228, 65-84.
Schmidt M.W. (2015). Melting of pelitic sediments at subarc depths: 2. Melt chemistry, viscosities and a parameterization of melt composition. Chemical Geology 404, 168-172.
Schmidt M.W. & Mann U. (2015). Melting of pelitic sediments at subarc depths: 1. Flux vs fluid-absent melting and a parameterization of melt productivity. Chemical Geology 404, 150-167.
Skjerlie K.P., Douce P.A.E. & Johnston A.D. (1993). Fluid absent melting of layered crustal protolith: implications for the generation of anatectic granites. Contribution to Mineralogy and Petrology 114, 365-378.
Thomsen T.B. & Schmidt M.W. (2008). Melting of carbonated pelites at 2.5-5 GPa, silicate carbonatite liquid immiscibility and potassium-carbon metasomatism of the mantle. Earth and Planetary Science Letters 267, 17-31.
Vielzeuf D. & Clemens J.D. 1992. The fluid-absent melting of phlogopite + quartz: Experiments and models. American Mineralogist 77, 1206-1222.
Vielzeuf D. & Holloway J.R. (1988). Experimental determination of the fluid-absent melting relations in the pelitic system. Contributions to Mineralogy and Petrology 98, 257-276.
Ward R., Stevens G. & Kisters A. (2008). Fluid and deformation induced partial melting and melt volumesin low-temprature granulite-facies metasediments, Damara Belt, Namibia. Lithos 105, 253-271.
Wedepohl K.H. (1969). Composition and abundance of common sedimentary rocks. In: Handbook of Geochemistry 1, 251-271.
White A.J.R. & Chappell B.W. (1983). Granitoid types and their distribution in the Lachlan Fold Belt in southeastern Australia. Geol. Sot. Am. Mem. 159, 21-34.
Εισερχόμενη Αναφορά
- Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.