Μελέτη εκτίμησης - πρόβλεψης της βροχόπτωσης στην περιοχή της Θεσσαλίας. Study of rainfall estimation - prediction in the area of Thessaly
Περίληψη
σύμφωνα με τα μέτρα, που χρησιμοποιήθηκαν για την αξιολόγηση του μοντέλου, παρατηρείται μια θετική επιδεξιότητα στην πρόγνωση αυτού. Στην βελτίωση της πρόγνωσης ενός μοντέλου βροχόπτωσης, καθοριστικό ρόλο παίζει η γνώση της συμπεριφοράς της βροχόπτωσης με βάση τη συνοπτική κατάσταση της ατμόσφαιρας. Ταξινομώντας τις ημέρες βροχής της περιόδου 1958-2015, με βάση τη συνοπτική κατάταξη Καρακώστα (1992,2003), μελετάται η σχέση που συνδέει τη μεταβλητή της βροχόπτωσης με τις συνοπτικές καταστάσεις της κατάταξης. Από τη μελέτη αυτή προκύπτει ότι οι συνοπτικές καταστάσεις που διαμορφώνουν το βροχομετρικό προφίλ της περιοχής είναι οι καταστάσεις του ανοιχτού κυματισμού (L-1), του κλειστού χαμηλού (L-2), του αποκομμένου χαμηλού (L-3) και της νοτιοδυτικής κυκλοφορίας, για τις οποίες προτείνονται ως καταλληλότερα μοντέλα κατανομών για τη βροχόπτωση η Gamma, η Generalized Pareto, η Weibull και η Generalized Pareto αντίστοιχα. Από την εφαρμογή των μοντέλων στην περίοδο αξιολόγησης(2005-2015), προκύπτει η αδυναμία ενός μοντέλου να αναπαράγει τη συμπεριφορά της βροχόπτωσης λόγω της ανομοιογένειας που εμφανίζει η μεταβλητή σε μηνιαία βάση. Για το λόγο αυτό πραγματοποιήθηκαν έλεγχοι ομοιογένειας για τους μήνες μελέτης και προτείνονται ειδικά μοντέλα κατανομών για τους ομοιογενείς μήνες που προκύπτουν.
The objective of study is to study the rainfall variability and to estimate its daily amount by means of statistical models. Rainfalls one of the most important meteorological and climatic variables that play an important role in the development of a rural area, such as the region of Thessaly. The main objective is to develop a predictive model, which is capable of representing the prevailing conditions at the occurrence of the phenomenon and estimating the rainfall amount that will reach the ground. To achieve this goal, daily rainfall data and synoptic and dynamic parameters' data for the period 1979-2015 are used. Rainfall data obtained from observations of the Larissa's meteorological station. The development of the predictive model is initially carried out by means of the statistical method of the multiple regression. Estimating the exact amount of rainfall is a difficult process due to the complexity of the rainfall phenomenon. It is also apparent from the relatively low correlation of observations with model's estimations, which corresponds to 0.48. Transforming rainfall data to reduce variability of rainfall, an improvement in model predictions is achieved, with the correlation coefficient rising to 0.54. However, a simple linear model is not sufficient to estimate a variable with high variability such as rainfall. To achieve the goal, the study of rainfall and its study as a discrete variable is sought. By divide the rainfall into 4 categories, the statistical method of the discriminant analysis is applied. The functions, are resulted of applying the discriminant analysis which are representative of the state of the atmosphere and capable of reproducing the rainfall amounts. For rainfall amounts over 3mm, the percentages are lower, thus showing the model's inability to estimate such amounts with the parameters used to develop it. At the same time, this inability of the model may be due to the incompleteness of all the conditions for applying the method. Nevertheless, according to the verification measures, there is a positive skill in model's predictions. To improve the prediction of a rainfall model, the study of the rainfall behavior based on the atmosphere synoptic situation is crucial. By classifying the rain days of the period 1958-2015, based on the synoptic classification of Karakostas (1992,2003), the relationship between the rainfall variability and the synoptic situations of the classification is studied. From this study it follows that the synoptic situations that form the rainfall profile of the area are L-1, L-2, L-3 and Southwest flow(SW). For these situations, suitable rainfall distribution models are developed. In particular, for the L-1 situation, a model of the Gamma distribution is proposed, for L-2 for Generalized Pareto, for L-3 for Weibull, and for Generalized Pareto for SW. In addition to rainfall modeling based on the prevailing synoptic situation, the ability of the aforementioned models to reproduce the behavior of rainfall due to its differentiation in monthly basis. For this reason, homogeneity tests were conducted for the months of study and specific models of distributions are proposed for the resulting homogeneous months.
Πλήρες Κείμενο:
PDFΑναφορές
Ξενόγλωσση
Abaurrea, J. and J. Asín, 2005: Forecasting local daily precipitation patterns in a climate change scenario. Climate Res., 28, 183–197.
Ahrens, C. D., 2000:Essentials of Meteorology: An Invitation to the Atmosphere, Third edition, Brooks Cole, 463pp.
Alpert, P., T. Ben-Gai, A. Baharad, Y. Benjamini, D. Yekutieli, M. Colacino, L. Diodato, C.Ramis, V. Homar, R. Romero, S. Michaelides, A. Manes, 2002: The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophys Res Lett, 29(11), 311-14.
Anagnostopoulou, C. and K. Tolika, 2010: Definition of extreme precipitation thresholds in Europe using parametric statistical methods. In: Proceedings of 10th COMECAP conference, 8, 649-656.
Antolik, M. S., 2000: An overview of the National Weather Service’s centralized statistical quantitative precipitation forecasts. J. Hydrol., 239, 306–337.
Barry, R.G. and A.H. Perry, 1973: Synoptic Climatology. Methuen and Co Ltd, London, 555pp.
Bárdossy, A. and Pegram, G., 2011: Downscaling precipitation using regional climate models and circulation patterns toward hydrology, Water Resour. Res., 47, W04505, doi:10.1029/2010WR009689,
Brunetti, M., M. Maugeri, T. Nanni, 2002: Atmospheric circulation and precipitation in Italy for the last 50 years. International Journal of Climatology 22: 1455–1471.
Buishand, T.A., 1978: Some remarks on the use of daily rainfall models. J. Hydrol., 36, 295-308.
Buishand, T.A., M.V. Shabalova and T. Brandsma, 2004: On the choice of the temporal aggregation level for statistical downscaling of precipitation. J. Climate, 17, 1816 –1827.
Burgueño, A., M.D. Martínez, X. Lana and C. Serra, 2005: Statistical distributions if the daily rainfall regime in Catalonia (Northeastern Spain) for the years 1950– 2000. Int. J. Climatol., 25, 1381 – 1403.
Carter, G. M., 1986: Moving towards a more responsive statistical guidance system. Preprints, 11th Conf. on Weather Analysis and Forecasting, Kansas City, MO, Amer. Meteor. Soc., 39–45.
Cavazos T, Hewitson B. 2002. Relative performance of empiricalpredictors of daily precipitation. In Integrated Assessment and Decision Support, Proceedings of the First Biennial Meeting of the International Environmental Modelling and Software Society, Vol. 1, Rizzoli AE, Jakeman AJ (eds). Manno, Switzerland. iEMSs; 334–339.
Cheng, C.S., H. Auld, G. Li, J. Klaassen, B. Tugwood, and Q. Li, 2004: An automated synoptic typing procedure to predict freezing rain: An application to Ottawa,Ontario. Weather Forecasting, 19, 751–768.
Coles, St., 2001: An Introduction to Statistical Modeling of Extreme Values. Springer, 208pp.
Cristiano,E., M. Veldhuis, and N. Giesen, 2017: Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas – a review., Hydrol. Earth Syst. Sci., 21, 3859–3878.
Danuso F., 2002: Climak: a stochastic model for weather data generation. Italy J. Agron., 6(1), 57-71.
Diab, R.D., A. Preston-Whyte and R. Washington, 1991: Distribution of rainfall by synoptic type over Natal, South Africa. Int. J. of Clim., 11, 877-888.
Douka, M. and T. Karacostas, 2017: Statistical analyses of extreme rainfall events in Thessaloniki, Greece., Atmospheric Research,DOI:10.1016/j.atmosres.2017.
025
Douka, M., T. Karacostas, E. Katragkou and C. Anagnostolpoulou, 2017: Annual and Seasonal Extreme Precipitation Probability Distributions at Thessaloniki Based Upon Hourly Values. Perspectives on Atmospheric Sciences, (1): 521-527 Springer Atmospheric Sciences, DOI 10.1007/978-3-319-35095-0_75.
Duan, J., A.K. Sikka and G.E. Grant, 1995: A comparison of stochastic models for generating daily precipitation at the H.J. Andrews Experimental Forest., Northwest Science, 69 (4), 318 – 329.
Fealy, R., and J. Sweeney, 2007: Statistical downscaling of precipitation for a selection of sites in Ireland employing a generalised linear modelling approach. Int. J. Climatol., 27, 2083–2094.
Feidas, X., Ch. Noulopoulou, T. Makrogiannis and E. Bora-Senta, 2007: Trend analysis of precipitation time series in Greece and their relationship with circulation using surface and satellite data: 1955–2001., Theoretical and Applied Climatology, 87, 155-177.
Frei, C., C. Schr, D. Lthi, H.C. Davies, 1998: Heavy precipitation processes in the warmer climate. Geophysical Research Letters, 25, 1431–1434.
Gallego, M.C., J.A. García, J.M. Vaquero, 2005: The NAO signal in daily rainfall series over the Iberian Peninsula. Climate Research, 29, 103–109.
George, J.J., 1960: Weather Forecasting for Aeronautics. Academic Press.
Gonzalez-Rouco, J., J. Jimenez, V. Quesada and F. Valero, 2001: Quality control and homogeneity of precipitation data in the southwest of Europe. Journal of Climate, 14, 1345–1358.
Goodess C.M. and P.D. Jones. 2002: Links between circulation and changes in the characteristics of Iberian rainfall. International Journal of Climatology, 22, 1593–1615.
Goodess, C.M. and J.P. Palutikof, 1998: Development of daily rainfall scenarios for southeast Spain using a circulation-type approach to downscaling., International Journal of Climatology, 18, 1051–1083.
Groisman, P.Y., T.R. Karl, D.R. Easterling, R.W. Knight, P.F. Jamason, K.J. Hennessy, R.Suppiah, C.M. Page, J. Wibig, K. Fortuniak, V.N. Razuvaev, A. Douglas, E. Forland, P.M. Zhai, 1999: Changes in the probability of heavy precipitation. Important indicators of climate change., Climatic Change, 42, 243-283.
Groisman, P.Y., T.R. Karl, R.W. Knight, 2012: Changes in Intense Precipitation over the Central United States., J. Hydrometeor., 20, 47–66.
Heidke, P., 1926: Measures of success and goodness of wind force forecasts by the gale-warning service, Geogr. Ann., 8, 301–349.
Kang H.M. and F. Yusof, 2013: Determination of Best-fit Distribution and Rainfall Events in Damansara and Kelantan, Malaysia., Matematika, 29(1b), 43-52.
Karacostas, T. S. and P. J. Pennas, 1994: A comprehensive study of rainfall during the last five consecutive Low-Rain Years. International Conference on Atmospheric physics and Dynamics in the Analysis and Prognosis of Precipitation Fields. Rome, Italy, 343-346.
Karacostas, T. S., 2003: Synoptic, dynamic and cloud microphysical characteristics related to precipitation enhancement projects. 194-200. In: Regional Seminar on Cloud Physics and weather modification. World Meteorological Organization, WMP No. 42, WMO-TD No. 1227, 213pp.
Karacostas Th., D. Bampzelis, S. Karipidou, I. Pytharoulis, I. Tegoulias, S. Kartsios, S. Kotsopoulos, and N. Pakalidou, 2015: Comparative analysis of near-present and future synoptic conditions and their contribution to precipitation in central Greece. In Proc.: European Geosciences Union (EGU) General Assembly 2015, Vienna, Austria, 12-17 April.
Kassomenos, P., H.A. Flocas, S. Lykoudis and M. Petrakis, 1998: Analysis of mesoscale patterns in relation to synoptic conditions over an urban Mediterranean basin. Theo. Appl. Climatol., 59, 215-229.
Klein W. 1978. Statistical forecast of local weather by means of model output statistics (MOS) in objective weather forecasting. Journal of Applied Meteorology 11: 1203–1211.
Koutsoyiannis, D., 2004: Statistics of extremes and estimation of extreme rainfall, 2, Empirical investigation of long rainfall records, Hydrological Sciences Journal, 49 (4), 591–610.
Koutsoyiannis, D., 2004: Statistics of extremes and estimation of extreme rainfall, 1, Theoretical investigation, Hydrological Sciences Journal, 49 (4), 575–590.
Krichak, S.O., Tsidulko M, Albert P., 2000: Monthly synoptic patterns associated with wet/dry conditions in the eastern Mediterranean. Theoretical and Applied Climatology 65: 215–229.
Kutiel, H., T.R. Hirsch-Eshkol, M. Trkeş, 2001: Sea level pressure patterns associated with dry or wet monthly rainfall conditions in Turkey. Theoretical and Applied Climatology, 69, 39–67.
Lee, C. Application of rainfall frequency analysis on studying rainfall distribution characteristics of Chia-Nan plain area in Southern Taiwan. Journal of Crop, Environment & Bioinformatics. 2005;(2): 31-38.
Maheras, P., 1984: Weather-type classification by factor analysis in the Thessaloniki area. Journal of Climatology 4, (4), 437-443.
Maheras, P., 1988: The synoptic types and objective delimitation of the winter period in Greece., Weather, 43 (2), 40-45.
Maheras, P., E. Xoplaki, H. Kutiel, 1999: Wet and dry monthly anomalies across the Mediterranean basin and their relationship with circulation, 1860–1990., Theoretical and Applied Climatology, 64, 189–199.
Maheras P., I. Patrikas, T. S. Karacostas, and C. Anagnostopoulou., 2000: Automatic classification of circulation types in Greece: methodology, description, frequency, variability and trend analysis., Theor. Appl. Climatol. 67, 205-223.
Maheras, P., I., H.A. Flocas, T.S. Patrikas and C. Anagnostopoulou., 2001: A 40 year objective climatology of surface cyclones in the Mediterranean region: spatial and temporal distribution. International Journal of Climatology, 21, 109–130.
Maheras, P., K. Tolika, C. Anagnostopoulou, M. Vafiadis, I. Patrikas and H. Flocas, 2004: On the relationships between circulation types and changes in rainfall variability in Greece International Journal of Climatology,.24: 1695–1712.
Martínez, M.D., X. Lana, A. Burgueño, C. Serra, 2007: Spatial and temporal daily rainfall regime in Catalonia (NE Spain) derived from four precipitation indices, years 1950–2000., International Journal of Climatology,27, 1527–1632.
MacQueen J.B., 1967: Some Methods for classification and Analysis of Multivariate Observations. Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley, University of California Press, 1, 281-297
McIlveen, R., 1989: Basic Meteorology. Van Nostand Reinhoed Publications, WoKIngham, 475pp.
Michailidou, C., P. Maheras, A. Arseni-Papadimitriou, F. Kolyva-Mahera, C. Anagnostopoulou, 2009: A study of weather types at Athens and Thessaloniki and their relationship to circulation types for the cold-wet period, part II: discriminant analysis., Theor. Appl. Climatol., 97, 179-194.
Miller, R. C. 1972: Notes on analysis and severe storm forecasting procedures of the Air Force Global Weather Central. Tech. Rept. 200(R). Headquarters, Air Weather Service, USAF,. 190 pp.
Mohanty, U.C., N. Ravi, O.P. Madan, 2001: Forecasting precipitation over Delhi during the southwest monsoon season., Meteorology Applied, 8, 11–21.
Mohanty, U.C., M. Mohapatra, 2007: Prediction of occurrence and quantity of daily summer monsoon precipitation over Orissa (India)., Meteorol. Appl., 14, 95– 103.
Nazaripour, H., M. Khosravi, 2011: Identification of Precipitation Types by Cluster Analysis Method (Case Study: Zahedan. Iran)., Geography and Environmental 30 Planning, 16, 29-44.
Nguyen, V.-T.-V., T.D. Nguyen and P. Gachon 2006: On the Linkage of Large-Scale Climate Variability with Local Characteristics of Daily Precipitation and Temperature Extremes: An Evaluation of Statistical Downscaling Methods.Advances in Geosciences, 4, 1-9.
Pakalidou, N. and P. Karacosta, 2017: Statistical Analysis of a 124-Year Period of Precipitation Data in Thessaloniki., Perspectives on Atmospheric Sciences, (1): 537-543, Springer, Atmospheric Sciences, DOI 10.1007/978-3-319-35095-0_77.
Palmen, Ε. and C. Newton, 1969: Atmospheric circulation systems. Academic Press, NY, 248pp.
Papalaskaris, T.K. and D.A. Emmanouloudis, 2015: A probability distribution of annual maximum daily rainfall of ten meteorological stations of Evros river transboundary basin, Greece., 14th International Conference Environmental Science and Technology.
Parker, D.E., P.D. Jones, C.K. Folland, A. Bevan, 1994: Interdecadal changes of surface temperature since the late nineteenth century., Journal of Geophysical Research,99, 14 373–14 399.
Pennas, P. J., 2000: On the study of rainfall characteristics over Thessaloniki, Greece. ECAC-2000, 3rd European Conference on Applied Climatology, Pisa, Italy, I.A.T.A. - C.N.R.; editors: M. A. Falchi and A. Omodei Zorini, October 16-20.
Pettersen, S. 1956: Weather analysis and forecasting. Vol I: Motion and motion systems., Mc Graw Hill Book Company, 2nd ed., 428pp.
Piantadosi, J., J. W. Boland and P. G. Howlett, 2008: Generating synthetic rainfall on various timescales daily, monthly and yearly., J. Environ. Model Assess., 14, 431-438.
Rahman , M.A.,S.M.M. Kamal and M. M. Billah, 2017: Prediction and Trends of Rainfall Variability over Bangladesh., Science Journal of Applied Mathematics and Statistics. Vol. 5, No. 1, pp. 54-59. doi: 10.11648/j.sjams.20170501.18
Salami, A.W., 2004: Prediction of the annual flow regime along Asa River using probability distribution models. AMSE periodical, Lyon, France. Modelling C., 65(2), 41-56.
Saucier, W.J., 1955: Principles of Meteorological Analysis. The University of Chicago Press. 438pp.
Steinberger, E.H. and N. Gazit-Yaari, 1996: Recent changes in the spatial distribution of annual precipitation in Israel., Journal of Climate,9, 3328–3336.
Sturtevant, John S., 1995. The Severe Local Storm Forecasting Primer, 197 pp.
Thom, H.C.S., 1951: A frequency distribution for precipitation., Bull. Amer. Meteorol. Soc., 32(10), 397.
Topalogu, F., 2002: Determining Suitable Probability Distribution Models for Flow and Precipitation Series of the Seyhan River Basin., Turk. Journal of Agric., 26,189-194.
Trkeş, M., 1998: Influence of geopotential heights, cyclone frequency and southern oscillation on rainfall variations in Turkey., International Journal of Climatology, 18, 649–680.
Trkeş M., Um. Smer, G. Kiliç, 2002: Persistence and periodicity in the precipitation series of Turkey and associations with 500 hPa geopotential heights., Climate Research, 21, 59–81.
Ward, M. N. and C. K. Folland, 1991: Prediction of seasonal rainfall in the north Nordeste of Brasil using eigenvectors of sea-surface temperature. Int. J. Climatol., 11, 711-743.
Wilby, R.L. and T.M.L. Wigley, 2002: Future changes in the distribution of daily precipitation totals across North America., Geophys. Res. Lett., 29(7), 1135, doi:10.1029/2001GL013048.
Wilks, D.S., 1992: Adapting stochastic weather generation algorithms for climate change studies, Clim. Change, 22, 67-84.
Wilks, D.S., 1995: Statistical methods in the atmospheric sciences. Academic Press, 467 pp.
Wilks, D.S., 1998: Multi-site generalization of a daily stochastic precipitation model., J. Hydrol,. 210, 178–191.
Wilks, D.S., 1999: Inter annual variability and extreme-value characteristics of several stochastic daily precipitation models., Agril. and Forest Met, 93(3):153-169.
Wilson, L.J., 1982: Weather element prediction by discriminant analysis. In ECMWF Seminar/Workshop on Interpretation of Numerical Weather Prediction Products, ECMWF, Reading, 311–346.
Wilson, L. J., and M. Vallée, 2002: The Canadian Updateable Model Output Statistics (UMOS) system: Design and development tests. Wea. Forecasting, 17, 206–222.
Win N.L. and K.M. Win, 2014: The Probability Distributions of Daily Rainfall for Kuantan River Basin in Malaysia, International Journal of Science and Research,3(8), 977-983.
Woolhiser, D.A. and J. Roldan, 1982: Stochastic daily precipitation models: 2. A comparison of distribution amounts., Water Resour. Res.,18 (5), 1461 – 1468.
Xoplaki, E., J. Luterbacher, R. Burkard, I. Patrikas, P. Maheras, 2000: Connection between the large-scale 500 hPa geopotential height fileds and precipitation over Greece during winter time., Climate Research, 14, 129–146.
Yoo, S., K.S. Jung, and T.-W. Kim., 2005: Rainfall frequency analysis using a mixed Gamma distribution: evaluation of the global warming effect on daily rainfall., Hydrol. Process., 19, 3851 – 3861.
Young, K.C., 1992: A Three-Way Model for interpolating for Monthly Precipitation values. Mon. Wea. Rev., Amer. Met. Soc., 2567-2569.
Ελληνική
Βάρφη, Μ., Θ. Καρακώστας, Φ. Κολυβά-Μαχαίρα και Μ. Παπαδόπουλος, 1998: Εφαρμογή της διακρίνουσας ανάλυσης στη Μετεωρολογία. 4ο Πανελλήνιο Συνέδριο Μετεωρολογίας, Κλιματολογίας και Φυσικής της Ατμόσφαιρας, Αθήνα, 257-262.
Βαφειάδης, I.K., 2000: ∆ιερεύνηση των χαρακτηριστικών της τροπόπαυσης κατά την εµφάνιση των χαλαζοκαταιγίδων. Μεταπτυχιακή ∆ιατριβή Ειδίκευσης, Τµήµα Γεωλογίας, Α.Π.Θ., 102σελ
Ζάνης, Π., 2014: Σημειώσεις Θερμοδυναμικής και Στατιστικής Ατμόσφαιρας.
Καρακώστας, Θ., Α. Φλόκας, Ε. Φλόκα, Ο. Κακαλιάγκου και Χ. Ρίζου, 1992: Μελέτη των συνοπτικών καταστάσεων στην περιοχή της Ανατολικής Μεσογείου. Πρακτικά 1ου Πανελλήνιου Συνεδρίου Μετεωρολογίας- Κλιματολογίας -Φυσικής Ατμόσφαιρας, Θεσσαλονίκη, 469-477.
Καρακώστας, Θ. Σ., 2015: Σημειώσεις Φυσικής των νεφών και τροποποίησης καιρού.
Λιβαδάς Γ., 1962: Ο Καιρός της Πάχνης εν Ελλάδι. Επιστ. επετ. Φυσικομαθηματικής Σχολής Αριστ. Παν. Θεσσαλονίκης, Τομ. 12, Θεσσαλονίκη.
Μπαμπζέλης, Δ. 2013:Διερεύνηση συνθηκών εφαρμογής προγραμμάτων αύξησης βροχής: εφαρμογή στην ευρύτερη περιοχή της Θεσσαλίας. Διδακτορική Διατριβή, Τομέας Μετεωρολογίας και Κλιματολογίας, Α.Π.Θ., 290σελ.
Πυθαρούλης, Ι., 2015: Σημειώσεις Συνοπτικής Μετεωρολογίας.
Πυθαρούλης, Ι., 2015: Σημειώσεις Αριθμητικής Πρόγνωσης Καιρού.
Τουρναβίτη, Α., Μ. Βάρφη, και Θ. Καρακώστας, 2000: Εφαρμογή της διακρίνουσας ανάλυσης στην πρόγνωση χαλαζοκαταιγίδων. Πρακτικά 5ου Πανελλήνιου Συνεδρίου Μετεωρολογίας-Κλιματολογίας-Φυσικής Ατμόσφαιρας, Θεσσαλονίκη, 187-194.
Φλόκας Α.Α., 1984: Συμβολή στη μελέτη των μετωπικών συστημάτων στο Μεσογειακό Χώρο. Παράρτημα Επετ. Σχολής Θετικών Επιστημών, 22(35), Θεσσαλονίκη.
Φλόκας, Α. Α., 1994: Μαθήματα Μετεωρολογίας και Κλιματολογίας. Εκδόσεις Ζήτη, Θεσσαλονίκη, 465σελ.
Ιστοσελίδες: (http://www.iges.org/grads/)
Εισερχόμενη Αναφορά
- Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.