[Εξώφυλλο]

Αξιοποίηση των δορυφορικών δεδομένων του GLOBAL PRECIPITATION MEASUREMENT για τη μελέτη καταιγιδορόρων συστημάτων. Use of GLOBAL PRECIPITATION MEASUREMENT satellite data for the study of convective systems

Δημήτριος Μητρόπουλος

Περίληψη


Σκοπός της διατριβής ήταν η μελέτη ενός μέσης κλίμακας καταιγιδοφόρου συστήματος με τη χρήση δορυφορικών δεδομένων του δορυφόρου GPMCoreObservatory. Κυρίως χρησιμοποιήθηκαν οι καινοτόμες τεχνολογίες του δορυφορικού ραντάρ του με το όνομα DPR. Σύμφωνα με αυτά τα δεδομένα μπορέσαμε να εξάγουμε συμπεράσματα για τα στοιχεία μικροφυσικής του καταιγιδοφόρου συστήματος, όπως η διάμετρος και η συγκέντρωση των κατακρημνισμάτων. Επίσης, μελετήθηκαν εις βάθος η ένταση της βροχόπτωσης, η έκτασή της και το ποσό της. Επίσης, για την εξακρίβωση των δεδομένων του δορυφόρου, χρησιμοποιήθηκαν δεδομένα του δορυφόρου MSG, επίγειων ραντάρ, μετεωρολογικών σταθμών ανά την επικράτεια της Ελλάδας και ενός δικτύου καταγραφής ηλεκτρικών εκκενώσεων. Ακόμη έγινε ανάλυση των χαρακτηριστικών της περιβάλλουσας ατμόσφαιρας με τη χρήση συνοπτικών χαρτών σε διάφορα επίπεδα, κατακόρυφων τομών και τρισδιάστατων απεικονίσεων. Τέλος, συμπεράναμε πως τα δεδομένα του GPM μπορούν να δώσουν αξιόπιστα δεδομένα για τη χρήση τους στην πρόγνωση καιρού και στην επιχειρησιακή μετεωρολογία στο μέλλον.

The purpose of this thesis is the investigation of a mesoscale convective system with the use of satellite data of the GPM Core Observatory satellite. Mainly, they have been used the innovative technologies of the precipitation radar named DPR. With the help of this data we could made conclusions about the microphysical characteristics of the convective system, such as the diameter and the concentration of its water droplets. Furthermore, the rain rate, its extend and its amount are studied in depth. Also, for the validation of the satellite data, are used data from the MSG geostationary satellite, ground weather radars, weather stations and a grid of recording electric discharges. Moreover, an analysis of the characteristics of the surrounding atmosphere is made with the use of synoptic charts in various levels, vertical cross sections and three-dimensional visualizations. Finally, we concluded that the GPM’s data can give reliable data for their utilization in weather forecasting and operational weather forecasting in the future.

Πλήρες Κείμενο:

PDF

Αναφορές


Adhikari, N. B., T. Iguchi, S. Seto, and N. Takahashi, 2007: Rain Retrieval Performance of a Dual-Frequency Precipitation Radar Technique With Differential-Attenuation Constraint. Geoscience and Remote Sensing, IEEE Transactions on, 45, 2612-2618.

Alishouse, J. C., S. A. Snyder, J. Vongsathorn, and R. R. Ferraro, 1990: Determination of oceanic total precipitable water from the SSM/I. IEEE Transactions on Geoscience and Remote Sensing, 28, 811-816.

Aoshima, F., A. Behrendt, H.-S. Bauer, and V. Wulfmeyer, 2008: Statistics of convection initiation by use of Meteosat rapid scan data during the Convective and Orographically-induced Precipitation Study (COPS). Meteorologische Zeitschrift, 17, 921-930.

Appenzeller, C., and H. C. Davies, 1992: Structure of stratospheric intrusions into the troposphere. Nature, 358, 570-572.

Aufm Kampe, H., 1950: Visibility and liquid water content in clouds in the free atmosphere. Journal of meteorology, 7, 54-57.

Austin, P. M., 1987: Relation between Measured Radar Reflectivity and Surface Rainfall. Monthly Weather Review, 115, 1053-1070.

Austin, P. M., and A. C. Bemis, 1950: A QUANTITATIVE STUDY OF THE “BRIGHT BAND” IN RADAR PRECIPITATION ECHOES. Journal of Meteorology, 7, 145-151.

Awaka, J., T. Iguchi, and K. i. Okamoto, 2009: TRMM PR standard algorithm 2A23 and its performance on bright band detection. Journal of the Meteorological Society of Japan. Ser. II, 87, 31-52.

Awaka, J., M. Le, V. Chandrasekar, N. Yoshida, T. Higashiuwatoko, T. Kubota, and T. Iguchi, 2016: Rain Type Classification Algorithm Module for GPM Dual-Frequency Precipitation Radar. Journal of Atmospheric and Oceanic Technology, 33, 1887-1898.

Barbosa, H. A., I. W. da Silva Junior, A. G. Ertük, and J. Prieto, 2011: The cloud-top SEVIRI data for monitoring convective storms. Anais XV Simpósio Brasileiro de Sensoriamento Remoto—SBSR, Curitiba, PR, Brasil, 30, 2179.

Bedka, K., J. Brunner, R. Dworak, W. Feltz, J. Otkin, and T. Greenwald, 2010: Objective Satellite-Based Detection of Overshooting Tops Using Infrared Window Channel Brightness Temperature Gradients. Journal of Applied Meteorology and Climatology, 49, 181-202.

Bolton, D., 1980: The computation of equivalent potential temperature. Monthly weather review, 108, 1046-1053.

Bringi, V., T. A. Seliga, and K. Aydin, 1984: Hail detection with a differential reflectivity radar. Science, 225, 1145-1148.

Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop Size Distribution in Different Climatic Regimes from Disdrometer and Dual-Polarized Radar Analysis. Journal of the Atmospheric Sciences, 60, 354-365.

Brown, J. M., 1979: Mesoscale Unsaturated Downdrafts Driven by Rainfall Evaporation: A Numerical Study. Journal of the Atmospheric Sciences, 36, 313-338.

Calheiros, R. V., and I. Zawadzki, 1987: Reflectivity-Rain Rate Relationships for Radar Hydrology in Brazil. Journal of Climate and Applied Meteorology, 26, 118-132.

Delrieu, G., H. Andrieu, and J. D. Creutin, 2000: Quantification of Path-Integrated Attenuation for X- and C-Band Weather Radar Systems Operating in Mediterranean Heavy Rainfall. Journal of Applied Meteorology, 39, 840-850.

Dixon, M., and G. Wiener, 1993: TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—A Radar-based Methodology. Journal of Atmospheric and Oceanic Technology, 10, 785-797.

Draper, D. W., D. A. Newell, F. J. Wentz, S. Krimchansky, and G. M. Skofronick-Jackson, 2015: The Global Precipitation Measurement (GPM) Microwave Imager (GMI): Instrument Overview and Early On-Orbit Performance. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8, 3452-3462.

Galway, J. G., 1956: The lifted index as a predictor of latent instability. Bull. Amer. Meteor. Soc, 37, 528-529.

Georgiev, C. G., P. Santurette, and K. Maynard, 2016: Chapter 4 - Diagnosis of Thermodynamic Environment of Deep Convection. Weather Analysis and Forecasting (Second Edition), Academic Press, 157-222.

Gouget, H., G. Vaughan, A. Marenco, and H. G. J. Smit, 2000: Decay of a cut-off low and contribution to stratosphere-troposphere exchange. Quarterly Journal of the Royal Meteorological Society, 126, 1117-1141.

Gray, L. J., M. Bithell, and B. D. Cox, 1994: The role of specific humidity fields in the diagnosis of stratosphere troposphere exchange. Geophysical Research Letters, 21, 2103-2106.

Hall, M. P. M., J. W. F. Goddard, and S. M. Cherry, 1984: Identification of hydrometeors and other targets by dual-polarization radar. Radio Science, 19, 132-140.

Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quarterly Journal of the Royal Meteorological Society, 111, 877-946.

Hou, A. Y., G. Skofronick-Jackson, C. D. Kummerow, and J. M. Shepherd, 2008: Global precipitation measurement. Precipitation: Advances in Measurement, Estimation and Prediction, S. Michaelides, Ed., Springer Berlin Heidelberg, 131-169.

Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bulletin of the American Meteorological Society, 95, 701-722.

Houze, R., 1993: Cloud Dynamics, Volume 53 (International Geophysics), 272-273.

Iguchi, T., S. Seto, R. Meneghini, N. Yoshida, J. Awaka, and T. Kubota, 2010: GPM/DPR level-2 algorithm theoretical basis document. NASA Goddard Space Flight Center, Greenbelt, MD, USA, Tech. Rep.

Iguchi, T., and Coauthors, 2012: An overview of the precipitation retrieval algorithm for the dual-frequency precipitation radar (DPR) on the global precipitation measurement (GPM) mission's core satellite. 85281C-85281C-85287.

Illingworth, A. J., and T. M. Blackman, 2002: The Need to Represent Raindrop Size Spectra as Normalized Gamma Distributions for the Interpretation of Polarization Radar Observations. Journal of Applied Meteorology, 41, 286-297.

Karacostas T., I. P., I. Tegoulias, D. Bampzelis, S. Kartsios, S. Kotsopoulos, P. Zanis, E. Katragkou, P. Mouskos, and K. Tympanidis, 2015: The Development of the DAPHNE Conceptual Model for the Potentiality of Designing a Precipitation Enhancement Project in Thessaly, Greece.

Kubota, T., and Coauthors, 2014: Evaluation of precipitation estimates by at-launch codes of GPM/DPR algorithms using synthetic data from TRMM/PR observations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 3931-3944.

Kummerow, C., W. S. Olson, and L. Giglio, 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. Geoscience and Remote Sensing, IEEE Transactions on, 34, 1213-1232.

Leary, C. A., and R. A. H. Jr., 1979: Melting and Evaporation of Hydrometeors in Precipitation from the Anvil Clouds of Deep Tropical Convection. Journal of the Atmospheric Sciences, 36, 669-679.

Levizzani, V., and M. Setvák, 1996: Multispectral, High-Resolution Satellite Observations of Plumes on Top of Convective Storms. Journal of the Atmospheric Sciences, 53, 361-369.

Lorenc, A. C., 1986: Analysis methods for numerical weather prediction. Quarterly Journal of the Royal Meteorological Society, 112, 1177-1194.

Mahović, N. S., and B. Zeiner, 2009: Application of Meteosat SEVIRI channel difference 0.6 μm–1.6 μm in convective cells detection. Atmospheric Research, 93, 270-276.

Meneghini, R., and J. A. Jones, 2011: Standard deviation of spatially averaged surface cross section data from the TRMM precipitation radar. IEEE Geoscience and Remote Sensing Letters, 8, 293-297.

Meneghini, R., and L. Liao, 2013: Modified Hitschfeld–Bordan Equations for Attenuation-Corrected Radar Rain Reflectivity: Application to Nonuniform Beamfilling at Off-Nadir Incidence. Journal of Atmospheric and Oceanic Technology, 30, 1149-1160.

Meneghini, R., T. Iguchi, T. Kozu, L. Liao, K. i. Okamoto, J. A. Jones, and J. Kwiatkowski, 2000: Use of the Surface Reference Technique for Path Attenuation Estimates from the TRMM Precipitation Radar. Journal of Applied Meteorology, 39, 2053-2070.

Moore, J. T., and G. E. Vanknowe, 1992: The Effect of Jet-Streak Curvature on Kinematic Fields. Monthly Weather Review, 120, 2429-2441.

Morel, C., and S. Senesi, 2002: A climatology of mesoscale convective systems over Europe using satellite infrared imagery. I: Methodology. Quarterly Journal of the Royal Meteorological Society, 128, 1953-1971.

Murray, R., and S. M. Daniels, 1953: Transverse flow at entrance and exit to jet streams. Quarterly Journal of the Royal Meteorological Society, 79, 236-241.

Otkin, J. A., T. J. Greenwald, J. Sieglaff, and H.-L. Huang, 2009: Validation of a Large-Scale Simulated Brightness Temperature Dataset Using SEVIRI Satellite Observations. Journal of Applied Meteorology and Climatology, 48, 1613-1626.

Paluch, I. R., 1979: The Entrainment Mechanism in Colorado Cumuli. Journal of the Atmospheric Sciences, 36, 2467-2478.

Radová, M., and J. Seidl, 2008: Parallax applications when comparing radar and satellite data. The 2008 EUMETSAT Meteorological Satellite Conference.(this conference proceedings).

Rico‐Ramirez, M., I. Cluckie, and D. Han, 2005: Correction of the bright band using dual‐polarisation radar. Atmospheric Science Letters, 6, 40-46.

Rosenfeld, D., W. L. Woodley, A. Lerner, G. Kelman, and D. T. Lindsey, 2008: Satellite detection of severe convective storms by their retrieved vertical profiles of cloud particle effective radius and thermodynamic phase. Journal of Geophysical Research: Atmospheres, 113.

Schmetz, J., P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A. Ratier, 2002: An Introduction to Meteosat Second Generation (MSG). Bulletin of the American Meteorological Society, 83, 977-992.

Sechler, J. B., 2007: GPM microwave imager selected calibration features and predictedperformance. 2007 IEEE International Geoscience and Remote Sensing Symposium, 5237-5239.

Seto, S., and T. Iguchi, 2007: Rainfall-Induced Changes in Actual Surface Backscattering Cross Sections and Effects on Rain-Rate Estimates by Spaceborne Precipitation Radar. Journal of Atmospheric and Oceanic Technology, 24, 1693-1709.

Setvák, M., Z. Charvát, M. Valachová, and K. Bedka, 2012: BLENDED" SANDWICH" IMAGE PRODUCTS IN NOWCASTING. Proc. 2012 EUMETSAT Meteorological Satellite Conference, Sopot, Poland. EUMETSAT, 61.

Skofronick-Jackson, G., G. Huffman, E. Stocker, and W. Petersen, 2016: Successes with the Global Precipitation Measurement (GPM) mission. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 3910-3912.

Smull, B. F., and R. A. Houze, 1985: A Midlatitude Squall Line with a Trailing Region of Stratiform Rain: Radar and Satellite Observations. Monthly Weather Review, 113, 117-133.

Sutcliffe, R. C., 1947: A contribution to the problem of development. Quarterly Journal of the Royal Meteorological Society, 73, 370-383.

Toyoshima, K., H. Masunaga, and F. A. Furuzawa, 2015: Early Evaluation of Ku- and Ka-Band Sensitivities for the Global Precipitation Measurement (GPM) Dual-Frequency Precipitation Radar (DPR). SOLA, 11, 14-17.

Trenberth, K. E., 1991: Climate Diagnostics from Global Analyses: Conservation of Mass in ECMWF Analyses. Journal of Climate, 4, 707-722.

Wanke, E., 2011: Blitzortung. org-A low cost Time of Arrival Lightning Detection and Lightning Location Network. Universität Düsseldorf. Online verfügbar unter http://www. blitzortung. org/Documents/TOA_Blitzortung. pdf, 1334678146.

Weisman, M. L., and J. B. Klemp, 1986: Characteristics of isolated convective storms. Mesoscale meteorology and forecasting, Springer, 331-358.

Zhang, G., J. Vivekanandan, and E. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Transactions on Geoscience and Remote Sensing, 39, 830-841.

Καρακώστας, Θ., 2014: Παρουσιάσεις στα πλαίσια του μαθήματος Φυσική των Νεφών του Μεταπτυχιακού κύκλου σπουδών Μετεωρολογίας, Κλιματολογίας και Ατμοσφαιρικού Περιβάλλοντος, τμήμα Γεωλογίας, Α.Π.Θ.

Πυθαρούλης, Ι., 2014: Παρουσιάσεις στα πλαίσια των μαθημάτων Συνοπτική Μετεωρολογία και Αριθμητική Πρόγνωση του Καιρού του Μεταπτυχιακού κύκλου σπουδών Μετεωρολογίας, Κλιματολογίας και Ατμοσφαιρικού Περιβάλλοντος, τμήμα Γεωλογίας, Α.Π.Θ.

Φείδας, Χ., 2014: Παρουσιάσεις στα πλαίσια του μαθήματος Δορυφορικής Μετεωρολογίας του Μεταπτυχιακού κύκλου σπουδών Μετεωρολογίας, Κλιματολογίας και Ατμοσφαιρικού Περιβάλλοντος, τμήμα Γεωλογίας, Α.Π.Θ.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.