Πειραματική συσχέτιση μεταξύ γωνίας τριβής ασυνεχειών πετρωμάτων και συντελεστή mi του κριτηρίου Hoek & Brown
Περίληψη
στον προσδιορισμό του mi μέσω μιας σειράς δοκιμών άμεσης διάτμησης ασυνεχειών με σκοπό την εύρεση της γωνίας τριβής φm, δεδομένου ότι ο εργαστηριακός προσδιορισμός του απαιτεί σειρά τριαξονικών δοκιμών σε ικανό εύρος πλευρικών πιέσεων, εργασία που απαιτεί σημαντικά ακριβέστερη προετοιμασία και μεγαλύτερο κόστος. Τέλος, απαιτείται μεγαλύτερος αριθμός διαφορετικών τύπων πετρωμάτων ώστε να αυξηθεί ο αριθμός των πειραματικών σημείων στο διάγραμμα και η αξιοπιστία της σχέσης, η οποία με τον τρόπο αυτό θα λάβει ακριβέστερη έκφραση.
The aim of this thesis is to investigate experimentally the relation between the friction angle of rock surfaces determined by direct shear testing and the constant mi of the Hoek & Brown criterion for intact rock. According to Hoek (1983) the constant mi, that is determined from triaxial tests under confining pressures (σ3) in the range 0?σ3?0.5σci, where σci is the unconfined compressive strength, is very approximately analogous to the angle of friction, of the conventional Mohr-Coulomb failure criterion. The testing program consisted of a series of laboratory direct shear tests on artificially generated tensile fractures and a series of triaxial compression tests on intact core rock specimens on four different rock types with unconfined compressive strength between 59 and 117 MPa: Arnaia granite, Demati sandstone, Mesaio limestone and Kavala marble. For each rock type, the specimens used for the two types of tests were prepared from the same block. Five or six 8-12 cm long samples from each rock type were subjected to direct shear testing under 6 normal stress levels in the range 0-2 MPa, including one under their self weight which corresponds to a normal stress of approximately 5 kPa. A total of 138 tests were carried out. At least eight cylindrical specimens per rock type, with a diameter of 54cm and a ratio diameter/height of 1:2 were tested in triaxial compression in a standard Hoek triaxial cell, under confining pressures in the range 0 - 70 MPa. The total number of triaxial compression tests was 42, including 4 uniaxial compression tests. The values of the friction angle of the rock wall material (φm) were determined from the measured peak shear strength after elimination of the effect of dilation. The values of the constant mi of the Hoek-Brown criterion was determined from the triaxial tests carried out under confining pressures in the range 0?σ3?0.5σci. The experimental results show that the constant mi of the Hoek & Brown criterion increases logarithmically with decreasing friction angle of the rock wall material (φm), from mi=8.9 for Kavala marble (φm =39°) to mi=34.0 for Arnaia granite (φm =35°). The main utility of the method is the indirect determination of the constant mi using a series of direct shear tests on discontinuities from the same rock, especially in the case of weathered rock, where direct shear on joints can be carried out without any experimental difficulty, whereas the preparation of cylindrical specimens from weathered rock pieces for triaxial testing is quite difficult. More work is needed in order to establish a more accurate expression based on a wider range of rock types.
Πλήρες Κείμενο:
PDFΑναφορές
Alejano LR, Javier G, Muralha J (2012). Comparison of different techniques of tilt testing and basic friction angle variability assessment. Rock Mech Rock Eng, 45,1023–1035
Amontons G (1699) De la re´sistance cause´e dans les machines. Memoires de l’Academie Royale A, 257–282
Amidu Jimoh Oladeji (1997). Η έρευνα του Γρανίτη Αρναίας νομού Χαλκιδικής από Γεωλογική και Πετρογραφική άποψη. Διδακτορική διατριβή. Τμήμα Γεωλογίας, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Θεσσαλονίκη
Bandis S, Lumsden AC, Barton NR (1981) Scale effects on the shearbehavior of rock joints. Int J Rock Mech Min Sci Geomech Abstr,18,1–21
Barton N.R (1973). Review of a new shear strength criterion for rock joints. Engng Geology, 7 , 287-232
Barton N (1976). The shear strength of rock and rock joints . Int. J. Rock Mech. Min. Sci. & Geomech. Abstr, 13, 255-279
Barton N (2013). Shear strength criteria for rock , rock joints , rockfill and rock masses : Problems and some solutions. Journal of Rock Mechanics and Geotechnical Engineering, 5, 249-261
Barton N. (2000). Rock Mechanics Review, 13, 255-279.
Barton Ν, Choubey V (1977). The Shear Strength of Rock Joints in Theory and Practice. Rock Mechanics, 10, 1–54
Brown ET (ed) (1981). Suggested methods for determining shear strength. In: Rock characterisation testing and monitoring, Pergamon Press, Oxford, pp 129–140
Bodwen F.P & Tabor D (1950). The Friction and Lubrication of Solids. Claredon Press. Oxford
Bulgarian Academy of Sciences (2015). Personal communication.
Buzzi O, Sieffert Y, Mendes J, Liu X (2013). Strength of Australian coal under low confinement. Rock Mech Rock Eng. doi:10.1007/s00603-013-0493-5
Byerlee, J.D. (1978). Friction of rocks. Pure & Appl. Geophys, 116, 615-626.
Deere, D. U. & Miller R. P (1966). Engineering classification and index properties of rock. Tech. Report Air Force Weapons Lab. New Mexico, 65-116.
Dunham R.J. (1962). Classification of carbonate rocks according to depositional texture. Amer. Assoc. Petrol. Geol. Mem. No 1.
Fecker E, Rengers N (1971). Measurement of large scale roughness of rock planes by means of profilograph and geological compass. In: Proceedings symposium on rock fracture, Nancy, France, 1–18
Greenwood J.A & Williamson J.B.P (1966). Contact of nominally flat surfaces. Proc. Royal Society, A 295, 300-319.
Griffith A. A. (1921) The phenomena of rupture and flow in solids. Phil Trans. Royal Soc., London , Series A, 221,163-198
Griffith A. A. (1924) Theory of rupture , Proc. Intern. Congress Appl. Mech. , Delft, 55-63.
Goodman R. E & Dubois J. (1972). Duplication of dilatancy in analysis of jointed rock. J. Soil Mech. & Found. Div. , Proc. ASCE 98, SM4, 399-422.
Hencher S.R & Richards L.R (1989). Laboratory direct shear testing on rock discontinuities. Ground Engng 22, 24-31
Hencher S. Richards L. (2014). Assessing the Shear Strength of Rock Discontinuities at Laboratory and Field Scales. Rock Mechanics and Rock Engineering, 48, 883-905
Hoek E (1968). Brittle failure of rock. In: Stagg KG, Zienkiewicz OC(eds) Rock mechanics in engineering practice. Wiley, London, 99–124
Hoek E, Brown ET (1980). Empirical strength criterion for rock masses. J Geotech Eng Div ASCE 106(GT9):1013–1035
Hoek, E. (1983). Strength of jointed rock masses, 23rd. Rankine Lecture. Géotechnique. 33 (3), 187-223
Hoek E. ,Kaiser P. K., Bawden W. F., (1995) Support of Underground Excavations in Hard Rock. Balkema, Rotterdan/Brookfield.
Hoek E, Brown ET (1997) Practical estimates of rock mass strength. Int J Rock Mech Min Sci 34(8),1165–1186
Hoek, E., & Martin, C. D. (2014). Fracture initiation and propagation in intact rock . Journal of Rock Mechanics and Geotechnical Engineering , 6, 287-300
International Society for Rock Mechanics Commission on Standardisation of Laboratoryand Field Tests. (1978). Suggested methods for the quantitative description of discontinuities in rock masses. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.15, 319-368.
Καντηράνης Ν (2014). Πετρογραφική και ορυκτολογική μελέτη ασβεστόλιθου Μεσαίου Θεσσαλονίκης, Lafarge beton ΑΒΕΕ
Kaiser PK, Diederichs MS, Martin CD, Sharp J, Steiner W (2000). Underground works in hard rock tunneling and mining. Geo Eng 2000, An international conference on geotechnical and geological
Kaiser PK, B-H Kim (2008) Rock mechanics challenges in underground construction and mining. Lecture notes in, 1st Southern hemisphere international rock mechanics symposium, 1,23–38
Leichnitz W. (1985). Mechanical properties of rock joints. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 22, 313-321.
Marinos, P. & Hoek, E. "GSI: A Geologically Friendly Tool for Rock Mass Strength Estimation". International Conference on Geotechnical & Geological Engineering (GeoEng 2000), Technomic publ., 1422-1442, Melbourne (2000)
McClintock F. A, Walsh J. B. (1962) Friction on Griffith cracks under pressure, Proc. 4th National Congress Appl.Mech. , 1015-1021
Mogi K (1966) Pressure dependence of rock strength and transition from brittle fracture to ductile flow. Bull Earthq Res Inst, 44,215–232
Mogi K. (1972).Fracture and flow of Rocks. Tectonophysics, 13, 541-568.
Mogi K. (1974). On the pressure dependence of strength of rocks and the Coulomb fracture criterion. Tectonophysics, 21, 273-285.
Mogi K. (2007). Experimental Rock Mechanics. Taylor & Francis Group. London, UK.
Nicholson GA (1994) A test is worth a thousand guesses–a paradox. In: Nelson, Laubach (eds) Proceedings of 1st NARMS symposium, 523–529
Orowan E.(1960). Mechanism of seismic faulting. Geol. Soc. Amer. Memoirs 79, 323-345.
Papaliangas T. Hencher S. & Lumsden A. (1995). A comprehensive peak shear strength criterion for rock joints. Proc. 8th Int. Congress ISRM, Tokyo, 1,359-366.
Papaliangas T. Lumsden A. & Hencher S. (1996). Prediction of in situ peak shear strength of rock joints. EUROCK’ 96. Proc. Int. Symp on Prediction and Performance in Rock Mechanics and Rock Engineering. Barla G(ed.), 1 ,143-149. Rotterdam : Balkema.
Papaliangas T. (1997) Origin and Magnitude of Shear Resistance of Rocks. 3rd Hellenic conference on geotechnical engineering. 1, 145-152
Papaliangas T. (1997) A New Peak Shear Strength Criterion for Rock Joints, 3rd Hellenic conference on geotechnical engineering, 1, 153-159
Papaliangas T. Manolopoulou S. Lumsden A. Hencher S. (1997) Applications of a New Peak Shear Strength Criterion for Rock Joints. 3rd Hellenic conference on geotechnical engineering, 1, 161-168
Paterson MS (1958) Experimental deformation and faulting in Wombeyan marble. Bull Geol Soc Am 69,476–485
Patton F.D (1966). Multiple modes of shear failure in rock and related materials. Ph.D. Thesis, Univ. Illinois, U.S.A
Patton FD, Deere DU (1970) Significant geological factors in rock slope stability. In: Proceedings symposium on planning open pitmines. A.A. Balkema, Johannesburg, 143–151
Richards, S. R. H and Richards L. (2014). Assessing the Shear Strength of Rock Discontinuities at Laboratory and Field Scales. Rock Mech. and Rock Eng 48, 883- 905
Schneider H.J (1976). The friction and deformation behavior of rock joints. Rock Mech. 8,169-184.
Τσουτρέλης X. (1985). Στοιχεία Μηχανικής των Πετρωμάτων. Εθνικό Μετσόβιο Πολυτεχνεί ο. Αθήνα.
Τσιραμπίδης Α. (1996). Τα ελληνικά μάρμαρα και άλλα διακοσμητικά πετρώματα, University Studio Press
Terzaghi K. (1925). The physical causes of proportionality between pressure and frictional resistance, from Erdbaumechanic, transl. by A. Casagrande in: From theory to practice in soil mechanics. Wiley and Sons.
Εισερχόμενη Αναφορά
- Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.