[Εξώφυλλο]

Μελέτη γεωφυσικών χαρακτηριστικών μαγγανιούχων κοιτασμάτων στην περιοχή Πιάβιτσας Χαλκιδικής = Geophysical properties of manganese deposits in Piavitsa area (Chalkidiki).

Νικόλαος Κορδάτος

Περίληψη


Αντικείμενο της παρούσας διατριβής είναι η εφαρμογή γεωφυσικών μεθόδων στην περιοχή της Πιάβιτσας Χαλκιδικής, στην οποία παρατηρούνται επιφανειακές εμφανίσεις μεταλλοφοριών. Σκοπός της διατριβής είναι ο εντοπισμός τέτοιων δομών ενδιαφέροντος και ο χαρακτηρισμός τους τόσο από φυσική όσο και από γεωφυσική άποψη μέσα από την συνδυαστική ερμηνεία γεωλογικών, γεωτρητικών και γεωφυσικών δεδομένων από διαφορετικές εφαρμοσμένες μεθόδους. Οι γεωφυσικές μέθοδοι που εφαρμόστηκαν στην περιοχή μελέτης είναι η μέθοδος της ειδικής ηλεκτρικής αντίστασης και επαγόμενης πόλωσης, η μέθοδος του φυσικού δυναμικού, καθώς και η ηλεκτρομαγνητική μέθοδος VLF. Σε πρώτο στάδιο εφαρμόστηκε η μέθοδος του φυσικού δυναμικού σε πλήθος περιοχών όπου προηγούμενες μελέτες γεωλογικής χαρτογράφησης αποκάλυψαν επιφανειακές ζώνες ενδιαφέροντος, ενώ στην συνέχεια εφαρμόστηκαν και οι υπόλοιπες μέθοδοι σε περιοχές που παρουσίασαν ενδιαφέρον μέσω των αποτελεσμάτων του φυσικού δυναμικού. Τα αποτελέσματα που προέκυψαν έρχονται σε μεγάλο ποσοστό σε καλή συμφωνία με το ευρύτερο γεωλογικό μοντέλο της περιοχής, καθώς και με το μικρότερης κλίμακας γεωλογικό μοντέλο που προκύπτει από τα δεδομένα γεωλογικών χαρτογραφήσεων. Η συνδυαστική ερμηνεία των γεωφυσικών δεδομένων αποδείχθηκε ιδιαίτερα ωφέλιμη σε πολλές περιπτώσεις, ξεκαθαρίζοντας ασάφειες που δημιούργησε τόσο το σύνθετο γεωλογικό μοντέλο της περιοχής, όσο και το είδος της μεταλλοφορίας και η σχέση αυτής με τα πετρώματα στα οποία φιλοξενείται. Η εκτίμηση δεδομένων γεωτρήσεων αποτέλεσε επίσης σημαντικό οδηγό για την καλύτερη ερμηνεία των γεωφυσικών αποτελεσμάτων καθώς και την σύνδεση των τιμών που προέκυψαν από αυτά με τους γεωλογικούς σχηματισμούς που απαρτίζουν την περιοχή, καθώς και της μεταλλοφορίας που φιλοξενείται σε αυτά.

The subject of this thesis is the application of geophysical methods in Piavitsa area, Chalkidiki, where surficial mineralization occurrences appear. The aim of this study is the identification of such zones of interest and their characterization both from a physical as well as geophysical perspective, through the combined interpretation of geological, drilling and geophysical data from multiple applied methods. The geophysical methods applied in this study are the Electrical Resistivity Tomography (ERT) with both direct current (DC) and induced polarization (IP) data, the Self-Potential (SP) method, as well as the VLF electromagnetic method. In the first part of the study, the self-potential method was applied in a number of areas where previous geological mapping studies revealed surficial zones of interest, while the other geophysical methods were subsequently applied in areas where the self-potential results suggested existence of possible deposits. The results obtained are generally in good agreement with the wider geological model of the area, as well as the smaller scale geological model resulting from geological mapping data. The combined interpretation of the geophysical data proved to be particularly useful in many cases, clarifying ambiguities created by both the complex geological model of the area as well as the type of mineralization and its relation to the rocks which is hosted. The drilling data assessment has also been an important guide for improving the interpretation of the geophysical results and linking the resulting values to the geological formations of the area, as well as the mineralization hosted within them.

Πλήρες Κείμενο:

PDF

Αναφορές


ABEM. (1989). ABEM Wadi VLF instrument instruction manual. Bromma: ABEM Instrument Inc.

Airo, M.-L. (2015). Geophysical signatures of mineral deposit types in Finland. Geological Survey of Finland, Special Paper, 58, 9–70.

Barker, R. D. (1989). Depth of investigation of collinear symmetrical four-electrode arrays. Geophysics, 54(8), 1031–1037. https://doi.org/10.1190/1.1442728

Bleil, D. F. (1953). Induced polarization: A method of Geophysical Prospecting. Geophysics, 18(3), 636–661. https://doi.org/10.1190/1.1437917

Bompaire, J. (1964). Actes de Xéropotamou. Paris: P. Lethielleux.

Clark, A. (1990). Seeing beneath the soil: Prospecting methods in archaeology. London: B.T. Batsford Ltd. https://doi.org/10.4324/9780203164983

Constable, S. C., Parker, R. L., & Constable, C. G. (1987). Occam’s inversion; a practical algorithm for generating smooth models from electomagnetic sounding data. Geophysics, 52(3), 289–300.

Cook, K. L., & Van Nostrand, R. G. (1954). Interpretation of resistivity data over filled sinks. Geophysics, XIX(4), 761–790. https://doi.org/10.1190/1.1438048

Cooper, G. R. J. (1997). SPINV: Self-Potential data modeling and inversion, 23(10), 1121–1123.

Corry, C. E. (1985). Spontaneous polarization associated with porphyry sulfide mineralization. Geophysics, 50(6), 1020–1034. https://doi.org/10.1190/1.1441967

Davies, O. (1935). Roman mines in Europe. Oxford: Clarendon Press.

Edsen, N. A., & Nissen, J. (1997). VLFMOD, a free forward VLF modeling software package.

Edwards, L. S. (1977). A modified pseudosection for resistivity and IP. Geophysics, 42(5), 1020–1036. https://doi.org/10.1190/1.1440762

Fitterman, D. V., & Corwin, R. F. (1982). Inversion of self-potential data from the Cerro Prieto geothermal field, Mexico. Geophysics, 47(6), 938–945.

Ford, K., Keating, P., & Thomas, M. D. (2007). Overview of geophysical signatures associated with Canadian ore deposits. In Goodfellow, W. D. (Ed) Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration

Methods, 939–970. https://doi.org/doi.org/10.2113/gsecongeo.102.7.1355

Fox, R. W. (1830). On the Electro-Magnetic Properties of Metalliferous Veins in the Mines of Cornwall. Philosophical Transactions of the Royal Society of London, 120(1830), 399–414. Retrieved from http://www.jstor.org/stable/107914

Fraser, D. C. (1969). Contouring of VLF-EM data. Geophysics, 34(6), 958–967.

Galanopoulos, V., & Theodoroudis, A. (1994). Gold silver and base metals in the manganese mineral assemblages of the NE Chalkidiki ore deposits.

Bulletin of the Geological Society of Greece, XXX(1), 507–518.

Grant, F. S., & West, G. F. (1965). Interpretation Theory in Applied Geophysics. New York: McGraw-Hill Book Co.

Gunn, P. J., & Brook, W. A. (1978). MPPO-1, Crone PEM, SP, ground magnetic, MIP and Turam data over drilled massive sulphide mineralisation at Steeple Hill, W.A. Exploration Geophysics. https://doi.org/10.1071/EG978164

Karous, M., & Hjelt, S. E. (1983). Linear filtering of VLF dip-angle measurements. Geophysical Prospecting, 31(5), 782–794. https://doi.org/10.1111/j.1365-2478.1983.tb01085.x

Kearey, P., Brooks, M., & Hill, I. (2002). An Introduction to Geophysical Exploration (3rd ed.). Blackwell Science Ltd. https://doi.org/10.1029/EO067i011p00132-01

Kellett, R., Bishops, J., & Reed, E. Van. (1993). The effects of source polarization in CSAMT data over two massive sulfide deposits in Australia. Geophysics, 59(12), 1764–1772. https://doi.org/10.1190/1.1443390

Kim, J. H. (2010). DC_2DPro - User’s Guide. Korea: KIGAM.

King, A. (2007). Review of Geophysical Technology for Ni-Cu-PGE deposits. Ore Deposits and Exploration Technology, Proceeding, 647–665.

Kirsch, R. (2006). Groundwater Geophysics. Springer. https://doi.org/10.1007/3-540-29387-6

Labson, V. F., Becker, A., Morrison, H. F., & Conti, U. (1985). Geophysical exploration with audiofrequency natural magnetic fields. Geophysics, 50(4), 656–664. https://doi.org/10.1190/1.1441940

Langore, L., Alikaj, P., & Gjovreku, D. (1989). Achievements in copper sulphide exploration in Albania with IP and EM methods. Geophysical Prospecting, 37(8), 975–991. https://doi.org/10.1111/j.1365-2478.1989.tb02243.x

Lundberg, H. (1929). The history of magnetic and electrical prospecting for oil. Mining Magazine, 41(2), 73–78.

Markiewicz, R. D., Davenport, G. C., & Randall, J. A. (1984). The use of self-potential surveys in geotechnical investigations. SEG Technical Program Expanded Abstracts 1984, 164–165. https://doi.org/10.1190/1.1894184

Milsom, J. (2003). Field Geophysics (3rd ed.). John Wiley and Sons Ltd.

Monteiro Santos, F. A., Mateus, A., Figueiras, J., & Gonçalves, M. A. (2006). Mapping groundwater contamination around a landfill facility using the VLF-EM method - A case study. Journal of Applied Geophysics, 60(2), 115–125. https://doi.org/10.1016/j.jappgeo.2006.01.002

Morgan, L. (2010). Geophysical characteristics of volcanogenic massive sulfide deposits in volcanogenic massive sulfide occurence model. U.S. Geological Survey Scientific Investigations Report 2010-5070-C.

Nyquist, J. E., & Corry, C. E. (2002). Self-potential: The ugly duckling of environmental geophysics. The Leading Edge, 21(5), 446–451. https://doi.org/10.1190/1.1481251

Ogilvy, R. D., & Lee, A. C. (1991). Interpretation of VLF-EM in-phase data using current density pseudosections. Geophysical Prospecting, 39(4), 567–580. https://doi.org/10.1111/j.1365-2478.1991.tb00328.x

Oldenburg, D. W., & Jones, F. H. M. (2007). Inversion for Applied Geophysics. Version 1.0 (2017/06/28). University of British Columbia, Geophysical

Inversion Facility, 2000-2007. Retrieved February 5, 2019, from https://www.eoas.ubc.ca/ubcgif/iag/index.htm

Paál, G. (1965). Ore prospecting based on VLF-radio signals. Geoexploration, 3(3), 139–147. https://doi.org/10.1016/0016-7142(65)90016-5

Pain, C. C., Herwanger, J. V., Worthington, M. H., & De Oliveira, C. R. E. (2002). Effective multidimensional resistivity inversion using finite-element techniques. Geophysical Journal International, 151(3), 710–728. https://doi.org/10.1046/j.1365-246X.2002.01786.x

Palacky, G. J. (1988). Resistivity Characteristics of Geologic Targets. Electromagnetic Methods in Applied Geophysics, 52–129. https://doi.org/10.1190/1.9781560802631.ch3

Parasnis, D. S. (1956). The electrical resistivity of some sulphide and oxide minerals and their ores. Geophysical Prospecting, 4(3), 249–278. https://doi.org/10.1111/j.1365-2478.1956.tb01409.x

Pavlides, S. B., & Tranos, M. D. (1991). Structural characteristics of two strong earthquakes in the North Aegean: Ierissos (1932) and Agios

Efstratios (1968). Journal of Structural Geology, 13(2), 205–214. https://doi.org/10.1016/0191-8141(91)90067-S

Pridmore, D. F., Hohmann, G. W., Ward, S. H., & Sill, W. R. (1981). An investigation of finite-element modeling for electrical and electromagnetic data in three dimensions. Geophysics, 46(07), 1009–1024.

Pridmore, Donald F., & Shuey, R. T. (1976). The electrical resistivity of galena, pyrite, and chalcopyrite. American Mineralogist, 61, 248–259.

Quarto, R., & Schiavone, D. (1996). Detection of cavities by the self-potential method. First Break, 14(11), 419–430. https://doi.org/10.3997/1365-2397.1996023

Robinson, E. S., & Coruh, C. (1988). Basic exploration geophysics. John Wiley and Sons.

Roy, A., & Apparao, A. (1971). Depth of investigation in direct current methods. Geophysics, 36(5), 943–959. https://doi.org/10.1190/1.1440226

Sasaki, Y. (1994). 3-D resistivity inversion using the finite‐element method. Geophysics, 59(11), 1839–1848. https://doi.org/10.1190/1.1443571

Sato, M., & Mooney, H. M. (1960). The electrochemical mechanism of sulfide self-potentials. Geophysics, XXV(1), 226–249. https://doi.org/10.1190/1.1438689

Schiavone, D., & Quarto, R. (1984). Self-potential prospecting in the study of water movements. Geoexploration, 22(1), 47–58. https://doi.org/10.1016/0016-7142(84)90005-X

Seigel, H. O. (1959). Mathematical formulation and type curves for induced polarization. Geophysics, XXIV(3), 547–565. https://doi.org/10.1190/1.1438625

Seigel, H. O. (1974). The magnetic induced polarization (MIP) method. Geophysics, 39(3), 321–339. https://doi.org/10.1190/1.1440431

Siron, C. R., Rhys, D., Thompson, J. F. H., Baker, T., Veligrakis, T., Camacho, A., & Dalampiras, L. (2018). Structural controls on porphyry Au-Cu and

Au-rich polymetallic Carbonate-hosted replacement deposits of the Kassandra mining District, Northern Greece. Economic Geology, 113(2), 309–345. https://doi.org/10.5382/econgeo.2018.4552

Strangway, D. W., Swift, C. M., & Holmer, R. C. (1973). The application of audio-frequency magnetotellurics (AMT) to mineral exploration. Geophysics, 38(6), 1159–1175. https://doi.org/10.1190/1.1440402

Šumi, F. (1959). Geophysical exploration in mining by induced polarization. Geophysical Prospecting, 7(3), 300–310. https://doi.org/10.1111/j.1365-2478.1959.tb01472.x

Swidinsky, A., Hölz, S., & Jegen, M. (2012). On mapping seafloor mineral deposits with central loop transient electromagnetics. Geophysics, 77(3), E171–E184. https://doi.org/10.1190/geo2011-0242.1

Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied Geophysics. Cambridge University Press. https://doi.org/10.1180/minmag.1982.046.341.32

Tsourlos, P. I. (1995). Modelling, Interpretation and Inversion of Multielectrode Resistivity Survey Data. University of York.

Tsourlos, P. I., & Ogilvy, R. D. (1999). An algorithm for the 3-D inversion of tomographic resistivity and induced polarisation data: Preliminary results. Journal of the Balkan Geophysical Society, 2(2), 30–45.

Ward, S. H. (1959). AFMAG - Airborne and Ground. Geophysics, XXIV(4), 761–789. https://doi.org/10.1190/1.1438657

Ward, Stanley H. (1990). Resistivity and induced polarization methods. Geotechnical and environmental geophysics. Society of Exploration Geophysicists. https://doi.org/10.1190/1.9781560802785

Yi, M. J., Kim, J. H., Song, Y., Cho, S. J., Chung, S. H., & Suh, J. H. (2001). Three-dimensional imaging of subsurface structures using resistivity data. Geophysical Prospecting, 49(4), 483–497. https://doi.org/10.1046/j.1365-2478.2001.00269.x

Yüngül, S. (1950). Interpretation of spontaneous polarization anomalies caused by spheroidal orebodies. Geophysics, 15(2), 237–246. https://doi.org/10.1190/1.1437597

Αποστολόπουλος, Γ. (2013). Σημειώσεις εφαρμοσμένης γεωφυσικής. Αθήνα: Εργαστήριο Εφαρμοσμένης Γεωφυσικής, Τομέας Μεταλλευτικής, Σχολή Μηχανικών Μεταλλείων Μεταλλουργών, Εθνικό Μετσόβιο Πολυτεχνείο.

Ι.Γ.Μ.Ε. (1978). Γεωλογικός χάρτης 1:50000 Φύλλο Σταυρός. Χαρτογράφηση: Dr. Kockel F., Dr. Mollat H., Dr. Walther H.W., Antoniades P., Ioannides K.

Μουντράκης, Δ. Μ. (2010). Γεωλογία και γεωτεκτονική εξέλιξη της Ελλάδας. Θεσσαλονίκη: University Studio Press.

Παπάγγελος, Ι. (1991). Το κοινόν του Μαδεμίου. Θεσσαλονίκη.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.