Μελέτη γεωφυσικών χαρακτηριστικών μαγγανιούχων κοιτασμάτων στην περιοχή Πιάβιτσας Χαλκιδικής = Geophysical properties of manganese deposits in Piavitsa area (Chalkidiki).
Περίληψη
The subject of this thesis is the application of geophysical methods in Piavitsa area, Chalkidiki, where surficial mineralization occurrences appear. The aim of this study is the identification of such zones of interest and their characterization both from a physical as well as geophysical perspective, through the combined interpretation of geological, drilling and geophysical data from multiple applied methods. The geophysical methods applied in this study are the Electrical Resistivity Tomography (ERT) with both direct current (DC) and induced polarization (IP) data, the Self-Potential (SP) method, as well as the VLF electromagnetic method. In the first part of the study, the self-potential method was applied in a number of areas where previous geological mapping studies revealed surficial zones of interest, while the other geophysical methods were subsequently applied in areas where the self-potential results suggested existence of possible deposits. The results obtained are generally in good agreement with the wider geological model of the area, as well as the smaller scale geological model resulting from geological mapping data. The combined interpretation of the geophysical data proved to be particularly useful in many cases, clarifying ambiguities created by both the complex geological model of the area as well as the type of mineralization and its relation to the rocks which is hosted. The drilling data assessment has also been an important guide for improving the interpretation of the geophysical results and linking the resulting values to the geological formations of the area, as well as the mineralization hosted within them.
Πλήρες Κείμενο:
PDFΑναφορές
ABEM. (1989). ABEM Wadi VLF instrument instruction manual. Bromma: ABEM Instrument Inc.
Airo, M.-L. (2015). Geophysical signatures of mineral deposit types in Finland. Geological Survey of Finland, Special Paper, 58, 9–70.
Barker, R. D. (1989). Depth of investigation of collinear symmetrical four-electrode arrays. Geophysics, 54(8), 1031–1037. https://doi.org/10.1190/1.1442728
Bleil, D. F. (1953). Induced polarization: A method of Geophysical Prospecting. Geophysics, 18(3), 636–661. https://doi.org/10.1190/1.1437917
Bompaire, J. (1964). Actes de Xéropotamou. Paris: P. Lethielleux.
Clark, A. (1990). Seeing beneath the soil: Prospecting methods in archaeology. London: B.T. Batsford Ltd. https://doi.org/10.4324/9780203164983
Constable, S. C., Parker, R. L., & Constable, C. G. (1987). Occam’s inversion; a practical algorithm for generating smooth models from electomagnetic sounding data. Geophysics, 52(3), 289–300.
Cook, K. L., & Van Nostrand, R. G. (1954). Interpretation of resistivity data over filled sinks. Geophysics, XIX(4), 761–790. https://doi.org/10.1190/1.1438048
Cooper, G. R. J. (1997). SPINV: Self-Potential data modeling and inversion, 23(10), 1121–1123.
Corry, C. E. (1985). Spontaneous polarization associated with porphyry sulfide mineralization. Geophysics, 50(6), 1020–1034. https://doi.org/10.1190/1.1441967
Davies, O. (1935). Roman mines in Europe. Oxford: Clarendon Press.
Edsen, N. A., & Nissen, J. (1997). VLFMOD, a free forward VLF modeling software package.
Edwards, L. S. (1977). A modified pseudosection for resistivity and IP. Geophysics, 42(5), 1020–1036. https://doi.org/10.1190/1.1440762
Fitterman, D. V., & Corwin, R. F. (1982). Inversion of self-potential data from the Cerro Prieto geothermal field, Mexico. Geophysics, 47(6), 938–945.
Ford, K., Keating, P., & Thomas, M. D. (2007). Overview of geophysical signatures associated with Canadian ore deposits. In Goodfellow, W. D. (Ed) Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration
Methods, 939–970. https://doi.org/doi.org/10.2113/gsecongeo.102.7.1355
Fox, R. W. (1830). On the Electro-Magnetic Properties of Metalliferous Veins in the Mines of Cornwall. Philosophical Transactions of the Royal Society of London, 120(1830), 399–414. Retrieved from http://www.jstor.org/stable/107914
Fraser, D. C. (1969). Contouring of VLF-EM data. Geophysics, 34(6), 958–967.
Galanopoulos, V., & Theodoroudis, A. (1994). Gold silver and base metals in the manganese mineral assemblages of the NE Chalkidiki ore deposits.
Bulletin of the Geological Society of Greece, XXX(1), 507–518.
Grant, F. S., & West, G. F. (1965). Interpretation Theory in Applied Geophysics. New York: McGraw-Hill Book Co.
Gunn, P. J., & Brook, W. A. (1978). MPPO-1, Crone PEM, SP, ground magnetic, MIP and Turam data over drilled massive sulphide mineralisation at Steeple Hill, W.A. Exploration Geophysics. https://doi.org/10.1071/EG978164
Karous, M., & Hjelt, S. E. (1983). Linear filtering of VLF dip-angle measurements. Geophysical Prospecting, 31(5), 782–794. https://doi.org/10.1111/j.1365-2478.1983.tb01085.x
Kearey, P., Brooks, M., & Hill, I. (2002). An Introduction to Geophysical Exploration (3rd ed.). Blackwell Science Ltd. https://doi.org/10.1029/EO067i011p00132-01
Kellett, R., Bishops, J., & Reed, E. Van. (1993). The effects of source polarization in CSAMT data over two massive sulfide deposits in Australia. Geophysics, 59(12), 1764–1772. https://doi.org/10.1190/1.1443390
Kim, J. H. (2010). DC_2DPro - User’s Guide. Korea: KIGAM.
King, A. (2007). Review of Geophysical Technology for Ni-Cu-PGE deposits. Ore Deposits and Exploration Technology, Proceeding, 647–665.
Kirsch, R. (2006). Groundwater Geophysics. Springer. https://doi.org/10.1007/3-540-29387-6
Labson, V. F., Becker, A., Morrison, H. F., & Conti, U. (1985). Geophysical exploration with audiofrequency natural magnetic fields. Geophysics, 50(4), 656–664. https://doi.org/10.1190/1.1441940
Langore, L., Alikaj, P., & Gjovreku, D. (1989). Achievements in copper sulphide exploration in Albania with IP and EM methods. Geophysical Prospecting, 37(8), 975–991. https://doi.org/10.1111/j.1365-2478.1989.tb02243.x
Lundberg, H. (1929). The history of magnetic and electrical prospecting for oil. Mining Magazine, 41(2), 73–78.
Markiewicz, R. D., Davenport, G. C., & Randall, J. A. (1984). The use of self-potential surveys in geotechnical investigations. SEG Technical Program Expanded Abstracts 1984, 164–165. https://doi.org/10.1190/1.1894184
Milsom, J. (2003). Field Geophysics (3rd ed.). John Wiley and Sons Ltd.
Monteiro Santos, F. A., Mateus, A., Figueiras, J., & Gonçalves, M. A. (2006). Mapping groundwater contamination around a landfill facility using the VLF-EM method - A case study. Journal of Applied Geophysics, 60(2), 115–125. https://doi.org/10.1016/j.jappgeo.2006.01.002
Morgan, L. (2010). Geophysical characteristics of volcanogenic massive sulfide deposits in volcanogenic massive sulfide occurence model. U.S. Geological Survey Scientific Investigations Report 2010-5070-C.
Nyquist, J. E., & Corry, C. E. (2002). Self-potential: The ugly duckling of environmental geophysics. The Leading Edge, 21(5), 446–451. https://doi.org/10.1190/1.1481251
Ogilvy, R. D., & Lee, A. C. (1991). Interpretation of VLF-EM in-phase data using current density pseudosections. Geophysical Prospecting, 39(4), 567–580. https://doi.org/10.1111/j.1365-2478.1991.tb00328.x
Oldenburg, D. W., & Jones, F. H. M. (2007). Inversion for Applied Geophysics. Version 1.0 (2017/06/28). University of British Columbia, Geophysical
Inversion Facility, 2000-2007. Retrieved February 5, 2019, from https://www.eoas.ubc.ca/ubcgif/iag/index.htm
Paál, G. (1965). Ore prospecting based on VLF-radio signals. Geoexploration, 3(3), 139–147. https://doi.org/10.1016/0016-7142(65)90016-5
Pain, C. C., Herwanger, J. V., Worthington, M. H., & De Oliveira, C. R. E. (2002). Effective multidimensional resistivity inversion using finite-element techniques. Geophysical Journal International, 151(3), 710–728. https://doi.org/10.1046/j.1365-246X.2002.01786.x
Palacky, G. J. (1988). Resistivity Characteristics of Geologic Targets. Electromagnetic Methods in Applied Geophysics, 52–129. https://doi.org/10.1190/1.9781560802631.ch3
Parasnis, D. S. (1956). The electrical resistivity of some sulphide and oxide minerals and their ores. Geophysical Prospecting, 4(3), 249–278. https://doi.org/10.1111/j.1365-2478.1956.tb01409.x
Pavlides, S. B., & Tranos, M. D. (1991). Structural characteristics of two strong earthquakes in the North Aegean: Ierissos (1932) and Agios
Efstratios (1968). Journal of Structural Geology, 13(2), 205–214. https://doi.org/10.1016/0191-8141(91)90067-S
Pridmore, D. F., Hohmann, G. W., Ward, S. H., & Sill, W. R. (1981). An investigation of finite-element modeling for electrical and electromagnetic data in three dimensions. Geophysics, 46(07), 1009–1024.
Pridmore, Donald F., & Shuey, R. T. (1976). The electrical resistivity of galena, pyrite, and chalcopyrite. American Mineralogist, 61, 248–259.
Quarto, R., & Schiavone, D. (1996). Detection of cavities by the self-potential method. First Break, 14(11), 419–430. https://doi.org/10.3997/1365-2397.1996023
Robinson, E. S., & Coruh, C. (1988). Basic exploration geophysics. John Wiley and Sons.
Roy, A., & Apparao, A. (1971). Depth of investigation in direct current methods. Geophysics, 36(5), 943–959. https://doi.org/10.1190/1.1440226
Sasaki, Y. (1994). 3-D resistivity inversion using the finite‐element method. Geophysics, 59(11), 1839–1848. https://doi.org/10.1190/1.1443571
Sato, M., & Mooney, H. M. (1960). The electrochemical mechanism of sulfide self-potentials. Geophysics, XXV(1), 226–249. https://doi.org/10.1190/1.1438689
Schiavone, D., & Quarto, R. (1984). Self-potential prospecting in the study of water movements. Geoexploration, 22(1), 47–58. https://doi.org/10.1016/0016-7142(84)90005-X
Seigel, H. O. (1959). Mathematical formulation and type curves for induced polarization. Geophysics, XXIV(3), 547–565. https://doi.org/10.1190/1.1438625
Seigel, H. O. (1974). The magnetic induced polarization (MIP) method. Geophysics, 39(3), 321–339. https://doi.org/10.1190/1.1440431
Siron, C. R., Rhys, D., Thompson, J. F. H., Baker, T., Veligrakis, T., Camacho, A., & Dalampiras, L. (2018). Structural controls on porphyry Au-Cu and
Au-rich polymetallic Carbonate-hosted replacement deposits of the Kassandra mining District, Northern Greece. Economic Geology, 113(2), 309–345. https://doi.org/10.5382/econgeo.2018.4552
Strangway, D. W., Swift, C. M., & Holmer, R. C. (1973). The application of audio-frequency magnetotellurics (AMT) to mineral exploration. Geophysics, 38(6), 1159–1175. https://doi.org/10.1190/1.1440402
Šumi, F. (1959). Geophysical exploration in mining by induced polarization. Geophysical Prospecting, 7(3), 300–310. https://doi.org/10.1111/j.1365-2478.1959.tb01472.x
Swidinsky, A., Hölz, S., & Jegen, M. (2012). On mapping seafloor mineral deposits with central loop transient electromagnetics. Geophysics, 77(3), E171–E184. https://doi.org/10.1190/geo2011-0242.1
Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied Geophysics. Cambridge University Press. https://doi.org/10.1180/minmag.1982.046.341.32
Tsourlos, P. I. (1995). Modelling, Interpretation and Inversion of Multielectrode Resistivity Survey Data. University of York.
Tsourlos, P. I., & Ogilvy, R. D. (1999). An algorithm for the 3-D inversion of tomographic resistivity and induced polarisation data: Preliminary results. Journal of the Balkan Geophysical Society, 2(2), 30–45.
Ward, S. H. (1959). AFMAG - Airborne and Ground. Geophysics, XXIV(4), 761–789. https://doi.org/10.1190/1.1438657
Ward, Stanley H. (1990). Resistivity and induced polarization methods. Geotechnical and environmental geophysics. Society of Exploration Geophysicists. https://doi.org/10.1190/1.9781560802785
Yi, M. J., Kim, J. H., Song, Y., Cho, S. J., Chung, S. H., & Suh, J. H. (2001). Three-dimensional imaging of subsurface structures using resistivity data. Geophysical Prospecting, 49(4), 483–497. https://doi.org/10.1046/j.1365-2478.2001.00269.x
Yüngül, S. (1950). Interpretation of spontaneous polarization anomalies caused by spheroidal orebodies. Geophysics, 15(2), 237–246. https://doi.org/10.1190/1.1437597
Αποστολόπουλος, Γ. (2013). Σημειώσεις εφαρμοσμένης γεωφυσικής. Αθήνα: Εργαστήριο Εφαρμοσμένης Γεωφυσικής, Τομέας Μεταλλευτικής, Σχολή Μηχανικών Μεταλλείων Μεταλλουργών, Εθνικό Μετσόβιο Πολυτεχνείο.
Ι.Γ.Μ.Ε. (1978). Γεωλογικός χάρτης 1:50000 Φύλλο Σταυρός. Χαρτογράφηση: Dr. Kockel F., Dr. Mollat H., Dr. Walther H.W., Antoniades P., Ioannides K.
Μουντράκης, Δ. Μ. (2010). Γεωλογία και γεωτεκτονική εξέλιξη της Ελλάδας. Θεσσαλονίκη: University Studio Press.
Παπάγγελος, Ι. (1991). Το κοινόν του Μαδεμίου. Θεσσαλονίκη.
Εισερχόμενη Αναφορά
- Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.