[Εξώφυλλο]

Η επίδραση της Madden-Julian κύμανσης (MJO) στο κλίμα της Ευρώπης = The impact of Madden-Julian oscillation (MJO) on the European climate

Μαρία Παύλος Κερασιλίδου

Περίληψη


Αντικειμενικός στόχος της παρούσας εργασίας είναι η μελέτη της επίδρασης της ατμοσφαιρικής κύμανσης Madden-Julian (MJO) στο κλίμα της Ευρώπης. Ειδικότερα εξετάζεται η συσχέτιση των οκτώ φάσεων MJO με συγκεκριμένες κλιματικές παραμέτρους, τόσο για το χειμώνα όσο και για το καλοκαίρι. Για το σκοπό αυτό, χρησιμοποιήθηκαν δεδομένα επανανάλυσης από το NCEP/NCAR, που αντιπροσωπεύουν τις ανωμαλίες και τη μέση κατάσταση για τις κλιματικές παραμέτρους της θερμοκρασίας, της βροχόπτωσης, της ατμοσφαιρικής πίεσης, του ανέμου στην επιφάνεια και στα 250hPa, για την περίοδο 1976-2015. Αφού εντοπίστηκαν οι ακραίες τιμές του δείκτη που αντιστοιχούν σε ποσοστό μεγαλύτερο του 90%, πραγματοποιήθηκε για κάθε παράμετρο οπτικοποίηση των δεδομένων. Από τα αποτελέσματα διαπιστώνεται πως για κάθε κλιματική παράμετρο, ανά φάση προκύπτουν διαφορετικά συμπεράσματα τα οποία ποικίλουν ανά εποχή. Ειδικότερα, για τη χειμερινή περίοδο η 7η και 8η φάση του MJO συνδέεται με πτώση της θερμοκρασίας κυρίως στη Β-ΒΑ Ευρώπη ενώ η αύξηση της θερμοκρασίας στην περιοχή της Σκανδιναβίας συνδέεται με την 1η και 2η φάση. Αντίθετα κατά την καλοκαιρινή περίοδο, η ελάττωση της θερμοκρασίας στην περιοχή της κεντρικής και βόρειας Ευρώπης συνδέεται με τις φάσεις 4 έως 6. Η ενίσχυση της θετικής φάσης του ΝΑΟ συνδέεται με αύξηση της βροχόπτωσης στην περιοχή της Σκανδιναβίας στις φάσεις 2 έως 4 (χειμώνας), ενώ η εξασθένηση του αντικυκλώνα των Αζορών (3η, 5η και 8η φάση-καλοκαίρι) συνδέεται με την ελάττωση της βροχόπτωσης στην κεντρική Ευρώπη. Τέλος η 1η και 2η φάση του δείκτη συνδέονται με την ενίσχυση των Ετησίων ανέμων στην ανατολική Μεσόγειο κατά τη θερινή περίοδο.

The aim of the present study is to investigate the impact of Madden-Julian Oscillation on the climate of European area, and in particular the correlation of the eight MJO phases with specific climate parameters, both for winter and summer. For this purpose, NCEP/NCAR reanalysis data were used, covering the period 1976-2015. The reanalysis represent the anomalies and mean condition for the climate parameters of temperature, rainfall, atmospheric pressure, wind at surface and at 250hPa. Extreme values of the RMM index (>90%) were chosen and they were visualized for each parameter. The results show that for each climate parameter, different conclusions are obtained per phase, which vary by season. Specifically, for the winter period the 7th and 8th phase of the MJO is associated with a decrease in temperature mainly in N-NE Europe. The increase in temperature on the Scandinavian region is associated with the 1st and 2nd phase.  On the other hand, during the summer season, the decrease in temperature in central and northern Europe is associated with phases 4 to 6. The enhancement of the positive NAO phase is associated with an increase in rainfall in the Scandinavian region in phases 2 to 4 (winter), while the weakening of the Azores cyclone (3rd, 5th and 8th phase-summer) is associated with the decrease in precipitation parameter in central Europe. The 1st and 2nd phase of MJO is associated with the strengthening of the Etesian winds in eastern Mediterranean during summer season.

Πλήρες Κείμενο:

PDF

Αναφορές


American Meteorological Society, 2000: Glossary of Meteorology, 2nd Edition. Cambridge, Massachusetts, Retrieved from the WWW, September 20, 2007:http://amsglossary.allenpress.com.

Andrade, C., Leite, S. M., and Santos, J. A., 2012: Temperature extremes in Europe: Overview of their driving atmospheric patterns. Natural Hazards and Earth System Science, 1671–1691.

Ångström, A, 1935: Teleconnections of Climatic Changes in present time. Geografiska Annaler,17, 242-258.

Barry R.G. and Carleton A.M., 2001: Synoptic and Dynamic Climatology, Routledge Publications, London, 620.

Barnston, A. G., and Livezey, R. E., 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Monthly weather review, 115(6), 1083-1126.

Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof J, Schöll R, Semmler T, Woth K. 2007: Future extreme events in European climate: an exploration of regional climate model projections. Clim. Change, 71–95.

Bin, Y., Lin, H., and Soulard, N., 2019: A comparison of north American surface temperature and temperature extreme anomalies in association with various atmospheric teleconnection patterns. Atmosphere, 10,172.

Blackmon, M.L., Lee, Y.H., and Wallace, J. M., 1984: Horizontal structure of 500 mb fluctuations with long intermediate and short time scales as deduced from lag-correlation statistics. J. Atmos. Sci.,41,981-991

Caccia, L., Guénard, V., Benech, B., Campistron, B., and Drobinski, P., 2004: Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers. Annales Geophysicae, 3927, 3927–3936.

Cassou, C., 2008: Intraseasonal interaction between the Madden– Julian Oscillation and the North Atlantic Oscillation. Nature, 523–527.

Conté, M., Giuffrida, A., Tedesco, S., 1989: The Mediterranean oscillation. Impact on precipitation and hydrology in Italy. Conference on: Climate Water. Publication of the Academy of Finland, Helsinki, 11-15 September 1989, 121-137.

Donat, G., Leckebusch, C., Pinto, G., and Ulbrich, U., 2010: Examination of wind storms over Central Europe with respect to circulation weather types and NAO phases. International Journal of Climatology, 1294, 1289–1300.

Gottschalck, J., Wheeler, M., Weickmann, K., Vitart, F., Savage, N., Lin, H., Hendon, H., Waliser, D., Sperber, K., Nakagawa, M., Prrestrelo, C., Flatau, M., and Higgins, W., 2010: A framework for assessing operational Madden-Julian oscillation forecasts. American Meteorology Society, 1247-1258.

Gutzler, DS, 2015: Climate Variability: Seasonal and Interannual Variability, Encyclopedia of Atmospheric Sciences 2nd Edition, Volume 2, 61-68.

Feldstein, S., & Franzke, C. (2017). Atmospheric Teleconnection Patterns. In C. Franzke & T. O'Kane (Eds.), Nonlinear and Stochastic Climate Dynamics (pp. 54-104). Cambridge: Cambridge University Press.

Hatzaki M, H.A. Flocas, D.N. Asimakopoulos, and P. Maheras,2007: The eastern Mediterranean teleconnection pattern: identification and definition. International Journal

of Climatology, 27, 727-737.

Henderson, S. A., Maloney, E. D., and Barnes, E. A., 2016: The influence of the Madden-Julian oscillation on Northern Hemisphere winter blocking. Journal of Climate, 4609,4613, 4597–4616.

Horel, J.D., 1981: A rotated principal component analysis of the interannual variability of the Northern Hemisphere 500 mb height field. Monthly Weather Revie, 109, 2080–2092.

Hsu, H.H., and Lin S.H., 1991: Global teleconnections in the 250-mb streamfunction field during the northern hemisphere winter. Monthly Weather Review, 120, 1169-1190.

Johnson, N. C., and S. B. Feldstein, 2010. The continuum of North Pacific sea level pressure patterns: Intraseasonal, interannual, and interdecadal variability. Journal of Climate, 23.

Ionita, M., Lohmann, G., Rimbu, N., Chelcea, S., and Dima, M., 2012: Interannual to decadal summer drought variability over Europe and its relationship to global sea surface temperature. Climate Dynamics, 363–377.

Kalnay, E., Kanamitsu, M., Kistler. R., Collins., W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W.,

Janowiak, J., Mo, K., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., Joseph, D., 1996: The NCEP/NCAR 40-year reanalysis project. Bulletin of the

American Meteorological Society ,437-470.

Kaspar, F., Schulzweida, U., and Wetterdienst, D., 2009: “Climate Data Operators” As a User-Friendly Processing Tool for Cmsaf’S Satellite-Derived Climate Monitoring Products.

Kessler, W. S., 2012: Intraseasonal Variability of the Atmosphere–Ocean Climate System, Second edition, W. K.-M. Lau and D. E. Waliser, Eds., Springer, 199–246.

Kiladis, G. N., and Weickmann, K. M., 1992: Circulation anomalies associated with tropical convection during northern winter. Mon. Wea. Rev., 120, 1900–1923.

Kiladis, G. N., Straub, K. H., and Haertel, P. T., 2005: Zonal and vertical structure of the Madden-Julian Oscillation. J. Atmos. Sci., in press.

Kistler, R., Kalnay, E., Collins, W., Saha, S., White, G., Woollen, J., Fiorino, M., 2001: The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bulletin of the American Meteorological Society, 247–267.

Koch, P., Wernli, H., and Davies, H. C., 2006: An event-based jet-stream climatology and typology. International Journal of Climatology, 290, 283–301.

Kutiel, H., and Benaroch, Y., 2002: North sea-Caspian Pattern (NCP) – an upper level atmospheric teleconnection affecting the Eastern Mediterranean: Identification and definition. Theoretical and Applied Climatology , 17-28.

Lavender, S., and Matthews, A., 2009: Response of the West African monsoon to the Madden–Julian oscillation. J. Climate, 22, 4097–4116.

Lelieveld, J., Hadjinicolaou, P., Kostopoulou, E., Chenoweth, J., El Maayar, M., Giannakopoulos, C., Hannides, C., Lange, M., Tanarhte, M., Tyrlis, E., and Xoplaki, E., 2012: Climate change and impacts in the Eastern Mediterranean and the Middle East. Climatic Change, 667–687.

Lin, H., G. Brunet, and J. S. Fontecilla, 2010. Impact of the Madden–Julian Oscillation on the intraseasonal forecast skill of the North Atlantic Oscillation. Geophysical Research Letters, 37.

Lin, H., Brunet, G., & Yu, B. (2015). Interannual variability of the Madden-Julian Oscillation and its impact on the North Atlantic Oscillation in the boreal winter. Geophysical Research Letters, 5571–5576.

Liu, P., Zhang, Q., Zhang, C., Zhu, Y., Khairoutdinov, M., Kim, H., Schumacher, C., and Zhang, 2016 :A revised real-time multivariate MJO index. American Meteorology

Society, 627-642.

Madden, R. A., and Julian, P. R., 1971: Description of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 702–708.

Madden, R. A., and Julian, P. R., 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 1109–1123.

Maloney, E. D., and D. L. Hartmann, 1998: Frictional moisture convergence in a composite life cycle of the Madden– Julian oscillation. J. Climate, 11, 2387–2403.

Maloney, E. D., and Sobel, A. H., 2004: Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. J. Climate, 17, 4368–4386.

Matsueda, S., and Takaya, Y., 2015: The Global Influence of the Madden–Julian Oscillation on Extreme Temperature Events*. Journal of Climate, 4145, 4141–4151.

Meier-Fleischer, K., and Böttinger, M., 2013: NCL Tutorial-High Quality Graphics with NCL 6.1.2. Dkrz, 1–150.

Miller, A. J., S. Zhou, and S. K. Yang, 2003: Relationship of the Arctic and Antarctic Oscillations to the outgoing longwave radiation. J. Climate, 16, 1583-1592.

Mo, K.C., and Livezey, R.E., 1986: Tropical-extratropical geopotential height teleconnections during the northern hemisphere winter. American Meteorological Society, 114, 2488-2515.

Mori, M., and M. Watanabe, 2008. The growth and triggering mechanisms of the PNA: A MJO-PNA coherence. Journal of the Meteorological Society of Japan, 86, 213–236.

Mysak, L. A., and Mertz, G. J., 1984: A 40- to 60-day oscillation in the source region of the Somali Current during 1976. J. Geophys. Res., 89, 711–715.

North, G. R., Zhang, F., and Pyle, J. , 2014. Encyclopedia of Atmospheric Sciences:Second Edition, 77, 625-631.

Oldenborgh G.J.V., Burgers G. and Tank A.K., 1999: On the El Niño teleconnection to spring precipitation in Europe, J. Climatol., 20, 565-574.

Porebska, M., and Zdunek, M., 2013: Analysis of extreme temperature events in central europe related to high pressure blocking situations in 2001-2011. Meteorologische Zeitschrift, 533–540.

Rousi, E., Anagnostopoulou, C., Tolika, K., and Maheras, P.,2015: Representing teleconnection patterns over Europe: A comparison of SOM and PCA methods.

Atmospheric Research, 152, 123-137.

Rui, H., and B. Wang, 1990: Development characteristics and dynamic structure of tropical intraseasonal convection anomalies. J. Atmos. Sci., 47, 357–379.

Salby, M. L., and Hendon, H. H., 1994: Intraseasonal behavior of clouds, temperature, and winds in the tropics. J. Atmos. Sci., 51, 2207–2224.

Straub, K. H., 2013: MJO initiation in the real-time multivariate MJO index. J. Climate, 26, 1130–1151.

Straub, K. H., and Kiladis, G. N., 2002: Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ. J. Atmos. Sci., 30–53.

Uvo, C. B., 2003: Analysis and regionalization of northern European winter precipitation based on its relationship with the North Atlantic oscillation. International Journal

of Climatology, 1185–1194.

Von Storch, H, and F. W. Zwiers, 1999. Statistical Analysis in Climate Research, Cambridge University Press, Cambridge.

Waliser, D. E., Tian, B., Xie, X., Liu, W. T., Schwartz, M. J., and Fetzer, E. J., 2009: How well can satellite data characterize the water cycle of the Madden-Julian Oscillation? Geophys. Res. Lett., 36, L21803, doi:10.1029/2009GL040005.

Walker, G,.T., and Bliss, E.W., 1932: World weather V. Mem Royal Meteorology Society, 4, 53-84.

Wallace, J. M. and Gutzler, D.S., 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Monthly Weather Review, 109, 784-812.

Wallace, M.J., Smith, C., Bretherton, C.S., 1992: Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. Journal of Climate, 5, 561–576.

Weickmann, K. M., G. R. Lussky, and J. E. Kutzbach, 1985: Intraseasonal (30–60 day) fluctuations of outgoing longwave radiation and 250 mb streamfunction during northern winter. Mon. Wea. Rev., 113, 941–961.

Wibig, J. , 1999: Precipitation in Europe in relation to circulation patterns at the 500 hPa level. International Journal of Climatology, 267, 253–269.

Wheeler, M., C., and Hendon, H.H., 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Monthly Weather Review., 132, 1917-1932.

Wong, S., and Dessler, A. E., 2007: Regulation of H2O and CO in tropical tropopause layer by the Madden–Julian oscillation. J. Geophys. Res., 112, D14305,

doi:10.1029/2006JD007940.

Zhang, C., 2005: Madden-Julian oscillation. Reviews of Geophysics.,43,1-36.

Zhang, C., 2013: Madden-Julian oscillation: Bridging weather and climate. American Meteorology Society, 1849-1870.

Zheng, C., and Chang, E.K.M., 2019: The role of MJO propagation, lifetime, and intensity on modulating the temporal evolution of the MJO extratropical response,

Journal of Geophysical Research: Atmospheres, 124, 5352-5378.

Νέος Π., 2017, Ο ρόλος του υποτροπικού και πολικού αεροχειμάρρου κατά τη διάρκεια της εκρηκτικής κυκλογένεσης στη Μεσόγειο, Μεταπτυχιακή διατριβή, Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Σχολή Θετικών Επιστημών, Τμήμα Φυσικής, Αθήνα, Ελλάδα.

Ρούση Ε., 2014, Εκτιμήσεις των μελλοντικών κλιματικών αλλαγών στη Μεσόγειο με τη χρήση περιοχικών κλιματικών μοντέλων, , Διδακτορική διατριβή, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Ελλάδα.

https://www.cpc.ncep.noaa.gov/data/teledoc/teleintro.shtml

www.ncdc.noaa.gov

www.metoffice.gov

http://metyuc.com.mx/

https://www.cpc.ncep.noaa.gov/products/wesley/reanalysis.html

http://www.bom.gov.au/climate/mjo/

https://code.mpimet.mpg.de/projects/cdo/embedded/cdo.pdf


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.