Κοιτάσματα Επιθερμικού τύπου = Epithermal type deposits.
Περίληψη
The following diploma thesis is a summary of all the features that characterize an epithermal type deposit. They appear in a tectonic environment with the subduction of an oceanic lithosphere below a continental lithospheric slab, causing a contemporaneously rise of magma and fluid circulation. All these lead to the formation of epithermal deposits. Their special features such as the ore and hydrothermal minerals, the form of the ore bodies, the origin of the fluids, the host rocks etc. are further discussed. All these data that are used in order to separate them from other types of deposits and also to discriminate the epithermal deposits in subtypes based on the sulfidation state. Subsequently, the different types of hydrothermal alteration are mentioned, whether they pre-existed in the minerals of the host rocks, or they were formed during the mineralization process form the hydrothermal fluids. Last but not least, several examples of worldwide and Greek epithermal type deposits, are briefly described.
Πλήρες Κείμενο:
PDFΑναφορές
Álvarez R.R. Epitermales. Available at: https://www.medellin.unal.edu.co/~rrodriguez/Ore-Genesis-Notes/Epithermal%20Au-Ag.htm [Accessed 25 Feb. 2020].
Arribas Jr, A. (1995). Characteristics of high-sulfidation epithermal deposits, and their relation to magmatic fluid. Mineralogical Association of Canada Short Course, 23, 419-454.
Arribas, A., Hedenquist, J. and Gonzalez-Urien, E. (2000). Exploration for Epithermal Deposits. Reviews in Economic Geology, 13(2), 45-77.
Charchaflie, D., Tosdal, R. and Mortensen, J. (2007). Geologic Framework of the Veladero High-Sulfidation Epithermal Deposit Area, Cordillera Frontal, Argentina. Economic Geology, 102(2), 171-192.
Chouinard, A., Williams-Jones, A. E., Leonardson, R. W., Hodgson, C. J., Silva, P., Téllez, C., ... and Rojas, F. (2005). Geology and genesis of the multistage high-sulfidation epithermal Pascua Au-Ag-Cu deposit, Chile and Argentina. Economic Geology, 100(3), 463-490.
Dong, G., Morrison, G., and Jaireth, S. (1995). Quartz textures in epithermal veins, Queensland; classification, origin and implication. Economic Geology, 90(6), 1841-1856.
Einaudi, M. T., Hedenquist, J. W., and Inan, E. E. (2003). Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments. Special Publication-Society of Economic Geologists, 10, 285-314.
En.wikipedia.org. (2020). Round Mountain Gold Mine. [online] Available at: https://en.wikipedia.org/wiki/Round_Mountain_Gold_Mine [Accessed 25 Feb. 2020].
Faure, K., Matsuhisa, Y., Metsugi, H., Mizota, C. and Hayashi, S. (2002). The Hishikari Au-Ag Epithermal Deposit, Japan: Oxygen and Hydrogen Isotope Evidence in
Determining the Source of Paleohydrothermal Fluids. Economic Geology, 97(3), 481-498.
Gwinnett Γ. (2019) Japan Gold on acquisition spree again as it picks up five more gold projects. Available at: https://ca.proactiveinvestors.com/companies/news/902309/japan-gold-on-acquisition-spree-again-as-it-picks-up-five-more-gold-projects-902309.html [Accessed 25 Feb. 2020].
Hedenquist J.W. (2011) Lithocaps and high-sulfidation epithermal deposits. Available at: http://www.sociedadgeologica.cl/wp-content/uploads/2011/07/3HighSulfidationSantiago.pdf [Accessed 7 Feb. 2020].
Hedenquist, J. W., and Arribas, R. A. (2017). Epithermal ore deposits: first-order features relevant to exploration and assessment. Mineral Resources to Discover, 1, 47-50.
Hedenquist, J. W., and Reid, F. (1985). Epithermal gold. Earth Resources Foundation, University of Sydney.
Holley, E., Bissig, T. and Monecke, T. (2016). The Veladero High-Sulfidation Epithermal Gold Deposit, El Indio-Pascua Belt, Argentina: Geochronology of Alunite and Jarosite. Economic Geology, 111(2), 311-330.
Izawa, E., Urashima, Y., Ibaraki, K., Suzuki, R., Yokoyama, T., Kawasaki, K., ... and Taguchi, S. (1990). The Hishikari gold deposit: high-grade epithermal veins in Quaternary volcanics of southern Kyushu, Japan. Journal of Geochemical Exploration, 36(1-3), 1-56.
Jame St. J. Alunite (Miocene, 21 Ma; Marysvale area, Utah, USA). Available at: https://www.flickr.com/photos/jsjgeology/32244268115 [Accessed 25 Feb. 2020].
Kelley, K. D., and Spry, P. G. (2016). Critical elements in alkaline igneous rock-related epithermal gold deposits. Reviews in Economic Geology, 18, 195-216.
Kesler, S. E., and Wilkinson, B. H. (2009). Resources of gold in Phanerozoic epithermal deposits. Economic Geology, 104(5), 623-633.
Kilias, S. P., Naden, J., Cheliotis, I., Shepherd, T. J., Constandinidou, H., Crossing, J., and Simos, I. (2001). Epithermal gold mineralisation in the active Aegean volcanic arc: The Profitis Ilias deposit, Milos Island, Greece. Mineralium Deposita, 36(1), 32-44.
Melfos V., Voudouris P. (2017). Cenozoic metallogeny of Greece and potential for precious, critical and rare metals exploration. Ore Geology Reviews, 89, 1030–1057.
Michaud D. (2015). Epithermal Gold Deposits Characteristics. In: Mineral Processing and Metallurgy. Available at: https://www.911metallurgist.com/blog/epithermal-gold-deposits-characteristics [Accessed 13 Feb. 2020].
Naden, J., Kilias, S. P., Leng, M. J., Cheliotis, I., Shepherd, T. J., and Spiro, B. (1999). The Profitis Ilias deposit, Milos island, Greece: A case study of boiling in an epithermal system recorded by stable isotope and fluid inclusion data. Balkema, 63-66.
Sander, M. V., and Einaudi, M. T. (1990). Epithermal deposition of gold during transition from propylitic to potassic alteration at Round Mountain, Nevada. Economic Geology, 85(2), 285-311.
Saunders, J. (2012). Textural Evidence of Episodic Introduction of Metallic Nanoparticles into Bonanza Epithermal Ores. Minerals, 2(3), 228-243.
Shikazono, N., and Takahashi, H. (2010). Compositional Variation of Hydrothermally Altered Volcanic Rocks in Hishikari Gold Epithermal System: A Useful Geochemical Indicator of Gold–Silver Epithermal Mineralization. Resource geology, 60(2), 117-128.
Sidorov, A., Volkov, A. and Savva, N. (2015). Volcanism and epithermal deposits. Journal of Volcanology and Seismology, 9(6), 349-357.
Sillitoe, R. H. (2015). Epithermal paleosurfaces. Mineralium Deposita, 50(7), 767-793.
Sillitoe, R. H., Hannington, M. D., and Thompson, J. F. (1996). High sulfidation deposits in the volcanogenic massive sulfide environment. Economic Geology, 91(1), 204-212.
Smith, D. J., Naden, J., Jenkin, G. R., and Keith, M. (2017). Hydrothermal alteration and fluid pH in alkaline-hosted epithermal systems. Ore Geology Reviews, 89, 772-779.
Taylor, B. E. (2007). Epithermal gold deposits. Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods: Geological Association of Canada, Mineral Deposits Division, Special Publication, 5, 113-139.
vdocuments.mx. (2020). EPITHERMAL GOLD DEPOSITS. Available at: https://vdocuments.mx/epithermal-gold-deposits-aduppt.html [Accessed 25 Feb. 2020].
Voudouris, P., Mavrogonatos, C., Spry, P., Baker, T., Melfos, V., Klemd, R., Haase, K., Repstock, A., Djiba, A., Bismayer, U., Tarantola, A., Scheffer, C., Moritz, R.,
Kouzmanov, K., Alfieris, D., Papavassiliou, K., Schaarschmidt, A., Galanopoulos, E., Galanos, E., Kołodziejczyk, J., Stergiou, C. and Melfou, M. (2019). Porphyry and
epithermal deposits in Greece: An overview, new discoveries, and mineralogical constraints on their genesis. Ore Geology Reviews, 107, pp.654-691.
White, N. C., and Hedenquist, J. W. (1990). Epithermal environments and styles of mineralization: variations and their causes, and guidelines for exploration. Journal of Geochemical Exploration, 36(1-3), 445-474.
White, N. C., and Hedenquist, J. W. (1995). Epithermal gold deposits: styles, characteristics and exploration. SEG newsletter, 23(1), 9-13.
Wilson C. and Tunningley A. High Sulphidation Epithermal Deposits. Available at: https://docplayer.net/79603319-High-sulphidation-epithermal-deposits.html [Accessed 25 Feb. 2020].
Yasuhara S. Watanabe, K. and Izawa, E. (2003). Zoning of hydrothermal alteration in the western part of the Hishikari epithermal gold deposit, Southern Kyushu, Japan.
Αρίκας, Κ., Βουδούρης, Π., Kloos, M. and Tesch, C. (2004). PETROLOGY - GEOCHEMISTRY AND METALLOGENESIS OF VOLCANIC ROCKS IN THE PETROTA GRABEN/MARONIA, W.THRACE. Bulletin of the Geological Society of Greece, 36(1), 482.
Κίλιας Σ. (2006). Έρευνα εντοπισμού για επιθερμικά κοιτάσματα Au (Cu,Ag). Σημειώσεις. Τμήμα Γεωλογίας. Πανεπιστήμιο Αθηνών, σελ. 85.
Μέλφος Β., Επιθερμικά κοιτάσματα ευγενών και βασικών μετάλλων - [PDF Document].
Μουντράκης Δ (2010) Γεωλογία και γεωτεκτονική εξέλιξη της Ελλάδας, University Studio Press, Θεσσαλονίκη, 374 σελ.
Παπούλης Δ. (2011) ΥΛΙΚΑ ΤΗΣ ΓΗΣ ΙI : Κρυσταλλοχημεία και Συστηματική των Ορυκτών. Available at: https://docplayer.gr/45963369-Ylika-tis-gis-ii-krystallohimeia-kai-systimatiki-ton-orykton.html [Accessed 25 Feb. 2020].
Τριανταφυλλίδης Σ. (2015) ΜΑΘΗΜΑ 5ο. ΥΔΡΟΘΕΡΜΙΚΑ ΚΟΙΤΑΣΜΑΤΑ. Available at: https://ocw.aoc.ntua.gr/modules/document/file.php/METAL114/ydrothermika%20koitasmata.pdf [Accessed 7 Feb. 2020].
Εισερχόμενη Αναφορά
- Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.