[Εξώφυλλο]

A seismological and remote sensing approach of geodynamic phenomena = Σεισμολογική και τηλεπισκοπική προσέγγιση γεωδυναμικών φαινομένων.

Nikos A. Svigkas

Περίληψη


Οι γεωδαιτικές μετρήσεις μπορούν να συνεισφέρουν στη μελέτη πολλαπλών φαινομένων. Η τεχνολογική εξέλιξη και οι δορυφορικές αποστολές ραντάρ, προσέφεραν καινούργιους τρόπους μελέτης της επιφανειακής παραμόρφωσης. Στην παρούσα διατριβή, γίνεται χρήση αυτών των δεδομένων ραντάρ, για την παρακολούθηση της γήινης επιφανειακής παραμόρφωσης, μέσω της ανάλυσης τους με τη χρήση των τεχνικών συμβολομετρίας ραντάρ συνθετικού ανοίγματος (InSAR). Μελετώνται δυο τύποι επιφανειακής παραμόρφωσης: ανθρωπογενής και τεκτονική. Όσον αφορά την πρώτη κατηγορία η εστίαση τίθεται στη βόρεια Ελλάδα και ειδικότερα στη Θεσσαλονίκη (τη δεύτερη μεγαλύτερη πόλη της Ελλάδας) και τα περίχωρά της. Η περιοχή ήταν γνωστό ότι ήταν υπό καθεστώς παραμόρφωσης, και σε αυτή τη διατριβή παρουσιάζονται νέα, πιο πρόσφατα αποτελέσματα των οποίων τα χαρακτηριστικά αναλύονται λεπτομερώς. Επιπρόσθετα, οι κύριοι μηχανισμοί που προκαλούν το φαινόμενο προτείνονται με βάση και την αξιοποίηση εξωτερικών δεδομένων. Οι περιοχές ενδιαφέροντος είναι το Καλοχώρι, η λεκάνη του Ανθεμούντα και η ευρύτερη περιοχή του Ωραιοκάστρου. Τα αποτελέσματα δείχνουν ότι υπάρχουν σημαντικά σήματα παραμόρφωσης, τα οποία κατά περιπτώσεις μπορεί να προκαλέσουν σοβαρές αστοχίες σε σπίτια, κτίρια και υποδομές υψηλής σημασίας. Αξιολόγηση των in-situ δεδομένων, μαζί με τα Τηλεπισκοπικά, δείχνουν ότι η δραστηριότητα των υδροφορέων είναι η κύρια αιτία της επιφανειακής παραμόρφωσης και ότι η δραστηριότητα του υπόγειου νερού καθορίζει τις επιφανειακές ανυψωτικές και καθιζηματικές τάσεις, των υπό μελέτη περιοχών. Ως γενική πρόταση, η ανάγκη για διαχείριση των υπόγειων υδάτων, θεωρείται κρίσιμη προτεραιότητα για την ευρύτερη περιοχή της Θεσσαλονίκης, για την αποφυγή μελλοντικών κινδύνων. Στη δεύτερη ενότητα της παρούσας διατριβής, γίνεται μελέτη σήματος τεκτονικής παραμόρφωσης αρχικά για την περίπτωση του σεισμού Ιράν-Ιράκ 2017 με σκοπό τον προσδιορισμό της πηγής του συμβάντος. Οι άγονες περιβαλλοντικές συνθήκες της περιοχής μελέτης, συνέβαλαν σε ένα σήμα παραμόρφωσης υψηλής με σκοπό τον υπολογισμό των παραμέτρων του ρήγματος, που σχετίζεται με την παραμόρφωση της ενεργού τεκτονικής των πλακών που παρατηρείται στην περιοχή. Μια άλλη μελέτη που παρουσιάζεται εδώ, επικεντρώθηκε στην περιοχή του Ιονίου, το πιο ενεργό τεκτονικό τμήμα της ανατολικής Μεσογείου. Με την αξιοποίηση δεδομένων ραντάρ πολλαπλών ζωνών συχνοτήτων από διαφορετικές γεωμετρίες λήψης και με βάση τα αποτελέσματα των προηγούμενων μελετών της ακολουθίας της Λευκάδας του 2015, προτείνεται μια νέα γεωμετρία ρηξιγενών τεμαχών για τη ζώνη Κεφαλονιάς- Λευκάδας (Cephalonia-Lefkada Transform fault Zone -CTF). Στην παρούσα διατριβή, γίνεται επίσης εστίαση στις νέες δυνατότητες που προσφέρουν οι τελευταίες τεχνολογικές εξελίξεις των δορυφόρων ραντάρ και στη συμβολή που θα μπορούσαν να προσφέρουν στην κοινότητα των επιστημών της γης. Μελετώντας τη ακολουθία σμηνοσεισμών της χερσονήσου της Μπίγκα του 2017 και χρησιμοποιώντας μια συγκεκριμένη στρατηγική μοντελοποίησης, αποδεικνύεται ότι υπάρχουν νέες δυνατότητες σήμερα για να εξετάσουμε τις ακολουθίες σμηνοσεισμών. Οι τελευταίες είναι ελάχιστά μελετημένες απο τη σκοπιά της δορυφορικής συμβολομετρίας ραντάρ, σε σύγκριση με τις ακολουθίες που συνδέονται με σεισμούς μεγάλου μεγέθους.


Geodetic measurements can be used to study different phenomena. Technological advancements and the radar satellite constellations offered new ways of measuring surface deformation. These data are exploited in this thesis, to monitor surface deformation, by applying interferometric synthetic aperture radar (InSAR) techniques, conventional and multi-temporal. Two types of surface deformation are studied: anthropogenic and tectonic. Regarding the former, focus is set on northern Greece and especially Thessaloniki (the second largest city in Greece) and its surroundings. The area was known to be under a deforming trend. In this thesis, new recent deformation results are presented, whose characteristics are analysed in detail. Interpretations of the main driving mechanisms, are proposed by exploiting also external data. Areas of interest are Kalochori, Anthemountas basin and the broader area of Oreokastro. Results show that there are significant deformation signals, which in some cases, can cause severe failures to houses, buildings and critical infrastructure. In-situ data, together with the remote sensing results, indicate that aquifer activity is the main cause of surface displacement and that the underground water trends, directly affect the detected uplift and subsidence of the areas under study. A need for groundwater management, is considered as a crucial priority for the broader area of Thessaloniki, to avoid future hazard. In the second part of this thesis, tectonic deformation signal is analysed at first for the case of the Iran-Iraq 2017 earthquake, to estimate the source properties of the event. Due to the arid conditions of the area, a high quality deformation signal was used as input to perform geodetic inversion, to estimate a fault which is related with the active plate boundary deformation, occurring at the area. Another study, exploiting radar data was focused in the territory of the Ionian Sea, the most active tectonic region of the eastern Mediterranean. By exploiting multi-band radar data from different acquisition geometries and based on results of the latest studies of the Lefkada 2015 sequence, a new fault segmentation is proposed for the Cephalonia-Lefkada Transform fault Zone (CTF) advancements and the contribution they could offer to the earth science community. By studying the 2017 Biga seismic swarm, using a specific modelling strategy, it is demonstrated that new possibilities are currently existing to look into the seismic swarm sequences. The latter are understudied from an InSAR point of view, in comparison to the sequences characterized by major seismic events.


Πλήρες Κείμενο:

PDF

Αναφορές


Agram, P., 2010. Persistent scatterer interferometry in natural terrain. PhD thesis, Stanford University.

Albano, M., Polcari, M., Bignami, C., Moro, M., Saroli, M. and Stramondo, S. 2017. Did anthropogenic activities trigger the 3 April 2017, Mw 6.5 Botswana earthquake?, Remote Sens., 9, 1028.

Altınok, Y., Alpar, B., Yaltırak, C., Pınar, A. and Özer, N., 2012. The earthquakes and related tsunamis of October 6, 1944 and March 7, 1867; NE Aegean Sea. Natural Hazards, 60, 3–25.

Ambraseys, N.N., 1988. Engineering seismology: Part I. Earthquake Engineering & Structural Dynamics, 17, 1–105.

Amelung, F., Jónsson, S., Zebker, H. and Segall, P. 2000. Widespread uplift and ‘trapdoor’ faulting on Galápagos volcanoes observed with radar interferometry. Nature, 407, 993–996.

Amelung, F., Galloway, D.L., Bell, J.W., Zbeker, H.A. and Laczniak, R.J., 1999. Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology, 27 (6), 483–486.

Anastasiadis, A., Raptakis, D. and Pitilakis, K. 2001. Thessaloniki’s Detailed Microzoning: Subsurface Structure as Basis for Site Response Analysis. Pure Appl. Geophys., 158, 2597–2633.

Andronopoulos, V., Rozos, D., and Hadzinakos, J., 1990. Geotechnical study of ground settlement in the Kalochori area, Thessaloniki District. Unpublished Report IGME., E6319, p. 45.

Arnaud, A., Adam, N., Hanssen, R., Inglada, J., Duro, J., Closa, J. and Eineder, M. 2003. ASAR ERS interferometric phase continuity. In: Proceedings of IGARSS 2003, France, Toulouse.

Atzori, S. and Salvi, S. 2014. SAR Data Analysis in Solid Earth Geophysics: From Science to Risk Management. IntechOpen. http://dx.doi.org/10.5772/57479.

Atzori, S., and Antonioli A. 2011. Optimal fault resolution in geodetic inversion of coseismic data. Geophys. J. Int., 185, 529–538, doi:10.1111/j.1365-246X.2011.04955.x.

Atzori, S., Hunstad, I., Chini, M., Salvi, S., Tolomei, C., Bignami, C., Stramondo, S., Trasatti, E. and Antonioli A. 2000. Finite fault inversion of DInSAR coseismic displacement of the 2009

L’Aquila earthquake (Central Italy). Geophys. Res. Lett., 36, l15305, doi:10.1029/2009GL039293.

Avallone, A., Cirella, A., Cheloni, D., Tolomei, C., Theodoulidis, N., Piatanesi, A., Briole, P. and Ganas A. 2017. Near-source high-rate GPS, strong motion and InSAR observations to image the 2015 Lefkada (Greece) Earthquake rupture history. Sci. Rep., Sep 4;7(1):10358. doi: 10.1038/s41598-017-10431-w.

Baba, A., Demir, M.M., Koç, A. G., and Tuğcu, C. 2015. Hydrogeological properties of hyper-saline geothermal brine andapplication of inhibiting siliceous scale via pH modification.

Geothermics, 53, 406–412.

Baba, A., Ateş Ö. and Deniz, O. 2008. The environmental and hydrogeochemical properties of the tuzla-kestanbol-hidirlar geothermal sources. Turkey engineering and architectural geothermal training programme 30th Anniversary Workshop, Orkustofnun, Grensásvegur 9.

Baba, A. and Ertekin, C. 2007. Determination of the source and age of the geothermal fluid and its effects on groundwater resources in Kestanbol (Çanakkale-Turkey), GQ07: Securing Groundwater Quality in Urban and Industrial Environments. 7th International Groundwater Quality Conference, Fremantle, Western Australia, 1-8.

Bai, L., Wu, Z., Zhang, T. and Kawasaki, I. 2006. The effect of distribution of stations upon location error: Statistical tests based on the double-difference earthquake location algorithm and the bootstrap method. Earth Planets Space, 58, 9–12, doi:10.1186/bf03353364.

Barba-Sevilla M., Baird, B.W., Liel A.B. and Tiampo, K.F. 2018. Hazard Implications of the 2016 Mw 5.0 Cushing, OK Earthquake from a Joint Analysis of Damage and InSAR Data. Remote Sens., 10 (11), 1715; https://doi.org/10.3390/rs10111715.

Barnhart, W.D., Brengman, C.M.J., Li, S. and Peterson, K.E. 2018. Ramp-flat basement structures of the Zagros Mountains inferred from co-seismic slip and afterslip of the 2017 Mw7.3

Darbandikhan, Iran/Iraq earthquake. Earth Planet. Sci. Lett., 496, 96–107, https://doi.org/10.1016/j.epsl.2018.05.036.

Battazza, F., Ciappa, A., Coletta, A., Covello, F., Manoni, G., Pietranera, L. and Valentini, G. 2009 COSMO-SkyMed Mission: a set of X-band SAR Applications conducted during 2008. Ital. J. Remote Sens., 41(3):7–21. doi:10.5721/ItJRS20094131.

Bawden, G.W., Thatcher, W., Stein, R.S., Hudnut, K.W. and Peltzer, G. 2001. Tectonic contraction across Los Angeles after removal of groundwater pumping effects. Nature, 412:812–815.

Bell, J., Amelung, F. and Christopher, H. 2012. InSAR analysis of the 2008 Reno-Mogul earthquake swarm: Evidence for westward migration of Walker Lane style dextral faulting. Geoph. Res. Lett., vol. 39, L18306, doi:10.1029/2012GL052795.

Bell, J.W., Amelung, F.A., Ferretti, A., Bianchi, M. and Novali, F. 2008. Permanent scatterer InSAR reveals seasonal and long-term aquifer-system response to groundwater pumping and artificial recharge. Water Resour. Res., 44 (2), 2407–2425.

Berardino, P., Fornaro, G., Lanari, R. and Sansosti, E. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens., 40, 2375–2383.

Bie, L., González, P.J. and Rietbrock, A. 2017. Slip distribution of the 2015 Lefkada earthquake and its implications for fault segmentation. Geoph. Jour. Int., 210, 1, 420–427,

https://doi.org/10.1093/gji/ggx171.

Björk, A., 1996. Numerical methods for least squares problems. SIAM, Philadelphia. Bonafede, M., J. Strehlau and Ritsema A.R. 1992. Geophysical and structural aspects of fault mechanics – a breef historical review. Terra Nova, 4, 458-463.

Boncori, J.P.M., Papoutsis, I., Pezzo, G., Tolomei, C., Atzori, S., Ganas, A., Karastathis, V., Salvi, S., Kontoes C. and Antonioli, A. 2015. The February 2014 Cephalonia earthquake (Greece): 3D deformation field and source modeling from multiple SAR techniques. Seismol. Res. Lett. 86-1, 124–137. http://dx.doi.org/10.1785/0220140126.

Brooks, M., and Ferentinos, G. 1984. Tectonics and sedimentation in the Gulf of Corinth and the Zakynthos and Kefallinia channels, Western Greece. Tectonophysics, 101(1–2), 25–54. https://doi.org/10.1016/0040-1951(84)90040-4.

Bulut, F., Havazlı, E., Yaltırak, C., Doğru, A., Sabuncu, A. & Özener, H., 2018. The 2017 Ayvacık Earthquake Sequence: A Listric Fault Activated Beneath Tuzla/Çanakkale Geothermal Reservoir (Western Turkey). Proceedings, 43rd Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 12-14, 2018 SGP-TR-213.

Caputo, R. and Pavlides, S. 2013. The Greek Database of Seismogenic Sources (GreDaSS), Version 2.0.0: A compilation of potential seismogenic sources (Mw>5.5) in the Aegean region. doi:10.15160/unife/gredass/0200. [http://gredass.unife.it/].

Chan, Y.K. and Koo, V.C. 2008. An introduction to Synthetic Aperture Radar (SAR), Progress in Electromagnetics Research B, 2.

Chatzipetros, A., Kiratzi, A., Sboras, S., Zouros, N., and Pavlides, S. 2013. Active faulting in the north-eastern Aegean Sea Islands. Tectonophysics, 597-598:106-122.

Chen, C., Hu, J., Lu, C., Lee, J. and Chan, Y. 2007. Thirty-year land elevation change from subsidence to uplift following the termination of groundwater pumping and its geological implications in the Metropolitan Taipei Basin, Northern Taiwan. Eng. Geol., 95, 30–47.

Chousianitis, K., Konca, A. O., Tselentis, G.A., Papadopoulos, G.A. and Gianniou, M. 2016. Slip model of the 17 November 2015 Mw = 6.5 Lefkada earthquake from the joint inversion of geodetic and seismic data. Geophys. Res. Lett., 2016, 43, 7973–7981, doi:10.1002/2016GL069764.

Cheloni, D., D’Agostino, N., Selvaggi, G., Avallone, A., Fornaro, G., Giuliani, R., Reale, D., Sansosti, E. Tizzani, P., 2017. Aseismic transient during the 2010–2014 seismic swarm: evidence for longer recurrence of M≥6.5 earthquakes in the Pollino gap (Southern Italy)?. Scientific Reports, 57671, https://doi.org/10.1038/s41598-017-00649-z

Corine (coordination of information on the environment) LandCover: http://land.copernicus.eu/pan-european/corine-land-cover. Accessed: 02-02-2017

Costantini, F., Mouratidis, A., Schiavon, G., Sarti F. 2016. Advanced InSAR techniques for deformation studies and for simulating the PS-assisted calibration procedure of Sentinel-1 data:

Case study from Thessaloniki (Greece), based on the EnvisatASAR archive. Int. J. Remote Sens. doi:10.1080/01431161.2015.1134846.

Costantini, M., Falco, S., Malvarosa, F., and Minati, FA 2008. New method for identification and analysis of persistent scatterers in series of SAR images. In: Proceedings of IEEE international geoscience and remote sensing symposium, Boston, MA, USA, pp 449–452.

Costantini, M. 1998. A novel phase unwrapping method based on network programming, IEEE Trans. Geosci. Remote Sens. 36 (3), 813–821 1998.

Crosetto, M., Crippa, B., Biescas, E., Monserrat, O., Agudo, M. and Fernández, P. 2005. Land deformation monitoring using SAR interferometry: state-of-the-art Photogrammetrie.

Fernerkundung und Geoinf., 6, pp. 497-510.

Curlander, J.C. and Mcdonough, R.N 1991. Synthetic aperture radar: systems and signal processing. Wiley, New York.

Das, S. and Scholzm C. H. 1983. Why large earthquakes do not nucleate at shallow depths. Nature, 305.

David, M. 1977. Geostatistical ore reserve estimation. Elsevier, Amsterdam

Demiris, K., 1988. Geological settings and their influence on the development of the areas on the west of Thessaloniki. Proceedings of the Symposium on the Technical Problems Affecting the Areas on the West of Thessaloniki. Tech. Cham. of Gr., Thessaloniki.

Ding, K., He, P., Wen, Y., Chen, Y., Wang, D., Li, S. and Wang, Q. 2018. The 2017 M w 7.3 Ezgeleh, Iran earthquake Geoph. Jour. Int., Volume 215, Issue 3, Pages 1728–1738, https://doi.org/10.1093/gji/ggy371.

Doukakis, E., 2005. Coastal red spots along the western Thermaikos gulf. Proceedings of the 9th International Conference on Environmental Science and Technology, University of Aegean, Rhodes, Greece, pp. A334–A339.

Dimopoulos, G., 2005. Investigation of the conditions generating soil settlements in Sindos–Kalochori area of Thessaloniki. Proceedings of the 7th Hellenic Hydrogeological Conference and 2nd MEM Workshop on Fissured Rocks Hydrogeology, Athens. Hellenic Committee of Hydrogeology, pp. 135–146.

Dixon, T.H., 1994. SAR interferometry and surface change detection. Report of a Workshop, Boulder, Colorado, USA.

Doukas, I.D., Ifadis, I.M., and Savvaidis, P. 2004. Monitoring and analysis of ground subsidence due to water pumping. FIG Working Week, Athens, Greece, May 22–27.

Duro, J, Closa, J, Biescas, E., Crosetto, M. and Arnaud A. 2005. High resolution differential interferometry using time series of ERS and ENVISAT SAR data. In: Proceedings of the 6th geomatic week conference, Barcelona, Spain, 8–11 February.

EPPO 1996. Neotectonic Map of Greece, Thessaloniki sheet, scale: 1:100000.

Elliott, J.R., Walters, R.J., and Wright, T.J. 2016. The role of space-based observation in understanding and responding to active tectonics and earthquakes. Nature Communications, http://dx.doi.org/10.1038/ncomms13844.

Farr, T., Rosen, P., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin M, Burbank D and Alsdorf, D. 2007. The shuttle radar topography mission. Reviews of Geophysics, 45, RG2004 doi:10.1029/2005RG000183.

Farr, T.G. and Kobrick M. 2000. Shuttle radar topography mission produces a wealth of data, Eos Trans, 2000, AGU 2000, 81, 583–585.

Feng, W., Samsonov, S., Almeida, R., Yassaghi, A., Li, J., Qiu, Q., Li, P. and Zheng, W. 2018. Geodetic constraints of the 2017 Mw7.3 Sarpol Zahab, Iran earthquake, and its implications on the structure and mechanics of the northwest Zagros thrust-fold belt. Geoph. Res. Lett., 45, https://doi.org/10.1029/ 2018GL078577.

Feigl, K.L. 2002. Estimating earthquake source parameters from geodetic measurements, International Handbook of Earthquake and Engineering Seismology, 81A, 607– 620.

Ferretti, A., Savio, G., Barzaghi, R., Borghi, A., Musazzi, S., Novali. F., Prati, C. and Rocca, F. 2007. Submillimeter accuracy of InSAR time series: experimental validation, IEEE TGRS, 45 (5), pp. 1142-1153.

Ferretti, A., Prati, C. and Rocca, F. 2001. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens., 39(1), 8 –20.

Ferretti, A., Prati, C. and Rocca, F. 2000. Nonlinear subsidence rate estimation using Permanent Scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens., 38 (5), 2202– 2212.

Fikos, I., Ziankas, G., Rizopoulou, A. and Famellos, S. 2005. Water balance estimation in Anthemountas river basin and correlation with underground water level. Global NEST Journal, Vol 7, No 3, pp 354-359.

Franceschetti, G. and Lanari, R. 1999. Synthetic Aperture Radar Processing. Boca Raton, FL: CRC Press.

Funning, G., Parsons, B., Wright, T., Jackson, J. and Fielding, E. 2005. Surface displacements and source parameters of the 2003 Bam (Iran) earthquake from Envisat advanced synthetic aperture radar imagery Journal of Geophysical Research https://doi.org/10.1029/2004JB003338.

Gabriel, A.K., Goldstein, R.M. and Zebker, H.A. 1989. Mapping small elevation changes over large areas: differential radar interferometry. J. Geophys. Res., 94(B7):83–91.

Ganas, A., Kourkouli, P., Briole, P., Moshou, A., Elias, P. and Parcharidis, I. 2018. Coseismic Displacements from Moderate-Size Earthquakes Mapped by Sentinel-1 Differential Interferometry: The Case of February 2017 Gulpinar Earthquake Sequence (Biga Peninsula, Turkey). Remote Sens., 10, 1089.

Ganas, A., Briole, P., Melgar, D., Bozionelos, G., Valkaniotis, S, Avallone, A., Papathanassiou, G., Mendonidis, E. and Elias, P. 2016a. Coseismic Deformation and Seismic fault of the 17 November 2015 M=6.5 earthquake, Lefkada island. Bul. Geol. Soc. Gr., 50(1), 491-498. doi:http://dx.doi.org/10.12681/bgsg.11750.

Ganas, A., Elias, P., Bozionelos, G., Papathanassiou, G., Avallone, A., Papastergios, A., Valkaniotis, S., Parcharidis I. and Briole, P. 2016b. Coseismic deformation, field observations and seismic fault of the 17 November 2015 M = 6.5, Lefkada Island, Greece earthquake, Tectonophysics, 687, 210–222 dx.doi.org/10.1016/j.tecto.2016.08.012.

Ganas, A, Oikonomou, A., and Tsimi, C. 2013. NOAFAULTS: a digital database for active faults in Greece. In: Bulletin of the Geological Society of Greece. Proceedings of the 13th International Congress, Chania, vol. XLVII 2013

Garlaouni, C., Papadimitriou, E., Karakostas, V, Kilias, A. and Lasocki, S. 2015 Fault population recognition through microsismicity in Migdonia region (northern Greece). Bollettino di

Geofisica Teorica ed Applicata, 56(3):367–382.

GACOS, Generic Atmospheric Correction Online Service for InSAR (GACOS) http://ceg-research.ncl.ac.uk/v2/gacos/.

Gavin, H., 2011 The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems, Department of Civil and Environmental Engineering, Duke University Online notes on LM algorithm: people.duke.edu/~hpgavin/ce281/lm.pdf.

Galloway, D.L. and Hoffmann, J., 2007. The application of satellite differential SAR interferometry-derived ground displacements in hydrogeology. Hydrogeol. J., 15 (1), 133–154, http://dx.doi.org/10.1007/s10040-006-0121-5.

Galloway, DL, Jones DR and Ingebritsen, SE., (1999) Land subsidence in the United States: U.S. Geological Survey Circular 1182.

Galloway, D.L., Hudnut, K.W., Ingebritsen, S.E., Phillips, S.P., Peltzer, G., Rogez, F. and Rosen, P.A., 1998. Detection of aquifer system compaction and land subsidence using

interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California. Water Resour. Res., 34, 2573–2585.

Gkarlaouni, C., Papadimitriou, E., Karakostas, V., Kilias, A. and Lasocki, S., 2015. Fault population recognition through microseismicity in Mygdonia region (northern Greece). Bollettino di Geofisica Teorica ed Applicata, 56 (3) 367-382, doi: 10.4430/bgta0153.

Goldstein, RM, and Werner, C.L. 1998. Radar interferogram filtering for geophysical applications. Geoph. Res. Lett., 25, 4035-4038.

Goldstein, R.M., and Werner, C.L., 1998. Radar interferogram filtering for geophysical applications. Geoph. Res. Lett, 25, 4035-4038.

Goldstein, R. 1995. Atmospheric limitations to repeat-track radar interferometry. Geoph. Res. Lett., 22, 2517–2520.

Graham, L.C., 1974. Synthetic interferometer radar for topographic mapping. Proc. of the IEEE, 62, 763-768.

Hanssen, R.A. 2001. Radar Interferometry: Data Interpretation and Error Analysis. Springer, New York.

Harris, R. and Simpson, R.W. 1998. Suppression of large earthquakes by stress shadows: A comparison of Coulomb and rate-and-state failure. J. Geophys. Res., 103, 24,439 –24,451.

Hatzinakos, I., Rozos, D. and Apostolidis, E. 1990. Engineering geological mapping and related geotechnical problems in the wider industrial area of Thessaloniki, Greece. In: PRICE, D. (Ed.), Proceedings of Sixth International IAEG Congress, Amsterdam, Balkema, 127–134.

Hainzl, S. 2004. Seismicity patterns of earthquake swarms due to fluid intrusion and stress triggering. Geophys. J. Int, 159, 1090–1096.

Hooper, A. 2009. A statistical-cost approach to unwrapping the phase of InSAR time series. In: Proceedings of ESA FRINGE Workshop, Frascati, Italy, November 30–December 4.

Hooper, A. 2008. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geoph. Res. Lett., 35, doi: 10.1029/2008GL034654.

Hooper, A., and H. Zebker 2007. Phase unwrapping in three dimensions with application to InSAR time series. J. Opt. Soc. Am. A, Opt. Image Sci., 24, 2737– 2747.

Hooper, A., Segall, P. and Zebker, H. 2007. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J.

Geophys. Res., 112, B07407, doi: 10.1029/2006JB004763.

Hooper, 2006 . Persistent Scatterer Radar Interferometry for Crustal Deformation Studies and Modeling of Volcanic Deformation. PhD thesis, Stanford University.

Hooper, A., Zebker, H., Segall, P. and Kampes, B. 2004. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geoph. Res. Lett., 31, L23611, doi:10.1029/2004GL021737.

Ikehara, M.E. and Phillips, S.P. 1994. Determination of land subsidence related to groundwater-level declines using Global Positioning System and leveling surveys in Antelope Valley, Los Angeles and Kern counties, California, 1992. U.S. Geol. Surv. Water Resour. Invest., Rep. 94–4184.

Institute of Geological and Mineral Exploration (IGME). Geological map sheets, Scale 1:50.000: Epanomi (1969), Thessaloniki (1978), Thermi (1978) and Vasilika (1978).

Ishitsuka, K., Fukushima, Y., Tsuji, T., Yamada, Y., Matsuoka, T. and Giao, P.H. 2014. Natural surface rebound of the Bangkok plain and aquifer characterization by persistent scatterer interferometry. Geochem. Geophys. Geosyst. 15:965–974. doi:10.1002/2013GC005154.

Jónsson, S., Zebker, H., Segall, P., and Amelung, F. 2002. Fault slip distribution of the 1999 Mw 7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements. Bull. Seis. Soc. Am., 92, 1377– 1389.

Kampes, B., Hanssen, R. ans Perski, Z. 2003. Radar Interferometry with Public Domain Tools. In: Proceedings of FRINGE 2003, Frascati, Italy, December 1-5.

Kampes, B. and Usai, S. 1999. Doris: the delft object-oriented radar interferometric software. In: Proceedings of the 2nd international symposium on operationalization of remote sensing. Enschede, The Netherlands.

Kapsimalis, V., Poulos, S.E., Karageorgis, A.P., Pavlakis, P. and Collins, M.B., 2005. Recent evolution of a Mediterranean deltaic coastal zone: human impacts on the Inner Thermaikos Gulf, NW Aegean Sea. J. Geol. Soc. Lond., 162, 1–12.

Karakitsios, V. and Rigakis, N. 2007. Evolution and Petroleum potential of western Greece, Journal of Petroleum Geology, 30(3), 197-218.

Karakostas, V. G., Papadimitriou, E.. and Papazachos, C. B. 2004. Properties of the 2003 Lefkada, Ionian Islands, Greece, earthquake seismic sequence and seismicity triggering. Bull. Seis. Soc. Am., 94, 1976–1981.

Karakostas V, and Papadimitriou E., 2010. Fault Complexity Associated with the 14 August 2003 Mw6.2 Lefkada, Greece, Aftershock Sequence. Acta Geophysica DOI: 10.2478/s11600-010-0009-6.

Karakostas V., Papadimitriou E., Mesimeri M., Gkarlaouni Ch., and Paradisopoulou P. 2014. The 2014 Kefalonia Doublet (Mw6.1 and Mw6.0), Central Ionian Islands, Greece: Seismotectonic Implications along the Kefalonia Transform Fault Zone. Acta Geophysica DOI: 10.2478/s11600-014-0227-4

Kassaras, I., Kazantzidou-Firtinidou, D., Ganas, A., Tonna, S., Pomonis, A., Karakostas, C., Papadatou-Giannopoulou, C., Psarris, D., Lekkas, E., Makropoulos, K. 2018. On the Lefkas (Ionian Sea) November 17, 2015 Mw=6.5 Earthquake Macroseismic Effects, Journal of Earthquake Engineering, doi: 10.1080/13632469.2018.1488776.

Kazakis, N., Voudouris, K., Vargemezis, G. and Pavlou, A. 2013. Hydrogeological regime and groundwater occurrence in the Anthemountas River basin, northern Greece. Bull. Geol. Soc. Gr, 47 (2), 711-720.

Kazantzidou-Firtinidou, D., Kassaras, I., Tonna, S., Ganas, A., Vintzileou E. and Chesi, C. 2016. Τhe November 2015 Mw6.4 earthquake effects in Lefkas Island. 1st International Conference on Natural Hazards & Infrastructure, Chania, Greece.

Ketelaar, V.B.H.G. 2009. Satellite radar interferometry: subsidence monitoring techniques. Springer, New York (Chapter 3).

Kiratzi, A., 2018. The 12 June 2017 Mw 6.3 Lesvos Island (Aegean Sea) earthquake: Slip model and directivity estimated with finite-fault inversion, Tectonophysics, 724-725, 1-10.

Kiratzi, A., 2014. Mechanisms of Earthquakes in Aegean, in: Beer, M., Kougioumtzoglou, I.A., Patelli, E., Siu-Kui Au, I. (Eds.), Encyclopedia of Earthquake Engineering, Springer Berlin Heidelberg, pp. 1–22. doi:10.1007/978-3-642-36197-5_299-1.

Kiratzi, A. and Langston, C. 1991. Moment tensor inversion of the January 17, 1983 Kefallinia event of Ionian Islands (Greece), Geoph. Jour. Int., 105, 529-535.

Kobayashi, T., Morishita, Y., Yarai, H. and Fujiwara, S. 2018. InSAR-derived crustal deformation and reverse fault motion of the 2017 Iran-Iraq Earthquake in the Northwest of the Zagros Orogenic Belt. Bull. Geospatial Info. Auth., 66, http://www.gsi.go.jp/ENGLISH/Bulletin66.html.

Kumar, V. 2007. Optimal contour mapping of groundwater levels using universal kriging—a case study. Hydrol. Sci. J., 52(5):1038–1050.

Kyriakopoulos, C., Chini, M., Bignami, C., Stramondo, S., Ganas, A., Kolligri, M. and Moshou, A. 2013. Monthly migration of a tectonic seismic swarm detected by DInSAR: southwest Peloponnese, Greece. Geophys. J. Int., 194, 1302–1309, doi: 10.1093/gji/ggt196.

Lanari, R., Mora, O., Manunta, M., Mallorquı J.J., Berardino, P. and Sansosti, E. 2004. A small baseline approach for investigating deformation on full resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens 42(7):1377–1386.

Levenberg, K., 1944. A method for the solution of certain problems in least squares, Quarterly of applied mathematics, 2, 164-168.

Lekkas, E., Mavroulis, S., Carydis, P. and Alexoudi, V. 2018. The 17 November 2015 Mw 6.4 Lefkas (Ionian Sea, Western Greece) Earthquake: impact on Environment and Buildings, Geotech. Geol. Eng., 2018 36:2109–2142 https://doi.org/10.1007/s10706-018-0452-8.

Lekkas, E., Mavroulis, S. and Alexoudi, V. 2016. Field observations of the 2015 (November 17, Mw 6.4) Lefkas (Ionian sea, western Greece) earthquake impact on natural environment and building stock of Lefkas island. Bull. Geol. Soc. Gr., 2016, 499-510.

Lindsey, E.O., Natsuaki,R., Xu, X., Shimada, M.,Hashimoto ,M., Melgar, D. and Sandwell, D.T. 2015. Line-of-sight displacement from LOS-2 interferometry: Mw 7.8 Gorkha Earthquake and Mw 7.3 aftershock. Geophys. Res. Lett., 42, 6655–6661.

Livaoğlu, R., Timurağaoğlu, M.Ö, Serhatoğlu, C.S. and Döven, S. 2018. Damage during the 6-14 February 2017 Ayvacik (Çanakkale) earthquake swarm. Nat. Hazards Earth Syst. Sci., 18, 921–934.

Lohman, R.B., and McGuire, J.J. 2007. Earthquake swarms driven by aseismic creep in the Salton Trough, California. J. Geophys. Res., 112, B04405, doi:10.1029/2006JB004596.

Lohman, R.B. and Simons M. 2005. Locations of selected small earthquakes in the Zagros mountains. Geoch. Geoph. Geos., 6(3) , doi: 10.1029/2004GC00849

Lohman, R.B. and Simons M. 2005. Some thoughts on the use of InSAR data to constrain models of surface deformation: noise structure and data downsampling. Geoch. Geoph. Geos, 6, Q01007.

Loupasakis, C. and Rozos, D. 2010. Land subsidence induced by the overexploitation of the aquifers in Kalochori village – new approach by means of the computational geotechnical engineering. Proceedings of the 12th International Congress of the Geological Society of Greece. Bull. Geol. Soc. Gr., XLIII, pp. 1219–1229 No 3.

Loupasakis, C. and Rozos, D. 2009. Land subsidence induced by water pumping in Kalochori village (North Greece) - simulation of the phenomenon by means of the finite element method. Q. J. Eng. Geol. Hydrogeol., Geol. Soc. Lond. 42 (3), 369–382.

Lourakis. M.I.A. 2005. A brief description of the Levenberg-Marquardt algorithm implemented by levmar. Technical Report. Institute of Computer Science, Foundation for Research and Technology – Hellas.

Louvari, E., Kiratzi, A. and Papazachos, B.C. 1999. The Cephalonia Transform Fault and its continuation to western Lefkada Island. Tectonophysics, 308, 223-236.

Lu Z. and Danskin, W.R. 2001. InSAR analysis of natural recharge to define structure of a ground-water basin, San Bernardino, California. Geoph. Res. Lett., 28:2661–2664.

Ly, S., Charles, C. and Degré, A. 2013. Different methods for spatial interpolation of rainfall data for operational hydrology and hydrological modeling at watershed scale. A review. Biotechnol. Agron. Soc. Environ., 17(2):392–406

Madsen, K., Nielsen N.B. and Tingleff, O. 2004. Methods for nonlinear least squares problems. Technical Report. Informatics and Mathematical Modeling, Technical University of Denmark.

Maerten, F., Resor, P., Pollard, D., and Maerten, L. 2005. Inverting for Slip on Three-Dimensional Fault Surfaces Using Angular Dislocations. Bull. Seism. Soc. Am., 95, 5, 1654–1665, doi: 10.1785/0120030181.

Marquardt, D. 1963. An Algorithm for Least-Squares Estimation of Nonlinear parameter. SIAM Journal on Applied Mathematics, 11 (2): 431–441, doi:10.1137/0111030.

Massonnet, D. and Feigl, K.L. 1995a. Satellite radar interferometric map of the coseismic deformation field of the M = 6.1 Eureka Valley, California earthquake of May 17, 1993. Geophys. Res. Lett., 22(12), 1541-1544.

Massonnet, D. and Feigl, K. 1998. Radar interferometry and its application to changes in the Earth's surface. Rev. Geophys. 36, 441–500.

Massonnet, D. 1997. Satellite radar interferometry. Sci. Am. 276 (2), 46–53.

Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K. and Rabaute, T. 1993. The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 364:138-142.

Melgar, D., Ganas, A., Geng, J., Liang, C., Fielding, E. J. and Kassaras I. 2017. Source characteristics of the 2015 Mw 6.5 Lefkada, Greece, strike-slip earthquake. J. Geophys. Res. Solid Earth, 122, 2260–2273, doi:10.1002/2016JB013452.

Menke, W. 1989. Geophysical Data Analysis: Discrete Inverse Theory Academic Press, , San Diego, California.

Mesimeri, M., Kourouklas, C., Papadimitriou E., Karakostas, V. and Kementzetzidou D. 2018. Analysis of microseismicity associated with the 2017 seismic swarm near the Aegean coast of NW Turkey. Acta Geophysica, 1–17.

Mora, O, Mallorquı J.J. and Broquetas, A. 2003. Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Trans Geosc. Remote Sens. 41:2243–2253.

Moreira, A, Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I. and Papathanassiou, K. 2013. A Tutorial on Synthetic Aperture Radar, Microwaves and Radar Institute of the German Aerospace Center (DLR). IEEE Geoscience and Remote Sensing Magazine 1(1):6-43 DOI: 10.1109/MGRS.2013.2248301.

Mouratidis, A., Costantini, F. and Votsis A. 2011. Correlation of DInSAR deformation results and active tectonics in the city of Thessaloniki (Greece), In: Stilla, U., Gamba, P., Juergens, C.,

Maktav, D. (eds) JURSE 2011—Joint urban remote sensing event—Munich, Germany, April 11–13, 2011, IEEE, pp 421–424.

Mouratidis, A. 2010. Contribution of -GPS and GIS-assisted spaceborne remote sensing in the morphotectonic research of Central Macedonia (N. Greece). Ph.D. thesis, Aristotle University of Thessaloniki.

Mouratidis, A., Briole, P., Ilieva, M., Astaras, T., Rolandone, F. and Baccouche, M., 2009. Subsidence and deformation phenomena in the vicinity of Thessaloniki (N. Greece) monitored by Envisat/ASAR interferometry. Proceedings of Fringe 2009, Frascati, Italy.

Mützenberg, S. 1997. Nature and origin of the thermal springs in the Tuzla area, Western Anatolia, Turkey, in Schindler, C. and Pfister, M. (Eds.): The Marmara Poly-Project, pp.301–317, Vdf Hochschulverlag AG an der ETH, Zurich.

Nagoulis, A. and Loupasakis, C. 2001. Hydrogeological conditions of the plain area of the Anthemounta basin (Macedonia, Greece). Bul. Geol. Soc. Gr., 34, 1859–1868.

Okada, Y., 1992. Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am., 82, 1018-1040.

Okada, Y. 1985. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am, 75, no. 4, 1135–1154.

Osmanoğlu, B., Filiz, S., Shimon, W. and Enrique, C. 2016. Time series analysis of InSAR data: Methods and trends. ISPRS Journal of Photogrammetry and Remote Sensing, 115 90-102 http://dx.doi.org/10.1016/j.isprsjprs.2015.10.003.

Özalp, S., Emre, Ö. and Doğan, A. 2013. The segment structure of southern branch of the North Anatolian Fault and paleoseismological behaviour of the Gemlik Fault, NW Anatolia, General Directorate of Mineral Research and Exploration (MTA) Bulletin, 147, 1–17.

Özden, S., Över, S., Poyraz, S. A., Güneş, Y., and Pınar, A. 2018. Tectonic implications of the 2017 Ayvacık (Çanakkale) earthquakes, Biga Peninsula, NW Turkey. Journal of Asian Earth Sciences, 154, 125-141

Papadimitriou, E., Karakostas, V., Mesimeri, M., Chouliaras, G. and Kourouklas Ch. 2017. The Mw 6.5 17 November 2015 Lefkada (Greece) Earthquake: Structural Interpretation by Means of the Aftershock Analysis. Pure Appl. Geophys., 2017 174, 3869–3888, doi: 10.1007/s00024-017-1601-3.

Papathanassiou, G., Valkaniotis, S., Ganas, A., Grendas, N. and Kollia, E. 2015. The November 17th, 2015 Lefkada (Greece) strike-slip earthquake: Field mapping of generated failures and assessment of macroseismic intensity ESI-07. Eng. Geol, 220, 13–30.

Papazachos, C., Soupios, P., Savvaidis, A. and Roumelioti, Z. 2000. Identification of small-scale active faults near metropolitan areas: an example from the Asvestochori fault near Thessaloniki. In: Proceedings of XXXII ESC General Assembly, Lisbon, Portugal, 221–225.

Papazachos, B.C and Papazachou, C.B. 1997. The Earthquakes of Greece, Publisher: Ziti, Thessaloniki, Greece

Paradisopoulou P.M., Papadimitriou E.E. and Mirek J. 2016. Significant earthquakes near the city of Thessaloniki (northern Greece) and probability distribution on faults Bulletin of the Geological Society of Greece, vol. L, p. 1389-1398 Proceedings of the 14th International Congress, Thessaloniki

Paradisopoulou P. M., Papadimitriou E. E., Karakostas V. G, Taymaz T., Kilias A., and Yolsal S. 2010. Seismic Hazard Evaluation in Western Turkey as Revealed by Stress Transfer and Time-dependent Probability Calculations. Pure Appl. Geophys. 167, 1013–1048, 2010, doi:10.1007/s00024-010-0085-1.

Paradisopoulou, P.M., Karakostas, V.G., Papadimitriou, E.E., Tranos, M.D., Papazachos, C.B., Karakaisis, G.F. 2006. Microearthquake study of the broader Thessaloniki area (Northern Greece). Ann. Geophys. 49(4/5):1081–1093.

Parsons, B., Wright, T., Rowe, P., Andrews, J., Jackson, J., Walker, R., Khatib, M., Talebian. M., Bergman, E. and Engdahl, E.R. 2006. The 1994 Sefidabeh (eastern Iran) earthquakes revisited: new evidence from satellite radar interferometry and carbonate dating about the growth of an active fold above a blind thrust fault. Geoph. Journ. Int., doi: 10.1111/j.1365-246X.2005.02655.

Petsas, P. 1978. Pella, Alexander the Great's Capital. Institute for Balkan Studies, Thessaloniki (164.).

Phien-wej, N., Giao, P.H. and Nutalaya, P. 2006. Land subsidence in Bangkok, Thailand. Eng. Geol., 82 (4), 187–201.

Polcari, M., Palano, M., Fernández, J., Samsonov, S.V., Stramondo S. and Zerbini S. 2016. 3D displacement field retrieved by integrating Sentinel-1 InSAR and GPS data: the 2014 South Napa earthquake. European Journal of Remote Sensing, 2016, Volume 49, - Issue 1.

Polcari, M., Albano, M., Atzori, S., Bignami C. and Stramondo, S. 2018. The Causative Fault of the 2016 Mw 6.1 Petermann Ranges Intraplate Earthquake (Central Australia) Retrieved by C- and L-Band InSAR Data, Remote Sens., 10(8), 1311, https://doi.org/10.3390/rs10081311.

Pritchard, M.E. and Simons, M. 2006. An aseismic slip pulse in northern Chile and along-strike variations in seismogenic behaviour. J. Geophys. Res., 111, B08405,

doi:10.1029/2006JB004258

Psimoulis, P., Ghilardi, M., Fouache, E. and Stiros, S. 2007. Subsidence and evolution of the Thessaloniki plain, Greece, based on historical leveling and GPS data. Eng. Geol., 90, 55–70.

Raspini, F., Loupasakis, C., Rozos, D., Adam, N., and Moretti, S. 2014. Ground subsidence phenomena in the Delta municipality region (Northern Greece): Geotechnical modeling and validation with Persistent Scatterer Interferometry. Int. J. Appl. Earth Obs. Geoinf. 28, 78–89.

Raspini, F., Loupasakis, C., Rozos, D. and Moretti, S. 2013. Advanced interpretation of land subsidence by validating multi-interferometric SAR data: the case study of the Anthemountas basin (Northern Greece). Nat. Hazards Earth Syst. Sci., 13 (10), 2425–2440.

Raucoules, D., Parcharidis, I., Feurer, D., Novalli, F., Ferretti, A., Carnec, C., Lagios, E., Sakkas, V., Le Mouelic, S. and Cooksley, G. 2008. Ground deformation monitoring of the broader area of Thessaloniki (Northern Greece) using radar interferometry techniques. Nat. Hazards Earth Syst Sci, 8:779–788.

Reasenberg, P. and Simpson, R. 1992. Response of Regional Seismicity to the Static Stress Change Produced by the Loma Prieta Earthquake. Science, 255(5052):1687-90, doi:0.1126/science.255.5052.1687.

Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S.H., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A., Filikov, S.V., Gómez, F., Al-Ghazzi, R. and Karam G.N. 2006. GPS constraints on continental

deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J. geophys. Res., 549(1), 43–55.

Rosen, P., Hensley, S., Peltzer, G. and Simons M. 2004. Updated repeat orbit interferometry package released. Eos Trans., AGU,85 (5), 47.

Ross, Z., Idini, B., Jia, Z., Stephenson, O., Zhong, M., Wang, X., Zhan, Z., Simons, M., Fielding, E., Yun, S., Hauksson, E., Moore, A, Liu, Z. and Jung J. 2019. Hierarchical interlocked orthogonal faulting in the 2019 Ridgecrest earthquake sequence. Science, 366, 346–351.

Rozos, D., Apostolidis, E. and Christaras, B. 2000. Engineering – geological map of Thessaloniki wider area. Proceedings of National meeting on protection of Thessaloniki from Natural Hazards, 46–53.

Rozos, D., Hatzinakos, I. and Apostolidis E. 1998. Engineering Geological Map of Thessaloniki wider area, Scale 1 : 25.000, I.G.M.E., Athens.

Rozos, D. and Hatzinakos, I. 1993. Geological conditions and geomechanical behaviour of the neogene sediments in the area west of Thessaloniki (Greece). In: Anagnostopoulos, et al. (Eds.), Proceedings of International Symposium on Geotechnical Engineering of Hard Soils – Soft Rocks, Greece 1. Balkema, Rotterdam, 269–274.

Sachpazi, M., Hirn, A., Clément, C., Haslinger, F., Laigle, M., Kissling, E., Charvis, P., Hello, Y., Lépine, J.C., Sapin, M. and Ansorge, J. 2000. Western Hellenic subduction and Cephalonia Transform: local earthquakes and plate transport and strain, Tectonophysics, 319, 301-31.

Saltogianni, V., Moschas, F. and Stiros, S. 2018. The 2014 Cephalonia Earthquakes: Finite Fault Modeling, Fault Segmentation, Shear and Thrusting at the NW Aegean Arc (Greece), Pure Appl. Geophys. , 175: 4145. https://doi.org/10.1007/s00024-018-1938-2.

Saltogianni, V., Taymaz, T., Yolsal-Çevikbilen, S., Eken, T., Moschas F. and Stiros S. 2017. Fault Model for the 2015 Leucas (Aegean Arc) Earthquake: Analysis Based on Seismological and Geodetic Observations, Bull. Seis. Soc. Am., 107, No. 1, doi: 10.1785/0120160080.

Şamilgil, E. 1966. Hydrogeological report of geothermal energy possibility survey of hot springs of Kestanbol and Tuzla village of Çanakkale. MTA, Ankara, report 4274.

Şanlıyüksel, D. and Baba A. 2007. Hydrogeochemical and isotopic study of Kırkgeçit (Biga - Çanakkale) geothermal area, Proceedings of the 60th Geological Congress, Ankara, 89-92.

Schmidt, D.A. and Burgman, R. 2003. Time-dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric, synthetic aperture radar dataset. J. Geophys. Res., 108, 8534–8543.

Scordilis, M., Karakaisis, F., Karacostas, G., Panagiotopoulos, G., Comninakis, E. and Papazachos, C. 1985. Evidence for transform faulting in the Ionian Sea: The Cephalonia Island earthquake sequence of 1983, PAGEOPH, 123, 388–397.

Scuderi, M.M., Niemeijer, A.R.., Collettini, C, and Marone, C. 2013. Frictional properties and slip stability of active faults within carbonate–evaporite sequences: The role of dolomite and anhydrite, Earth and Planetary Science Letters, http://dx.doi.org/10.1016/j.epsl.2013.03.024i.

Segall, P. 2010. Earthquake and Volcano Deformation, Princeton university press

Segall, P., Desmarais, E.K., Shelly, D., Miklius, A. and Cervelli, P. 2006. Earthquakes triggered by silent slip events on Kilauea volcano, Hawaii. Nature, 442, 71–74.

Şengör, A.M.C., 1979. The North Anatolian transform fault: Its age, offset and tectonic significance. Journal of the Geological Society London, 136, 269–282.

Şengör, A.M. C., Tüysüz, O., İmren, C., Sakınç, M.,Eyidoğan, H., Görür, G., and Le Pcihon, X. 2005. North Anatolian Fault: A new look, Annual Review of Earth and Planetary Sciences, 33, 37–112

Sivignon, M. 1987. La mise en valeur du delta de l’Axios, in J. Bethemont, C. Villain-Gandossi (éds), Les Deltas méditerranéens, Centre européen de coordination de recherche et de documentation en Sciences sociales, Vienne, 279‑296

Sokos, E., Zahradník, J., Gallovic, F., Serpetsidaki, A., Plicka, V. and Kiratzi, A. 2016. Asperity break after 12 years: The Mw6.4 2015 Lefkada (Greece) earthquake. Geoph. Res. Lett., 43, doi:10.1002/2016GL069427.

Sokos, E, Kiratzi, A., Gallovič, F., Zahradník, J., Serpetsidaki, A., Plicka, V., Janský, J., Kostelecký J. and Tselentis G.A. 2015. Rupture process of the 2014 Cephalonia, Greece, earthquake doublet (Mw6) as inferred from regional and local seismic data, Tectonophysics, 656, 131–141.

Sonobe, R., Tani, H., Wang. X., Kobayashi, N., Kimura, A. and Shimamura, H. 2014. Application of Multi-temporal TerraSAR-X Data to Map Winter Wheat Planted Areas in Hokkaido, Japan. JARQ 48(4):465–470.

Soulios, G. 1999. Research for the development of the aquifers in the low lands on the west of Thessaloniki for the interests of the Water Company of Thessaloniki. Research Committee Technical Report. Aristotle University of Thessaloniki, 99.

Sözbilir, H., Sümer, O., Özkaymak, C., Uzel, B., Tayfun, G. and Semih, E. 2016. Kinematic analysis and palaeoseismology of the Edremit Fault Zone: evidence for past earthquakes in the southern branch of the North Anatolian Fault Zone, Biga Peninsula, NW Turkey. Geodinamica Acta, 28:4, 273-294, doi: 10.1080/09853111.2016.1175294.

Steketee, J. A. 1958a. On Volterra's Dislocations in a Semi-infinite Medium. Can. Jour. Phys., 36: 192-205.

Stiros, S., 2001. Subsidence of the Thessaloniki (northern Greece) coastal plain, 1960–1999. Eng. Geol., 61 (4), 243–256.

Stiros, S., Pirazzoli, P., Labore, J. and Laborel-Deguen, F. 1994. The 1953 earthquake in Cephalonia (Western Hellenic Arc): coastal uplift and halotectonic faulting. Geophys. J. Int. , 117, 834-849

Sudhaus, H. and Jónsson, S. 2009. Improved source modelling through combined use of InSAR and GPS under consideration of correlated data errors: application to the June 2000 Kleifarvatn earthquake, Iceland. Geoph. Journ. Int., Volume 176, Issue 2, February, 389–404, https://doi.org/10.1111/j.1365-246X.2008.03989.x

Svigkas, N., Atzori S., Kiratzi, A., Tolomei, C., Antonioli, A., Papoutsis, I., Salvi, S. and Kontoes Ch. 2019c. On the Segmentation of the Cephalonia–Lefkada Transform Fault Zone (Greece) from an InSAR Multi-Mode Dataset of the Lefkada 2015 Sequence. Remote Sensing, 11(16), 1848; https://doi.org/10.3390/rs11161848

Svigkas, N., Atzori, S., Kiratzi, A., Tolomei, C. and Salvi, S. 2019b. Isolating swarm sources using InSAR: the case of the February 2017 seismic swarm in Western Anatolia (Turkey). Geoph. Jour. Int., https://doi.org/10.1093/gji/ggz093

Svigkas, N., Papoutsis, I., Loupasakis, C., Tsangaratos, P., Kiratzi, A. and Kontoes, Ch. 2019a. Radar space measurements of the deforming trends at northern Greece resulting from underground water activity. Adv. Remote Sensing Geo Inform. Appl., 309-313.

Svigkas, N., Papoutsis, I., Loupasakis, C., Tsangaratos, P., Kiratzi, A., Kontoes, Ch. 2017. InSAR time-series monitoring of ground displacement trends in an industrial area (Oreokastro—Thessaloniki, Greece): detection of natural surface rebound and new tectonic insights. Environ. Earth Sci., 76:195, doi: 10.1007/s12665-017-6517-9.

Svigkas, N., Papoutsis, I., Loupasakis, C., Tsangaratos, P., Kiratzi, A. and Kontoes, Ch. 2016. Land subsidence rebound detected via multi-temporal InSAR and ground truth data in Kalochori and Sindos regions, Northern Greece. Engin. Geol., 209, 175-186, doi.org/10.1016/j.enggeo.2016.05.017.

Svigkas, N., Papoutsis, I., Loupasakis, K., Kontoes, H. and Kiratzi, A. 2015. Geo-hazard monitoring in northern Greece using InSAR techniques: the case Study of Thessaloniki, (Abstract ID33). In: 9thInternational Workshop Fringe 2015 ‘‘Advances in the Science and Applications of SAR Interferometry and Sentinel-1 InSAR’’,ESA-ESRIN, Frascati, Italy, 23–27 March

Syrides, G.E. 1990. Lithostratigraphic, biostratigraphic and palaeogeographic study of the Neogene–Quaternary sedimentary deposits of Chalkidiki Peninsula, Macedonia, Greece Ph.D. thesis, Aristotle University of Thessaloniki 243 (in Greek).

Taniguchi, M., Shimada, J., Fukuda, Y., Yamano, M., Onodera, S., Kaneko, S. and Yoshikoshi, A. 2009. Anthropogenic effects on the subsurface thermal and ground water environments in Osaka, Japan and Bangkok, Thailand. Sci. Total Environ., 407(9):3153–3164. doi:10.1016/j.scitotenv.2008.06.064.

Terzaghi, K. 1943. Theoretical Soil Mechanics. John Wiley & Sons, Inc., p. 265.

Thanasoulas, K. 1983 Geophysical study of Anthemountas area. Unpublished technical report, I.G.M.E., Athens (in Greek).

Tomiyasu, K. 1978. Tutorial review of synthetic-aperture radar (SAR) with applications to imaging of the ocean surface. Proc. IEEE, vol. 66, no. 5, May.

Tranos, M.D., Papadimitriou, E.E. and Kilias, A. 2003. Thessaloniki–Gerakarou Fault Zone (TGFZ): the western extension of the 1978 Thessaloniki earthquake fault (Northern Greece) and seismic hazard assessment. J. Struct. Geol., 25, 2109–2123.

Yilmaz, Y. and Karacik, Z. 2001. Geology of the northern side of the Gulf of Edremit and its tectonic significance for the development of the Aegean grabens. Geodinamica Acta, 14, 31–43.

Yu, C., Li, Z. and Penna, N.T. 2018a. Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model. Remote Sens. Environ., doi:10.1016/j.rse.2017.10.038.

Yu, C., Li, Z., Penna, N. T. and Crippa, P. 2018b. Generic atmospheric correction model for Interferometric Synthetic Aperture Radar observations. Journ. of Geoph. Res.: Solid Earth, 123. https://doi.org/10.1029/2017JB015305.

Yu, C., Penna, N. T. and Li, Z. 2017. Generation of real-time mode high-resolution water vapor fields from GPS observations. J. Geophys. Res. Atmos., 2017 122, 2008–2025, doi:10.1002/2016JD025753.

Vajedian, S., Motagh, M., Mousavi, Z., Motaghi, K., Fielding, E.J., Akbari, B., Wetzel H.U. and Darabi, A. 2018. Coseismic Deformation Field of the Mw 7.3 12 November 2017 Sarpol-e

Zahab (Iran) Earthquake: A Decoupling Horizon in the Northern Zagros Mountains Inferred from InSAR Observations, Remote Sens., 10(10), 1589; https://doi.org/10.3390/rs10101589.

van der Kooij M., Hughes, W., Sato, S. and Poncos, V. 2006. Coherent target monitoring at high spatial density: examples of validation results. In: European Space Agency Special Publications, SP-610.

Velaj, T., Davison, I., Serjani, A. and Alsop, I. 1999. Thrust tectonics and the role of evaporites in the Ionian Zone of the Albanides. AAPG Bulletin, 83(9), 1408–1425.

Vidale, J.E. ans Shearer, P.M. 2006. A survey of 71 earthquakes bursts across southern California: Exploring the role of pore fluid pressure fluctuations and aseismic slip as drives. J. Geophys. Res., 111, B05312, doi:10.1029/2005JB004034.

Wald, D. and Graves, R. 2001. Resolution analysis of finite fault source inversion using one- and three-dimensional Green’s functions: 2. Combining seismic and geodetic data. J. geophys. Res., 106, 8767–8788.

Wallace, L. M. and Eberhart-Phillips, D. 2013. Newly observed, deep slow slip events at the central Hikurangi margin, New Zealand: implications for downdip variability of slow slip and tremor, and relationship to seismic structure. Geophys. Res. Lett., 40, (5393–5398).

Wang, Z., Zhang, R., Wang, X. and Liu, G. 2018 Retrieving three-dimensional co-seismic deformation of the 2017 MW7.3 Iraq earthquake by multi-sensor SAR images. Remote Sens., 10, 857.

WaterinCore project 1G-MED-515 Water Management Analysis in “water district 10” of Region of Central Macedonia, Greece (2009) “Sustainable Water Management through Common Responsibility enhancement in Mediterranean River Basins”, www.waterincore.eu.

Weston, J., Ferreira, A.M.G. and Funning G.J. 2012. Systematic comparisons of earthquake source models determined using InSAR and seismic data. Tectonophys., 532, 61{81, doi:10.1016/j.tecto.2012.02.001.

Woodhouse, I., 2006. Introduction to Microwave Remote Sensing. Boca Raton, FL: CRC Press.

Wright, T.J., Lu, Z. and Wicks, C. 2003. Source model for the Mw 6.7, 23 October 2002, Nenana Mountain Earthquake (Alaska) from InSAR. Geophys. Res. Lett., 30(18), doi:10.1029/2003GL018014.

Wright, P. and Stow, R. 1999. Detecting mining subsidence from space. Int. J. Remote Sens. 20 (6), 1183–1188.

Zare M., Kamranzad F., Parcharidis I. and Tsironi, V. 2017. Preliminary report of Mw7.3 Sarpol-e Zahab,Iran earthquake on November 12, 2017 (Updated on Nov. 22) https://www.emsc-csem.org/Doc/Additional_Earthquake_Report/629693/Preliminary_report_M7.3_20171112_v3.pdf.

Zebker, H.A. and Goldstein, R.M. 1986. Topographic Mapping from interferometric synthetic aperture radar observations. J. Geophys. Res., 91, 4993–4999.

Zebker, H.A. and Villasenor, J. 1992. Decorrelation in Interferometric Radar Echoes. IEEE Transactions on Geoscience and Remote Sensing, 30, 950-959. http://dx.doi.org/10.1109/36.175330.

Zervopoulou, A. 2010. Neotectonic Faults of the Wide Area of Thessaloniki in association with foundation Soils. Ph.D. Thesis, University of Thessaloniki (in Greek).

Zervopoulou A. and Pavlides, S. 2005. Morphotectonic study of the broader area of Thessaloniki for the chartography of neotectonic faults. Bull. Greek Geol. Soc. 38:30–41 (in Greek).

Zhong, L. and Danskin, W.R. 2001. InSAR analysis of natural recharge to define structure of a ground-water basin, San Bernardino. Geophys. Res. Lett. 28 (13), 2661–2664.

Online sources

UNAVCO [accessed 12-1-2019]:

https://www.unavco.org/instrumentation/geophysical/imaging/sar-satellites/sar-satellites.html

European Space Agency [accessed 12-1-2019]: http://www.esa.int/spaceinimages/Images/2000/10/ERS_satelliteGR

https://earth.esa.int/web/eoportal/satellite-missions/e/envisat

https://sentinel.esa.int/web/sentinel/missions/sentinel-1/overview

https://directory.eoportal.org/web/eoportal/satellite-missions/a/alos-2

Canadian Space Agency [accessed 12-1-2019]: http://www.asc-csa.gc.ca/eng/satellites/radarsat2/Default.asp

USGS [accessed 12-1-2019]: https://earthquake.usgs.gov/earthquakes/eventpage/us2000bmcg/moment-tensor

EMSC [accessed 12-1-2019]: https://www.emsc-csem.org/Earthquake/260/M7-3-IRAN-IRAQ-BORDER-REGION-on-November-12th-2017-at-18-18-UTC

EMODnet [accessed 5-4- 2019]: Topographic Data. Available online: http://www.emodnet-bathymetry.eu

Geodynamic Institute of Athens [accessed 12-1-2019]: http://bbnet.gein.noa.gr


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.