[Εξώφυλλο]

Investigation of lignite effect on rheological and filtration properties of water-based drilling muds = Διερεύνηση της επίδρασης της προσθήκης λιγνιτών στη διήθηση και τις ρεολογικές ιδιότητες διατρητικού πολφού με βάση το νερό.

Christina Triantafyllos Apostolidou

Περίληψη


Bentonite is a clay widely used – among others – as a low-cost additive in the drilling fluids to impart the desired plastic rheological properties to the mud. As drilling progresses, the clay particles tend to swell causing thickening problems. In this case, it is essential to treat the mud in order to sustain the drilling operation. Treatment with Drilling Mud Thinners is applied to control the dispersion properties and lower the viscosity. Lignosulfonate is a lignin-based polymer widely used to deflocculate clay-based muds. Lignite is often added in the drilling mud as a low-cost thinning agent to control the swelling behavior of the clay particles, to reduce the viscosity and to control the filtration properties of the mud. Especially, after a causticization treatment in alkaline solution, lignite can act as mud thinner reducing the thickening effect. Lignite can also affect the filtration properties essentially reducing the filtrate volume of the drilling fluid. Another type of lignite, namely leonardite, can also be used for the same purpose. Four low-rank coals (three lignites and one leonardite) were obtained from several deposits in Western Macedonia, Greece to investigate the benefits of their addition on the rheological and filtration properties of water-bentonite suspensions. The samples were causticized with two different methods and added in water-based mud mixtures. Rheological and filtration properties of the samples were proved strongly dependent on the type of causticization, as well as their humic acid content. This study is an attempt to develop a low-cost, environmental-friendly product from indigenous and very abundant raw material (lignite, leonardite) intending to explore in the post-lignite era one industrial, non-electrical application for this primary energy source.

Ο μπεντονίτης είναι μια άργιλος, που χρησιμοποιείται μεταξύ άλλων ως χαμηλού κόστους πρόσθετο των ρευστών διάτρησης, προκειμένου να προσδώσει τις επιθυμητές πλαστικές ρεολογικές ιδιότητες στον πολφό. Όσο η διάτρηση προχωρά, τα σωματίδια της αργίλου τείνουν να διογκώνονται προκαλώντας αύξηση του ιξώδους. Σε αυτήν την περίπτωση είναι απαραίτητη η επεξεργασία του πολφού, ώστε να μειωθεί το πλαστικό ιξώδες και να διατηρηθεί ομαλή η διάτρηση. Η επεξεργασία γίνεται με αραιωτές πολφού, που συμβάλλουν στον έλεγχο των ιδιοτήτων διασποράς και στη μείωση του ιξώδους. Το Λιγνοσουλφονικό αποτελεί ένα ανιονικό πολυμερές με βάση τη λιγνίνη, που χρησιμοποιείται ευρέως για αραίωση μπεντονιτικών πολφών με βάση το νερό. Συχνά προστίθεται και λιγνίτης [σε ορισμένες περιπτώσεις μαζί με λιγνοσουλφονικά] στον πολφό διάτρησης ως χαμηλού κόστους παράγοντας αραίωσης για τον έλεγχο της διόγκωσης των σωματιδίων της αργίλου, τη μείωση του ιξώδους καθώς και τον έλεγχο των ιδιοτήτων διήθησης του πολφού. Συγκεκριμένα, μετά από καυστικοποίηση σε αλκαλικό διάλυμα, ο λιγνίτης μπορεί να λειτουργήσει ως αραιωτικός παράγοντας, μειώνοντας τα φαινόμενα πηκτώματος, που δημιουργούνται στους πολφούς. Επιπλέον μπορεί να επηρεάσει τις διηθητικές ιδιότητες μειώνοντας ουσιαστικά τον όγκο του διηθήματος του πολφού. Ένας άλλος τύπος λιγνίτη, ο λεοναρδίτης, μπορεί επίσης να χρησιμοποιηθεί για τον ίδιο σκοπό. Τέσσερα δείγματα χαμηλού βαθμού ανθράκων (τρεις λιγνίτες και ένας λεοναρδίτης) λήφθηκαν από συγκεκριμένα κοιτάσματα στη Δυτική Μακεδονία, για να αξιολογηθεί η επίδρασή τους στις ρεολογικές και διηθητικές ιδιότητες πολφού με βάση το νερό. Η παρούσα διατριβή αποτελεί μια προσπάθεια να αναπτυχθεί ένα χαμηλού κόστους, περιβαλλοντικά φιλικό προϊόν από μια εγχώρια και πολύ συνήθη πρώτη ύλη (λιγνίτης, λεοναρδίτης) με στόχο να διερευνηθεί μια βιομηχανική, έξω-ηλεκτρική χρήση αυτής της κατ’ εξοχήν ενεργειακής πηγής στη μεταλιγνιτική περίοδο.

Πλήρες Κείμενο:

PDF

Αναφορές


Aadnøy, B.S., and Looyeh, R. (2019). Drilling Design and Selection of Optimal Mud Weight. In Petroleum Rock Mechanics (Second Edition) (pp. 165-181). Gulf Professional Publishing.

Abdo, J., and Haneef, M.D. (2013). Clay nanoparticles modified drilling fluids for drilling of deep hydrocarbon wells. Applied Clay Science. Vol 86, pp. 76-82.

Abu-Jdayil, B. (2011). Rheology of sodium and calcium bentonite-water dispersions: effect of electrolytes and aging time. International Journal of Mineralogy Process, Vol 98, pp. 208-213.

Aird, P. (2019). Deepwater Geology & Geoscience. In Deepwater Drilling. 17-68.

Al-Marhoun, M. A., and Rahman, S. S. (1988). Optimizing the Properties of water-based Polymer Drilling Fluids for Penetrating Formations with Electrolyte Influx. Erdol Erdgas, pp. 318-323.

Al-Otaibi, M.B., Nasr-El-Din, H.A., and Hill, A.D. (2008). Characteristics and removal of filter cake formed by formate based drilling mud. SPE

International Symposium and Exhibition on Formation Damage, Louisiana, 13-15 February., pp. 56-63.

Alsaba, M., Al Mejadi, M., Fahmy, M., Aldarakh, Y., Farhat, A., and Majli, J. (2018). Development and testing of an effective lost circulation pill to cure highly permeable formations. Society of Petroleum Engineers - SPE. International Heavy Oil Conference and Exhibition, pp. 6-12.

API 13A. (1993). Specification for Drilling fluid materials.

API 13D. (2009). Rheology and hydraulics of oil-well drilling fluids.

API RP13B-1. (2017). Recommended Practice for Field Testing Water-based Drilling Fluids.

ASTM 3172-13. (2013). Standard Practice for Proximate Analysis of Coal and Coke.

Averkina, E.V., and Shakirova, E.V. (2019). Specifics of drilling wells in the abnormally-high-pressure rock beds in the oil-and-gas fields of Eastern Siberia. IOP Conference Series: Earth and Environmental Science, Vol 229, pp. 1-6.

Bageri, B. S., Al-Mutairi, S. H., and Mahmoud, M. A. (2013). Different Techniques for Characterizing the Filter Cake. SPE Unconventional Gas Conference and Exhibition, Oman 28-30 January, 2013., pp. 1-9.

Black, A.D., Dearing, H.L., and DiBona, B.G. (1985). Effects of pore pressure and mud filtration on drilling rate on permeable sandstone. Journal of Petroleum Technology, Vol 37(9), pp. 1671–1681.

Bochenova, L. N., and Korolev, A. I. (1983). The effect of phosphorus bearing additives to a drilling mud on the corrosion behavior of R-110 steel. Korroz. Zashch. Neftegazov. Prom-sti. (USSR), Vol 10., pp. 7-8.

Borst, R.L., and Shell, F.J. (1971). The Effect of Thinners on the Fabric Of Clay Muds and Gels. Journal of Petroleum Technology, Vol 23 (10), pp. 1193-1201.

Browning, W.C. (1969). Drilling mud additive for filtration control. US Patent- US3441504.

Caenn, R., Darley, H.C.H., and Gray., G. R. (2016). Composition and Properties of Drilling and Completion Fluids. Gulf Professional Publishing.

Calçada, L. A., Scheid, C. M., De Araújo, C. A. O., Waldmann, A. T. A., and Martins, A. L. (2011). Analysis of dynamic and static filtration and determination of mud cake parameters. Brazilian Journal of Petroleum and Gas, Vol 5(3), pp. 159-170.

Canarutto, S., Pera, A., La Marca, M., and Vallini, G. (1996). Effects of Humic Acids from Compost-Stabilized Green Waste or Leonardite on Soil Shrinkage And Microaggregation. Compost Science & Utilization, Vol 4 (4), pp. 40-46.

Chen, G., Ewy, R.T., and Yu, M. (2010). Analytic solutions with ionic flow for a pressure transmission test on shale. Journal of Petroleum Science Engineers, Vol 72, pp. 158–165.

Chen, S., Low, P.F., Cushman, J.H., and Roth, C.B. (1987). Organic Compound Effects on Swelling and Flocculation of Upton Montmorillonite. Soil Science Society of America Journal, Vol 51, pp. 1444-1450.

Chilingarian, G.V., and Vorabutr, P. (1983). Drilling and drilling fluids. United States.

Chu, Q., Luo, P., Zhao, P., Feng, J., Kuang, X., and Wang, D. (2012). Application of a new family of organosilicon quadripolymer as a fluid loss additive for drilling fluid at high temperature. Journal of Applied Polymer Science, Vol 128 (1), pp. 28-40.

Civan F., and Engler, T. (1994). Drilling Mud Filtrate Invasion—Improved Model and Solution. Journal of Petroleum Science and Engineering, Vol 11, pp. 183-193.

Civan, F. (2007). Drilling mud filtrate and solids invasion and mud cake formation. In Reservoir Formation Damage (pp. 741-774).

Civan, F. (2015). Reservoir Formation Damage. Gulf Professional Publishing.

Doolan, J.G., and Cody, C.A. (1995). Pourable water dispersible thickening composition for aqueous systems and a method of thickening said aqueous systems. US Patent 5425806, assigned to Rheox Inc.

European Association of Coal and Lingite. (2018). Euracoal- Market Report. Retrieved from https://euracoal.eu/library/coal-market-reports/

Ezeakacha C., and Salehi S. A. (2019). Holistic Approach to Characterize Mud Loss Using Dynamic Mud Filtration Data. Journal of Energy Resources Technology, Vol 141(7), pp. 1-15.

Fink, J. (2015). Fluid Loss Additives. In Petroleum Engineer's Guide to Oil Field Chemicals and Fluids (pp. 63-120). Gulf Professional Publishing.

Fjelde, I. (2009). Formation damage caused by emulsions during drilling with emulsified drilling fluids. Society of Petroleum Engineers - Drilling and Completion, Vol 24 (2), pp. 222-228.

Gao, H., Li, G., Ma, X., Feng, L., and Liu, G. (2013). Discussion for Affected Factors of the Carrying Capacity of HDD Drilling Fluid. International

Conference on Pipelines and Trenchless Technology, X'ian, China, pp. 1073-1084.

Garakani A.H.K., Mostouf N., Sadeghi F., Hosseinzadeh M., Fatourechi H., Sarrafzadeh M.H., and Mehrnia M.R. (2011). Comparison between different models for rheological characterization of activated sludge. Iranian Journal of environmental health science and engineering, Vol. 8(3), pp. 255–264.

Garyan, S.A., Kuznetsova, L.P., and Moisa, Y.N. (1998). Experience in using environmentally safe lubricating additive fk-1 in drilling muds during oil and gas well drilling. Stroit Neft Gaz Skvazhin Sushe More, Vol 10, pp. 11-14.

Ghassem, M.K., and Teymoori, R. (2007). Effect of salinity pH and temperature on CMC polymer and XC polymer performance. IJE Transactions, Vol 20, pp. 283-290.

Hassen, B.R. (1982). Solving filtrate invasion with clay-water base systems. World Oil, Vol 195 (6), pp. 115–120.

Health & Safety Executive. (2000). Offshore Technology Report. Retrieved from Retrieved from: https://www.hse.gov.uk/research/otopdf/1999/oto99089.pdf

Hemphill T, Campos W., and Pilehvari A. (1993). Yield-Power Law Model More Accurately Predicts Mud Rheology. Oil & Gas Journal, Vol 91 (34), pp. 5-45.

Hendricks, S.B., and Jefferson, M.E. (1938). Structure of kaolin and talc-pyrophyllite hydrates and their bearing on water sorption of the clays. Am. Mineral, Vol 23, pp. 863-875.

Herzhaft, B., Rousseau, L., Neau, L., Moan, M., and Bossard, F. (2003). Influence of temperature and clays/emulsion microstructure on oil-based mud low shear rate rheology. Society of Petroleum Engineers Journal, Vol 8(3), pp. 211-217.

Hoffman, G.L., Nikols, D.J., Stuhec, S., and Wilson, R.A. (1993). Evaluation of leonardite (humalite) resources of Alberta. Open-File Report (1993-18).

Alberta, Canada: Energy, Mines and Resources Canada, Alberta Research Council.

Hudgins, C.M. (1991). Chemical Usage in North Sea Oil and Gas Production and Exploration Operations. Report prepared for Oljeindustriens Landsforening (OLF). The Norwegian Oil Industry Association, Environment Committee, Stavanger, Norway.

Iordanidis, A. and Georgakopoulos, A. (2003). Pliocene lignites from Apofysis mine, Amynteo basin, Northwestern Greece: petrographical characteristics and depositional environment. International Journal of Coal Geology, Vol 54, No 1-2, pp. 57-68.

Kalaitzidis, S., Papazisimou, S., Giannouli, A., Bouzinos, A., and Christanis, K. (2003). Preliminary comparative analyses of two Greek leonardites. Fuel, Vol 82, pp. 859-861.

Kamari, A., Garagheizi, F., Shokrollahi, A., Arabloo, M., and Mohammadi, A.H. (2017). Estimating the drilling fluid density in the mud technology: Application in high temperature and high pressure petroleum wells. In Heavy Oil (p. 315). Nova Science Publishers.

Kelessidis, V.C., Maglione, R., Tsamantaki, C., and Aspirtakis, Y. (2006). Optimal determination of rheological parameters for Herschel–Bulkley drilling fluids and impact on pressure drop, velocity profiles and penetration rates during drilling. Journal of Petroleum Science and Engineering, Vol 53, pp. 203–224.

Kelessidis, V.C., Papanikolaou, C., and Foskolos, A. (2009). Application of Greek lignite as an additive for controlling rheological and filtration properties of water–bentonite suspensions at high temperatures: A review. International Journal of Coal Geology, Vol 77, pp. 394-400.

Kenny, P., and Hemphill, T. (1996). Hole-cleaning capabilities of an ester-based drilling fluid system. Society of Petroleum Engineers, Drilling & Completion, Vol 11 (01), pp. 3–9.

Kolovos N., Sotiropoulos D., and Georgakopoulos A. (2005). Contribution of lignite recovery from multi-seam deposits, Vol 27. pp. 975-986.

Kolovos, N., Georgakopoulos, A., and Kavouridis, C. (2002b). Environmental Effects of Lignite and Intermediate Steriles Coexcavation in the Southern

Lignite Field Mine of Ptolemais, Northern Greece. Energy Sources, Vol 24, pp. 561-573.

Kolovos, N., Georgakopoulos, A., Filippidis, A., and Kavouridis, C. (2002a). Utilization of Lignite Reserves and Simultaneous Improvement of Dust Emissions and Operation Efficiency of a Power Plant by Controlling the Calcium (Total and Free) Content of the Fed Lignite. Energy & Fuels, Vol 16, pp. 1516-1522.

Kosynkin, D.V., Ceriotti, G., Wilson, K. C., Lomeda, J.R., Scorsone, J.T., Patel, A.D., Friedheim, J.E., and Tour, J.M. (2012). Graphene Oxide as a High-Performance Fluid-Loss-Control Additive in Water-Based Drilling Fluids. ACS Applied Material Interfaces, Vol 4(1), pp. 222-227.

Liu, J., Que, Z., and Huang, W. (2015). Novel latex particles and aluminum complexes as potential shale stabilizers in water-based drilling fluids. Journal of Petroleum Science and Engineering, Vol 135, pp. 433–441.

Lomba, R.F.T., Martins, A.L., Soares, C.M., Brandao, E.M., Magalhaes, J.V.M., and Ferreira, M.V.D. (2002). Drill-In Fluids: Identifying Invasion Mechanisms. Society of Petroleum Engineers - International Symposium and Exhibition on Formation Damage Control.

Lopes, L.F., Silveira, B.O., and Moreno, R. (2012). Loss circulation and formation damage control on overbalanced drilling with different formulations of water-based drill-in fluids on sandstone reservoir. ASME International Conference on Ocean, Offshore and Arctic Engineering.

Luckham, P.F., and Rossi, S. (1999). The colloidal and rheological properties of bentonite suspensions. Advances in Colloid and Interface Science, Vol 82, pp. 43-92.

L-Yami, A., Al-Jubran, M., Wagle, V., and Al-Mulhim, M. (2019). Development of a new reservoir-friendly drilling fluid for higher gas production. Society of Petroleum Engineers - Abu Dhabi International Petroleum Exhibition and Conference 2018, ADIPEC.

Lyons, W.C., and Plisga, G.J. (2016). Drilling and well completions. In Standard Handbook of Petroleum and Natural Gas Engineering. 1568.

Malczewska B., and Biczyński A. (2017). Comparison between different models for rheological characterization of sludge from settling tank. Journal of Water and Land Development, Vol 34, pp. 191–196.

Mark S., and Ramsey P. E. (2019). Rheology, Viscosity, and Fluid Types. In Practical Wellbore Hydraulics and Hole Cleaning (p. 340). Elsevier 1st Ed.

Market Research Future. (2018). Drilling fluids market research report- Global forecast to 2023. Retrieved from https://www.marketresearchfuture.com/reports/drilling-fluids-market-4329

Martins, A.L., Massarani, G., Waldmann, A.T.A., and Costa, F.G. (2003). On the Rheological Mechanisms Governing Drill-in Fluid Invasion into Reservoir Rocks. Society of Petroleum Engineers SPE European Formation Damage Conference.

Medvedev, A.I., Zhigarev, V.A., Neverov, A.L., Matveyev, A.V., and Buryukin, F.A. (2018). Investigation of methods for regulating the filtration and strength characteristics of an open borehole. International Journal of Civil Engineering and Technology, Vol 9(10), pp. 260-269.

Mitchell, R.F., and Miska S.Z. (2011). Fundamentals of Drilling Engineering. Society of Petroleum Engineers.

Morenov, V., and Leusheva, E. (2017). Development of drilling mud solution for drilling in hard rocks. International Journal of Engineering, Transactions, Vol 30 (4), pp. 620-626.

Narkis, N., Rebhun, M., Lahav, N., and Banin, A. (1970). An optical-transmission study of the interaction between montmorillonite and humic acids. Israel Journal of Chemistry, Vol 8, pp. 383-389.

Nasr-El-Din, H.A, Al-Otaibi, M.B., and Al-Qahtani, A.A. (2007). An effective fluid formulation to remove drilling fluid mud cake in horizontal and multilateral wells. SPE Journal, Vol 22, pp. 26-32.

Neff, J.M. (2005). Composition, environmental fates, and biological effect of water based drilling muds and cuttings discharged to the marine environment: A synthesis and annotated bibliography. In: Report prepared for the Petroleum Environmental Research Forum (PERF). Washington DC: American Petroleum Institute.

Outmans, H.D. (1963). Mechanics of Static and Dynamic Filtration In the Borehole. Society of Petroleum Engineers Journal, Vol 491, pp. 236-244.

Peder, M. C.F., Mewis, J. and Bonn, D. (2006). Yield Stress and thixotropy: on the difficulty of measuring yield stress in practice. Soft Matter, Vol 2, pp. 274-283.

Power, D., and Zamora, M-I. (2003). Drilling Fluid Yield Stress: Measurement Techniques for Improved Understanding of Critical Drilling Fluid

Parameters. AADE National Technology Conference “Practical Solutions for Drilling Challenges, Radisson Astrodome Houston, Texas, April 1 - 3, pp. 1-9.

Ramakrishnan T.S., and Wilkinson D.J. (1997). Formation Producibility and Fractional Flow Curves from Radial Resistivity Variation Caused by Drilling

Fluid Invasion. Physics of Fluids, Vol 9(4), pp. 833-844.

Rehm, B., and Haghshenas, A. (2012). Flow Drilling: Underbalanced Drilling with Liquid Single-Phase Systems. In Underbalanced drilling: Limits and extremes (p. 629). Gulf Publishing.

Rugang, Y., Guancheng, J., Wei, L., Tianqing, D., and Hongxia, Z. (2014). Effect of water-based drilling fluid components on filter cake structure. Powder Technology, Vol 262, pp. 51-61.

Runov, V.A., Subbotina, T.V., Mojsa, Y.N., Krezub, A.P., Samotoj, A.K., and Morgunov, A.N. (1992). Lubricant additive for clayey drilling muds– contains chalk, carbon black or graphite as mineral component, and glycolester(s) of synthetic higher fatty acids as organic component. SU Patent 1726 491, assigned to Volgo Don Br.Sintez Pavand Burenie Sci Production Association.

Saasen, A., Hoset, H., Rostad, E.J., Fjogstad, A., Aunan, O., and Westgard, E. (2001). Application of ilmenite as weight material in water based and oil based drilling fluids. Proceedings of Annual SPE Technical Conference.

Sánchez, E., Audibert-Hayet A.,, and Rousseau L. (2004). Influence of drill-in fluids composition on formation damage. Society of Petroleum Engineers Journal, Vol 9 (4), pp. 403-410.

Sarquis, J. (1980). Colloidal systems. Chem Supplement, Vol 57, pp. 602-605.

Schlumberger Oilfield Glossary. (2019). https://www.glossary.oilfield.slb.com/.

Sheng, H., and Zang, W. (2018). Synthesis of lignite graft polycondesate as drilling fluid additive and its influence on the properties of water-bentonite suspensions. Chemistry and Technology of Fuels and Oils, Vol. 53 (6), pp. 922-932.

Tarchitzky, J. ,Chen, Y., and Banin, A. (1993). Humic Substances and pH Effects on Sodium- and Calcium-Montmorillonite Flocculation and Dispersion.

Soil Science Society of America Journal, Vol 57, pp. 367-372.

Van Dyke, K. (2000). Drilling Fluids. Austin, Texas: Petroleum Extension Service.

Van Olphen, H. (1977). An introduction to clay colloid chemistry. London: John Wiley & Sons; 2nd Edition.

Van Oort, E. (1997). Physico-chemical stabilization of shales. Proceedings of Society of Petroleum Engineers - International Symposium on Oilfield Chemistry.

Visser, S.A. (1982). Surface active phenomena by humic substances of aquatic origin. Revue des sciences de l'eau, Vol 1, pp. 285-295.

Visser, S.A., and Cailler, M. (1988). Observations on the Dispersion and Aggregation of Clays by Humic Substances, I. Dispersive Effects of Humic Acids. Geoderma, Vol 42., pp. 331-337.

Wang, F. (1992). Drilling Fluid Thinners. US Patent 5124312.

Wang, P., Jing, Y., Peng, Z., Bai, Y., and Xie, J. (2017). New Method for Evaluating Filtration and Mud Cake Building Performance of Drilling Fluid for Shale Drilling. Drilling Fluid and Completion Fluid, Vol 34 (2), pp. 51-56.

Wang, Z., Qiu, Y., Guo, P., Jianfen, D., Huamg, L., Yisheng, H., and Fanhua, Z. (2019). Experimental Investigation of the Damage Mechanisms of Drilling

Mud in Fractured Tight gas Reservoir. Journal of Energy Resource Technology, Vol 141 (9), pp. 17-29.

Weaver, C.E., and Pollard, L.D. (1973). The Chemistry of Clay Minerals. Elsevier Scientific Publications Co.

Xin, Z., Zhengsong, Q., Baojiang, S., Shujie, L., Xijin, X., and Minglian, W. (2019). Formation damage mechanisms associated with drilling and completion fluids for deepwater reservoirs. International Journal of petroleum science and engineering, Vol 173, pp. 112-121.

Xu, P., Xu, M., Tao, Z., Wang, Z., Huang, T. (2018). Rheological properties and damage-control mechanism of oil-based drilling fluid with different types of weighting agents. Royal Society Open science, Vol 5, pp. 1-17.

Yao C.Y., and Holditch S.A. (1993). Reservoir Permeability Estimation from Time- Lapse Log Data. Proceedings of the Production Operations Symposium. Society of Petroleum Engineering, Oklahoma City, pp. 963-975.

Zhang, W., Shen, H., Wang, Y., and Dong, W. (2016). Grafting lignite with sulformethal phenoldehy resin and their performance in controlling rheological and filtration properties of water–bentonite suspensions at high temperatures. Journal of Petroleum Science and Engineering, Vol 144., pp. 84-90.

Zhuang, G., Zang, Z., and Jaber, M. (2019). Organoclays used as colloidal and rheological additives in oil-based drilling fluids: An overview. Applied Clay Science, Vol 177, pp. 63-81.

Zollar, H.L. and Moore, E.W. (1978). Dried phosphoric acid product and process. US Patent - US4082677A, pp. 1-9.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.