[Εξώφυλλο]

Μελέτη της εφαρμογής της ηλεκτρικής τομογραφίας σε τομές πολύ μεγάλου μήκους = Study of the application of electrical resistivity tomography in very long sections.

Σεραφείμ Κωνσταντίνος Μαύρος

Περίληψη


Η συγκεκριμένη διπλωματική εργασία ασχολείται με την εφαρμογή της μεθόδου της ηλεκτρικής τομογραφίας σε τομές μεγάλου μήκους. Με τον όρο “μεγάλου μήκους” αναφερόμαστε σε τομές με ηλεκτρόδια διαφοροποιημένης πυκνότητας κατά μήκος τους, πιο αραιής στις άκρες των καλωδίων και ίσης κατανομής στο κεντρικό τμήμα τους. Ο λόγος για τον οποίο χρησιμοποιείται η συγκεκριμένη χωροθέτηση των ηλεκτροδίων στις διάφορες διατάξεις είναι για την εξασφάλιση μικρότερου αριθμού ηλεκτροδίων και ελαφρύτερου εξοπλισμού στη διαδικασία των μετρήσεων. Για την παραγωγή πρωτοκόλλων μετρήσεων κατασκευάστηκε αλγόριθμος σε προγραμματιστικό περιβάλλον Matlab, ο οποίος δημιουργεί πρωτόκολλα διαφοροποιημένης ή ισοκατανεμημένης πυκνότητας ηλεκτροδίων μικρής ή μεγάλης κλίμακας με την εισαγωγή από τον χρήστη του αριθμού ηλεκτροδίων που χρησιμοποιούνται και του τύπου της κατανομής που ακολουθούν. Τα παραγόμενα πρωτόκολλα αναπαράγουν τις παραδοσιακές διατάξεις διπόλου – διπόλου και πολλαπλής βαθμίδας, της καινούργιας διάταξης της πλήρους εύρους βαθμίδας, πλήρη πρωτόκολλα που περιλαμβάνουν το συνδυασμό μετρήσεων διπόλου – διπόλου και πλήρους εύρους βαθμίδας, αλλά και την βελτιστοποιημένη διάταξη του Ιακωβιανού πίνακα ή πίνακα ευαισθησίας. Στη συγκεκριμένη διπλωματική παράχθηκαν πρωτόκολλα 33 ηλεκτροδίων αραιωμένης διάταξης στα άκρα και 48 ηλεκτροδίων σταθερής απόστασης. Για τον έλεγχο της αξιοπιστίας τους, οι δύο μορφές κατανομής ηλεκτροδίων δοκιμάζονται αρχικά σε ένα πλήθος παραδειγμάτων μικρής και μεγάλης κλίμακας. Προκύπτει λοιπόν, το ερώτημα κατά πόσο επηρεάζεται η ποιότητα της εικόνας από την απουσία ορισμένων ηλεκτροδίων στις άκρες, αλλά και ποιες από τις διατάξεις μέτρησης, είτε τις τυπικές, είτε μη συμβατικές διατάξεις που κατασκευάστηκαν, μπορούν να χρησιμοποιηθούν καλύτερα και να δώσουν ικανοποιητικότερα αποτελέσματα από άλλες διατάξεις. Φαίνεται πως η αραίωση των ηλεκτροδίων στις άκρες των τομών για όλες τις διατάξεις ηλεκτροδίων δεν επηρεάζει τη συνολική ποιότητα των εικόνων αντιστροφής για μικρής και μεγάλης κλίμακας πρωτόκολλα. Η μετάβαση σε μεγάλη κλίμακα απλά αλλάζει τον αριθμό των μετρήσεων που είναι εφικτά πραγματοποιήσιμες λόγω γεωμετρικού παράγοντα. Τέλος, αξίζει να σημειωθεί πως από τη σχετική σύγκριση των δύο μορφών κατανομής ηλεκτροδίων αλλά και των διαφορετικών διατάξεων εξάγονται παρόμοιες εικόνες με ικανοποιητικά αποτελέσματα. Αυτό επιβεβαιώνεται με συνθετικά μοντέλα μικρής και μεγάλης κλίμακας, καθώς και με πραγματικές μετρήσεις πεδίου μικρής κλίμακας. Για τεχνικούς λόγους δεν πραγματοποιήθηκαν τομογραφίες μεγάλου μήκους, παρόλα αυτά τα συμπεράσματα παραμένουν ίδια.

The present thesis deals with an application of the electric tomography method to very long sections. By the term “very long sections” we refer to sections along which the electrode density varies. In particular, the electrodes are more sparse on the edges of the wires and evenly distributed in their center. Such an electrode configuration ensures that fewer electrodes are used and consequently, that the equipment is lighter and easier to handle during measurements. For the creation of measurement protocols, we constructed an algorithm in the programming environment Matlab, which produces protocols of varying or evenly distributed electrode configurations in short or large scales. The number of electrodes as well as type of configuration is given as an input by the user. The resulting protocols reproduce the traditional dipole-dipole and multiple gradient array configurations, as well as the new full range gradient array configuration. Additionally, the algorithm creates full protocols which reproduce a combination of the dipole-dipole and the full range gradient array configurations, as well as the optimized Jacobian matrix or sensitivity matrix configuration. In the present thesis, we produced two kinds of protocols: a protocol applicable to a configuration of 33 sparsely distributed electrodes on the edges and another applicable to a configuration of 48 evenly distributed electrodes. As a consistency check, the two kinds of electrode configurations were initially tested on a number of small and large-scale examples. As a result, the following two questions arise; to what extent is the image quality affected in the absence of few electrodes on the edges, and which of the array configurations, conventional or novel, can provide the most satisfactory results? It appears that reducing the number of electrodes on the edges of a section does not influence the overall quality of the inversion images. This statement is true for both small- and large-scale array protocols. The transition to a larger scale simply changes the number of measurements which are feasible due to the geometrical factor. Finally, it is worth mentioning that the two types of electrode configurations (sparse on the edges or evenly spaced) and the various types of array configurations (conventional or novel) yield similar images with satisfactory results. This statement is confirmed by mock-models of both small and large scale as well as by actual small-scale field measurements. Due to technical reasons we did not perform large-scale tomography, however the conclusions remain the same.

Πλήρες Κείμενο:

PDF

Αναφορές


Aitken, M. (1974). Physics and archaeology. Clarendon Press, Oxford.

Athanasiou, E.N., Tsourlos, P.I. and Vargemezis G.N. (2007c). Optimizing electrical resistivity array configurations for hydrogeological studies. In Proceedings, TIAC’07 International Conference on Technology of Seawater Intrusion in Coastal Aquifers, Almeria, Spain, 16-19 October 2007.

Atzemoglou, A., Tsourlos, P. and Pavlides, S. (2003). Investigation of the Tectonic Structure of the NW Part of the Amynteon Basin (NW Greece) by means of a Vertical Electrical Sounding (VES) survey. Journal of the Balkan Geophysical Society, vol. 6 (4), 188-202.

Aubert, M., Camus, G., and Fournier, C. (1984). Resistivity and magnetic surveys in groundwater prospecting in volcanic areas - case history Maar of Beanit, Puy de Dome, France. Geophysical prospecting, 32, 554-563.

Auken, E., Pellerin, L., Christensen, N. B., & Sørensen, K. (2006). A survey of current trends in near-surface electrical and electromagnetic methods. Geophysics, 71(5), G249-G260.

Barker, R. D. (1981). The offset system of electrical resistivity sounding and its use with a multicore cable. Geophysical prospecting, 29(1), 128-143.

Barker, R. D. (1989). Depth of investigation of collinear symmetrical four-electrode arrays. Geophysics, 54(8), 1031-1037.

Bauman, P. (2005). 2-D resistivity surveying for hydrocarbons—a primer. CSEG Recorder, 30(4), 25-33.

Beresnev, I. A., Hruby, C. E., & Davis, C. A. (2002). The use of multi-electrode resistivity imaging in gravel prospecting. Journal of Applied Geophysics, 49(4), 245-254.

Butler, D. K., & Llopis, J. L. (1990). Assessment of anomalous seepage conditions. Investigations in geophysics, (5), 153-73.

Çağlar, İ., & Duvarci, E. (2001). Geoelectric structure of inland area of the Gökova rift, southwest Anatolia and its tectonic implications. Journal of Geodynamics, 31(1), 33-48.

Chambers, J. E., Kuras, O., Meldrum, P. I., Ogilvy, R. D., & Hollands, J. (2006). Electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste-disposal site. Geophysics, 71(6), B231-B239.

Chambers, J. E., Wilkinson, P. B., Wardrop, D., Hameed, A., Hill, I., Jeffrey, C., ... & Gunn, D. A. (2012). Bedrock detection beneath river terrace deposits using three-dimensional electrical resistivity tomography. Geomorphology, 177, 17-25.

Coggon, J.H. (1971). Electromagnetic and electrical modeling by the finite element method: Geophysics, 36, 132-155.

Constable, S. C., Parker, R. L., & Constable, C. G. (1987). Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52(3), 289-300.

Cook, K. L., & Van Nostrand, R. G. (1954). Interpretation of resistivity data over filled sinks. Geophysics, 19(4), 761-790.

Dahlin, T., Johansson, S., & Landin, O. (1994, March). Resistivity surveying for planning of Infrastructure. In 7th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems (pp. cp-208). European Association of Geoscientists & Engineers.

Dahlin, T., & Owen, R. (1998, September). Geophysical investigations of alluvial aquifers in Zimbabwe. In 4th EEGS Meeting (pp. cp-43). European Association of Geoscientists & Engineers.

Dahlin, T. (2001). Short note on electrode charge‐up effects in DC resistivity data acquisition using multi‐electrode arrays. Geophysical Prospecting, 48(1), 181-187.

Dahlin, T. (2001). The development of DC resistivity imaging techniques. Computers & Geosciences, 27(9), 1019-1029.

Dahlin, T., & Zhou, B. (2004). A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophysical prospecting, 52(5), 379-398.

Dahlin, T., & Zhou, B. (2006). Multiple‐gradient array measurements for multichannel 2D resistivity imaging. Near Surface Geophysics, 4(2), 113-123.

deGroot-Hedlin, C., & Constable, S. (1990). Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics, 55(12), 1613-1624.

Dey, A., & Morrison, H. F. (1979). Resistivity modelling for arbitrarily shaped two‐dimensional structures. Geophysical Prospecting, 27(1), 106-136.

Dey, A., & Morrison, H. F. (1979). Resistivity modeling for arbitrarily shaped three-dimensional structures. Geophysics, 44(4), 753-780.

Edwards, L. S. (1977). A modified pseudosection for resistivity and IP. Geophysics, 42(5), 1020-1036.

Ellis, R. G., & Oldenburg, D. W. (1994). Applied geophysical inversion. Geophysical Journal International, 116(1), 5-11.

Evjen, H. M. (1938). Depth factors and resolving power of electrical measurements. Geophysics, 3(2), 78-95.

Fikos, I., Vargemezis, G., Tsokas, G. N., Hatzidimitriu, P., & Dimopoulos, G. (2002). Diachronic study of free aquifers using the method of electric tomography: a case study in northern Greece. European Journal of Environmental and Engineering Geophysics, 7, 185-193.

Flathe, H. (1955). Possibilities and limitations in applying geoelectrical methods to hydrogeological problems in the coastal areas of North West Germany. Geophysical prospecting, 3(2), 95-109.

Fox, R. C., Hohmann, G. W., Killpack, T. J., & Rijo, L. (1980). Topographic effects in resistivity and induced-polarization surveys. Geophysics, 45(1), 75-93.

Franklin, J. N. (1970). Well-posed stochastic extensions of ill-posed linear problems. Journal of mathematical analysis and applications, 31(3), 682-716.

Giancoli, D. (2012). Φυσική για επιστήμονες και μηχανικούς. 4η Έκδοση Copyright© 2012, Εκδόσεις ΤΖΙΟΛΑ. ISBN: 978-960-418-376-0 (τόμος B′).

Golub, G. H., & Reinsch, C. (1971). Singular value decomposition and least squares solutions. In Linear Algebra (pp. 134-151). Springer, Berlin, Heidelberg.

Griffiths, D. H., & Barker, R. D. (1993). Two-dimensional resistivity imaging and modelling in areas of complex geology. Journal of applied Geophysics, 29(3-4), 211-226.

Griffiths, D. H., & Barker, R. D. (1994). Electrical imaging in archaeology. Journal of Archaeological science, 21(2), 153-158.

Habberjam, G. M. (1975). Apparent resistivity, anisotropy and strike measurements. Geophysical prospecting, 23(2), 211-247.

Hesse, A., Jolivet, A., & Tabbagh, A. (1986). New prospects in shallow depth electrical surveying for archaeological and pedological applications. Geophysics, 51(3), 585-594.

Hohmann, G. W. (1988). Numerical modeling for electromagnetic methods of geophysics. Electromagnetic methods in applied geophysics, 1, 313-363.

Holcombe, H. T., & Jiracek, G. R. (1984). Three-dimensional terrain corrections in resistivity surveys. Geophysics, 49(4), 439-452.

Höök, M. (2010). Coal and oil: The dark monarchs of global energy: understanding supply and extraction patterns and their importance for future production (Doctoral dissertation, Acta Acta Universitatis Upsaliensis).

IRIS Instruments. (n.d.) Syscal Pro Characteristics (http://www.iris-instruments.com/syscal-prosw.html).

Jones, G. M., & Cassidy, N. J. (2007, September). Imaging the ROOT Cause of Subsidence Using Electrical Resistivity Tomography. In Near Surface 2007-13th EAGE European Meeting of Environmental and Engineering Geophysics (pp. cp-30). European Association of Geoscientists & Engineers.

Kearey, P., Brooks, M., & Hill, I. (2013). An introduction to geophysical exploration. John Wiley & Sons.

Kim, J.H., (2013). DC2DPro – User’s Manual, KIGAM, KOREA.

Koefoed, O. (1979) Geosounding Principles 1: Resistivity Sounding Measurements. Elsevier Science Publishing Company, Amsterdam.

Lanczos, C. (1996). Linear differential operators. Society for Industrial and Applied Mathematics.

Lawson, C. L., & Hanson, R. J. (1995). Solving least squares problems. Society for Industrial and Applied Mathematics.

Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Quarterly of applied mathematics, 2(2), 164-168.

Lines, L. R., & Treitel, S. (1984). A review of least‐squares inversion and its application to geophysical problems. Geophysical prospecting, 32(2), 159-186.

Loke, M. H., & Barker, R. D. (1995). Least-squares deconvolution of apparent resistivity pseudosections. Geophysics, 60(6), 1682-1690.

Loke, M.H. (2000). Topographic modelling in resistivity imaging inversion. Proceedings on the 62nd EAGE Conference & Technical Exhibition Extended Abstracts, D-2.

Loke, M. H., Acworth, I., & Dahlin, T. (2003). A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Exploration geophysics, 34(3), 182-187.

Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the society for Industrial and Applied Mathematics, 11(2), 431-441.

McNeill, J.D. (1980). Electromagnetic terrain conductivity measurement at low induction numbers. Techical Note TN-6. Geonics Ltd., 1745, Canada.

Mufti, I. R. (1976). Finite-difference resistivity modeling for arbitrarily shaped two-dimensional structures. Geophysics, 41(1), 62-78.

Müller, K., Vanderborght, J., Englert, A., Kemna, A., Huisman, J. A., Rings, J., & Vereecken, H. (2010). Imaging and characterization of solute transport during two tracer tests in a shallow aquifer using electrical resistivity tomography and multilevel groundwater samplers. Water Resources Research, 46(3).

Noel, M., & Xu, B. (1991). Archaeological investigation by electrical resistivity tomography: a preliminary study. Geophysical Journal International, 107(1), 95-102.

Ogilvy, R. D., Meldrum, P. I., Kuras, O., Wilkinson, P. B., Chambers, J. E., Sen, M., Pulido‐Bosch, A., Gisbert, J., Jorreto, S., Frances, I. & Tsourlos, P. (2009). Automated monitoring of coastal aquifers with electrical resistivity tomography. Near Surface Geophysics, 7(5-6), 367-376.

Olayinka, A., & Barker, R. (1990). Borehole Siting in Crystalline Basement Areas of Nigeria with a Microprocessor‐Controlled Resistivity Traversing System. Groundwater, 28(2), 178-183.

Olesen, O., Henkel, H., Lile, O. B., Mauring, E., & Rønning, J. S. (1992). Geophysical investigations of the Stuoragurra postglacial fault, Finnmark, northern Norway. Journal of Applied Geophysics, 29(2), 95-118.

Orlando, L., Piro, S., & Versino, L. (1987). Location of sub-surface geoelectric anomalies for archaeological work: a comparison between experimental arrays and interpretation using numerical methods. Geoexploration, 24(3), 227-237.

Papadopoulos, N. G., Tsourlos, P., Tsokas, G. N., & Sarris, A. (2006). Two‐dimensional and three‐dimensional resistivity imaging in archaeological site investigation. Archaeological Prospection, 13(3), 163-181.

Papadopoulos N. (2007). Algorithm development for the 3-D inversion of geoelectrical data coming from archaeological areas. Ph.D. Thesis, Aristotle University of Thessaloniki.

Reynolds, J. M. (2011). An introduction to applied and environmental geophysics. John Wiley & Sons.

Rijo, L., Pelton, W. H., Feitosa, E. C., & Ward, S. H. (1977). Interpretation of apparent resistivity data from Apodi valley, Rio Grande do Norte, Brazil. Geophysics, 42(4), 811-822.

Rodgers R.B. and Kean W.F. (1980). Monitoring ground-water contamination at a y ash deposit site using surface electrical resistivity methods. Ground Water, 18, (5), 472-478.

Roy, A., & Apparao, A. (1971). Depth of investigation in direct current methods. Geophysics, 36(5), 943-959.

Roy, A. (1972). Depth of investigation in Wenner, three‐electrode and dipole‐dipole DC resistivity methods. Geophysical Prospecting, 20(2), 329-340.

Rücker, C., Günther, T., & Spitzer, K. (2006). Three-dimensional modelling and inversion of dc resistivity data incorporating topography—I. Modelling. Geophysical Journal International, 166(2), 495-505.

Rucker, D. F., Loke, M. H., Levitt, M. T., & Noonan, G. E. (2010). Electrical-resistivity characterization of an industrial site using long electrodes. Geophysics, 75(4), WA95-WA104.

Sahbi, H., Jongmans, D., & Charlier, R. (2003). Theoretical study of slope effects in resistivity surveys and applications. Geophysical prospecting, 45(5), 795-808.

Serway, P. A., & Jewett, J. W. (2013). Φυσική για επιστήμονες και μηχανικούς-Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική. Ελληνική Έκδοση, Copyright© 2013, Εκδόσεις Κλειδάριθμος. ISBN: 978-960-461-509-4.

Smith, D. L. (1986). Application of the pole-dipole resistivity technique to the detection of solution cavities beneath highways. Geophysics, 51(3), 833-837.

Strang, G., Strang, G., Strang, G., & Strang, G. (1993). Introduction to linear algebra (Vol. 3). Wellesley, MA: Wellesley-Cambridge Press.

Stummer, P., Maurer, H., & Green, A. G. (2004). Experimental design: Electrical resistivity data sets that provide optimum subsurface information. Geophysics, 69(1), 120-139.

Szymanski J. and Dittmer J. (1992) Inversion of archaeological magnetic survey data using the maximum entropy method: Preliminary Results. Monograph on Geophysical Data Inversion in Archaeological Site Investigation, Vieweg Verlag.

Tagg, C.F. (1964). Earth Resistances. Pitman Publishing Company, New York.

Thanassoulas, C., Tsokas, G. N., & Kolios, N. (1987). Geophysical investigations in the geothermal field in the Delta of the Nestos river (northern Greece). Geothermics, 16(1), 17-26.

Tikhonov A.N. (1963). Solution of incorrectly formulated problems and the regularization method. Soviet Mathematics, 4, 1035-1038.

Tikhonov A.N. and Glasko V.B. (1965). Application of a regularization method to nonlinear problems. J.Comp. Math. and Math. Physics, 5, no. 3.

Tsokas, G. N., & Rocca, A. C. (1987). Field investigation of a Macedonian tumulus by resistivity soundings. Geoexploration, 24(2), 99-108.

Tsourlos P.I. (1995). Modeling, Interpretation and Inversion of Multielectrode Resistivity Survey Data. Ph.D. Thesis, Department of Electronics, University of York.

Tsourlos P., Szymanski J. and Tsokas G. (1999). The effect of terrain topography on

commonly used resistivity arrays. Geophysics, 64, 1357-1363.

Tsourlos, P. (2004). Inversion of Electrical Resistivity Tomography Data Deriving from 3D Structures. Bulletin of the Geological Society of Greece vol. XXXVI, Proceedings of the 10th International Congress, Thessaloniki.

Van, G. P., Park, S. K., & Hamilton, P. (1992, April). Use of resistivity monitoring systems to detect leaks from storage ponds. In 5th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems (pp. cp-210). European Association of Geoscientists & Engineers.

Van Dam, J. C. (1976). Possibilities and limitations of the resistivity method of geoelectrical prospecting in the solution of geo-hydrological problems. Geoexploration, 14(3-4), 179-193.

Vandenberghe J. (1982). Geoelectric investigations of a fault system in quartenary deposits. Geophysical Prospecting, 42, 977-991.

Ward, S. (1989). Resistivity and Induced Polarization Methods: in Investigations in Geophysics. No 5, Geotechnical and Environmental Geophysics, Vol. I, ed. S. Ward, SEG, Tusla, 147-189.

Wilkinson, P. B., Chambers, J. E., Meldrum, P. I., Ogilvy, R. D., & Caunt, S. (2006). Optimization of array configurations and panel combinations for the detection and imaging of abandoned mineshafts using 3D cross-hole electrical resistivity tomography. Journal of Environmental & Engineering Geophysics, 11(3), 213-221.

Wright P.M., Ward S.H., Ross H.P. and West R.C. (1985). State-of-the-art geophysical

exploration for geothermal resources. Geophysics, 50, 2666-2699.

Xu, B., & Noel, M. (1993). On the completeness of data sets with multielectrode systems for electrical resistivity survey. Geophysical Prospecting, 41(6), 791-801.

Zhou, B. (2018). Electrical Resistivity Tomography: A Subsurface-Imaging Technique. In Applied geophysics with case studies on environmental, exploration and engineering geophysics. IntechOpen.

Αθανασίου Ε. (2009).Ανάπτυξη αλγορίθμων για τη βέλτιστη στρατηγική μέτρησης και αντιστροφής δεδομένων ηλεκτρικής τομογραφίας, Διδακτορική διατριβή, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης.

Βλάχος, Δ., 2015. Βασικά στοιχεία ηλεκτρομαγνητισμού. [ηλεκτρ. βιβλ.] Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών. Διαθέσιμο στο: http://hdl.handle.net/11419/5039

Λούης, Ι. (2004). Εισαγωγικά Μαθήματα στην Διερευνητική Γεωφυσική. Σημειώσεις μαθήματος. Τμήμα Γεωλογίας, Πανεπιστημίου Αθήνας.

Παρουσιάσεις μαθήματος Η/Μ μεθόδων γεωφυσικής διασκόπησης, Α.Π.Θ.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.