Εξώφυλλο

Ανατομία και προοπτικές του ελληνικού κλάδου των βιομηχανικών ορυκτών και πετρωμάτων : γύψος = Anatomy and prospects of the greek industrial sector of minerals and rocks: gypsum.

Χιονάτη Γεώργιος Πιττίρη

Περίληψη


Αντικείμενο της παρούσας έρευνας ήταν η παρουσίαση και περιγραφή των ιδιοτήτων της γύψου, των βασικών γεωλογικών στοιχείων και των συνθηκών σχηματισμού της. Παράλληλα έγινε αποτύπωση της παγκόσμιας παραγωγής και των αποθεμάτων του ορυκτού, με έμφαση στην παραγωγική δυναμικότητα και τα αποθέματα της Ελλάδας. Η γύψος αξιοποιείται κυρίως στον οικοδομικό, στον βιομηχανικό, στο γεωργικό, στο καλλιτεχνικό και στον ιατρικό κλάδο. Η γύψος μπορεί να ληφθεί με εφαρμογή επιφανειακών ή υπόγειων τεχνικών εξόρυξης. Η μέθοδος που θα χρησιμοποιηθεί εξαρτάται από το πάχος και την κλίση του κοιτάσματος, των υπερκειμένων και το ανάγλυφο της περιοχής. Η τελική επιλογή της μεθόδου εξαρτάται από μια πληθώρα παραγόντων (όπως δαπάνες, αποθέματα νερού, ακαθαρσίες που εμπεριέχονται στο γύψο, ανταγωνισμός κ.ά.) και ανάλογα με την επιλεγμένη μεθοδολογία επηρεάζεται αντιστοίχως και η ποιότητα της γύψου. Οι Ηνωμένες Πολιτείες Αμερικής είναι ο μεγαλύτερος παραγωγός αργού γύψου στον κόσμο με την παραγωγή του να φτάνει τα 20 εκατομμύρια τόνους το 2019. Η Κίνα και το Ιράν έρχονται δεύτερες στην παραγωγή γύψου με 16 εκατομμύρια τόνους. Η ραγδαία αύξηση της χρήσης γυψοσανίδων σε συνδυασμό με την εμφάνιση νέων οικοδομικών προϊόντων γύψου τα οποία χρησιμοποιούνε φυτικά συστατικά έχει ωθήσει στην αυξημένη παραγωγή γύψου στις χώρες αυτές. Στην Ευρώπη (συμπεριλαμβανομένου όλων των χωρών και όχι μόνο των κρατών-μελών της Ευρωπαϊκής Ένωσης) ο ετήσιος κύκλος εργασιών της βιομηχανίας γύψου είναι περίπου 9,7€ δισεκατομμύρια. Λειτουργούν 154 λατομεία, ενώ ο αριθμός των εργοταξίων παραγωγής φυσικής γύψου ανέρχεται στα 160. Απασχολούνται 28.000 εργαζόμενοι, ενώ υπολογίζεται ότι ο κλάδος δίνει εργασία (έμμεση) σε περίπου 300.000 εργαζομένους. Η γύψος δεν είναι βασικό βιομηχανικό ορυκτό της Ελλάδας, καθώς η χώρα κατέχει ηγετική θέση παγκοσμίως στην παραγωγή περλίτη, μπεντονίτη και ελαφρόπετρας. Ο έντονος διεθνής ανταγωνισμός και η εμφάνιση προϊόντων υψηλότερης ποιότητας από τα Ελληνικά, σε συνδυασμό με τις χαμηλές τιμές λόγω ισοτιμιών (π.χ. με τις αντίστοιχες τιμές της Τουρκίας) και την μειωμένη παραγωγή τσιμέντου αναμένεται να οδηγήσουν σε σημαντική μείωση της εγχώριας ζήτησηςτα επόμενα χρόνια, με αποτέλεσμα να μένει σημαντική ποσότητα μη αξιοποιήσιμη.

The objective of the present research was the presentation and description of the properties of gypsum, its basic geological elements and the conditions of its formation. Moreover the world production and reserves of gypsum were recorded, with emphasis on the production capacity and reserves of Greece. Gypsum is mainly used in the construction, industrial, agricultural, artistic and medical sectors. Gypsum can be obtained by applying surface or underground mining techniques. The method that is used depends on the thickness and the slope of the deposit, the supernatants and the repousse of the area. The final choice of the method depends on a variety of factors (such as costs, water reserves, impurities contained in the gypsum, competition etc) and depending on the chosen procedure, the quality of the gypsum can be affected accordingly. The United States of America is the largest producer of gypsum worldwide, with its production reaching 20 million tons in 2019. Chine and Iran are second in the gypsum production with 16 million tons each. The rapid increase in the usage of gypsum boards in combination with the emergence of new gypsum construction products that use environmentally friendly products, have increased the production of gypsum in these countries. In Europe (including all countries and not just the Member States of the European Union), the annual turnover of the gypsum industry is estimated around 9,7€ billion. There are 154 quarries with the number of construction sites for the production of natural gypsum counting for 160. The industry employs around 28.000, while it is estimated that the industry provides indirect work to about 300.000 employees. Gypsum is not a key industrial mineral in Greece, as the country is a world leader in the production of perlite, bentonite and pumice. Intense international competition and the emergence of higher qualitative products than the Greek, combined with low prices due to the exchange rates (eg with the corresponding prices in Turkey), and the reduced cement production are expected to lead to a significant reduction in domestic demand in the forthcoming years, leaving a significant amount of gypsum unusable.

Πλήρες Κείμενο:

PDF

Αναφορές


ΣΕΒ 2017. H εκμετάλλευση των Ορυκτών Πρώτων Υλών ως ευκαιρία βιώσιμης ανάπτυξης για τη χώρα. Διαθέσιμο: http://www.sev.org.gr/Uploads/Documents/50420/SPECIAL_REPORT%20S%20%20_ORYKTA.1_5_2017ocx.pdf (ανακτήθηκε 20.04.2021)

Τσιραμπίδης Α. 2005. Ο ορυκτός πλούτος της Ελλάδος. Εκδόσεις Γιαχούδη, Θεσσαλονίκη

Τσιραμπίδης Α. 2004. Πετρολογία Ιζηματογενών Πετρωμάτων, 2η έκδοση. ΑριστοτέλειοΠανεπιστήμιοΘεσσαλονίκης

Babel, M., 1991. Dissolution of halite within the middle Miocene (Badenian) laminated gypsum of southern Poland. Acta Geol. Pol., 41, 165-182

Bernard G. 1975. Effect of Clays, Limestone, and Gypsum on Soluble Oil Flooding. J Pet Technol, 27, 179–180. doi: https://doi.org/10.2118/4750-PA

Bjorn B. 2000. The Ecology of Building Materials, Great Britain

Bock, E. 1961. On the solubility of anhydrous calcium sulphate and gypsum in concentrated solutions of sodium chloride at 25 ◦C, 30 ◦C, 40 ◦C and 50 ◦C. Can. J. Chem. 39, 1746–1751

Bouzit S, Laasri S, Taha M, Laghzizil A, Hajjaji A, Merli F, Buratti C. 2019. Characterization of Natural Gypsum Materials and Their Composites for Building Applications. Applied Sciences. 9, V. 12, 2443. https://doi.org/10.3390/app9122443

Cooper, A.H.; Calow, R.C. 1998. Avoiding Gypsum Geohazards: Guidance for Planning and Construction; Technical Report, WC/98/5; British Geological Survey: Nottingham, UK

Copeland L.E., Kantro D.L. 1968. Gypsum. Proceedings of the Fifth International Symposium on the Chemistry of Cement, Tokyo.

Einsele G. 2000. Sedimentary basins. Evolution, Facies and Sedimentary Budget. Springer-Verlag, Berlin, 81, 258-283

EuroGypsum 2018. Symposium on availability of raw materials from secondary resources: a key aspect of circular economy. Available on: https://unece.org/fileadmin/DAM/energy/se/pp/unfc_egrm/egrc9_apr2018/24.04_RM/07_Christine.Marlet.pdf (retrieved 15.04.2021)

EuroGypsum 2015. Criticality of Raw Materials: Gypsum Data. Available on: http://www.eurogypsum.org/wp-content/uploads/2015/05/091109CriticalityGypsumData.pdf (retrieved 15.04.2021)

Eurostat 2020. Documentation of the EU RME model. Available on: https://ec.europa.eu/eurostat/documents/1798247/6874172/Documentation+of+the+EU+RME+model/ (retrieved 10.04.2021)

Ghrefat H., Howari I. 2011. Gypsum: Properties, production and applications. Applied Sciences, 21, 191-204.

Giulia B, Owen F, Parikshit S, Hilda K, Wall D. 2021. Potential of Lacto-Gypsum as an Amendment to Build Soil Quality, Frontiers in Sustainability, DOI: 10.3389/frsus.2020.625727

Gobran, G.R. 1985. Miyamoto, S. Dissolution rate of gypsum in aqueous salt solutions. Soil Sciences, 40, 89–93.

GrandView Researcher 2021. Gypsum Board Market Size, Share & Trends Analysis Report By Product (Pre-decorated Board, Wallboard, Ceiling Board), By Application (Commercial, Residential), By Region, And Segment Forecasts, 2021 – 2028. Available on: https://www.grandviewresearch.com/industry-analysis/gypsum-board-market

Herrero, J., Artieda, O. and Hudnall, W. 2009. Gypsum, a Tricky Material. Science. Social. American Journal., 73, 1757-1763. https://doi.org/10.2136/sssaj2008.0224

Hovorka, S.D., 1992. Halite pseudomorphs after gypsum in bedded anhydrite---~lue to gypsum anhydrite relationships..1. Sediment. Petrol., 62, 1098-I 1 l 1

Jeschke, A.; Vosbeck, K.; Dreybrodt, W. 2001. Surface controlled dissolution rates of gypsum in aqueous solutions exhibit nonlinear dissolution kinetics. Geochim. Cosmochim. Acta, 65, 27–34.

Ji, Z., Guo, Y., Chen, J., Guo, L., Yang, B., Zhang, X., Meng, L. & Qin, L. 2016. Microwave-assisted decomposition of fgd gypsum in the presence of magnetite and anthracite. Chemical

Papers, 70(10), 1399-1407. https://doi.org/10.1515/chempap-2016-0071

Iovine, G.; Parise, M.; Trocino, A. 2001. Breakdownmechanisms in gypsum caves of southern Italy, and the related effects at the surface. Z. Geomorphol, 54 (Suppl. 2), 153–178

Karni, J., Karni, E. 1995. Gypsum in construction: origin and properties. Materials and Structures 28, 92–100. https://doi.org/10.1007/BF02473176

Kasprzyk, K.A., 1995. Gypsum-to-anhydrite transition in the Miocene of southern Poland. Journal. Sediment. Res., 65, 348-375

Klimchouk, A., Cucchi, F., Calaforra, J.M., Aksem, S., Finocchiaro, F., Forti, P. 1996. Dissolution of gypsum from field observations. International Journal Speleol, 25, 37–48

Klimchouk, A. 1996. The dissolution and conversion of gypsum and anhydrite. International Journal of Speleology, 25, 21-36.

Kougias, V. I., Natsi, P. D., and P. G. Koutsoukos. 2019. On the Efficiency of Gypsum Scale Inhibition by Phosphonates: The Role of Molecular Architecture. Paper presented at the CORROSION 2019, Nashville, Tennessee, USA, March

Melvin J., 1991. Evaporites, Petroleum and Mineral Resources. Developments in sedimentology No. 50, Elsevier, Amsterdam, 174-175

Merchant Research & Consulting Ltd 2021. Gypsum: 2021 World Market Review and Forecast to 2030. Available on: https://mcgroup.co.uk/researches/gypsum (retrieved 10.05.2021)

Minard H. et al., 2007. Mechanisms and parameters controlling the tricalcium aluminate reactivity in the presence of gypsum, Cement and concrete research. 37, 1418-1426

Ministry of Environment, Energy & Climate Change 2017. Greek Extractive Industry. Prospects – Profile. The Deputy Minister of Environment, Energy & Climate Change

NERA 2019. The access of gypsum raw material by 2050. November, Paris

Notholt A.K.J, Highley D.E. 1975. Gypsum and Anhydrite. Mineral Resources, Consultative Committee, Mineral Dossier, 13, 1-4.

Reethu, B., Kumar, M. S., Sharath, G., Ramanjaneyulu, B., &Manchiryal, R. K. 2020. Stabilization of clayey soil using Gypsum. Journal of Student Research. https://doi.org/10.47611/jsr.vi.879

Ridge, M. 1958. Effect of Temperature on the Structure of Set Gypsum Plaster. Nature 182, 1224–1225. https://doi.org/10.1038/1821224a0

Rouchy, J.-M., Pierre, C. and Sommer, E 1995. Deep-water resedimentation of anhydrite and gypsum deposits in the middle Miocene (Belayim Formation) of the Red Sea, Egypt.

Sedimentology Journal, 42, 267-282

Sadeghiamirshahidi, M., &Vitton, S. 2019. Mechanical properties of Michigan Basin's gypsum before and after saturation. Journal of Rock Mechanics and Geotechnical Engineering, 11(4), 739-748. http://dx.doi.org/10.1016/j.jrmge.2018.10.006

Selley E.C., Cocks L.R., Plimer I. 2005. Encyclopedia of Geology, Elsevier, 572-573, ISBN 9780123693969

Shabafrooz, R., Mahboubi, A., Moussavi-Harami, R. et al. 2013. Facies analysis and sequence stratigraphy of the evaporite bearing Sachun Formation at the type locality, South East

Zagros Basin, Iran. Carbonates Evaporites, 28, 457–474 https://doi.org/10.1007/s13146-013-0141-x

Shearman, D.J., 1985. Syndepositional and late diagenetic alteration of primary gypsum to anhydrite. In: B.C. Schreiber and H.L. Harner (Editors). Sixth International Symposium on Salt Institute, 1, 41-50.

Sijiang W. Chongyang Y., Wang T.. 2020. Physical and Mechanical Properties of Gypsum-Like Rock Materials. Advances in Civil Engineering. 1-17. DOI: 10.1155/2020/3703706.

Sudhakar M. Rao, K. Asha. 2013. Role of Fly Ash Pozzolanic Reactions in Controlling Fluoride Release from Phosphogypsum. Journal of Materials in Civil Engineering, 25(8), 999-1005.

Tesárek, P., Novák, L., Topič, J., Prošek, Z., Nežerka, V., &Lidmila, M. 2015. Compression Testing of Gypsum-Based Composite Reinforced by Recycled Wires from Automobile Tires. Applied Mechanics and Materials, 732, 393–396. https://doi.org/10.4028/www.scientific.net/amm.732.393

Testa G., Lugli S. 2000. Gypsum-anhydrite transformations in Messinian evaporites of central Tuscany (Italy). Sedimentary Geology, 130, 249-268

Tian B., Cohen M.D. 2000. Does gypsum formation during sulfate attack on concrete lead to expansion? Cem. Concr. Res., 30, 117–123.

Ye Zhang et al 2019. IOP Conference. Ser.: Earth Environ. Sci. Available on: https://iopscience.iop.org/article/10.1088/1755-1315/330/4/042003/pdf (retrieved 04.05.2021)

Zhao Y.L., Xu X.L. 2016. Technical Question and Answers of Gypsum Application, China Building Materials Press, Beijing, China

US Department of the interior 201). The Mineral Industry of Greece. Available on: https://prd-wret.s3-us-west-2.amazonaws.com/assets/palladium/production/atoms/files/myb3-2016-gr.pdf (retrieved 04.05.2021)

U.S. Geological Survey 2020. Mineral Commodity Summaries Gypsum. Available on: https://pubs.usgs.gov/periodicals/mcs2020/mcs2020-gypsum.pdf (retrieved 04.05.2021)

USGS 2020. Mineral Commodities Summary 2020. Available on: https://pubs.usgs.gov/periodicals/mcs2020/mcs2020.pdf (retrieved 02.05.2021)

Vigna, B.; D’Angeli, I.M.; De Waele, J. 2017. Hydrogeological flow in gypsum areas: Some examples from northern Italy and main circulation models. International Journal Speleol, 46, 205–217

Wali, A.M.A. 1993. Gharbaniyatstromatolitic gypsum (west Alexandria): a clue from hypersaline syndepositional feature. Bull. Fac. Sci., Zagazig Univ., Egypt, 15/2, 399-422.

Warren J. 1997. Evaporites, brines and base metals: Fluids, flow and ‘the evaporite that was’. Australian Journal of Earth Sciences, 44(2), 149-183.

Warren J. 1999. Evaropites. Their Evolution and Economics. Blackwell Science


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.