Αποτύπωση ρευστοποιήσεων προκαλουμένων από το σεισμό του Φεβρουαρίου 2023 στην Τουρκία και συσχέτιση της χωρικής κατανομής με το υπάρχον υδρογραφικό δίκτυο του ποταμού Ορόντη.
Περίληψη
Το φαινόμενο της ρευστοποίησης το οποίο συμβαίνει κατά την διάρκεια μίας σεισμικής δόνησης, αποτέλεσε σημαντικό παράγοντα στις καταστροφές που υπέστησαν οι ανθρώπινες κατασκευές κατά τους σεισμούς της 6ης Φεβρουαρίου του 2023 στην περιοχή του Hatay στην Τουρκία. Στην συγκεκριμένη περιοχή εκδηλώθηκαν φαινόμενα ρευστοποίησης κυρίως στην πλημμυρική πεδιάδα και στα εσωτερικά τμήματα των μαιάνδρων (point bars) του ποταμού Ορόντη. Με την λεπτομερή αποτύπωση των ρευστοποιήσεων εκατέρωθεν του ποταμού Ορόντη και τον προσδιορισμό του αποθετικού περιβάλλοντος, έγινε συσχέτιση της χωρικής κατανομής των εμφανίσεων ρευστοποίησης με το υπάρχον υδρογραφικό δίκτυο του ποταμού. Με την χρήση του προγράμματος QGIS 3.28.11 πραγματοποιήθηκε η λεπτομερής αποτύπωση των εμφανίσεων ρευστοποίησης στα εσωτερικά τμήματα των μαιάνδρων και με την βοήθεια του Google Earth Pro αποτυπώθηκαν οι πλευρικές εξαπλώσεις εκατέρωθεν του ποταμού. Το αποτέλεσμα που προέκυψε από την μελέτη είναι ότι το περιβάλλον απόθεσης έχει πολύ σημαντικό ρόλο στην επιδεκτικότητα ενός εδάφους στο φαινόμενο της ρευστοποίησης και πιο συγκεκριμένα στην περιοχή μελέτης το μεγαλύτερο ποσοστό των εμφανίσεων ρευστοποίησης βρίσκονται στα εσωτερικά τμήματα των μαιάνδρων και σε απόσταση έως 180 μέτρα από το ελεύθερο μέτωπο του ποταμού Ορόντη.
MAPPING OF LIQUEFACTION CAUSED BY THE FEBRUARY 2023 EARTHQUAKE IN TURKEY AND CORRELATION OF ITS SPATIAL DISTRIBUTION WITH THE EXISTING HYDROGRAPHIC NETWORK OF THE ORONTES RIVER
The liquefaction phenomenon that occurs during an earthquake tremor was a major factor in the damage to human structures during the February 6, 2023, earthquakes in the Hatay region of Turkey. In this region, liquefaction phenomena occurred mainly in the floodplain and the inner parts of the meanders (point bars) of the Orontes River. With the detailed mapping of liquefaction on both sides of the Orontes River and the identification of the depositional environment, the spatial distribution of liquefaction occurrences was correlated with the existing hydrographic network of the river. Using the QGIS program 3.28.11, a detailed mapping of the liquefaction occurrences was carried out in the inner parts of the meanders and with the help of Google Earth Pro were mapped the lateral spreadings on both sides of the river. The result obtained from the study is that the depositional environment has a very important role in the susceptibility of a soil to liquefaction phenomenon and more specifically in the study area the largest percentage of liquefaction occurrences are in the inner parts of the meanders and at a distance of up to 180 m from the free face of the Orontes River.
Πλήρες Κείμενο:
PDFΑναφορές
Cakir, E. and Cetin, K.O. (2024) ‘Liquefaction triggering and induced ground deformations at a metallurgical facility in Dörtyol-Hatay after the February 6 kahramanmaraş earthquake sequence’, Soil Dynamics and Earthquake Engineering, 178, p. 108465. doi:10.1016/j.soildyn.2024.108465.
Demir, A. et al. (2024) ‘Destructive impact of successive high magnitude earthquakes occurred in Türkiye’s kahramanmaraş on February 6, 2023’, Bulletin of Earthquake Engineering [Preprint]. doi:10.1007/s10518-024-01865-5.
Elfass, S.A., Norris, G.M. and Jacobson, E. (2006) ‘Computer simulation of soil liquefaction’, GeoCongress 2006, pp. 1–6. doi:10.1061/40803(187)267.
Engineering Discoveries (2020) ‘What is soil liquefaction? Causes, effects and prevents’, Engineering Discoveries, [online] Available from:https://engineeringdiscoveries.com/what-is-soil-liquefaction-causes-effects-and-prevents/.
Ingabire Abayo, N. et al. (2023) ‘Fluvial geomorphic factors affecting liquefaction-induced lateral spreading’, Earthquake Spectra, 39(4), pp. 2518–2547.
doi:10.1177/87552930231190655.
Jitno, H. and Davidson, R. (2010) ‘Earthquake- induced displacements of earth dams and embankments’, Earthquake- induced displacements of earth dams and embankments, 45(3), pp. 65-84.[online] Available from: https://www.researchgate.net/publication/288766690_Earthquake-
induced_displacements_of_earth_dams_and_embankments.
Karakas, V.E. et al. (2024) ‘Event-based regional model of liquefaction susceptibility in Amik, Gölbaşı and Kahramanmaraş basins after the February 6, 2023 earthquakes’, Engineering Geology, 339, p. 107644. doi:10.1016/j.enggeo.2024.107644.
Karatas, A. (2016) ‘Sustainable Water Management in Hatay: Hydrographic Planning Approach’, in Water Resources Management in the Lower Asi-Orontes River Basin: Issues and Opportunities, Geneva: Graduate Institute of International and Development Studies; Istanbul: MEF University, p. 111–123
Karslı, H., Babacan, A.E. and Akın, Ö. (2024) ‘Subsurface characterization by active and passive source geophysical methods after the 06 February 2023 earthquakes in Turkey’, Natural Hazards, 120(6), pp. 5257–5286. doi:10.1007/s11069-024-06422-6.
Maria, T., Valkaniotis Sotiris, Karantanellis Efstratios, Goula Evmorfia and Papathanassiou (2023). Preliminary mapping of liquefaction phenomena triggered by the February 6 2023 M7.7 earthquake, Türkiye / Syria, based on remote sensing data. Zenodo (CERN European Organization for Nuclear Research). doi:https://doi.org/10.5281/zenodo.7668401.
Ozener, P. et al. (2024) ‘Liquefaction and performance of foundation systems in Iskenderun during 2023 Kahramanmaras-Türkiye earthquake sequence’, Soil Dynamics and Earthquake Engineering, 178, p. 108433. doi:10.1016/j.soildyn.2023.108433.
Ozkan, P. et al. (1986) Guide to Hatay geology (SE Turkey), 11(2), pp. 87–104. Available at: https://archive-ouverte.unige.ch//unige:157463.
Papathanassiou, G. et al. (2017) ‘Liquefaction susceptibility map of Greece’, Bulletin of the Geological Society of Greece, 43(3), p. 1383. doi:10.12681/bgsg.11314.
Papathanassiou, G. et al. (2022) ‘Floodplain evolution and its influence on liquefaction clustering: The case study of March 2021 Thessaly, Greece, seismic sequence’, Engineering Geology, 298, p. 106542. doi:10.1016/j.enggeo.2022.106542.
Popescu, R. and Chakrabortty, P. (2024) ‘Mechanism of seismic liquefaction for heterogeneous soil’, Soil Dynamics and Earthquake Engineering, 176, p. 108339. doi:10.1016/j.soildyn.2023.108339.
Raja, M.N., Abdoun, T. and El-Sekelly, W. (2024) ‘Smart prediction of liquefaction-induced lateral spreading’, Journal of Rock Mechanics and Geotechnical Engineering, 16(6), pp. 2310–2325. doi:10.1016/j.jrmge.2023.05.017.
Russell, (2017). ‘Prediction of sedimentary architecture and lithological heterogeneity in fluvial point-bar deposits’, Doctorate in the University of Leeds School of Earth and Environment.
Russell, C.E. et al. (2018) ‘A novel approach for prediction of lithological heterogeneity in fluvial point‐bar deposits from analysis of meander morphology and scroll‐bar pattern’, Fluvial Meanders and Their Sedimentary Products in the Rock Record, pp. 385–417. doi:10.1002/9781119424437.ch15.
Shioi, Y. (2020) ‘Predicting post-seismic liquefaction through geological response analysis’, Research Outreach [Preprint], (118). doi:10.32907/ro-118-130133.
Silvestri, F. and Moraci, N. (2019). Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions. CRC Press.
Suprijanto, H., Primantyo Hendrawan, A. and Wayan Bayu Nugraha, A. (2020) ‘Potential study of the liquefaction hazard at the reclamation development site of I gusti
Ngurah Rai Airport, Nusa Dua region, province of Bali’, IOP Conference Series: Earth and Environmental Science, 437(1), p. 012058. doi:10.1088/1755-1315/437/1/012058.
Sylvester, Z. et al. (2021) ‘Autogenic translation and Counter Point Bar deposition in meandering rivers’, GSA Bulletin, 133(11–12), pp. 2439–2456. doi:10.1130/b35829.1.
Taftsoglou, M. et al. (2022) ‘A detailed liquefaction susceptibility map of Nestos River Delta, Thrace, Greece based on surficial geology and geomorphology’, Geosciences, 12(10), p. 361. doi:10.3390/geosciences12100361.
Taftsoglou, M. et al. (2023) ‘Satellite imagery for rapid detection of liquefaction surface manifestations: The case study of Türkiye–Syria 2023 earthquakes’, Remote
Sensing, 15(17), p. 4190. doi:10.3390/rs15174190.
Taftsoglou, M. et al. (2024) ‘Correlating the spatial distribution of liquefaction phenomena with the surficial geology on point bars deposits; case studies 2021 Damasi, Greece and 2023, Kahramanmaraş, Türkiye’, 4th European Regional Conference of IAEG (EUROENGEO 2024).
Tarı, U. et al. (2014) ‘The geology and morphology of the Antakya Graben between the Amik Triple Junction and the Cyprus Arc’, Geodinamica Acta, 26(1–2), pp. 27–55. doi:10.1080/09853111.2013.858962.
Tobita, T. et al. (2024) ‘Geotechnical Damage Survey Report on February 6, 2023 Turkey-Syria earthquake, Turkey’, Soils and Foundations, 64(3), p. 101463. doi:10.1016/j.sandf.2024.101463.
Tokimatsu, K. and Yoshimi, Y. (1983) ‘Empirical correlation of soil liquefaction based on SPT N-value and fines content’, Soils and Foundations, 23(4), pp. 56–74. doi:10.3208/sandf1972.23.4_56.
Yuan, J., Wang, L. and Yuan, X. (2023) ‘Framework of a performance-based design for liquefaction resistance’, Soil Dynamics and Earthquake Engineering, 173, p. 108123. doi:10.1016/j.soildyn.2023.108123.
Παπαθανασίου Γ., (2022). Επιδεκτικότητα και επικινδυνότητα γεωλογικών φαινομένων [Κεφάλαιο]. Στο Παπαθανασίου, Γ. 2022. Τεχνική Γεωλογία και Γεωλογικοί Κίνδυνοι [Προπτυχιακό εγχειρίδιο]. Κάλλιπος, Ανοικτές Ακαδημαϊκές Εκδόσεις. 2008
Εισερχόμενη Αναφορά
- Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.