[Εξώφυλλο]

Συγκριτική αξιολόγηση τεχνικογεωλογικών συνθηκών σχεδιασμού και κατασκευής της σύραγγας Τ2 των Τεμπών

Δημοσθένης Παραδείσης

Περίληψη


This dissertation is concerned with the benchmarking of the geotechnical conditions of the design and construction of Tempi‘s T2 tunnel and also the examination of the behavior of poor and heterogenous rockmass in compressive environment. There were used data from the research and the construction of the T2 tunnel, as well as elements from the bibliography. The tunnel being studied penetrates crystalized limestones and phyllites with poor geotechnical characteristics. Firstly, the area‘s geology was examined according to the research‘s data and it was compared to the one that occurred from the tunnel‘s construction data. Afterwards, the formations are being approached by a geotechnical point of view and discrete geotechnical unities are being constructed with specific characteristics that are being compared to the research‘s ones. Then, the general hydrogeology of the area is being examined in relation with the T2 tunnel. Consequently, there was a research conducted on the behavior of the various geotechnical unities in the tunnel related to the estimation from the rockmass estimation diagram (Tunnel Behavior Chart, TBC) and from the estimations based on the research‘s data. Moreover, the software ―Unwedge‖ was used to find wedges based on discontinuity systems on crystalized limestone, with data from the research and from the construction‘s concessionaire. Finally, the software ―Phase2‖ was utilized for reverse analyses on metamorphic phyllites with very poor characteristics, which had shown inexpediency tendencies during the construction of T2 tunnel. The aim of the reverse analyses‘ conduction was to approach the inexpediency tendencies that were made and also the way the alternation between phyllites and crystalized limestones influenced the deformations.

Πλήρες Κείμενο:

PDF

Αναφορές


Aksoy, C. O., Geniş, M., Aldaş, G. U., Özacar, V., Özer, S. C., & Yılmaz, Ö. (2012). A comparative study of the determination of rock mass deformation modulus by using different empirical approaches. Engineering Geology, 131, 19-28.

Barton, N. (2002). Some new Q-value correlations to assist in site characterisation and tunnel design. International journal of rock mechanics and mining sciences, 39(2), 185-216.

Barton, N.R., Lien, R., Lunde, J. (1974). Engineering classification of rock masses for the design of tunnel support

Bianchetti, G., Zuber, F., Vuataz, F.-D., Rouiller, J. D. (1993). Hydrogeologic and geothermal investigations in the Simplon Tunnel (in German with English summary). Contribution to the geology of Switzerland, Schweizerische Geotechnische Kommission, Zürich, 75p.

Bieniawski, Z.T. (1973). Engineering classification of jointed rock massesTrans S Afr Inst Civ Engrs15: 335-344

Brandau, K. (1909). Das Problem des Baus langer, tiefliegender Alpentunnels und die Erfahrungen beim Bau des Simplon Tunnels. Schweiz. Bauz. 53.

Brunold, R. (1993): Probleme bei der Durchörterung von Störzonen auf der Südseite. Proc., SIA-FGU, D0113, 41–44.

Chronic, H. (1980). Roadside geology of Colorado, Mountain Press Publishing, Missoula, Montana, 153.

Das, J. P., Dwivedi, H. V., & Bhattacharyya, K. (2014). Structural evolution of L-tectonites from eastern Sikkim Himalayan fold thrust belt: insights from kinematic analyses. Rock Deformation and Structures (RDS-III) Abstract, 27-28.

Dube, A. K. (1979). Geomechanical evaluation of tunnel stability under failing rock conditions in a Himalayan tunnel. Dept of Civil Eng, 2, 212.

Dwivedi, R. D., Singh, M., Viladkar, M. N., & Goel, R. K. (2014). Estimation of support pressure during tunnelling through squeezing grounds. Engineering Geology, 168, 9-22.

Giannatos, G., Poulimenos, G., Kontothanassis, P., Mantziaras, P., Koronakis, N. (2008). Geological-Hydrogeological study of Tunnel main body Engineering report. Maliakos Kleidi Project.

Goel, R. K. (1994). Correlations for Predicting Support Pressures and Deformations in Tunnels.

Hitchcock and Tinkler Inc. (1928): Moffat Tunnel: The contractors' story, 60 p.

Hoek E., Brown E.T. (1997). Practical estimates or rock mass strength. Int J Rock Mech Min 34(8): 1165–1186

Hoek, E., & Diederichs, M. S. (2006). Empirical estimation of rock mass modulus. International journal of rock mechanics and mining sciences, 43(2), 203-215.

Hoek, E., & Guevara, R. (2009). Overcoming squeezing in the Yacambú-Quibor tunnel, Venezuela. Rock Mechanics and Rock Engineering, 42(2), 389-418.

Keller, F. (1993): Geologie des Zugwald und Vereinatunnels. In: Proc., SIA-FGU, D0113, Zurich, 13–20.

Kilias, A. (1996). Tectonic evolution of the Olympus-Ossa Mountains: Emplacement of the blueschist unit in Eastern Thessaly and Exhumation of Olympus-Ossa carbonate dome as a result of Tertiary Extension (Central Greece). Mineral Wealth 96/1995.

Kontogianni, V. A., & Stiros, S. C. (2005). Induced deformation during tunnel excavation: evidence from geodetic monitoring. Engineering geology, 79(1), 115-126.

Kontogianni, V., Papantonopoulos, C., & Stiros, S. (2008). Delayed failure at the Messochora tunnel, Greece. Tunnelling and Underground Space Technology, 23(3), 232-240.

Kontogianni, V., Tzortzis, A., & Stiros, S. (2004). Deformation and failure of the Tymfristos tunnel, Greece. Journal of geotechnical and geoenvironmental engineering, 130(10), 1004-1013.

Kumar, N. (2002). Rock mass characterization and evaluation of supports for tunnels in Himalaya (Doctoral dissertation, Ph. D. Thesis Dept. Of Civil Engg., IIT Roorkee, Roorkee, India).

Lovering, T. S. (1928). Geology of the Moffat Tunnel, Colorado. US Geological Survey.

Malhotra, V.K., Tyagi, G.D., Sharma K.S. (1982) NATM for Tunnel Boring at Loktak H. E. ProjectProc. of Sym. on Tunnelling, 52nd Session of the Central Board of Irrigation & Power, New Delhi, India (1982), pp. 35–58 (June)

Maliakos Kleidi Construction Joint Venture (MKC-JV) (μη δημοσιευμένο) Tempi and Platamonas Tunnels_T1_T2_Τ3

Marinos, P., & Hoek, E. (2000, November). GSI: a geologically friendly tool for rock mass strength estimation. In ISRM International Symposium. International Society for Rock Mechanics.

Μarinos, V., (2012) Assessing rock mass behavior for tunneling. Environmental and Engineering Geoscience.

Nicholson, G. A., & Bieniawski, Z. T. (1990). A nonlinear deformation modulus based on rock mass classification. International Journal of Mining and Geological Engineering, 8(3), 181-202.

Palmström, A., & Singh, R. (2001). The deformation modulus of rock masses—comparisons between in situ tests and indirect estimates. Tunnelling and Underground Space Technology, 16(2), 115-131.

Palmstrοm, A. (1996). Characterizing rock masses by the RMi for use in practical rock engineering, part 2: some practical applications of the rock mass index (RMi). Tunnelling and underground space technology, 11(3), 287-303.

Pöchhacker, H. (1974). Tunnelling in squeezing rock, theory and practice. Separate print from Porr-Nachrichten, (57), 464-512.

Pressel, K. (1906). Die Bauarbeiten am Simplontunnel. Schweiz. Bauz. 50, 249 ff.

Proctor, R.V., White, T.L. (1946). Rock tunnelling with steel supportsCommercial Shearing and Stamping CoYoungston, Ohio

Rabcewicz L.V. (1964). The New Austrian Tunneling Method, Water Power, Part I, November 1964; Part II, December 1964, pp 511–515; Part III, January 1965, pp 19–24

Schermer, E. R. (1993). Geometry and kinematics of continental basement deformation during the Alpine orogeny, Mt. Olympos region, Greece. Journal of Structural Geology, 15(3-5), 571-591.

Sonmez, H., Gokceoglu, C., & Ulusay, R. (2004). Indirect determination of the modulus of deformation of rock masses based on the GSI system. International journal of rock mechanics and mining sciences, 41(5), 849-857.

Steiner, W. (1980). Empirical methods in rock tunnelling: review and recommendations. Thesis submitted for the degree of Sc.D. to the Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, 552 pp. also published as report of the US. DOT, UMTA-MA-06-0100-80-8, NTIS PB80-225196.

Steiner, W. (1996). Tunnelling in squeezing rocks: case histories. Rock mechanics and rock engineering, 29(4), 211-246.

Tauernautobahn (1978): Documentation on Tauerntunnel, Salzburg.

Tsatsanifos, C. P., Mantziaras, P. M., & Georgiou, D. (1999). Squeezing rock response to NATM tunneling. A case study. In Proc. of the Int. Symp. on Geotechnical Aspects of Underground Construction in Soft Rock (pp. 167-172).

Varshney, R. S. (1988). Tunnelling in squeezing rocks. In Int. Symp. on Tunnelling for Water Resources and Power Project. Jan (Vol. 188).

Κίλιας, Α., Frisch, W., Ratschbacher, L., Σφέικος, Α. (1991). Η τεκτονική εξέλιξη και οι P-T συνθήκες μεταμόρφωσης των << Κυανοσχιστολίθων>> της ανατολικής Θεσσαλιας (Βόρεια/Κεντρικη Ελλάδα)

Μουντράκης, Δ. (2010). Γεωλογία και Γεωτεκτονική Εξέλιξη της Ελλάδος. University Studio Press.

http://wikimapia.org/20312743/el/Σήραγγα-Τ2-Τεμπών-6-000-μ


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.