[Εξώφυλλο]

Προσδιορισμός ιδιοτήτων σεισμικής εστίας, δρόμου διάδοσης και επίδρασης τοπικών συνθηκών στη σεισμική κίνηση, με αντιστροφή δεδομένων επιταχυνσιογράφων του Ελληνικού χώρου

Ιωάννης Γρένδας

Περίληψη


Η σεισμική πηγή, ο δρόμος διάδοσης των κυμάτων και η επίδραση των τοπικών εδαφικών συνθηκών, είναι οι παράγοντες που επηρεάζουν της εδαφική κίνηση. Συνεπώς, οι σεισμικές καταγραφές σε κάποιον σταθμό, αποτελούν την συμβολή των τριών αυτών παραγόντων. Σε αυτή την εργασία, τα φάσματα Fourier των S-κυμάτων της εδαφικής επιτάχυνσης, που καταγράφηκαν από το δίκτυο επιταχυνσιογράφων του Ινστιτούτου Τεχνικής σεισμολογίας και Αντισεισμικών κατασκευών την χρονική περίοδο 2010-2016, θεωρήθηκαν ως το γινόμενο της σεισμικής πηγής, του δρόμου διάδοσης (συμπεριλαμβανομένων των παραμέτρων της γεωμετρικής και της ανελαστικής απόσβεσης) και της επίδρασης των τοπικών εδαφικών συνθηκών. Τα δεδομένα αποτελούνται από 158 επιφανειακούς σεισμούς στην ευρύτερη περιοχή του Αιγαίου, με μεγέθη 4.5≤M≤6.5 κα επικεντρικές αποστάσεις 20km≤R≤350km, καταγεγραμμένους από 124 επιταχυνσιογράφους ευρέως φάσματος, εγκατεστημένους σε θέσεις με ποικίλες γεωλογικές συνθήκες. Βασισμένη σε αυτά τα δεδομένα, χρησιμοποιήθηκε η επαναληπτική μέθοδος αντιστροφής Gauss-Newton για την επίλυση του μη-γραμμικού προβλήματος και τον υπολογισμό των παραμέτρων της πηγής, του δρόμου διάδοσης και της επίδρασης της θέσης. Η μέθοδος αυτής χρησιμοποιεί ένα αρχικό μοντέλο στοχεύοντας στην καλύτερη και ταυτόχρονα σταθερή επίλυση των παραμέτρων, οι οποίες είναι το μέγεθος σεισμικής ροπής (Μ), η γωνιακή συχνότητα (fc), ο παράγοντας ανελαστικής απόσβεσης (Q=Q0fα), η παράμετρος της κλίσης της γεωμετρικής απόσβεσης (1/Rγ) και τα φάσματα εδαφικής ενίσχυσης (S). Οι τιμές του αρχικού μοντέλου μπορεί να είναι είτε γνωστές από άλλες μελέτες, είτε να βρίσκονται μέσα σε ένα ρεαλιστικό εύρος διακύμανσης. Ανάλογα με το επίπεδο γνώσης των παραμέτρων αυτών, οι αρχικές τιμές της διακύμανσής τους μπορούν να προσαρμοστούν (μεγάλες τιμές για άγνωστες παραμέτρους, ή  μικρές τιμές για παραμέτρους καλά μελετημένες). Τα αποτελέσματα των παραμέτρων της σεισμικής πηγής παρουσιάζουν ικανοποιητική συμφωνία με τα αντίστοιχα που προτείνονται από Σεισμολογικά κέντρα στην Ελλάδα και οι παράμετροι του δρόμου διάδοσης έχουν παρόμοιες τιμές με εκείνες που προσδιορίστηκαν από ανάλογες μελέτες για την περιοχή αυτή. Επιπλέον, τα υπολογισμένα από τη μη-γραμμική αντιστροφή φάσματα ενίσχυσης της κάθε θέσης μελέτης, είναι συγκρίσιμα με εκείνα που υπολογίστηκαν για τις ίδιες θέσεις εφαρμόζοντας την μέθοδο τυπικού λόγου φασμάτων (SSR) και τη μέθοδο του λόγου του οριζόντιου προς το κατακόρυφο φάσμα (HVSR). Τα αποτελέσματα αυτά είναι ενθαρρυντικά για την αξιόπιστη εκτίμηση της επίδρασης των τοπικών εδαφικών συνθηκών με τη χρήση μεθόδων χωρίς τη χρήση σταθμών αναφοράς, σε περιοχές μέσης έως υψηλής σεισμικότητας.

Source, propagation path and site conditions are factors affecting seismic ground motion. Consequently, recordings acquired at a seismic station are formed by convolution of these three factors. In this work S-wave acceleration Fourier spectra of earthquakes recorded at regional scale, by the ITSAK accelerometric network for the period 2010-2016, are modeled as a product of source, propagation path (including geometric and anelastic attenuation) and site effects. The data set consists of 158 crustal earthquakes occurred in the broader Aegean area, with magnitudes 4.5≤M≤6.5 and epicentral distances 20km≤R≤350km, recorded at 124 broadband accelerometric stations installed at sites with various geologic conditions. Based on this data set, an iterative Gauss-Newton inversion method to solve the non-linear problem and retrieve the different terms of source, propagation path and site, is used. This method uses an initial input model trying to find the best and at the same time a stable solution for the inverted parameters, which are, moment magnitude (M), corner frequency (fc), anelastic attenuation quality factor (Q=Q0fα), slope of the geometric attenuation (1/Rγ) and site transfer function (S). The initial values of the starting model can be either known from other studies or inferred within a reasonable range. Depending on the level of knowledge on these input parameters, the associated standard deviation can be adjusted (large values for unknown parameters or small values for parameters which are well characterized). Results of the analyses exhibit satisfactory agreement of estimated source parameters with those proposed by seismological centers in Greece and propagation path properties similar to the ones determined in relevant previous studies for the same region. In addition, the site transfer functions obtained by the non-linear inversion are comparable with those calculated for the same sites using either standard spectral ratio (SSR) or horizontal-to-vertical spectral ration (HVSR - receiver function) techniques. The aforementioned results are encouraging in using such non-reference station methods for reliable site effect assessment in areas of high to intermediate seismicity.

Πλήρες Κείμενο:

PDF

Αναφορές


Aki, K., and P. G. Richards (2002). Quantitative Seismology, Second Ed. University Science Books, Sausalito, California, 700 pp.

Ameri, G., Oth, A., Pilz, M., Bindi, D., Parolai, S., Luzi, L., Mucciarelli, M. and Cultera, G., (2011). Separation of source and site effects by Generalized Inversion Technique using the aftershock recordings of the 2009 L’ Aquila earthquake. Bull. of Earthq. Engin., 9, 3, 717-739.

Anderson, J., G. and Hough, S., E., (1984). A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies. Bull. Seism. Soc. Am. 74, 1969-1993.

Andrews, D., J., (1986). Objective determination of source parameters and similarity of earthquakes of different size. Earthquakes Source Mechanics. American Geophysical Monograph 37, 259-267.

Bard, P.-Y., Bouchon, M., (1985). The two dimensional resonance of sediment-filled valleys. Bull. Seism. Soc. Am., 75, 519-541.

Barka, A., A., (1992). The North Anatolian fault zone. Ann. Tect. VI, 164-195.

Baskoutas, I., (1996). Dependence of coda Qc on frequency and lapse time in Central Greece. Pure Appl. Geophys, 147, 483-496.

Bonilla, L., F., Steidl, J., H., Lindley, G., T., Tumarkin, A., G., and Archuleta, R., J. (1997). Site amplification in the San Fernado Valley, California: Variability of the site-effect estimation using the S-wave, coda and H/V methods. Bull. Seismol. Soc. Am. 87, no. 3, 710-730.

Boatwright, J., Fletcher, J., B. and Fumal, T., E., (1991). A general inversion scheme for source, site, and propagation characteristics using multiply recorded sets of moderate-sized earthquakes, Bull. Seismol. Am. 81, no. 5, 1754-1782.

Boore, D., and Boatwright, J., (1984). Average body-wave radiation coefficients, Bull. Seismol. Soc. Am. 74, no. 5, 1615-1621.

Boore, D., M., & Joyner, W., B., (1997). Site amplification for generic rock sites, Bull. Seismol. Soc. Am. 87(2), 327-341.

Borcherdt, R., D., (1970), Effects of local geology on ground motion near San Francisco Bay, Bull. Seism. Soc. Am. 60, 29-61.

Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res. 75, no. 26, 4997–5009.

Brune, J. N. (1971). Correction, J. Geophys. Res. 76, no. 20, 5002.

Castro, R., R., Anderson, J., G. and Singh, S., K., (1990). Site response, attenuation and source spectra of S waves along the Guerrero, Mexico, subduction zone. Bull. Seismol. Soc. Am., 80, 1481-1503.

Chavez-Garcia, F., J., Pedotti, G., Hatzfeld, D. and Bard, P.-Y., (1990). An experimental study of site effects near Thessaloniki (Northern Greecce). Bull. Seism. Soc. Am., 80, 784-806.

Dimitriu, P., P., Papaioannou, Ch., A. and Theodoulidis, N., P., (1998). EURO-SEISTEST Strong-Motion Array near Thessaloniki, Northern Greece: A study of Site Effects. Bull. Seism. Soc. Am., 88, 862-873.

Dimitriu, P., Kalogeras, I. and Theodoulidis, N., (1999). Evidence of nonlinear site response in horizontal-to-vertical spectral ratio from near-field earthquakes. Soil Dynamics and Earthquake Engineering 18, pp. 423-435.

Dimitriu, P., Theodoulidis, N. and Bard, P.-Y., (2000). Evidence of nonlinear response in HVSR from SMART1 (Taiwan) data. Soil Dynamics and Earthquake Engineering 20, pp. 155-165.

Dimitriu, P., Theodulidis, N., Hatzidimitriou, P. and Anastasiadis, A., (2001). Sediment non – linearity and attenuation of seismic waves: a study of accelerograms from Lefkas, western Greece. Soil Dynamics and Earthquake Engineering 21, 63-73.

Drouet, S., A. Souriau, and F. Cotton (2005). Attenuation, seismic moment, and site effects for weak – motion events: application to the Pyrenees, Bull. Seismol. Soc. Am. 95, no. 5, 1731 – 1748.

Drouet, S., Chevrot, S., Cotton, F. and Souriau, A. (2008α). Simultaneous inversion of source spectra, attenuation parameters and site responses: Application to the data of the French accelerometric network. Bull. Seismol. Soc. Am. 98, No. 1, 198-219.

Drouet, S., Triantafyllidis, P., Savvaidis, A. and Theodulidis, N. (2008b). Comparison of Site -Effects estimation methods using the Lefkas, Greece 2003 earthquake aftershocks, Bull. Seismol. Soc. Am. 98, no. 1198 - 219.

Drouet, S., Cotton, F. and Gueguen, P., (2010). Vs30, k, regional attenuation and Mw small magnitude events accelerograms. Geophys. J. Int., 182(2), 880-898.

Drouet,S., Bouin, M.-P. and Cotton F., (2011). New moment magnitude scale, evidence of stress rop magnitude scaling and stochastic ground motion model for the French West Indies. Geophys, J. Int., 187, 1625-1644.

Field, E., H. and Jacob, K., H., (1995). A comparison and test of various site response estimation techniques, including three that are not reference site, Bull Seism. Soc. Am. 85, no 4, 1127 - 1143.

Field, E., H., (1996). Spectral amplification in a sediment-filled valley exhibiting clear basin-edge induced waves, Bull Seism. Soc. Am. 86, 991-1005.

Futterman, W. I. (1962). Dispersive body waves, J. Geophys. Res. 67, 5279-5291.

Frigo, M., and S. G. Johnson. “FFTW: An Adaptive Software Architecture for the FFT.” Proceedings of the International Conference on Acoustics, Speech and Signal Processing. Vol. 3, 1998, pp. 1381-1384.

Haghshenas, E., Bard, P.-Y., Theodulidis, N., (2008). Empirical evaluation of microtremor H/V spectral ratio. Bull. Earthquake Eng., 6, 75-108.

Hanks, T., C. and Kanamori, H., (1979). A moment magnitude scale, J. Geophys. Res. 84, no. B5, 2348/2350.

Hanks, T., McGuire, R.K., (1981). The character of high-frequency strong ground motion. Bull. Seismol. Soc. Am. 71, 2071 – 2095.

Hanks, (1982). fmax, Bull. Seismol. Soc. Am. 72, 1867-1879.

Hatzidimitriou, P. M., Papazachos, C. B., Kiratzi, A. A. and Theodoulidis, N. P. (1993). Estimation of attenuation structure and local earthquake magnitude based on acceleration records in Greece. Tectonophysics, 217, 243-253.

Hatzidimitriou, P. M (1993). Attenuation of coda waves in northen Greece. Pure Appl. Geophys., 140, 63-78, 1993.

Hashida, T., Stavrakakis, G. and Shimazaki, K., (1988). Three-dimensional seismic attenuation structure beneath the Aegean region and its tectonic implication. Tectonophysics, 145, 43-54.

Hassani, B., Zafarani, H., Farjoodi., J. and Ansari, A., (2011). Estimation of site amplification, attenuation and source spectra of S-waves in the East-Central Iran. Soil Dynamics and Earthquakes Engineering 31, 1397-1413.

Herrmann, R., (1985). An extension of random vibration theory estimates of strong ground motions to large distances. Bull. Seismol. Soc. Am. 75, 1447–1453.

Karagianni, E., E., Papazachos, C., B., Panagiotopoulos, D., G., Suhadolc, P., Vuan, A. and Panza, G., F., (2005). Shear wave velocity structure in the Aegean area obtained by inversion of Rayleigh waves. J. geophys. Res., 160, 127-143.

Karagianni, E., E. and Papazachos, C., B., (2007). Shear wave velocity structure in the Aegean region obtained by joint inversion of Rayleigh and Love waves. Geological Society, London, Special Publications, 291, 159-181.

Kastelic, V., Kiratzi, A., Benetatos, C., Zivcic, M. and Bajc, J. (2010).Shear wave Q determination for the upper crust of Western and Central Slovenia. Proceedings of the XIX CBGA Congress, Thessaloniki, Greece. 99, 377 - 385.

Ktenidou, O.-J., Gélis, C. and Bonilla, L.-F (2013). A study on the variability of kappa (k) in a Borehole: Implications of the computation process. Bull. Seism. Soc. Am. 103 , 1048-1068.

Konno, K. and Ochmachi, T. (1998). Ground-Motion Characteristics Estimated from Spectral Ratio between Horizontal and Vertical Components of Microtremor. Bull. Seism. Soc. Am. 88, No. 1, 228-241.

Kovachev, S. A., Kuzin, I. P., Shoda, O, Yu., (1991). Attenuation of S waves in the lithosphere of the Sea of Crete accordings to OBS observation. Phys. Earth Planet, Inter. 69, 101-111.

Lachet, C., Hatzfeld, D., Bard, P.-Y., Theodulidis, N., Papaioannou, C. and Savvaidis, A., (1996). Site Effects and Microzonation in the City of Thessaloniki (Greece). Comparison of Different Approaches. Bull. Seism. Soc. Am., 86, No. 6, 1692-1703.

Lermo, J. and Chavez-Garcia, F., G., (1993). Site effect evaluation using spectral ratios with only one station. Bull. Seism. Soc. Am. 83, 1574-1594.

Louvari, E., Kiratzi, A., A., and Papazachos, B. C., (1999). The Cephalonia Transform Fault and its extension to western Lefkada Island (Greece). Tectonophysics, 308, 223-236.

Madariaga, R. (1976). Dynamics of an Expanding Circular Fault. Bull. Seismol. Soc. Am. 66, 54-514.

Makra, K., Raptakis, D., Chavez-Garcia, F., J. and Pitilakis, K., (2001). Site effects and design provisions: The case of Euroseistest. Pure appl. geophys. 158, 2349-2367.

Makra, K., Chavez-Garcia, F., J., Raptakis, D. and Pitilakis, K., (2005). Parametric analysis of the seismic response of a 2D sedimentary valley: implications for code implementations of complex site effects. Soil Dyn. Earthquake Eng., 25, 303-315.

Martin, C.,(1988). Ge´ome´trie et cine´matique de la subduction Egeene structure en vitesse et en atte´nuation sous le Pe´loponne`se. These. Universite´ Joseph Fourier, Grenoble. 262 pp.

Margaris V. N., N. P., Theodulidis, Ch. A. Papaioannou and B. C. Papazachos (1990). Strong motion duration of earthquakes in Greece. Eur. Seis. Comm., 865-870.

Margaris, B, N. and Boore, D., M. (1998). Determination of Δσ and κο from response spectra of large earthquakes in Greece. Bull. Seism. Soc. Am. 88, 170-182.

Margaris, B., N. and Hatzidimitriou P., M. (2002). Source Spectra Scaling and Stress Release Estimates Using Strong-Motion Records in Greece. Bull. Seism. Soc. Am. 92, 1040-1059.

Matsunami, K., Zhang, W., Irikura, K., and Xie, L., (2003), Estimation of Seismic Site Response in the Tangshan Area, Chine, Using Deep Underground Records. Bull. Seism. Soc. Am. 93, 1065-1078.

Maufroy, E., Chaljub, E., Hollender, F., Bard, P.-Y., Kristek, J., Moczo, P., Martin, F., Theodoulidis, N., Manakou, M., Guyonnet-Benaize, C., Hollard, N.,

Pitilakis, K. (2016). 3D numerical simulation and ground motion prediction: Verification, validation and beyond – Lessons from the E2VP project. Soil Dyn. Earthquake Eng., 91, 53-71.

Molnar, S. and Cassidy, J., F., (2006). A comparison of site response techniques using weak-motion earthquakes and microtremors. Earthquake Spectra, Vol. 22, No. 1, pp. 169-188.

Nakamura, Y., (1989). A method for Dynamic Characteristics Estimation of Subsurface using Microtremor on the Ground Surface. QR Railway Tech. Res. Inst. 30, no. 1, 25-33.

Nogoshi, M. and Igarashi, T. (1971). On the amplitude characteristics of microtremor (part 2). J. Seism. Soc. Japan 24, 26-40 (in Japanese with English abstract).

Novotny, O., Zahradnik, J. and Tselentis G. (2001). Northwestern Turkey Earthquakes and the Crustal Structure Inferred from Surface Waves Observed in Western Greece. Bull. Seismol. Soc. Am. 91, no. 1, 875 – 879.

Oth, A., Bindi, D., Parolai, S. and Wenzel, F., (2008). S-wave attenuation characteristics beneath the Vrancea region (Romania): New insights from the inversion of ground motion spectra. Bull. Seismol. Soc. Am. Vol. 98, no. 5, 2482-2497.

Oth, A., Parolai, S., Blindi, D. and Wenzel, F. (2009). Source spectra and site response from S waves of intermediate-depth Vrancea, Romania, earthquakes. Bull. Seismol. Soc. Am. 99, 235-254.

Papadopoulos, I., Papazachos, C., Savvaidis, A., Theodulidis, N. and Vallianatos, F., (2016). Seismic microzonation of the broader Chania basin area (Southern Greece) from the joint evaluation of ambient noise and earthquake recordings. Bull. of Earthq. Engin. Vol. 14, No. 10.

Papageorgiou, A., S. and Aki K., (1981). A specific barrier model for the quantitive description of inhomogeneous faulting and the prediction of storng motio, part I: Description of the model, Bull. Seismol. Soc. Am. 73, 693-722.

Papazachos, C. B., (1992). Anisotropic radiation modeling of macroseismic intensitites for the estimation of the attenuation structure of the upper crust in Greece. Pure Appl. Geophys, 138, 445-469.

Papazachos, C. B., Margaris, V., N., Theodulidis, N., P., and Papaioannou, Ch., A., (1992). Seismic hazard assessment in Greece based on strong motion duration. 10 WCEE, Madrit, 425-430.

Papazachos, C. B. (1998). Crustal and upper mantle P and S velocity structure of the Serbomacedonian massif (Northen Greece). Geophysical Research Letters, 134, 25 - 39.

Papazachos, B., C., Papadimitriou, E., E., Kiratzi, A., A., Papazachos, C., B., and Louvari, E., K., (1998). Fault plane solutions in the Aegean Sea and the surrounding area and their tectonic implication. Boll. Geof. Teor. App. 39, 199-218.

Papazachos, B., C., Papaioannou, C., A., Papazachos, C., B., and Savvaidis, A., S., (1999). Rupture zones in the Aegean region. Tectonophysics, 308, 205-221.

Papazachos, B. C., Scordilis, E. M., Panagiotopoulos, D. G., Papazachos, C. B. and Karakaisis, G. F (2004). Global relations between seismic fault parameters and moment magnitude of earthquakes. Bull. Geol. Soc. Greece, XXXVI.

Pavel, F. and Vacareanu R., (2015). Kappa and regional attenuation for Vrancea (Romania) earthquakes. Journal of Seism., 19, 791-799.

PEER (2014). NGA-East: Semi-Automated Procedure for Windowing Time Series and Computing Fourier Amplitude Spectra for the NGA-West2 Database. Tadahiro Kishida, Olga-Joan Ktenidou, , Robert B. Darragh and Walter J. Silva, Chapter 1, PEER Report No. 2046/09, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA. June 2014.

PEER (2016). NGA-East: Semi-Automated Procedure for Windowing Time Series and Computing Fourier Amplitude Spectra for the NGA-West2 Database. Tadahiro Kishida, Olga-Joan Ktenidou, , Robert B. Darragh and Walter J. Silva, Chapter 2, PEER Report No. 2016/02, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA. May 2016.

Phillips, W., S. and Aki, K., (1986). Site amplification of coda waves from local earthquakes in central California. Bull. Seism. Soc. Am., 76, 627-648.

Polatidis A., Kiratzi, A., Hatzidimitriou, P. and Margaris, B (2003). Attenuation of shear-waves in the back-arc region of the Hellenic arc for frequencies from 0.6 to 16 Hz. Tectonophysics, 367, 29-40.

Raptakis, D., Theodulidis, N. and Pitilakis, K., (1998). Standard spectral ratio and horizontal to vertical ratio techniques: dataanalysis of the Euroseistest strong motion array in Volvi-Thessaloniki (Greece), Earthquake Spectra 14, 203-224.

Scerbaum, F., and M. Wyss (1990). Distribution of attenuation in the Kaoiki. Hawaii, source volume estimated by inversion of Pwave spectra, J. Geophys., Res. 95, 12439-12448.

Scordilis, E., M., Karakaisis, G., F., Karakostas, B., G., Panagiotopoulos, D., G., Comninakis, P., E., and Papazachos, B., C., (1985). Evidence for transform faulting in the Ionian Sea. The Cephalonia island earthquake sequence of 1983. Pure Appl. Geophys. 123, 388-397.

Scordilis, E. M., Kementzetzidou, D., Papazachos, B., C (2016). Local magnitude calibration of the Hellenic Unified Seismic Network. Journal of Seismology, Vol. 20, Issue 1, pp. 319-332.

Seekins, L., C., Wenneberg, L., Margheriti, L., Liu. and H.-P. (1996). Site amplification at five locations in San Fransisco, California: a comparison of S waves, codas, and microtremors. Bull. Seismolo. Soc. Am. 86, no. 3, 627-635.

Tarantola, A. (2004). Inversion Problem Theory and Methods for Model Parameters Estimation, SIAM, Philadelphia.

Theodulidis, N., (2006). Site characterization using strong motion and ambient noise data: Euroseistest (N. Greece). Third International Symposium on the Effects of Surface Geology on Seismic Motion, Grenoble, 30 August – 1 September, Paper Number: 112.

Theodulidis, N. and Bard, (1995). Horizontal to vertical spectral ratio and geological conditions: an analysis of strong motion data from Greece and Taiwan (SMART-1), Soil Dyn. Earthquake Eng. 14, 177-197.

Triantafyllidis, P., Hatzidimitriou, P., M., Theodulidis, N., Suhadolc, P.,, Papazachos, C., Raptakis, D. and Lontzetidis, K., (1999). Site Effects in the City of Thessaloniki (Greece) Estimated from Acceleration Data and 1D Local Soil Profiles. Bull. Seism. Soc. Am., 89, 2, pp. 521-537.

Triantafyllidis, P., Theodulidis, N., Savvaidis, A., Papaioannou, C. and Dimitriu, P., (2006). Site effects estimation using earthquake and ambient noise data: The case of Lefkas town (W. Greece). Proceedings of the 1st European Conference on Earthquake and Engineering Seismology (1ECEES), Geneva, Switzerland, 3-8 September, Paper Number: 1249.

Wells D.L. & Coppersmith K.J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area and surface displacement. Bull. Seism. Soc. Am., 84, 974-1002.

Yamazaki, F. and Ansary, M., A., (1997). Horizontal -to- vertical spectrum ratio of earthquake ground motion for site characterization. Earthq. Engin. and Struct. Dyn., Vol. 26, 671-689.

FFTW (http://ww.fftw.org)

Σεισμολογικός Σταθμός Α.Π.Θ. (Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης): (http://geophysics.geo.auth.gr/ss/)

Προγραμματιστικό περιβάλλον:

MATLAB and Statistics Toolbox Release 2012b, The MathWorks, Inc., Natick, Massachusetts, United States

SCREAM, Güralp Systems Ltd. United Kingdom: www.guralp.com

Generic Mapping Tools version 4.5.3 (www.soest.hawaii.edu/gmt, Wessel and Smith, 1998).


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.